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lish the convergence of this algorithm for any irreducible nonnega-

tive rectangular tensor.
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1. Introduction

Let R be the real field. Anmth order n dimensional square tensor B consists of nm entries in R, which

is defined as follows:

B = (Bi1i2···im), Bi1i2···im ∈ R, 1 ≤ i1, i2, . . ., im ≤ n. (1.1)

B is called nonnegative (or, respectively, positive) if Bi1i2···im ≥ 0 (or, respectively, Bi1i2···im > 0). An

mth order n dimensional square tensor B is called reducible if there exists a nonempty proper index

subset I ⊂ {1, 2, . . ., n} such that

Bi1i2···im = 0, ∀i1 ∈ I, ∀i2, . . ., im /∈ I.

If B is not reducible, then we call B irreducible [3,16].
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Assume that p, q,m and n are positive integers, andm, n ≥ 2. In this paper, we consider a nonneg-

ative (p, q)th order m × n dimensional rectangular tensor

A = (Ai1···ipj1···jq), Ai1···ipj1···jq ∈ R, 1 ≤ i1, . . . , ip ≤ m, 1 ≤ j1, . . . , jq ≤ n. (1.2)

Let Axp−1yq be a vector in Rm such that

(
Axp−1yq

)
i
=

m∑
i2,...,ip=1

n∑
j1,...,jq=1

Aii2···ipj1···jq xi2 · · · xipyj1 · · · yjq , i = 1, 2, . . .,m.

Similarly, let Axpyq−1 be a vector in Rn such that

(
Axpyq−1

)
j
=

m∑
i1,...,ip=1

n∑
j2,...,jq=1

Ai1···ipjj2···jq xi1 · · · xipyj2 · · · yjq , j = 1, 2, . . ., n.

Throughout this paper, we let M = p + q and N = m + n. Consider⎧⎨⎩ Axp−1yq = λx[M−1]

Axpyq−1 = λy[M−1].
(1.3)

Here, x[α] = [xα
1 , xα

2 , . . ., xα
n ]T . Let C be the set of all complex numbers. If λ ∈ C, x ∈ Cm \ {0} and

y ∈ Cn \ {0} are solutions of (1.3), then we say that λ is a singular value of A, x and y are a left and a

right eigenvectors of A, associated with the singular value λ.
A rectangular tensor A is called nonnegative (or positive) if Ai1···ipj1···jq ≥ 0 (or Ai1···ipj1···jq > 0).

For any j = 1, 2, . . ., n, let A•j = (Ai1···ipj···j) be a pth order m dimensional square tensor. For any

i = 1, 2, . . .,m, let Ai• = (Ai···ij1···jq) be a qth order n dimensional square tensor.

Definition 1.1 [5,16]. A nonnegative rectangular tensorA is called irreducible if all the square tensors

A•j, j = 1, . . . n, and Ai•, i = 1, . . .m, are irreducible.

For square tensors, the definition of eigenvalues has been recently introduced in [3,16,23]. Nice

properties such as the Perron–Frobenius theorem for eigenvalues of nonnegative square tensors [3]

have been established. The Perron–Frobenius Theorem for nonnegative tensors is related tomeasuring

higher order connectivity in linked objects [17] and hyper-graphs [2,11]. Applications of eigenvalues of

tensors include medical resonance imaging [1,28], higher-order Markov chains [19], positive definite-

ness of even-order multivariate forms in automatical control [20], and best-rank one approximation

in data analysis [9,15,26,27], etc.

Recently, Ng et al. [19] proposed an iterative method for computing the largest eigenvalue of a

nonnegative square tensor. Thismethod is an extension of amethod of Collatz [7,32,35] for calculating

the spectral radius of an irreducible nonnegative matrix. In [21], Pearson introduced the notion of

essentially positive tensors, and conjectured that the convergence of the Ng–Qi–Zhoumethod could be

established for essentially positive tensors. In [22], Pearson established the convergence of the Ng–Qi–

Zhou method for primitive nonnegative tensors. In [36], Zhang and Qi established linear convergence

of the Ng–Qi–Zhou method for essentially positive tensors.

Real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics

[13,14,29,31,33] and the entanglement problem in quantum physics [8,10,30]. In [25], M-eigenvalues

of such tensors are introduced. Algorithms for finding the largest M-eigenvalues are discussed in

[12,18,34]. M-eigenvalues are parallel to Z-eigenvalues for square tensors [1,4,16,23,24,27]. Singular

values of non-square tensors have been introduced in [16].

In [5,6,16], properties of singular values of non-square tensors have been discussed. In particular,

the Perron–Frobenius theorem to singular values of non-square tensors was established in [16]. Chang

et al. [5] established the Perron–Frobenius theorem to singular values of nonnegative rectangular ten-

sors and proposed an iterative algorithm to find the largest singular value of a nonnegative rectangular
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tensor. However, they did not study the convergence of the proposed algorithm. In the next section,

we propose a modified version of the algorithm given in [5] and show this modified algorithm is

convergent for any irreducible nonnegative rectangular tensor.

2. Convergence of an iterative algorithm

In this section we propose an iterative algorithm to calculate the largest singular value of a non-

negative rectangular tensor. This algorithm is a modified version of the one given in [5], and we will

show the convergence of the proposed algorithm for any irreducible nonnegative rectangular tensors.

In this section, we always suppose that A is an irreducible nonnegative rectangular tensor of order

(p, q) and dimension m × n.

Let Pn = {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n} and int(Pn) = {x ∈ Rn : xi > 0, 1 ≤ i ≤ n}. For any two

vectors x1 ∈ Rn and x2 ∈ Rn, x1 ≥ x2 and x1 > x2 mean that x1 − x2 ∈ Pn and x1 − x2 ∈ int(Pn),
respectively.

In the following, we state the Perron–Frobenius Theorem for nonnegative rectangular tensors pro-

posed in [5,16] for reference. The Perron–Frobenius theorem to singular values of non-square tensors

was first proposed in [16].

Theorem 2.1 [5,16]. If A is an irreducible nonnegative rectangular tensor of order (p, q) and dimension

m × n, then there exist λ0 > 0, x0 ∈ int(Pm) and y0 ∈ int(Pn) such that⎧⎨⎩ Axp−1
0 y

q
0 = λ0x

[M−1]
0

Axp0y
q−1
0 = λ0y

[M−1]
0 .

(2.4)

Moreover, if λ is a singular value with strongly positive left and right eigenvectors, then λ = λ0. For all

singular values λ of A, |λ| ≤ λ0.

Clearly, from this result, λ0 is the largest singular value of A.

Theorem 2.2 [5]. Assume that A is an irreducible nonnegative rectangular tensor of order (p, q) and

dimension m × n, then

λ0 = min
(x,y)∈(Pm\{0})×(Pn\{0})

max
i,j

⎛⎜⎝
(
Axp−1yq

)
i

x
M−1
i

,

(
Axpyq−1

)
j

y
M−1
j

⎞⎟⎠
= max

(x,y)∈(Pm\{0})×(Pn\{0})
min
i,j

⎛⎜⎝
(
Axp−1yq

)
i

x
M−1
i

,

(
Axpyq−1

)
j

y
M−1
j

⎞⎟⎠ ,

whereλ0 is the unique positive singular value corresponding to strongly positive left and right eigenvectors.

For a rectangular tensor A, ρ > 0, x ∈ Pm and y ∈ Pn, let

Bx(x, y) = Axp−1yq + ρx[M−1], (2.5)

By(x, y) = Axpyq−1 + ρy[M−1]. (2.6)

By Theorems 2.1 and 2.2, we have the following theorem.

Theorem 2.3. IfA is an irreducible nonnegative rectangular tensor of order (p, q) and dimension m × n,

then there exist μ0 > 0, x0 ∈ int(Pm) and y0 ∈ int(Pn) such that⎧⎨⎩ Bx(x0, y0) = μ0x
[M−1]
0

By(x0, y0) = μ0y
[M−1]
0 .

(2.7)
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Moreover, μ0 satisfies the following equalities:

μ0 = min
(x,y)∈(Pm\{0})×(Pn\{0})

max
i,j

⎛⎝Bx(x, y)i

x
M−1
i

,
By(x, y)j

y
M−1
j

⎞⎠

= max
(x,y)∈(Pm\{0})×(Pn\{0})

min
i,j

⎛⎝Bx(x, y)i

x
M−1
i

,
By(x, y)j

y
M−1
j

⎞⎠ ,

and μ0 − ρ is the largest singular value of A.

By a direct computation, we obtain the following two lemmas.

Lemma 2.1. For any x, x̄ ∈ Pm, y, ȳ ∈ Pn and t > 0, we have the following results:

(1) If x ≥ x̄ and y ≥ ȳ, then Bx(x, y) ≥ Bx(x̄, ȳ) and By(x, y) ≥ By(x̄, ȳ). Furthermore, if xi > x̄i
for some 1 ≤ i ≤ m, then Bx(x, y)i > Bx(x̄, ȳ)i. Similarly, if yj > ȳj for some 1 ≤ j ≤ n, then

By(x, y)j > By(x̄, ȳ)j .

(2) Bx(tx, ty) = tM−1Bx(x, y) and By(tx, ty) = tM−1By(x, y).

Lemma 2.2. For any x ∈ int(Pm), y ∈ int(Pn) and ρ > 0, Bx(x, y) and By(x, y) are strongly positive

vectors.

For any vectors x ∈ Pm\{0} and y ∈ Pn\{0}, we define the following sequences {B(k)
x (x, y)} and

{B(k)
y (x, y)}:

B(1)
x (x, y) = Bx(x, y), B(1)

y (x, y) = By(x, y),

a(1) =
(
B(1)
x (x, y)

)[
1

M−1

]
, b(1) =

(
B(1)
y (x, y)

)[
1

M−1

]
,

B(2)
x (x, y) = Bx(a

(1), b(1)), B(2)
y (x, y) = By(a

(1), b(1)),

...

a(k) =
(
B(k−1)
x (x, y)

)[
1

M−1

]
, b(k) =

(
B(k−1)
y (x, y)

)[
1

M−1

]
, k ≥ 1,

B(k+1)
x (x, y) = Bx

(
a(k), b(k)

)
, B(k+1)

y (x, y) = By

(
a(k), b(k)

)
, k ≥ 1. (2.8)

We have the following results for the sequences {B(k)
x (x, y)} and {B(k)

y (x, y)}.
Theorem 2.4. Suppose thatA is an irreducible nonnegative (p, q)th order m×n dimensional rectangular

tensor. Then there exists a positive integer s such that B(s)
x (x, y) ∈ int(Pm) and B(s)

y (x, y) ∈ int(Pn) for

any x ∈ Pm\{0} and y ∈ Pn\{0}.
Proof. For any x ∈ Pm\{0} and y ∈ Pn\{0}, let I(x) = {i : xi > 0, i = 1, 2, . . .,m} and J(y) =
{i : yi > 0, i = 1, 2, . . ., n}. For any integer k ≥ 1, we let B(k)

x = B(k)
x (x, y) and B(k)

y = B(k)
y (x, y),

where B(k)
x (x, y) and B(k)

y (x, y) are defined in (2.8). From (2.5) and (2.6), we obtain I(x) ⊆ I(B(1)
x ),

J(y) ⊆ J(B(1)
y ), and for any positive integer k ≥ 2, I(B(k−1)

x ) ⊆ I(B(k)
x ) and J(B(k−1)

y ) ⊆ J(B(k)
y ). Let

lim
k→+∞ I(B(k)

x ) = {i : there exists k0 such that i ∈ I(B(k)
x ) for all k ≥ k0, 1 ≤ i ≤ m},

lim
k→+∞ J(B(k)

y ) = {j : there exists k1 such that j ∈ J(B(k)
y ) for all k ≥ k1, 1 ≤ j ≤ n},
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I = limk→+∞ I(B(k)
x ) and J = limk→+∞ J(B(k)

y ). Clearly, for any sufficiently large k, I = I(B(k)
x )

and J = J(B(k)
y ). Suppose I 
= {1, 2, . . .,m}. Then there exists a nonempty proper index subset

K ⊂ {1, 2, . . .,m} such that I∪K = {1, 2, . . .,m}, and if l ∈ K then l /∈ I(B(k)
x ) = I for any sufficiently

large k. Hence, by (2.5), for any j ∈ J, l ∈ K and i2, . . ., ip ∈ I, Ali2···ipjj···j must be zero, which contradicts

that A is irreducible. This implies that I = {1, 2, . . .,m}. Similarly, we have J = {1, 2, . . ., n}. Hence,
there exists a positive integer s such that B(s)

x ∈ int(Pm) and B(s)
y ∈ int(Pn), which completes the

proof. �

Theorem 2.5. Let A be an irreducible nonnegative (p, q)th order m × n dimensional rectangular tensor.

Suppose x1, x2 ∈ Pm\{0}, x2 ≥ x1, and y1, y2 ∈ Pn\{0}, y2 ≥ y1. If x1i0 < x2i0 for some 1 ≤ i0 ≤ m, or

y1j0 < y2j0 for some 1 ≤ j0 ≤ n, then there exists a positive integer s such that B(s)
x (x1, y1) < B(s)

x (x2, y2)

and B(s)
y (x1, y1) < B(s)

y (x2, y2).

Proof. We assume x1i0 < x2i0 for some 1 ≤ i0 ≤ m and y2j0 ≥ y1j0 > 0 for some 1 ≤ j0 ≤ n. Suppose for

any integer k ≥ 1,
(
B(k)
x (x1, y1)

)
i
=

(
B(k)
x (x2, y2)

)
i
for some 1 ≤ i ≤ m. Then, by (1) of Lemma 2.1,

we have i 
= i0. SinceA is nonnegative, the term (x2i0)
p−1(y2j0)

q must bemissing from the ith coordinate

of B(k)
x (x2, y2). Let e ∈ Rm, ei0 = 1 and zero elsewhere, and f ∈ Rn, fj0 = 1 and zero elsewhere. Then(

B(k)
x (e, f )

)
i
= 0 for any k ≥ 1, which contradicts with Theorem 2.4. Hence, there exists a positive

integer s1 such that 0 < B(k)
x (x1, y1) < B(k)

x (x2, y2) for any k ≥ s1.

Suppose for any integer k ≥ 1,
(
B(k)
y (x1, y1)

)
j
=

(
B(k)(x2, y2)

)
j
for some 1 ≤ j ≤ n. If j = j0, then

we must have Ai1i2···ipj0···j0 = 0 for all 1 ≤ i1, i2, . . ., ip ≤ m because 0 < B(k)
x (x1, y1) < B(k)

x (x2, y2)
for any k ≥ s1. This contradicts with that A is irreducible. Now we suppose j 
= j0. Since A is

nonnegative, the term (x2i0)
p(y2j0)

q−1 must be missing from the j-th coordinate of B(k)(x2, y2). Then(
B(k)
y (e, f )

)
j
= 0 for any k ≥ 1, which contradicts with Theorem 2.4. Hence, there exists a positive

integer s2 such that 0 < B(k)
y (x1, y1) < B(k)

y (x2, y2) for any k ≥ s2. Let s = max{s1, s2}. Then
B(s)
x (x1, y1) < B(s)

x (x2, y2) and B(s)
y (x1, y1) < B(s)

y (x2, y2). Therefore, Theorem 2.5 holds. �

Nowwe state an iterative algorithm for calculating μ0 in Theorem 2.3, which is a modified version

of the algorithm proposed in [5].

Algorithm 2.1.

Step 0. Choose ρ > 0, x(1) > 0, and y(1) > 0. Set k := 1.

Step 1. Compute

ξ (k) = Bx(x
(k), y(k)), (2.9)

η(k) = By(x
(k), y(k)). (2.10)

Let

μ
k
= min

x
(k)
i >0, y

(k)
j >0

⎧⎪⎨⎪⎩ ξ
(k)
i(

x
(k)
i

)M−1
,

η
(k)
j(

y
(k)
j

)M−1

⎫⎪⎬⎪⎭ , (2.11)

μ̄k = max
x
(k)
i >0, y

(k)
j >0

⎧⎪⎨⎪⎩ ξ
(k)
i(

x
(k)
i

)M−1
,

η
(k)
j(

y
(k)
j

)M−1

⎫⎪⎬⎪⎭ . (2.12)

Step 2. If μ̄k = μ
k
, then stop. Otherwise, compute
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x(k+1) =
(
ξ (k)

)[
1

M−1

]
∥∥∥∥∥(

ξ (k), η(k)
)[

1
M−1

]∥∥∥∥∥
, (2.13)

y(k+1) =
(
η(k)

)[
1

M−1

]
∥∥∥∥∥(

ξ (k), η(k)
)[

1
M−1

]∥∥∥∥∥
, (2.14)

replace k by k + 1 and go to Step 1.

In the following, we will give a convergence result for Algorithm 2.1. Note that Theorem 2.6 is a

modification of the corresponding result in [5].

Lemma 2.3. Suppose {x(k)}, {y(k)}, {ξ (k)} and {η(k)} are the sequences produced by Algorithm 2.1. Then,

(1) For any k ≥ 1, x(k) > 0, y(k) > 0, ξ (k) > 0, η(k) > 0,

(
x(k+1)

)[M−1] = ξ (k)∥∥∥(
ξ (k), η(k)

)∥∥∥ and
(
y(k+1)

)[M−1] = η(k)∥∥∥(
ξ (k), η(k)

)∥∥∥ .

(2) For any positive integer s,

B(s)
x (x(k), y(k)) =

∥∥∥(
ξ (k), η(k)

)∥∥∥ · · ·
∥∥∥(

ξ (k+s−2), η(k+s−2)
)∥∥∥ ξ (k+s−1),

B(s)
y (x(k), y(k)) =

∥∥∥(
ξ (k), η(k)

)∥∥∥ · · ·
∥∥∥(

ξ (k+s−2), η(k+s−2)
)∥∥∥ η(k+s−1),

B(s)
x (e(k), f (k)) =

∥∥∥(
ξ (k), η(k)

)∥∥∥ · · ·
∥∥∥(

ξ (k+s−1), η(k+s−1)
)∥∥∥ ξ (k+s),

B(s)
y (e(k), f (k)) =

∥∥∥(
ξ (k), η(k)

)∥∥∥ · · ·
∥∥∥(

ξ (k+s−1), η(k+s−1)
)∥∥∥ η(k+s),

where e(k) =
(
ξ (k)

)[
1

M−1

]
, f (k) =

(
η(k)

)[
1

M−1

]
, and B(s)

x and B(s)
y are defined in (2.8).

Proof. By (2.13), (2.14) and Lemma 2.2, the first statement holds. From (1) and (2.8), we have (2)

holds. �

Theorem 2.6. Assume that (μ0, x0, y0) is a solution of (2.7). Then,

ρ < μ
1

≤ μ
2

≤ · · · ≤ μ0 ≤ · · · ≤ μ̄2 ≤ μ̄1.

Proof. By (2.11), ρ < μ
1
. From Theorem 2.3, for k = 1, 2, . . .,

μ
k
≤ μ0 ≤ μ̄k.

We now prove for any k ≥ 1,

μ
k
≤ μ

k+1
and μ̄k+1 ≤ μ̄k.

For each k = 1, 2, . . . , by the definition of μ
k
and Lemma 2.2, we have

ξ (k) ≥ μ
k

(
x(k)

)[M−1]
> 0, η(k) ≥ μ

k

(
y(k)

)[M−1]
> 0.
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Then, (
ξ (k)

)[
1

M−1

]
≥

(
μ

k

) 1
M−1

x(k) > 0,
(
η(k)

)[
1

M−1

]
≥

(
μ

k

) 1
M−1

y(k) > 0.

So,

x(k+1) =
(
ξ (k)

)[
1

M−1

]
∥∥∥∥(ξ(k), η(k))

[
1

M−1

]∥∥∥∥ ≥
(
μ

k

) 1
M−1 x(k)∥∥∥∥(ξ(k), η(k))

[
1

M−1

]∥∥∥∥ > 0,

y(k+1) =
(
η(k)

)[
1

M−1

]
∥∥∥∥(ξ(k), η(k))

[
1

M−1

]∥∥∥∥ ≥
(
μ

k

) 1
M−1 y(k)∥∥∥∥(ξ(k), η(k))

[
1

M−1

]∥∥∥∥ > 0.

Hence, by Lemma 2.1, we get

Bx
(
x(k+1), y(k+1)

)
≥ μ

k
Bx

(
x(k), y(k)

)
∥∥∥∥∥(

ξ (k), η(k)
)[

1
M−1

]∥∥∥∥∥
M−1

= μ
k
ξ (k)∥∥∥∥∥(

ξ (k), η(k)
)[

1
M−1

]∥∥∥∥∥
M−1

= μ
k

(
x(k+1)

)[M−1]

and

By

(
x(k+1), y(k+1)

)
≥ μ

k
By

(
x(k), y(k)

)
∥∥∥∥∥(

ξ (k), η(k)
)[

1
M−1

]∥∥∥∥∥
M−1

= μ
k
η(k)∥∥∥∥∥(

ξ (k), η(k)
)[

1
M−1

]∥∥∥∥∥
M−1

= μ
k

(
y(k+1)

)[M−1]
,

which means for each i = 1, 2, . . .,m, j = 1, 2, . . ., n,

μ
k
≤

(
Bx

(
x(k+1), y(k+1)

))
i(

x
(k+1)
i

)M−1
, μ

k
≤

(
By

(
x(k+1), y(k+1)

))
j(

y
(k+1)
j

)M−1
.

Therefore, we obtain

μ
k
≤ μ

k+1
.

Similarly, we can prove that

μ̄k+1 ≤ μ̄k.

This completes our proof. �
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From Theorem 2.6, {μ
k
} is amonotonic increasing sequence and it has an upper bound, so the limit

exists. Since {μ̄k} is monotonic decreasing sequence and it has a lower bound, the limit exists as well.

We suppose

μ = lim
k→∞ μ

k
, and μ̄ = lim

k→∞ μ̄k.

By Theorem 2.6, we have

ρ < μ ≤ μ0 ≤ μ̄. (2.15)

Theorem 2.7. Let {x(k)}, {y(k)}, {ξ (k)} and {η(k)} be the sequences produced by Algorithm 2.1. Then,

(a) {x(k)} and {y(k)} have convergent subsequences which converge to x∗ and y∗, respectively. Moreover,

x∗ ∈ Pm\{0} and y∗ ∈ Pn\{0}.
(b) Bx(x∗, y∗) ≥ μ (x∗)[M−1]

and By(x
∗, y∗) ≥ μ (y∗)[M−1]

.

(c) μ = μ̄.

Proof. As the sequences {x(k)} and {y(k)} are bounded, {x(k)} and {y(k)}have convergent subsequences,
respectively. Without loss of generality, we suppose x∗ = limj→∞ x(kj) and y∗ = limj→∞ y(kj), where

{x(kj)} and {y(kj)} are subsequences of {x(k)} and {y(k)}, respectively. Since x(k) > 0 and y(k) > 0 for

all k ≥ 1, we have x∗ ≥ 0 and y∗ ≥ 0. As ‖(x(k), y(k))‖ = 1 for all k ≥ 2, (x∗, y∗) must not be a

zero vector. We suppose x∗
i0


= 0 for some 1 ≤ i0 ≤ m. Then, y∗ 
= 0. Otherwise, by continuity of

Bx(x, y), we have ξ
(kj)

i0
= Bx(x

(kj), y(kj))i0 → ρ(x∗
i0
)M−1 as kj → ∞. By (2.11), μ

kj
≤ ξ

(kj)

i0(
x
(kj)

i0

)M−1 → ρ

as j → ∞. Hence, μ ≤ ρ , which contradicts with (2.15). Therefore, we obtain x∗ 
= 0 and y∗ 
= 0.

For the second statement, by continuity of Bx(x, y) and By(x, y), (2.11) and (2.12), the statement

follows.

Nowweprove (c). Supposeμ < μ̄. Then, by (b), (2.11) and (2.12),wehaveBx(x∗, y∗) 
= μ (x∗)[M−1]

or By(x
∗, y∗) 
= μ (y∗)[M−1]

. Let B∗
x = (Bx(x

∗, y∗))
[

1
M−1

]
and B∗

y = (By(x
∗, y∗)

)[
1

M−1

]
. By Theorem

2.5, there exists a positive integer s such that μB(s)
x (x∗, y∗) < B(s)

x (B∗
x , B

∗
y ) and μB(s)

y (x∗, y∗) <

B(s)
y (B∗

x , B
∗
y ). By (a) and the continuity of Bx(x, y) and By(x, y), for any sufficiently large kj , we obtain

μB(s)
x

(
x(kj), y(kj)

)
< B(s)

x

(
B
(kj)
x , B

(kj)
y

)
, μB(s)

y

(
x(kj), y(kj)

)
< B(s)

y

(
B
(kj)
x , B

(kj)
y

)
, (2.16)

where B
(kj)
x =

(
Bx(x(kj), y(kj))

)[
1

M−1

]
and B

(kj)
y =

(
By(x(kj), y(kj))

)[
1

M−1

]
. It follows from (2.9) and

(2.10) that we have B
(kj)
x =

(
ξ (kj)

)[
1

M−1

]
and B

(kj)
y =

(
η(kj)

)[
1

M−1

]
. By Lemma 2.3 and (2.16), we have

μ
(
ξ (kj+s−1), η(kj+s−1)

)
< ‖

(
ξ (kj+s−1), η(kj+s−1)

)
‖

(
ξ (kj+s), η(kj+s)

)
. (2.17)

By Lemma 2.3, (2.11) and (2.17), we obtain μ
kj+s

> μ, which contradicts with Theorem 2.6. So (c)

holds. �

By Theorem 2.7, we have the following convergence result.

Theorem 2.8. Suppose that a nonnegative (p, q)th order m × n dimensional rectangular tensor A is

irreducible. Assume that (μ0, x0, y0) is a solution of (2.7). Then, Algorithm 2.1 produces the value of μ0 in
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a finite number of steps, or generates two convergent sequences {μ
k
} and {μ̄k}, both of which converge to

μ0. Furthermore, μ0 − ρ is the largest singular value of A.

Remark 1. In the following example, we will show the sequence generated by the algorithm in [5]

may not converge for some nonnegative rectangular tensors, but we can obtain the largest singular

value by using our proposed algorithm in this paper. Consider the (1, 1)-th order 2 × 2 dimensional

rectangular tensor A given by A12 = 1, A21 = 5 and zero elsewhere. We choose x(1) = (1, 1)T and

y(1) = (1, 1)T . By the algorithm in [5], we cannot obtain the largest singular value of A after 1000

iterations. Let ρ = 1. By Algorithm 2.1, we obtain the largest singular value of A is 2.24 after 20

iterations.
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