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In this paper, it is proved that a symmetric tensor is (strictly) copositive if
and only if each of its principal sub-tensors has no (non-positive) negative
H++-eigenvalue. Necessary and sufficient conditions for (strict) copositivity of
a symmetric tensor are also given in terms of Z++-eigenvalues of the principal
sub-tensors of that tensor. This presents a method for testing (strict) copositivity
of a symmetric tensor by means of lower dimensional tensors. Also, an equivalent
definition of strictly copositive tensors is given on the entire space R

n .

Keywords: copositive tensors; principal sub-tensor; H++-eigenvalue;
Z++-eigenvalue

AMS Subject Classifications: 15A18; 15A69; 90C20; 90C30

1. Introduction

An m-order n-dimensional tensor A consists of nm entries in the real field R:

A = (ai1...im ), ai1...im ∈ R, 1 ≤ i1, i2, . . . , im ≤ n.

For x = (x1, x2, . . . , xn)T ∈ R
n (or C

n), Axm−1 is a vector in R
n (or C

n) with its ith
component defined by

(Axm−1)i =
n∑

i2,...,im=1

aii2...im xi2 . . . xim . (1.1)

Then xT (Axm−1) is a homogeneous polynomial, denoted as Axm , i.e.

Axm = xT (Axm−1) =
n∑

i1,i2,...,im=1

ai1i2...im xi1 xi2 . . . xim , (1.2)

where xT is the transposition of x .An m-order n-dimensional tensor A is called nonnegative
(positive) if ai1i2...im ≥ 0 (ai1i2...im > 0) for all i1, i2, . . . , im . An m-order n-dimensional
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Linear and Multilinear Algebra 121

tensor A is said to be symmetric if its entries ai1...im are invariant for any permutation of
the indices. It is obvious that each m-order n-dimensional symmetric tensor A defines a
homogeneous polynomial Axm of degree m with n variables and vice versa.

As a natural extension of the counterparts for symmetric matrices, the concepts of
eigenvalues and eigenvectors were introduced by Qi [1] for higher order symmetric tensors,
and the existence of the eigenvalues and eigenvectors and their practical applications in
determining positive definiteness of an even degree multivariate form were also studied
by Qi [1]. Lim [2] independently introduced this notion and proved the existence of the
maximum and minimum eigenvalues using a variational approach. Qi [1,3] extended some
nice properties of matrices to higher order tensors. Qi [3,4] defined E-eigenvalues and the
E-characteristic polynomial of a tensor, and proved that an E-eigenvalue of a tensor is
a root of the E-characteristic polynomial. Subsequently, these topics attract attention of
many mathematicians from different disciplines. For diverse studies and applications on
these topics, see [5–18] and references cited therein.

For a vector x ∈ R
n , x ≥ 0 (x > 0) means that xi ≥ 0 (xi > 0), i = 1, 2, . . . , n.

A real symmetric matrix A is said to be (i) copositive if x ≥ 0 implies xT Ax ≥ 0; (ii)
strictly copositive if x ≥ 0 and x �= 0 implies xT Ax > 0. This concept is one of the
most important concept in applied mathematics and graph theory, which was introduced by
Motzkin [19] in 1952. In the literature, there are extensive discussions on such matrices.
For example, Haynsworth and Hoffman [20] showed the Perron–Frobenius property of
a copositive matrix; Martin [21] studied the properties of copositive matrices by means
of definiteness of quadratic forms subject to homogeneous linear inequality constraints;
Väliȧho [22] developed some finite criteria for (strictly) copositive matrices by searching
its principal submatrices; Ping and Yu [23] obtained necessary and sufficient conditions for
copositive matrices of order four; Kaplan [24] presented necessary and sufficient conditions
for a symmetric matrix to be (strictly) copositive by using eigenvalues and eigenvectors of
the principal submatrices of that matrix.

Theorem 1.1 (Kaplan [24]) Let A be a symmetric matrix. Then A is (strictly) copositive
if and only if every principal submatrix B of A has no eigenvector v > 0 with associated
eigenvalue (λ ≤ 0)λ < 0.

Burer [25] gave the equivalence between a class of mixed-binary quadratic programs
and copositive programs. Recently, Burer and Dong [26] extended the above conclusions
to general nonconvex quadratically constrained quadratic program under the condition that
feasible region is nonempty and bounded. For more survey on copositive matrices and their
applications also see [27]. It is interesting to see to what extent these results may be extend
to the tensor. Most recently, Qi [28] extended the concept of copositive matrices to tensors
and found its many nice properties as copositive matrices. Suppose that a tensor A is a real
symmetric tensor of order m and dimension n. A is said to be

(i) copositive if Axm ≥ 0 for all x ∈ R
n+;

(ii) strictly copositive if Axm > 0 for all x ∈ R
n+ \ {0}.

A matrix is a second-order tensor, so it is very interesting to try and establish similar results
for tensors as a parallel theory for matrices. The concept of principal sub-tensors of a
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122 Y. Song and L. Qi

symmetric tensor was introduced by Qi [1] for studying positive semidefiniteness of that
tensor when the order of that tensor is even.

In this paper, we will give an equivalent definition of (strict) copositivity of a symmetric
tensor on the entire space R

n . It is showed that a symmetric tensor A is (strictly) copositive if
and only if every principal sub-tensor of A has no (non-positive) negative H++-eigenvalues,
i.e. every principal sub-tensor of A has no eigenvector v > 0 with associated H -eigenvalue
(λ ≤ 0) λ < 0. The same conclusions still hold for using the Z++-eigenvalue instead of
H++-eigenvalue. Applying these results, we can test the copositivity of a symmetric tensor
by means of lower dimensional tensors.

2. Preliminaries and basic facts

In the sequel, we shall denote the transposition of a vector x by xT . Throughout this paper,
let R

n+ = {x ∈ R
n; x ≥ 0}, R

n− = {x ∈ R
n; x ≤ 0}, and R

n++ = {x ∈ R
n; x > 0}, and

e = (1, 1, . . . , 1)T . Denote by e(i) the ith unit vector in R
n , i.e. e(i)

j = 1 if i = j and

e(i)
j = 0 if i �= j , for i, j ∈ {1, 2, . . . , n}.

Let A be an m-order n-dimensional tensor. A number λ ∈ C is called an eigenvalue
of A, if it and a nonzero vector x ∈ C

n \ {0} are solutions of the following systems of
equations:

Axm−1 = λx [m−1], (2.1)

where x [m−1] = (xm−1
1 , . . . , xm−1

n )T , and call x an eigenvector of A associated with the
eigenvalue λ. We call such an eigenvalue H-eigenvalue if it is real and has a real eigenvector
x , and call such a real eigenvector x an H-eigenvector.

These concepts were first introduced by Qi [1] for higher order symmetric tensors.
Lim [2] independently introduced this notion. Qi [1,3] extended some nice properties
of symmetric matrices to higher order symmetric tensors. The Perron–Frobenius theorem
of nonnegative matrices had been generalized to higher order nonnegative tensors under
various conditions by Chang et al. [6], Hu et al. [8], Yang and Yang [14,15], Zhang [16] and
others.

For an m-order n-dimensional tensor A, we say a number μ ∈ C is an E-eigenvalue
of A and a nonzero vector x ∈ C

n \ {θ} is an E-eigenvector of A associated with the
E-eigenvalue μ, if they are solutions of the following systems of equations:{Axm−1 = μx

xT x = 1.
(2.2)

If x is real, then μ is also real. In this case, μ and x are called a Z-eigenvalue of A and
a Z-eigenvector of A associated with the Z-eigenvalue μ, respectively.

These concepts about E-eigenvalue were first introduced by Qi [1,3] for studying the
properties of a higher order tensor. Qi [4] defined the E-characteristic polynomial of a tensor
A, and showed that if A is regular, then a complex number is an E-eigenvalue of A if and
only if it is a root of the E-characteristic polynomial.

Recently, Qi [29] introduced and used the following concepts for studying the properties
of hypergraphs. An H -eigenvalue λ of A is said to be (i) an H+-eigenvalue of A, if its H -
eigenvector x ∈ R

n+;(ii) an H++-eigenvalue of A, if its H -eigenvector x ∈ R
n++. Similarly,

we introduce the concepts of Z+-eigenvalue and Z++-eigenvalue. An Z -eigenvalue μ of
A is said to be (a) a Z+-eigenvalue of A, if its Z -eigenvector x ∈ R

n+; (b) a Z++-eigenvalue
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Linear and Multilinear Algebra 123

of A, if its Z -eigenvector x ∈ R
n++.

3. Strictly copositive tensors with respect to entire space R
n

Let ‖ · ‖ denote any norm on R
n . For x = (x1, x2, . . . , xn)T , let

x+ = (x+
1 , x+

2 , . . . , x+
n )T and x− = (x−

1 , x−
2 , . . . , x−

n )T ,

here x+
i = max{xi , 0} and x−

i = max{−xi , 0} for i = 1, 2, . . . , n. Clearly, x+ ≥ 0,
x− ≥ 0, |xi | = x+

i + x−
i and x = x+ − x−. Now we give the equivalent definition of

(strict) copositivity of a symmetric tensor in the sense of any norm on R
n .

Proposition 3.1 Let A be a symmetric tensor of order m and dimension n. Then we have

(i) A is copositive if and only if Axm ≥ 0 for all x ∈ R
n+ with ‖x‖ = 1;

(ii) A is strictly copositive if and only if Axm > 0 for all x ∈ R
n+ with ‖x‖ = 1;

(iii) A is strictly copositive if and only if A is copositive and the fact that Axm = 0 for
x ∈ R

n+ implies x = 0.

Proof
(i) When A is copositive, the conclusion is obvious. Conversely, take x ∈ R

n+. If
‖x‖ = 0, then it follows that x = 0, and hence Axm = 0. If ‖x‖ > 0, then let y = x

‖x‖ . We
have ‖y‖ = 1 and x = ‖x‖y, and so

Axm = A(‖x‖y)m = ‖x‖mAym ≥ 0.

Therefore, Axm ≥ 0 for all x ∈ R
n+, as required.

Similarly, (ii) is easily proved.
(iii) Let A be strictly copositive. Clearly, A is copositive. Suppose there exists x0 ∈ R

n+
and x0 �= 0 such that Axm

0 = 0, which contradicts the strict copositivity of A. Conversely,
if x �= 0 and x ∈ R

n+, then Axm �= 0. Since A is copositive, Axm > 0. The conclusion
follows. �

Next, we present the necessary and sufficient conditions of strict copositivity of a
symmetric tensor on entire space R

n .

Theorem 3.2 Let A be a symmetric tensor of order m and dimension n. Then A is strictly
copositive if and only if there is a real number γ ≥ 0 such that

Axm + γ ‖x−‖m > 0, for all x ∈ R
n \ {0}. (3.1)

Proof Let A be strictly copositive. Suppose that there is no γ ≥ 0 such that the inequality
(3.1) holds, i.e. for any real number γ ≥ 0, there exists an x (γ ) ∈ R

n \ {0} such that

A(x (γ ))m + γ ‖(x (γ ))−‖m ≤ 0.

In particular, for any positive integer k (taking γ = k), there exists x (k) ∈ R
n \ {0} such

that
A(x (k))m + k‖(x (k))−‖m ≤ 0.
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124 Y. Song and L. Qi

Clearly, ‖x (k)‖ > 0. Let y(k) = x(k)

‖x(k)‖ . Then we have

A(y(k))m + k‖(y(k))−‖m ≤ 0 for all positive integer k, (3.2)

and hence,
A(y(k))m

k
+ ‖(y(k))−‖m ≤ 0 for all positive integer k. (3.3)

Since ‖y(k)‖ = 1 for all positive integer k, we may assume that the sequence {y(k)} strongly
converges to some vector y ∈ R

n\{0} with ‖y‖ = 1 (extracting a subsequence if necessary).
Let k → ∞ in (3.3). Then we have ‖y−‖ = 0, and so y ∈ R

n+ \ {0}. It follows from the
strict copositivity of A that

Aym > 0.

Since lim
k→∞ A(y(k))m = Aym , there exists a positive integer N such that

A(y(k))m > 0 for all k > N .

This yields a contradiction of (3.2). Thus, there is γ ≥ 0 such that the inequality (3.1) holds.
Conversely, take x ∈ R

n+ \ {0}. Obviously, ‖x−‖ = 0. Therefore, it follows from the
inequality (3.1) that

Axm > 0 for all x ∈ R
n+ \ {0}.

Therefore, A is strictly copositive, as required. �

When A is a symmetric tensor of even order, x− may be replaced by x+ in
Theorem 3.2.

Theorem 3.3 Let A be a symmetric tensor of order m and dimension n. If m is an even
number, then A is strictly copositive if and only if there is a real number γ ≥ 0 such that

Axm + γ ‖x+‖m > 0, for all x ∈ R
n \ {0}. (3.4)

Proof Let A be strictly copositive. Since m is an even number,

A(−x)m = Axm .

Suppose that for any positive integer k, there exists x (k) ∈ R
n \ {0} such that

A(x (k))m + k‖(x (k))+‖m ≤ 0.

Take y(k) = x(k)

‖x(k)‖ . Then we have

A(y(k))m

k
+ ‖(y(k))+‖m ≤ 0 for all positive integer k. (3.5)

Without loss of generality, we may assume that the sequence {y(k)} strongly converges to
some vector y ∈ R

n \ {0} with ‖y‖ = 1. Let k → ∞ in (3.5). Then we have ‖y+‖ = 0,
and so, y ∈ R

n− \ {0} and −y ∈ R
n+ \ {0}. It follows from the strict copositivity of A that

Aym = A(−y)m > 0
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Linear and Multilinear Algebra 125

Since lim
k→∞ A(y(k))m = Aym , there exists a positive integer N such that

A(y(k))m > 0 for all k > N .

This yields a contradiction of (3.5). Thus, there is γ ≥ 0 such that the inequality (3.4) holds.
Conversely, take x ∈ R

n+\{0}. Obviously, −x ∈ R
n−\{0} and ‖(−x)+‖ = 0. Therefore,

it follows from the inequality (3.4) that

Axm = A(−x)m + γ ‖(−x)+‖m > 0 for all x ∈ R
n+ \ {0}.

Therefore, A is strictly copositive, as required. �

Using similar proof of Proposition 3.1, we also easily prove the following conclusions.

Theorem 3.4 Let A be a symmetric tensor of order m and dimension n. Then A is strictly
copositive if and only if there is a real number γ ≥ 0 such that

Axm + γ ‖x−‖m > 0, for all x ∈ R
n with ‖x‖ = 1. (3.6)

Theorem 3.5 Let A be a symmetric tensor of order m and dimension n. If m is an even
number, then A is strictly copositive if and only if there is a real number γ ≥ 0 such that

Axm + γ ‖x+‖m > 0, for all x ∈ R
n with ‖x‖ = 1. (3.7)

4. Principal sub-tensors of copositive tensors

In homogeneous polynomial Axm defined by (1.2), if we let some (but not all) xi be zero,
then we have a less variable homogeneous polynomial, which defines a lower dimensional
tensor. We call such a lower dimensional tensor a principal sub-tensor of A, i.e. an m-order
r -dimensional principal sub-tensor B of an m-order n-dimensional tensor A consists of rm

elements in A = (ai1...im ): for any set N that composed of r elements in {1, 2, . . . , n},
B = (ai1...im ), for all i1, i2, . . . , im ∈ N .

The concept were first introduced and used by Qi [1] for the higher order symmetric tensor.
Now, we will continue to study the properties of the (strictly) copositive tensors by means
of the principal sub-tensor of higher order symmetric tensor.

Theorem 4.1 Let A be a symmetric tensor of order m and dimension n. Then A is
copositive if and only if every principal sub-tensor of A has no negative H++-eigenvalue,
i.e. every principal sub-tensor of A has no eigenvector v > 0 with associated H-eigenvalue
λ < 0.

Proof Let Axm ≥ 0 for all x ≥ 0. Suppose there exists an m-order l-dimensional principal
sub-tensor B of A with an H++-eigenvalue λ < 0 (1 ≤ l ≤ n), i.e. there is a positive
vector v ∈ R

l++ such that

Bvm−1 = λv[m−1].
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126 Y. Song and L. Qi

Without loss of generality, we may write v = (v1, v2, . . . , vl)
T (vi > 0 for i = 1, . . . , l),

x0 = (v1, v2, . . . , vl , 0, . . . , 0)T . Then by the definition of principal sub-tensor, we have

Axm
0 = Bvm = λ

l∑
i=1

vm
i < 0.

This contradicts the hypothesis that A is copositive. So, no principal sub-tensor of A can
have a negative H++-eigenvalue.

Conversely, let the principal sub-tensor of A have the property said in the theorem.
Suppose that A is not copositive, then at least there exists a y0 ≥ 0 such that Aym

0 < 0.
Clearly, y0 �= 0. Since the function f (x) = Axm is continuous and the set K = {x ∈
R

n+;
n∑

i=1
xm

i = 1} is a compact subset of R
n , there is y ∈ K such that

f (y) = Aym = min
x∈K

Axm . (4.1)

Obviously, f (y) = Aym ≤ Aym
0 < 0, and so some, but not all, components of y may be 0.

Without loss of generality, we may assume that yi > 0 for i = 1, 2, . . . , l (1 ≤ l ≤ n) and
y = (y1, y2, . . . , yl , 0, . . . , 0)T , and write w = (y1, y2, . . . , yl)

T > 0. Let B be a principal
sub-tensor that obtained fromAby the polynomialAxm for x = (x1, x2, . . . , xl , 0, . . . , 0)T .
Then

w ∈ R
l++,

l∑
i=1

ym
i = 1 and f (y) = Aym = Bwm < 0. (4.2)

Let x = (z1, z2, . . . , zl , 0, . . . , 0)T ∈ R
n for all z = (z1, z2, . . . , zl)

T ∈ R
l with

l∑
i=1

zm
i = 1. Clearly, x ∈ K , and hence, by (4.1) and (4.2), we have

f (x) = Axm = Bzm ≥ f (y) = Aym = Bwm .

Since w ∈ R
l++, w is a local minimizer of the following optimization problem

min
z∈Rl

Bzm

s.t.
l∑

i=1

zm
i = 1.

So, the standard KKT conditions implies that there exists μ ∈ R such that

∇(Bzm) − μ∇
(

l∑
i=1

zm
i − 1

)
|z=w = mBwm−1 − mμw[m−1] = 0,

and hence

Bwm−1 = μw[m−1] and Bwm = μ

l∑
i=1

ym
i = μ < 0.

This implies that the negative real number μ would be an H++-eigenvalue of a principal
sub-tensor B of A. By hypothesis, it is out of the question. So, Axm ≥ 0 for all x ≥ 0, as
required. �
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Linear and Multilinear Algebra 127

By using the same proof as that of Theorem 4.1 with appropriate changes in the
inequalities, we can obtain the following conclusions about the strictly copositive tensor.

Theorem 4.2 Let A be a symmetric tensor of order m and dimension n. Then A is strictly
copositive if and only if every principal sub-tensor of A has no non-positive
H++-eigenvalue, i.e. every principal sub-tensor of A has no eigenvector v > 0 with
associated H-eigenvalue λ ≤ 0.

Theorem 4.3 Let A be a symmetric tensor of order m and dimension n. Then A is strictly
copositive if and only if every principal sub-tensor of A has no non-positive
Z++-eigenvalue, i.e. every principal sub-tensor of A has no eigenvector v > 0 with
associated Z-eigenvalue λ ≤ 0.

Proof Let Axm > 0 for all x ≥ 0 with x �= 0. Suppose there exists an m-order
k-dimensional principal sub-tensor B of A with an Z++-eigenvalue λ ≤ 0 (1 ≤ l ≤ n), i.e.
there is a positive vector v ∈ R

l++ such that

{
Bvm−1 = λv

vT v = 1

We may write v = (v1, v2, . . . , vl)
T (vi > 0 for i = 1, . . . , l). Let x0 = (v1, v2, . . . ,

vl , 0, . . . , 0)T . Then we have

Axm
0 = Bvm = λ

l∑
i=1

v2
i = λ ≤ 0.

This contradicts the hypothesis. So, no principal sub-tensor of A can have a negative or
zero Z++-eigenvalue.

Conversely, let each principal sub-tensor of A have no non-positive Z++-eigenvalue.
Suppose that A is not strictly copositive, then at least there exists a y0 ≥ 0 with y0 �= 0
such that Aym

0 ≤ 0. Since the function f (x) = Axm is continuous and the set S = {x ∈
R

n+;∑n
i=1x2

i = 1} is a compact subset of R
n , there is y ∈ S such that

f (y) = Aym = min
x∈S

Axm . (4.3)

Obviously, we must obtain that f (y) = Aym ≤ Aym
0 ≤ 0. Since y0 ≥ 0 with y0 �= 0, we

may assume that y = (y1, y2, . . . , yl , 0, . . . , 0)T (yi > 0 for i = 1, . . . , l, 1 ≤ l ≤ n).
Let w = (y1, y2, . . . , yl)

T and let B be a principal sub-tensor that obtained from A by the
polynomial Axm for x = (x1, x2, . . . , xl , 0, . . . , 0)T . Then

w ∈ R
l++,

l∑
i=1

y2
i = 1 and f (y) = Aym = Bwm ≤ 0. (4.4)

Let x = (z1, z2, . . . , zl , 0, . . . , 0)T ∈ R
n for all z = (z1, z2, . . . , zl)

T ∈ R
l with∑l

i=1z2
i = 1. Clearly, x ∈ S, and hence, by (4.3) and (4.4), we have

f (x) = Axm = Bzm ≥ f (y) = Aym = Bwm .
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128 Y. Song and L. Qi

Since w ∈ R
l++, w is a local minimizer of the following optimization problem

min
z∈Rl

Bzm

s.t.
l∑

i=1

z2
i = 1.

So, the standard KKT conditions implies that there exists μ ∈ R such that ∇(Bzm −
μ(
∑l

i=1z2
i − 1))|z=w = mBwm−1 − 2μw = 0, and hence

Bwm−1 = 2μ

m
w and Bwm = 2μ

m

l∑
i=1

y2
i = 2μ

m
≤ 0.

This implies that the non-positive real number 2μ
m would be an Z++-eigenvalue of a principal

sub-tensor B of A. By hypothesis, it is quite impossible. So, Axm > 0 for all x ≥ 0 with
x �= 0, as required. �

By using the same proof as that of Theorem 4.3 with appropriate changes in the
inequalities, we can obtain the following conclusions about the copositive tensor.

Theorem 4.4 Let A be a symmetric tensor of order m and dimension n. Then A is
copositive if and only if every principal sub-tensor of A has no negative Z++-eigenvalue,
i.e. every principal sub-tensor of A has no eigenvector v > 0 with associated Z-eigenvalue
λ < 0.

Clearly, we have the following conclusions as a corollary of the above theorems.

Corollary 4.5 Let A be a symmetric tensor of order m and dimension n. Then

(i) A is copositive if and only if for every principal sub-tensor B of A, the fact that λ

is H++ (or Z++)-eigenvalue of B means that λ ≥ 0;
(ii) A is strictly copositive if and only if for every principal sub-tensor B of A, the fact

that λ is H++ (or Z++)-eigenvalue of B means that λ > 0.

Corollary 4.6 Let A be a symmetric tensor of order m and dimension n.

(i) If A is copositive, then aii ...i ≥ 0 for all i = 1, 2, . . . , n.
(ii) If A is strictly copositive, then aii ...i > 0 for all i = 1, 2, . . . , n.

(iii) Let aii ...i = 0 for i ∈ {1, 2, . . . , n}. If A is copositive, then aii ...i j ≥ 0 for all
j = 1, 2, . . . , n.

Proof
(i) For each fixed i , Bi = (aii ...i ) is an m-order 1-dimensional principal sub-tensor B of

A. Clearly, aii ...i is the unique eigenvalue with eigenvector (1). It follows from Theorem
4.1 (or 4.4) that Bi has no a negative H++ ( or Z++)-eigenvalue. Thus aii ...i ≥ 0 for each
i ∈ {1, 2, . . . , n}.

Similarly, from Theorem 4.2 (or 4.3), (ii) is easily obtained.
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(iii) Let Bi j be a m-order 2-dimensional principal sub-tensor of A. Then by the definition
of the principal sub-tensor, we have

Bi j = (ai1i2...ik ), i1, i2, . . . , ik = i, j.

Let x = (t, 1)T and y = (t, 1, 0, 0, . . . , 0)T for t > 0. Then

0 ≤ Aym = Bi j xm = tmaii ...i + mtm−1aii ...i j + · · · + a j j ... j j

= mtm−1aii ...i j +
(

2
m

)
tm−2aii ...i j j + · · · + a j j ... j j .

So, we have

mtm−1aii ...i j ≥ −
(

2

m

)
tm−2aii ...i j j − · · · − a j j ... j j ,

and hence

aii ...i j ≥ −
(

2

m

)
aii ...i j j

mt
− · · · − a j j ... j j

mtm−1
.

Let t → ∞. We have aii ...i j ≥ 0. �

It follows from the above results that the copositivity of tensors implies that all diagonal
entry can not be negative, and the strict copositivity implies that all diagonal entry must be
positive. So this reveals that in testing for (strict) copositivity of tensors, one can restrict
attention to tensors with (positive) non-negative diagonal entries. We can further restrict
attention to tensors whose diagonal entries are all equal to 1; we say that such a tensor has
unit diagonal.

Example 1 Let A be a symmetric tensor of order 3 and dimension 2. If a111 = a222 = 0,
then it follows from Corollary 4.6 (iii) that aii j ≥ 0 for i, j = 1, 2 whenever A is copositive.
So A is copositive if and only if A is non-negative.

If A is copositive and a111 = a222 = 1, then a111 + a222 + 3a112 + 3a221 ≥ 0, and
hence

a112 + a221 ≥ −2

3
.

Example 2 Let A be a copositive and symmetric tensor of order 3 and dimension 3. If
a111 = a222 = a333 = 0, then

a112 ≥ 0, a113 ≥ 0, a221 ≥ 0, a331 ≥ 0, a332 ≥ 0, a223 ≥ 0

and
2a123 + a112 + a113 + a221 + a223 + a331 + a332 ≥ 0.

If a111 = a222 = a333 = 1, then consider an 3-order 2-dimensional principal sub-tensor of
A, we have

a112 + a221 ≥ −2

3
, a113 + a331 ≥ −2

3
, a332 + a223 ≥ −2

3
,
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130 Y. Song and L. Qi

and

2a123 + a112 + a113 + a221 + a223 + a331 + a332 ≥ −1.
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