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Abstract Because of the well-known limitations of diffu-
sion tensor imaging (DTI) in regions of low anisotropy and
multiple fiber crossing, high angular resolution diffusion
imaging (HARDI) and Q-Ball Imaging (QBI) are used to
estimate the probability density function (PDF) of the av-
erage spin displacement of water molecules. In particular,
QBI is used to obtain the diffusion orientation distribution
function (ODF) of these multiple fiber crossing. As a proba-
bility distribution function, the orientation distribution func-
tion should be nonnegative which is not guaranteed in the
existing methods. This paper proposes a novel technique to
guarantee the nonnegative property of ODF by solving a
convex optimization problem, which has a convex quadratic
objective function and a constraint involving the nonnega-
tivity requirement on the smallest Z-eigenvalue of the diffu-
sivity tensor. Using convex analysis and optimization tech-
niques, we first derive the optimality conditions of this con-
vex optimization problem. Then, we propose a gradient de-
scent algorithm to solve this problem. We also present for-
mulas for determining the principal directions (maxima) of
the ODF. Numerical examples on synthetic data as well as
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MRI data are displayed to demonstrate the significance of
our approach.
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1 Introduction

It is well-known that the popular magnetic resonance imag-
ing (MRI) model, the diffusion tensor imaging model (DTI)
[4–6] breaks down in regions of low anisotropy and multiple
fiber crossing. In order to overcome this drawback of DTI,
Tuch et al. [28] proposed a novel approach, high angular res-
olution diffusion imaging (HARDI) in 2002. In 2004, Tuch
[27] further introduced Q-ball imaging (QBI) to reconstruct
the diffusion orientation distribution function (ODF) of the
underlying fiber population of a biological tissue.

The ODF is a function on the unit sphere describing the
probability averaged over the voxel that a particle will dif-
fuse into any solid angle. As the water molecules in nor-
mal tissues tend to diffuse along fibers when contained in
fiber bundles [6], the principal directions (maxima) of the
ODF agree with the true synthetic fiber directions. Tuch [27]
showed that the ODF can be estimated directly from the raw
HARDI signal on a single sphere of q-space by the Funk-
Radon transformation. This is the main idea of QBI.

The Funk-Radon transformation involves integral with
the Dirac delta function. In [11], Descoteax et al. suggested
to use the Funk-Hecke theorem and higher order spherical
harmonics to obtain a mathematical simplification of the
Funk-Radon transformation. It was shown that the ODF es-
timation in [11] is up to 15 times faster than the numerical
method in [27].

Author's personal copy

mailto:maghyu@163.com
mailto:maqilq@inet.polyu.edu.hk
mailto:yi.xu1983@gmail.com


104 J Math Imaging Vis (2013) 45:103–113

In [10], Descoteax et al. showed that both spherical har-
monics and higher order tensors restricted to the unit sphere
forms a basis of the same functional space. Ghosh et al. [14]
presented a polynomial based approach to extract maxima of
the orientation distribution function in diffusion MRI. In [7],
using the Z-eigenvalue concept introduced in [21], Bloy and
Verma suggested to determine the principal directions (max-
ima) of the ODF by a curvature concept they introduced. For
an excellent recent survey of higher order diffusion tensor
methods in diffusion MRI, see Ghosh and Deriche [13].

In the study of the apparent diffusion coefficient (ADC)
profile, in 2003, Ozarslan and Mareci [18] proposed to
model the ADC profile with higher order diffusion tensors
(HODT), that can reflect more complex micro-geometries
of biological tissues. An intrinsic property of the diffusivity
profile is positive semi-definite [2, 3, 8, 10, 15, 30]. In [25],
we approximate the ADC profile by a positive semi-definite
diffusion tensor of either second or higher order and further
show that by regarding a higher order tensor as a vector, the
diffusivity function can be simply written as the inner prod-
uct of two vectors. Such a observation provides additional
mathematical tools and further information about the diffu-
sivity function. For example, in [25], we use this observa-
tion to derive the subgradients of the smallest Z-eigenvalue
function of the diffusivity function, which is a measure of
the positive definiteness of the diffusivity function.

The ODF, as a probability distribution function, should
be nonnegative. Until now, no ODF models have addressed
this. Recently, Tournier et al. [29] proposed a nonnegativity
penalty fiber orientation distribution (FOD) model by penal-
izing FOD values. That model does not completely forbid
negative FOD values. In this paper, we present a nonnega-
tive ODF model. The ODF values are strictly nonnegative in
our model. This is different from [29].

In the next section, we first show that there is a constant
linear transformation relation between the vector versions
of the raw HARDI signal and the ODF in the homogeneous
polynomial basis. Such a linear transformation connection
between the HARDI signal and the ODF not only saves the
computational time, but also makes the nonnegative ODF
model possible. Then, we propose a new model which can
guarantee the nonnegative feature of the ODF function.

In Sect. 3 we present a new way on how to determine
the principal directions (maxima) of the ODF, based on op-
timization theory, which is more precise. Numerical exam-
ples on synthetic data as well as MRI data are displayed in
Sect. 4 to demonstrate our approach. Section 5 is a conclu-
sion section.

2 Nonnegative Diffusion Orientation Distribution
Function

Suppose that we use an mth order symmetric tensor A to
denote the raw HARDI signal S. Here m is an even number
as the signal is antipodally symmetric. Let x = (x1, x2, x3)

be a unit direction. Then the HARDI signal at the direction
x takes the value

S(x) =
m∑

i=0

m−i∑

j=0

aij x
i
1x

j

2 x
m−i−j

3 , (1)

where aij are the independent components of the tensor A.
Obviously, there are

n =
m+1∑

i=1

i = 1

2
(m + 1)(m + 2)

independent components aij . Let k = j + 1 + i(2m + 3 −
i)/2, sk = aij and x̂k = xi

1x
j

2 x
m−i−j

3 . Then we can simplify
(1) as

S(x) = s�x̂,

i.e., we can regard S(x) as the scalar product of vectors s and
x̂ in �n. This point of view will be useful for our analysis
later on.

Similarly, we use an mth order symmetric tensor B to
denote the ODF Ψ . Let x = (x1, x2, x3) be a unit direction
in the q-space. Then the ODF value at the direction x has the
value

Ψ (x) =
m∑

i=0

m−i∑

j=0

bij x
i
1x

j

2 x
m−i−j

3 � u�x̂, (2)

where bij denote the independent components of the tensor
B and u = (u1, . . . , uk, . . . , un)

� is a vector in �n with uk =
bij .

Below, we recall some basic facts about the spherical har-
monics. Let Ω be the sphere in R

3, that is,

Ω = {
x ∈ �3 : x2

1 + x2
2 + x2

3 = 1
}
.

We also use spherical co-ordinates (θ,φ), 0 ≤ θ ≤ π,0 ≤
φ ≤ 2π , with

x =
⎛

⎝
x1

x2

x3

⎞

⎠ =
⎛

⎝
sin θ cosφ

sin θ sinφ

cos θ

⎞

⎠ .

Let Y
q
l denote the spherical harmonics (SH) of order l

and degree q . Mathematically, it is given as follows

Y
q
l =

√
2l + 1

4π
· (l − q)!
(l + q)!P

q
l (cos θ)eiqφ,

where P
q
l is an associated Legendre polynomials, which can

be obtained analytically from the following set of equations,
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Pl(x) = 1

2l l!
(

d

dx

)l(
x2 − 1

)l
,

P
q
l (x) = (−1)q

(
1 − x2) q

2

(
d

dx

)q

Pl(x), q ≥ 0,

P
−q
l (x) = (−1)q

(l − q)!
(l + q)!P

q
l (x).

Let l = 0,2,4, . . . ,m and q = −l, . . . ,0, . . . , l. A single
index p in terms of l and q is used so that p ≡ p(l, q) =
(l2 + l + 2)/2 + q . Then p = 1, . . . , n. If p = p(l, q), then
define l(p) = l. Explicitly, if (l2 − l + 2)/2 ≤ p ≤ (l2 +
3l + 2)/2, then l(p) = l. Consequently, we have l(1) = 0,
l(p) = 2 for 2 ≤ p ≤ 6, l(p) = 4 for 7 ≤ p ≤ 15, so on.

As in [7, 10, 11], the real spherical harmonics of order
less than or equal to m, are

Rp(θ,φ) =
{√

2 Re(Y |q|
l ), if − l ≤ q ≤ 0,√

2(−1)q+1 Im(Y
q
l ), if 0 < q ≤ l,

for p = 1, . . . , n, where Re(Y q
l ) and Im(Y

q
l ) represent

the real and imaginary parts of Y
q
l respectively. Thus, the

HARDI signal S can be described as

S(θ,φ) =
n∑

p=1

cpRp(θ,φ).

Moreover, Descoteaux et al. [11] showed that the ODF can
be expressed as

Ψ (θ,φ) =
n∑

p=1

2πPl(p)(0)cp︸ ︷︷ ︸
c′
p

Rp(θ,φ),

where Pl(p)(0) is a Legendre polynomial with simple ex-
pression

Pl(p)(0) = (−1)
l(p)

2
3 · 5 · · · (l(p) − 1)

2 · 4 · · · l(p)
.

This demonstrated that the ODF can be estimated by scaling
of the HARDI signal’s spherical harmonic coefficients.

It should be note that, as a probability distribution func-
tion, the ODF should be nonnegative over its entire domain.
However, as pointed out in [19], this constraint has been
more challenging to satisfy within the spherical harmonics
framework. In the following theorem, we show that there is
a constant linear transformation relation between the vector
versions of the HARDI signal and the ODF in the homoge-
neous polynomial basis. Such a linear transformation con-
nection between the HARDI signal and the ODF enable us
to model the nonnegative feature of the ODF.

Theorem 1 For p,k = 1, . . . , n, let

tpk =
∫

Ω

xi
1x

j

2 x
m−i−j

3 Rp(x)dΩ.

Then T = (tpk) is an n × n invertible matrix. Let D be
an n × n diagonal matrix with its diagonal elements as

Pl(1)(0), . . . ,Pl(n)(0). Let A = 2πT −1DT . Then we have
u = As.

Proof We note that, both the mth-order tensor polynomials
restricted to the sphere and the even order spherical harmon-
ics up to order m, are basis for the same function space. So,
for the vector version s of a HARDI signal S, there exists a
vector c of spherical harmonic coefficients such that c = T s

(see [10] for details). Thus, T is invertible. By [11], we have

Ψ (x) =
n∑

p=1

2πPl(p)(0)cpRp(x),

where cp,p = 1, . . . , n are the spherical harmonics series
coefficients of S(x). Hence, the spherical harmonics series
coefficients of Ψ (x) are ψp = 2πPl(p)(0)cp . Let c and ψ be
vectors in �n with components cp and ψp for p = 1, . . . , n,
respectively. Then we have c = T s and ψ = T u. Thus, u =
2πT −1DT s = As. The proof is complete. �

Suppose that HARDI samples in N gradient directions
{gh : gh ∈ Ω,h = 1, . . . ,N}, N 
 n, and the correspond-
ing HARDI signals on these N gradients are described by
{dh : h = 1, . . . ,N}. Then {ĝh : h = 1, . . . ,N} are N vec-
tors in �n. We assume that {ĝh : h = 1, . . . ,N} spans �n,
i.e., there are n vectors among these N vectors, which are
linearly independent, or we say that {ĝh : h = 1, . . . ,N} has
rank n. We call this assumption the full rank assumption.
This assumption is needed so that the N gradient direc-
tions {gh : h = 1, . . . ,N} can reflect the signal S(g) suffi-
ciently. Let C be an n×N matrix, whose column vectors are
ĝh,h = 1, . . . ,N . Let B = CC�. Then B is an n×n positive
semi-definite symmetric matrix. Under the full rank assump-
tion, B is a positive definite symmetric matrix. We also let d
be a vector in �N , with components {dh : h = 1, . . . ,N}.

The least squares problem for finding an mth order tensor
A to reflect the signal S(g) is to find s̄ ∈ �n such that

F(s̄) = min
s∈�n

F (s), (3)

where

F(s) =
N∑

h=1

(
S(gh) − dh

)2 =
N∑

h=1

(
s�ĝh − dh

)2
.

It is well-known that under the full rank assumption the
solution of the least squares problem (3) is

s̄ = B−1Cd. (4)

The function F is a convex quadratic function. To see this,
by (4), for any s ∈ �n, we can represent F as

F(s) = (s − s̄)�B(s − s̄). (5)

Thus, F is a convex quadratic function.
With u = As, given by Theorem 1, we have ODF Ψ (x) =

uT x̂. However, in this way, we cannot guarantee Ψ (x) ≥ 0
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for all x ∈ Ω . In fact, Ψ (x) ≥ 0 for all x if and only if u is
positive semi-definite in the sense of [25]. Thus, motivated
from [25], we formulate a new model as follows:

F
(
s∗) = min

{
F(s) : λmin(As) ≥ 0

}
. (6)

Here, λmin(As) is a measure of positive definiteness of u =
As (see [25] for more discussions) given by

λmin(u) = min
{
uT x̂ : x2

1 + x2
2 + x2

3 = 1
}
. (7)

A possible method for solving (7) was given in [25]. For
completeness purpose, we include it in Appendix.

We now have the following theorem:

Theorem 2 λmin(As) is a continuous concave function of s.
Hence, (6) is a convex optimization problem.

If λmin(As̄) ≥ 0, then s∗ = s̄ is a global minimizer of (6).
If the full rank assumption holds, then (6) has a unique
global minimizer.

Suppose that the full rank assumption holds and λmin(As̄)

< 0. Then , s∗ is the unique global minimizer of (6) if and
only if there is a positive number μ such that
{

B(s∗ − s̄) = μA�x̂∗,
λmin(As∗) = 0,

(8)

where A�x̂∗ is a subgradient [26] of the concave function
λmin at s∗. By (8), we have
{

(s∗)�B(s∗ − s̄) = 0,

(x̂∗)�As∗ = 0.
(9)

Proof Let s(1), s(2) ∈ �n,0 ≤ t ≤ 1 and s = ts(1) + (1 −
t)s(2). Suppose x∗ is a global minimizer of (7). Then (x∗

1 )2 +
(x∗

2 )2 + (x∗
3 )2 = 1 and

λmin(As) = Ψ
(
x∗)

= t
(
x̂∗)�

As(1) + (1 − t)
(
x̂∗)�

As(2)

≥ tλmin
(
As(1)

) + (1 − t)λmin
(
As(2)

)
.

This shows that λmin(As) is a concave function of s. Since
λmin(As) is a concave function defined in the whole space
�n, according to the theory of convex analysis [26], it is a
continuous function. By (5), F is a convex quadratic func-
tion of s. Hence, (7) is a convex optimization problem.

If λmin(As̄) ≥ 0, then s̄ satisfies the constraint of (6).
Since ∇F(s̄) = 0, s∗ = s̄ is a global minimizer of (6). If the
full rank assumption holds, then F is strictly convex. Hence,
(6) has a unique global minimizer in this case.

Suppose that the full rank assumption holds and λmin(As̄)

< 0. Then, the minimization problem (6), has a unique
global minimizer s∗ which satisfies λmin(As∗) ≥ 0 and
F(s∗) > F(s̄). Suppose that λmin(As∗) > 0. Since λmin(As)

is continuous, there is a s̃ in the segment connecting s∗ and
s̄ such that λmin(As̃) = 0 and F(s̃) < F(s∗). This contra-
dicts the fact that s∗ is a global minimizer of (6). Hence, we

have λmin(As∗) = 0. Now, (8) follows from (5) and the op-
timality condition of the convex optimization problem (6).
By (7), we have

λmin
(
As∗) = Ψ

(
x∗) = (

s∗)�
A�x̂∗.

From this and the second equation of (8), we have the second
equation of (9). Taking inner product with s∗ on the two
sides of the first equation of (8) and combining it with the
second equation of (9), we have the first equation of (9). �

Suppose that x is a global minimizer of (7). Since Ψ (x) =
u�x̂, we have

λmin(As) = x̂�As. (10)

When m is even, if x is a global minimizer of (7), then
y = −x is also a global minimizer of (7). However, we have
ŷ = x̂ in this case. Therefore, such x̂ in (10), generated by
a global minimizer x, may still be unique even if the global
minimizers are not unique. Using standard convex analysis
facts, we know that if such x̂ in (10) is unique, then λmin(As)

is differentiable at s and its gradient is given by A�x̂. On
the other hand, if such x̂ is not unique, then any of such
A�x̂ is a subgradient of λmin(As) at s and the subdifferen-
tial of λmin(As) at s is the convex hull of all such A�x̂. With
such knowledge of gradients and subgradients of λmin(As),
we can solve convex optimization problem (6) by a standard
convex programming method [16].

Under the full rank assumption, we may use (4) to calcu-
late s̄. If λmin(As̄) ≥ 0, then s∗ = s̄ and we have the solution
needed. If λmin(As̄) < 0, by Theorem 2, λmin(As∗) = 0.
Hence, in this case, we only need to solve an equality con-
strained optimization problem. In the following table, we
give a summary of the nonnegative ODF model where the
analytical ODF was estimated in the homogeneous polyno-
mial basis.

(1) Calculate s̄ by (4). If λmin(As̄) ≥ 0, then s∗ = s̄

and we have the solution needed.
(2) If λmin(As̄) < 0, by Theorem 2, λmin(As∗) = 0.

Hence, in this case, we only need to solve the fol-
lowing equality constrained optimization prob-
lem:

F
(
s∗) = min

{
F(s) : λmin(As) = 0

}
. (11)

(3) Then we have u = As∗ and the nonnegative
ODF Ψ (x) = u�x̂.

Clearly, problem (11) still has (8) as its optimality con-
dition under the full rank assumption. We may consider to
solve this equality constrained problem by some standard
minimization methods [17].

Generally, the diffusion peaks of the ODF are small and
so direct visualization of the ODF often shows little orienta-
tional structure. So, it will be helpful to sharpen or min-max
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normalize the ODF [11, 27]. In [11], Descoteaux et al. pro-
posed a fast and robust algorithm to estimate ODF incorpo-
rating a sharpening scheme based on the Laplace-Beltrami
operator. Let d : �3 → �N be the vector field of diffusion
signal in N discrete directions on the sphere. Let C̃ be an
n × N matrix, whose column vectors are SH functions Rp .
Let B̃ = C̃C̃� and L be an n × n diagonal matrix with its
diagonal elements as Li,i = (l(i)2(l(i) + 1)2). Then, their
ODF estimation is expressed using the spherical harmonic
basis

Ψ (x) =
n∑

p=1

2πPl(p)(0)cpRp(x),

where the spherical harmonics series coefficients cp can
be obtained by a modified Moore-Penrose pseudo-inverse
scheme

c = (B̃ + αL)−1C̃d. (12)

Here α is the weight term on the Laplace-Beltrami smooth-
ing matrix L, which penalizes high degrees in the estimation
under the assumption that high degrees SH are likely to cap-
ture noise.

Let Ã = 2πT −1D and u = Ãc. Then, the ODF can be
represented by a real homogeneous polynomial of order m

in the form that Ψ (x) = u�x̂. In order to satisfy the nonneg-
ative constraint, one can solve the following model:

min
{
F(c) : λmin(Ãc) ≥ 0

}
, (13)

where F denotes a convex quadratic function

F(c) = (c − c)�(B̃ + αL)(c − c).

Similarly, we have the following theorem.

Theorem 3 λmin(Ãc) is a continuous concave function of c.
Hence, (13) is a convex optimization problem.

If λmin(Ãc̄) ≥ 0, then c∗ = c̄ is a global minimizer of
(13).

Suppose that λmin(Ãc̄) < 0. Then, c∗ is the unique global
minimizer of (13) if and only if there is a positive number μ

such that
{

(B̃ + αL)(c∗ − c̄) = μ(Ã)�x̂∗,
λmin(Ãc∗) = 0,

(14)

where (Ã)�x̂∗ is a subgradient of the concave function λmin

at c∗. Moreover, by (14), we have
{

(c∗)�(B̃ + αL)(c∗ − c̄) = 0,

(x̂∗)�Ãc∗ = 0.
(15)

The main contribution of the work presented here is a
nonnegative ODF model with a sharpening scheme. We give
a summary as follows.

– Calculate c̄ by (12). If λmin(Ãc) ≥ 0, then we have
the solution needed c∗ = c.

– Else if λmin(Ãc) < 0, we need to solve (13) or the
following equality constrained optimization prob-
lem:

F
(
c∗) = min

{
F(c) : λmin(Ãc) = 0

}
.

– Then we have u = Ãc∗ and the nonnegative ODF
Ψ (x) = u�x̂.

Let P + denote a projection operator which projects a ten-
sor onto the positive semi-definite cone. An approximate
projected gradient algorithm for solving nonnegative ODF
model can be presented as follows.

Algorithm PSD-ODF
Data. Given a constant ε > 0. Calculate c̄ by (12) and

then get an initial guess ū = Ãc. If λmin(ū) ≥ 0, Stop; Oth-
erwise set u1 = P +(ū).

Initialization. Set s1 = −(B̃ + αL)(u1 − ū) and k = 1.
While |u�

k (B̃ + αL)(uk − ū)| > ε or λmin(uk) > ε do
Compute tk such that uk+1 := uk + tksk satisfies u�

k+1(B̃+
αL)(uk+1 − ū) = 0;

Compute λmin(uk+1). if λmin(uk+1) < 0, then set uk+1 =
P +(uk+1).

Compute sk+1 = −(B̃+αL)(uk+1 − ū) and set k = k+1.
End while.

One of the advantages of the homogeneous polynomial
basis over the spherical harmonic basis is that the local max-
ima of the ODF can be easily computed. In the next section,
we present formulas for determining the principal directions
of the ODF.

3 Principal Directions of ODF

Recently, using the Z-eigenvalue concept introduced in [21],
Bloy and Verma [7] suggested to determine the principal di-
rections (maxima) of the ODF by the curvature concept they
introduced. In contrast, in this section, we use optimization
theory and techniques to determine the principal directions
(maxima) of the ODF.

After a nonnegative ODF Ψ is found, we can solve

max
{
Ψ (x) : x2

1 + x2
2 + x2

3 = 1
}
. (16)

The optimization conditions of (16) are (18), the same as the
optimality conditions of (7). Actually, in Appendix, we give
the method to calculate all the Z-eigenvalues [21] of u. The
largest Z-eigenvalue λmax gives the global maximum value
of u. Then, the corresponding solution x, which is called
the Z-eigenvector of u, associated with λmax, is the leading
principal direction of u. The Z-eigenvectors of u, associated
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with the other Z-eigenvalues, include local maximizers, lo-
cal minimizers and saddle points. Suppose that (x, λ) is a
solution of (18). Then λ is a Z-eigenvalue of u, x is a sta-
tionary point of (16).

The Hessian of the Lagrangian function of (18) at (x, λ)

is given by

∇2
xL(x, λ) = R − m(m − 1)λI,

where I is the 3 × 3 unit matrix and R = (rij ) is a 3 × 3
symmetric matrix. Denotes m(i, j) = m − i − j , then

r11 =
m∑

i=2

m−i∑

j=0

i(i − 1)bij x
i−2
1 x

j

2 x
m(i,j)

3 ,

r12 =
m∑

i=1

m−i∑

j=1

ijbij x
i−1
1 x

j−1
2 x

m(i,j)

3 ,

r13 =
m∑

i=1

m−i−1∑

j=0

im(i, j)bij x
i−1
1 x

j

2 x
m(i,j)−1
3 ,

r22 =
m∑

i=0

m−i∑

j=2

j (j − 1)bij x
i
1x

j−2
2 x

m(i,j)

3 ,

r23 =
m∑

i=0

m−i−1∑

j=1

jm(i, j)bij x
i
1x

j−1
2 x

m(i,j)−1
3 ,

r33 =
m∑

i=0

m−i−2∑

j=0

m(i, j)
(
m(i, j) − 1

)
bij x

i
1x

j

2 x
m(i,j)−2
3 .

Clearly, x is an eigenvector of R with eigenvalue m(m−1)λ.
Then, by optimization theory and [24], if the other two
eigenvalues of R are less than m(m − 1)λ, then x is a local
maximizer of (18). On the other hand, if x is a local maxi-
mizer of (18), then the other two eigenvalues of R are less
than or equal to m(m − 1)λ.

Suppose that x is a local maximizer of (16) with Z-
eigenvalue λ. If λ is not larger than one of the other Z-
eigenvalues which corresponds to saddle points or local min-
imizers, then such a direction is not significant. In view of
this, a Z-eigenvalue of u is called a principal Z-eigenvalue
if it is dominates all the other eigenvalues which corre-
sponds to saddle points or local minimizers. In this way, a
Z-eigenvector of u, associated with a principal Z-eigenvalue,
is regarded as a principal direction. An illustration for the
principal direction of ODF is given in Fig. 1.

4 Experimental Results

In this section, we report some experimental results on our
method applied to simulated dataset as well as real human

Fig. 1 Illustration for the
principal directions of ODF,
where the red line denotes the
maximum principal direction,
the blue one is the second
principal direction, and the
black one is the third principal
direction (Color figure online)

brain dataset. Firstly, we generate synthetic HARDI data by
the following multilinear model [1]:

S(gi) =
n∑

k=1

pke
−bgiDkgi + noise, (17)

where n ∈ {0,1,2,3} is the number of fibers, pk is the pro-
portion of tissue in the voxel that corresponds to the kth
fiber (

∑n
k=1 pk = 1), b is the b-value, gi is the ith gradi-

ent direction for i ∈ {1, . . . ,81}, and Dk is the diffusion ten-
sor of the kth fiber. This synthetic data generation is rela-
tively standard and has advantage of analytic computation
of the ODF [11]. The noise was typically generated by Ri-
cian noise (complex Gaussian noise) with standard deviation
of 1/σ , producing a signal to noise ratio (SNR) of σ . In our
experiments, unless special instructions, the b value equals
to 3000 s/mm2 and the diffusion tensors were selected such
as Dk = diag(1700,200,200)×10−6 mm2/s for k = 1,2,3.
And we generated Rician-corrupted data S as done in [12].
For each noise-free data x, we computed S as:

S =
√(

x√
2

+ nr

)2

+
(

x√
2

+ ni

)2

where nr and ni ∼ N (0, σ 2). The value S is the realisation
of a random variable with a Rician p.d.f. of parameters x

and σ .
Firstly, we demonstrate qualitatively that our method can

guarantee nonnegative diffusivity by comparing it with the
Least Squares (LS) method. The LS method is a simple ap-
proach which estimates the coefficients of an ODF function.
This method is usually easily implementable and fast. On the
other hand, it does not guarantee positive diffusivity. Below,
we estimate the ODF fitting with a 4th order diffusion tensor
in the homogeneous polynomial basis using these two algo-
rithms. For the single tensor model, the ODF function (the
SNR was fixed to 35) estimated by the LS method, fitting
with a 4th order tensor, is ODF(x) = uT x̂, where u is a 15-
dim vector with u(1) = −0.7344, u(2) = −0.0010, u(3) =
1.7255, u(4) = −0.0140, u(5) = −0.6048, u(6) = 0.0142,
u(7) = 0.0055, u(8) = 0.0203, u(9) = −0.0096, u(10) =
−0.1701, u(11) = 0.0035, u(12) = −0.2132, u(13) =
−0.0650, u(14) = −0.0035, u(15) = 7.1234. Using the
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Table 1 Z-eigenvalues and eigenvectors of a 4th order tensor, where
the ODF was estimated by LS method

x1 x2 x3 λ

1 −0.0055 0.0002 1.0000 −0.7344

2 0.0048 1.0000 0.0024 −0.6048

3 −0.1634 0.7117 0.6832 0.0878

4 0.1559 0.7119 0.6847 0.0906

5 0.0137 0.7211 0.6927 0.0941

6 −0.1689 −0.7120 0.6816 0.0945

7 0.1577 −0.7135 0.6826 0.0985

8 0.0174 −0.7225 0.6911 0.1020

Table 2 Z-eigenvalues and eigenvectors of a 4th order tensor, where
the ODF was estimated by PSD method

g1 g2 g3 λ

1 −0.0023 0.0001 1.0000 0.0001

2 0.0017 1.0000 0.0015 0.1297

3 −0.0100 0.7160 0.6980 1.2786

4 −0.0135 −0.7168 0.6971 1.2862

method provided in Appendix, we can compute all the Z-
eigenvalues and the associated eigenvectors, which are listed
in Table 1.

From Table 1, we can see that there are two negative
eigenvalues and the smallest Z-eigenvalue is −0.7344, at-
tained at (−0.0055,0.0002,1.0000). This shows the need
for enforcing the positive semi-definite property of the es-
timated tensor since negative diffusivity profiles are not
meaningful from the point of view of physics.

Next, we illustrate that our method can guarantee positive
diffusivity. In the same example above, the ODF function es-
timated by the our method is ODF(x) = uT x̂, with u(1) =
0.0001, u(2) = −0.001, u(3) = 4.9965, u(4) = −0.014,
u(5) = 0.1297, u(6) = 0.0142, u(7) = 0.0055, u(8) =
0.0203, u(9) = −0.0096, u(10) = 3.1009, u(11) = 0.0035,
u(12) = 3.0578, u(13) = −0.065, u(14) = −0.0035,
u(15) = 7.8579. All Z-eigenvalues and the associated eigen-
vectors were listed in Table 2. As we see that the smallest Z-
eigenvalue is 0.0001, attained at (−0.0023,0.0001,1.0000).

We also borrowed a picture from [19] to illustrate effects
of the approach with guaranteed nonnegative diffusivity. If
a final ODF estimation contains negative diffusivity, it will
result in negative side lobes as indicated in black in Fig. 2.
Meanwhile, the approach with guaranteed nonnegative dif-
fusivity can eliminate these side lobes completely.

Next, in order to compare the robustness of our method in
the presence of noise, we generated the signals by (17) at 5
different SNR ranging from 10 to 50 and repeated the exper-
iments 10 times. We estimate the ODF fitting with 6th order
diffusion tensor. We choose to compare our PSD method

Fig. 2 (Borrowed from [19] to illustrate effects of the approach with
guaranteed nonnegative diffusivity.) Without projection (left), the fi-
nal ODF estimation contains negative-valued regions (the side lobes in
black). Meanwhile, enabling projection results in elimination of these
negative side lobes (right)

against the following two methods: (1) a nonnegative con-
strained Least Squares (LS+) method: solve (4) and by us-
ing the linear transformation to get ū = As̄, then set nega-
tive ODF as zero, i.e. project it onto the nonnegative space,
finally get the solution u = P +(ū); (2) and a constrained
spherical deconvolution (CSD) method [29]. For the CSD
method, a constraint is introduced to minimize the appear-
ance of negative values in the reconstructed FOD. But it
does not completely forbid negative FOD values. We im-
plemented the CSD method with λ = 1 and τ = 10 % of the
mean initial FOD amplitude (see [29] for a detailed descrip-
tion of these parameters). Then, we computed the means of
angles errors in degree between the actual fiber orientations
and the maxima of estimated ODF/FOD. The results are
plotted in Fig. 3. As would be expected the means of the de-
gree error decreases as the SNR increases. The PSD method
compares favorably to the least squares (LS+) method. Com-
paring with the PSD method, the CSD method gains an im-
provement of approximately 1°. Figure 4 also shows the pre-
cision of PSD method in the presence of varying levels of
noise, for different b-values. The red line is for b = 1000,
while black is for b = 3000. As we can see from Fig. 4,
when SNR = 50, the angular error is about 3.3° at b = 1000
while it is about 2.4° at b = 3000.

Next we worked on a phantom dataset [20], which was
acquired on a GE Healcare Signa 1.5 T scanner. It had 4000
gradient directions and for our experiments we used a b-
value of 4000 s/mm2. The phantom had a geometry of two
fiber bundles crossing perpendicularly close to X-axis and
the Y-axis. Figure 5 shows the ODF profiles. We estimated
the 2nd order diffusion tensor (shown in the top) and the 4th
order diffusion tensor using our method. The extracted prin-
ciple direction of ODF indicate the known fiber geometry
of the phantom. These results also demonstrate that high or-
der tensor estimation is necessary since 2nd order diffusion
tensor fails to approximate complex local tissue structure.

In the next experiment, we are interested to estimate
the ODF profiles from human brain dataset with size of
90 × 90 × 60, which was acquired on a 1.5 T scanner at
b = 1000 s/mm2 using 60 encoding directions, with voxel
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Fig. 3 Effects of varying SNR
on the detected maximum of the
ODF estimations by LS+
method, CSD method and our
positive semi-definite (PSD)
approach for b = 3000

Fig. 4 Effects of varying SNR on the detected maximum of the ODF
estimations by PSD method for different b-values. The red line is for
b = 1000, while black is for b = 3000. The y-axis is the mean of the
estimated angular error (Color figure online)

dimensions of 1.875 mm × 1.875 mm × 2 mm. In this ex-
periment we estimate the analytical ODF in the SH basis
with rank-4 from this HARDI signal by MATLAB 7.4. We
show some reconstructed ODFs with sharpening in Fig. 6,
in which the parameter α = 0.006. We also show some re-
constructed ODFs with principal directions in the region of
interest (ROI). We can detect there are multiple fibers in
which some crossing are due to diverging or splitting fibers.
These results show that our nonnegative ODF profiles model
can depict the characterization of diffusion anisotropy which
was consistent with known neuroanatomy.

5 Conclusion

In conclusions, the main contribution of this paper is of
threefold:

– Firstly, we showed that there is a constant linear trans-
formation relation between the vector versions of the raw

HARDI signal and the ODF in the homogeneous polyno-
mial basis. Such a linear transformation connection en-
able us to model the nonnegative feature of the ODF.

– Secondly, we proposed a new reconstruction framework
to estimate nonnegative ODFs from HARDI data. Inter-
esting features of this model include minimizing a convex
optimization problem with a convex quadratic objective
function constrained by the nonnegativity requirement on
the smallest Z-eigenvalue of the diffusivity tensor. This
model can guarantee the positive semi-definite property
of the estimated high order tensor (not limited to 4th order
tensor), which is the main contribution of our work. This
property is essential since negative diffusivity profiles are
not meaningful from the point of view of physics.

– Thirdly, based on optimization theory and techniques, we
present a computational method for determining the prin-
cipal directions of the ODF. Numerical examples on syn-
thetic data as well as MRI data are tested to illustrate the
significance of our approach.

It would be interesting to see how we can extend our non-
negative ODF model to tackle tractography. Moreover, we
also would like to see how our model performs if we use it
to analyze in real datasets at b = 3000 (or higher b-values)
where fiber crossings could be better detected. These will be
our future research directions.
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Fig. 5 ODF profile from a Phantom dataset. The phantom had a geom-
etry of two fiber bundles crossing perpendicularly close to the X-axis
and the Y -axis. We estimated the 2nd order diffusion tensor (shown in
the top) and the 4th order diffusion tensor (shown in the bottom) us-
ing our method. As we can see for the 4th order diffusion tensor, the
extracted principle direction of ODF could indicate the known fiber
geometry of the phantom

Appendix: The Solution Method for (7)

According to optimization theory, the optimality conditions
of (7) have the form:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑m
i=1

∑m−i
j=0 ibij x

i−1
1 x

j

2 x
m(i,j)

3 = mλx1,

∑m
i=0

∑m−i
j=1 jbij x

i
1x

j−1
2 x

m(i,j)

3 = mλx2,

∑m
i=0

∑m−i−1
j=0 m(i, j)bij x

i
1x

j

2 x
m(i,j)−1
3 = mλx3,

x2
1 + x2

2 + x2
3 = 1.

(18)

Here m(i, j) = m − i − j . The additional “m” on the right
hand sides of the first three equations make it the same as
the definition of Z-eigenvalues [7, 21–24] for the symmetric
tensor x. If (x, λ) is a solution of (18), then x is a stationary
point of (7) and

λ = Ψ (x) (19)

Fig. 6 Reconstructed ODFs from human brain with sharpening,
shown on the Generalized Fractional Anisotropy (GFA) map, where
GFA was defined by Tuch [27] as GFA = std(ODF)

rms(ODF)
. We also recon-

structed ODFs with principal directions for a region of interest (shown
in the bottom). We can detect there are multiple fibers in which some
crossing are due to diverging or splitting fibers

is a Z-eigenvalue of u. Then, the smallest Z-eigenvalue of u

is the optimal value of (7).
We may solve (18) in the following way:

Case 1 x3 = x2 = 0. By (18), this only happens if bm−1,1 =
bm−1,0 = 0. In this case, x1 = ±1, λ = bm,0.

Case 2 x3 = x1 = 0. By (18), this only happens if b1,m−1 =
b0,m−1 = 0. In this case, x2 = ±1, λ = b0,m.

Case 3 x3 = 0, x1 �= 0 and x2 �= 0. Then (18) becomes
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑m
i=1 ibi,m−ix

i−1
1 xm−i

2 = mλx1,
∑m−1

i=0 (m − i)bi,m−ix
i
1x

m−i−1
2 = mλx2,

∑m−1
i=0 bi,m−i−1x

i
1x

m−i−1
2 = 0,

x2
1 + x2

2 = 1.

(20)

We may eliminate λ in (20) and have the following equations
of x1 and x2:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑m
i=1 ibi,m−ix

i−1
1 xm−i+1

2

= ∑m−1
i=0 (m − i)bi,m−ix

i+1
1 xm−i−1

2 ,
∑m−1

i=0 bi,m−i−1x
i
1x

m−i−1
2 = 0,

x2
1 + x2

2 = 1.
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Let t = x1/x2. We have
{∑m

i=1 ibi,m−i t
i−1 = ∑m−1

i=0 (m − i)bi,m−i t
i+1,

∑m−1
i=0 bi,m−i−1t

i = 0.
(21)

We may solve the two one-variable equations of (21) sepa-
rately. If they have common solutions t , then (18) has solu-
tions

x1 = t√
1 + t2

, x2 = ±1√
1 + t2

,

x3 = 0, λ = Ψ (x).

Case 4 x3 �= 0. We may eliminate λ in (18) and have the
following equations of x:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m
i=1

∑m−i
j=0 ibij x

i−1
1 x

j

2 x
m(i,j)+1
3

= ∑m
i=0

∑m−i−1
j=0 m(i, j)bij x

i+1
1 x

j

2 x
m(i,j)−1
3 ,

∑m
i=0

∑m−i
j=1 jbij x

i
1x

j−1
2 x

m(i,j)+1
3

= ∑m
i=0

∑m−i−1
j=0 m(i, j)bij x

i
1x

j+1
2 x

m(i,j)−1
3 ,

x2
1 + x2

2 + x2
3 = 1.

(22)

Let w = x1/x3, v = x2/x3. Then we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑m
i=1

∑m−i
j=0 ibijw

i−1vj

= ∑m
i=0

∑m−i−1
j=0 m(i, j)bijw

i+1vj ,
∑m

i=0
∑m−i

j=1 jbijw
ivj−1

= ∑m
i=0

∑m−i−1
j=0 m(i, j)bijw

ivj+1.

(23)

For solving system (23), we first regard it as a system of
polynomial equations of variable w and rewrite it as
{

γ0w
m + γ1w

m−1 + · · · + γm = 0,

τ0w
m−1 + τ1w

m−2 + · · · + τm−1 = 0,

where γ0, . . . , γm, τ0, . . . , τm−1 are polynomials of v, which
can be calculated by (19). By the Sylvester theorem, the
above system of polynomial equations in w possesses so-
lutions if and only if its resultant vanishes [9]. The resultant
of this system of polynomial equations is the determinant of
the following (2m − 1) × (2m − 1) matrix

V :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 · · · γm−2 γm−1 γm · · · 0 0
0 γ0 · · · γm−3 γm−2 γm−1 · · · 0 0
· · · · · · · · · · · · ·
0 0 · · · γ1 γ2 γ3 · · · γm 0
0 0 · · · γ0 γ1 γ2 · · · γm−1 γm

τ0 τ1 · · · τm−2 τm−1 0 · · · 0 0
0 τ0 · · · τm−3 τm−2 τm−1 · · · 0 0
· · · · · · · · · · · · ·
0 0 · · · τ0 τ1 τ2 · · · τm−1 0
0 0 · · · 0 τ0 τ1 · · · τm−2 τm−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a polynomial equation in variable v. After finding
all real roots of this polynomial, we can substitute them to

(23) to find all the real solutions of w. Then, using x1 =
w√

1+w2+v2
, x2 = v√

1+w2+v2
, x3 = ±1√

1+w2+v2
, λ = Ψ (x),

we may find all the solutions of (18) in this case.
Combine all the possible solutions of (18) in these four

cases, and find λmin(As), the smallest value of λ of these
solutions. This solves (7).

References

1. Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and mod-
eling of non-Gaussian apparent diffusion coefficient profiles in hu-
man brain data. Magn. Reson. Med. 48, 331–340 (2002)

2. Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri,
B.C.: Regularized positive-definite fourth order tensor filed esti-
mation from DW-MRI. NeuroImage 45, 5153–5162 (2009)

3. Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmet-
ric positive 4th order tensors & their estimation from diffusion
weighted MRI. In: Karssemeijer, M., Lelieveldt, B. (eds.) Infor-
mation Processing and Medical Imaging, pp. 308–319. Springer,
Berlin (2007)

4. Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, exper-
imental design and data analysis—a technical review. NMR
Biomed. 15, 456–467 (2002)

5. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective
self-diffusion tensor from the NMR spin echo. J. Magn. Reson.,
Ser. B 103, 247–254 (1994)

6. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spec-
troscopy and imaging. Biophysica 66, 259–267 (1994)

7. Bloy, L., Verma, R.: On computing the underlying fiber directions
from the diffusion orientation distribution function. In: Metaxas,
D., Axel, L., Fichtinger, G., Székeley, G. (eds.) Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2008,
pp. 1–8. Springer, Berlin (2008)

8. Chefd’Hotel, C., Tschumperle, D., Deriche, R., Faugeras, O.: Reg-
ularizing flows for constrained matrix-valued images. J. Math.
Imaging Vis. 20, 147–162 (2004)

9. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry.
Springer, New York (1998)

10. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Ap-
parent diffusion coefficients from high angular diffusion imag-
ing: estimation and applications. Magn. Reson. Med. 56, 395–410
(2006)

11. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Reg-
ularized, fast, and analytical q-ball imaging. Magn. Reson. Med.
58, 497–510 (2007)

12. Descoteaux, M., Wiest-Daesslé, N., Prima, S., Barillot, C., De-
riche, R.: Impact of Rician adapted non-local means filtering on
HARDI. In: MICCAI 2008, Part II. LNCS, vol. 5242, pp. 122–
130 (2008)

13. Ghosh, A., Deriche, R.: From second to higher order tensors in
diffusion-MRI. In: Tensors in Image Processing and Computer Vi-
sion, pp. 315–334. Springer, London (2009)

14. Ghosh, A., Tsigaridas, E., Descoteaux, M., Comon, P., Mourrain,
B., Deriche, R.: A polynomial based approach to extract the max-
ima of an antipodally symmetric spherical function and its appli-
cation to extract directions from the orientation distribution func-
tion in diffusion MRI. In: Workshop on Computational Diffusion
MRI, Held in Conjunction with the MICCAI 2008 Conference,
New York, USA, September 2008 (2008)

15. Ghosh, A., Descoteaux, M., Deriche, R.: Riemannian framework
for estimating symmetric positive definite 4th order diffusion ten-
sors. In: Metaxas, D., Axel, L., Fichtinger, G., Székeley, G. (eds.)
Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2008, pp. 858–865. Springer, Berlin (2008)

Author's personal copy



J Math Imaging Vis (2013) 45:103–113 113

16. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Mini-
mization Algorithms. Springer, Berlin (1993)

17. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New
York (1999)

18. Ozarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging
and analytical relationships between diffusion tensor imaging and
high angular resolution diffusion imaging. Magn. Reson. Med. 50,
955–965 (2003)

19. Patel, V., Shi, Y., Thompson, P.M., Toga, A.W.: Mesh-based spher-
ical deconvolution: a flexible approach to reconstruction of non-
negative fiber orientation distributions. NeuroImage 51, 1071–
1081 (2010)

20. Poupon, C., Rieul, B., Kezele, I., Perrin, M., Poupon, F., Mangin,
J.F.: New diffusion phantoms dedicated to the study and validation
of HARDI models. Magn. Reson. Med. 60, 76–83 (2008)

21. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb.
Comput. 40, 1302–1324 (2005)

22. Qi, L., Wang, Y., Wu, E.X.: D-eigenvalues of diffusion kurtosis
tensors. J. Comput. Appl. Math. 221, 150–157 (2008)

23. Qi, L., Han, D., Wu, E.X.: Principal invariants and inherent pa-
rameters of diffusion kurtosis tensors. J. Math. Anal. Appl. 349,
165–180 (2009)

24. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global
polynomial optimization problem. Math. Program. 118, 301–316
(2009)

25. Qi, L., Yu, G., Wu, E.X.: Higher order positive semi-definite dif-
fusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

26. Rockafellar, R.T.: Convex Analysis. Princeton Publisher, Prince-
ton (1970)

27. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372
(2004)

28. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N.G., Belliveau,
J.W., Wedeen, V.J.: High angular resolution diffusion imaging re-
veals intravoxel white matter fiber heterogeneity. Magn. Reson.
Med. 48, 454–459 (2002)

29. Tournier, J.-D., Calamante, F., Connelly, A.: Robust determi-
nation of the fibre orientation distribution in diffusion MRI:
Non-negativity constrained super-resolved spherical deconvolu-
tion. NeuroImage 35, 1459–1472 (2007)

30. Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.H.: A constrained
variational principle for direct estimation and smoothing of the
diffusion tensor field from complex DWI. IEEE Trans. Med. Imag-
ing 23, 930–939 (2004)

Liqun Qi received his B.S. in Com-
putational Mathematics at Tsinghua
University in 1968, his M.S, and
Ph.D. degree in Computer Sciences
at University of Wisconsin-Madison
in 1981 and 1984, respectively. Pro-
fessor Qi has taught in Tsinghua
University, China, University of
Wisconsin- Madison, USA, Univer-
sity of New South Wales, Australia,
and The City University of Hong
Kong. He is now Chair Professor
of Applied Mathematics and Head
of Department of Applied Mathe-

matics at The Hong Kong Polytechnic University. Professor Qi has
published more than 200 research papers in international journals. He
established the superlinear and quadratic convergence theory of the
semismooth Newton method, and played a principal role in the de-
velopment of reformulation methods in optimization. Professor Qi’s
research work has been cited by the researchers around the world. Ac-
cording to the authoritative citation database www.isihighlycited.com,
he is one of the world’s most highly cited 300 mathematicians. Profes-
sor Qi is an editor or an associate editor of ten international journals.
He has chaired more than ten international conferences and workshops
held at Australia, Italy, Hong Kong and the Mainland China. In 2005,
Professor Qi pioneered the research on eigenvalues for higher order
tensors, which now has applications in biomedical engineering, sta-
tistical data analysis, spectral hypergraph theory, solid mechanics, etc.
Professor Qi played a leading role in the optimization community in the
Asian Pacific region. In 2000, with five other optimization researchers
in this region together, Professor Qi initiated the Pacific Optimization
Research Activity Group and the Sino-Japanese Optimization Meeting
Series. Professor Qi also works closely with researchers in the Main-
land China. In 2010, Professor Qi received the First Class Science and
Technology Award of Chinese Operations Research Society.

Gaohang Yu received his Ph.D. de-
gree in Computational Mathematics
at Sun Yat-Sen University in 2007.
From 2007 to 2009, he taught in
Sun Yat-Sen University. Then he
joined the School of Mathematics
and Computer Science at the Gan-
nan Normal University as an Asso-
ciate Professor. From 2008 to 2011,
he ever worked at Department of
Applied Mathematics at The Hong
Kong Polytechnic University as a
postdoctoral/research fellow. His re-
search interests include optimiza-
tion theory and methods, image pro-
cessing, and medical imaging.

Yi Xu is a Ph.D. candidate at De-
partment of Applied Mathematics at
The Hong Kong Polytechnic Uni-
versity; he received his B.S. at Nan-
jing Normal University in 2005. His
research interests include numerical
optimization and applications.

Author's personal copy

http://www.isihighlycited.com

	Nonnegative Diffusion Orientation Distribution Function
	Abstract
	Introduction
	Nonnegative Diffusion Orientation Distribution Function
	Principal Directions of ODF
	Experimental Results
	Conclusion
	Acknowledgements
	Appendix: The Solution Method for (7)
	Case 1
	Case 2
	Case 3
	Case 4

	References


