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In this paper, we show that the largest signless Laplacian H-eigen-
value of a connected k-uniform hypergraph G , where k � 3,
reaches its upper bound 2�(G), where �(G) is the largest de-
gree of G , if and only if G is regular. Thus the largest Laplacian
H-eigenvalue of G , reaches the same upper bound, if and only
if G is regular and odd-bipartite. We show that an s-cycle G , as
a k-uniform hypergraph, where 1 � s � k − 1, is regular if and only
if there is a positive integer q such that k = q(k − s). We show
that an even-uniform s-path and an even-uniform non-regular
s-cycle are always odd-bipartite. We prove that a regular s-cycle
G with k = q(k − s) is odd-bipartite if and only if m is a multiple
of 2t0 , where m is the number of edges in G , and q = 2t0 (2l0 + 1)

for some integers t0 and l0. We identify the value of the largest
signless Laplacian H-eigenvalue of an s-cycle G in all possible
cases. When G is odd-bipartite, this is also its largest Laplacian
H-eigenvalue. We introduce supervertices for hypergraphs, and
show the components of a Laplacian H-eigenvector of an odd-
uniform hypergraph are equal if such components correspond
vertices in the same supervertex, and the corresponding Lapla-
cian H-eigenvalue is not equal to the degree of the supervertex.
Using this property, we show that the largest Laplacian H-eigen-
value of an odd-uniform generalized loose s-cycle G is equal to
�(G) = 2. We also show that the largest Laplacian H-eigenvalue of
a k-uniform tight s-cycle G is not less than �(G)+1, if the number
of vertices is even and k = 4l + 3 for some nonnegative integer l.
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1. Introduction

Let k � 2 and n � k. A k-uniform hypergraph G = (V , E) has vertex set V , which is labeled as
[n] = {1, . . . ,n}, and edge set E . By k-uniformity, we mean that for every edge e ∈ E , the cardinality |e|
of e is equal to k. If k = 2, we have an ordinary graph.

The largest Laplacian eigenvalue of a graph plays an important role in spectral graph theory [1,17].
A natural definition for the Laplacian and signless Laplacian tensors of a k-uniform hypergraph G ,
where k � 3, was introduced in [16]. It was shown that the largest Laplacian H-eigenvalue of G is
always less than or equal to the largest signless Laplacian H-eigenvalue of G , while the latter is always
less than or equal to 2�, where � is the largest degree of G . In [7], the odd-bipartite hypergraph was
introduced. In [9], it was proved that the largest Laplacian H-eigenvalue of a connected k-uniform
hypergraph G is equal to its largest signless Laplacian H-eigenvalue if and only if G is odd-bipartite.
This result extended the classical result in spectral graph theory [1,17].

In this paper, we show that the largest signless Laplacian H-eigenvalue of a connected k-uniform
hypergraph G , where k � 3, reaches its upper bound 2�, if and only if G is regular. Thus, the largest
Laplacian H-eigenvalue of G reaches the same upper bound, if and only if G is regular and odd-
bipartite.

We then turn our attention to s-paths and s-cycles.
Researchers in hypergraph theory have studied loose cycles, loose paths, tight cycles and tight

paths extensively [3–6,10–14].
Let G = (V , E) be a k-uniform hypergraph. Suppose 1 � s � k − 1. According to [14], if V = {i: i ∈

[s + m(k − s)]} such that {1 + j(k − s), . . . , s + ( j + 1)(k − s)} is an edge of G for j = 0, . . . ,m − 1,
then G is called an s-path. In [13], G is called a loose path if s = 1, and a tight path if s = k − 1. In [14],
G is also called a loose path for 2 � s � k

2 and a tight path for k
2 < s � k − 2. To avoid confusion, in

these two cases, as in [8], we call G a generalized loose path and a generalized tight path respectively.
According to [14], if V = {i: i ∈ [m(k − s)]} such that {1 + j(k − s), . . . , s + ( j + 1)(k − s)} is an edge
of G for j = 0, . . . ,m − 1, where vertices m(k − s) + j ≡ j for any j, then G is called an s-cycle.
According to [3–6,10–13], if s = 1, G is called a loose cycle, if s = k − 1, G is called a tight cycle. We call
G a generalized loose cycle for 2 � s � k

2 , and a generalized tight cycle for k
2 < s � k − 2. For an s-cycle,

in this paper, we assume that n � 2k − s. In this way, each pair of consecutive edges in the s-cycle
will have exactly s common vertices. In the next section, we will discuss this in details.

We show in this paper that an s-cycle G , as a k-uniform hypergraph, where 1 � s � k−1, is regular
if and only if k is a multiple of k − s.

The Laplacian H-eigenvalues of loose paths and loose cycles were studied in [8,9]. In [8], power
hypergraphs and cored hypergraphs were introduced. Loose paths and loose cycles are power hyper-
graphs. Power hypergraphs are cored hypergraphs. Even-uniform cored hypergraphs are odd-bipartite.
As cycles are symmetric, their largest signless Laplacian H-eigenvalues can be identified directly. Thus,
the largest Laplacian H-eigenvalues of odd-bipartite cycles can be identified directly. In [9], the largest
Laplacian H-eigenvalue of an even-uniform loose cycle was identified directly.

According to [16], the largest Laplacian H-eigenvalue of k-uniform hypergraph is always greater
than or equal to the largest degree of that k-uniform hypergraph. By [9], when k is even, equality
cannot hold, but when k is odd, equality may hold in certain cases. It was proved in [8] that equality
holds for odd-uniform loose paths and loose cycles.

It was observed in [8] that if 2 � s < k
2 , then an s-path or an s-cycle is a cored hypergraph, but

not a power hypergraph in general.
These results raised several questions. First, if k is even and k

2 � s � k − 1, are some s-paths
and s-cycles still odd-bipartite, though they are not cored hypergraphs? Second, can we identify the
largest Laplacian H-eigenvalues of even-uniform odd-bipartite s-cycles directly? Third, when k is odd
and 2 � s � k − 1, are the largest H-eigenvalues of s-paths and s-cycles equal to the corresponding
largest degrees? We will study these questions in this paper.

We give some basic definitions in the next section.
In Section 3, we prove the result about regular uniform hypergraphs mentioned before, and iden-

tify regular s-cycles.
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In Section 4, we show that if k is even, all the s-paths and all the non-regular s-cycles are odd-
bipartite. We prove that a regular s-cycle G with k = q(k − s) is odd-bipartite if and only if m is
a multiple of 2t0 , where m is the number of edges in G , and q = 2t0 (2l0 + 1) for some integers t0
and l0.

In [8,9], several classes of hypergraphs were shown to be odd-bipartite. But only in this paper,
some regular s-cycles are shown to be not odd-bipartite. To show that a hypergraph is odd-bipartite,
one only needs to give an adequate odd-partition for the vertex set of that hypergraph. Such an odd-
partition is not unique in general. To show that a hypergraph is not odd-bipartite, one needs to prove
that there is no such an odd-partition for the vertex set of that hypergraph. Hence, in general, it is
not a trivial task to show that a hypergraph is not odd-bipartite.

In Section 5, we identify the largest Laplacian H-eigenvalues of even-uniform s-cycles directly
when 2 � s � k − 1. These include all the even-uniform non-regular s-cycles, and those odd-bipartite
regular s-cycles.

We introduce supervertices for hypergraphs in Section 6, and show there that the components of
an H-eigenvector of an odd-uniform hypergraph are equal if such components correspond vertices in
the same supervertex, and the corresponding Laplacian H-eigenvalue is not equal to the degree of
the supervertex. Using this property, in Section 7, we show that the largest H-eigenvalue of an odd-
uniform generalized loose s-cycle is equal to 2, the maximum degree of that s-cycle.

In Section 8, we show that the largest Laplacian H-eigenvalue of a k-uniform tight s-cycle is at
least k + 1, if the number of vertices is even and k = 4l + 3 for some nonnegative integer l. Note that
in this case � = k. We show that equality holds here if k = 3, s = 2 and n = 4. When k = 3, s = 2, and
n � 5, we show that the largest Laplacian H-eigenvalue is no more than 4.5.

Some final remarks are made in Section 9.

2. Preliminaries

Let R be the field of real numbers, R
n the n-dimensional real space, and R

n+ the nonnegative
orthant of R

n . For integers k � 3 and n � 2, a real tensor T = (ti1...ik ) of order k and dimen-
sion n refers to a multidimensional array (also called hypermatrix) with entries ti1...ik such that
ti1...ik ∈ R for all i j ∈ [n] := {1, . . . ,n} and j ∈ [k]. Tensors are always referred to k-th order real
tensors in this paper, and the dimensions will be clear from the content. Given a vector x ∈ R

n ,
T xk−1 is defined as an n-dimensional vector such that its i-th element is

∑
i2,...,ik∈[n] tii2...ik xi2 · · · xik

for all i ∈ [n]. Let I be the identity tensor of appropriate dimension, e.g., ii1...ik = 1 if and only if
i1 = · · · = ik ∈ [n], and zero otherwise when the dimension is n. The following definition was intro-
duced in [15].

Definition 2.1. Let T be a k-th order n-dimensional real tensor. For some λ ∈R, if polynomial system
(λI −T )xk−1 = 0 has a solution x ∈ R

n \ {0}, then λ is called an H-eigenvalue and x an H-eigenvector.

H-eigenvalues are real numbers, by Definition 2.1. By [15], we have that the number of H-eigen-
values of a real tensor is finite. By [16], we have that all the tensors considered in this paper have at
least one H-eigenvalue. Hence, we can denote by λ(T ) the largest H-eigenvalue of a real tensor T .

For a subset S ⊆ [n], we denoted by |S| its cardinality.
Consider a k-uniform hypergraph G = (V , E) with vertex set V , which is labeled as [n] = {1, . . . ,n},

and edge set E . For a subset S ⊂ [n], we denote by E S the set of edges {e ∈ E | S ∩ e �= ∅}. For a vertex
i ∈ V , we simplify E{i} as Ei . It is the set of edges containing the vertex i, i.e., Ei := {e ∈ E | i ∈ e}.
The cardinality |Ei | of the set Ei is defined as the degree of the vertex i, which is denoted by di . If
two vertices i and j are in the same edge e, then we denote i ∼ j. Two different vertices i and j are
connected to each other (or the pair i and j is connected), if there is a sequence of edges (e1, . . . , em)

such that i ∈ e1, j ∈ em and er ∩ er+1 �= ∅ for all r ∈ [m − 1]. A hypergraph is called connected, if
every pair of vertices of G is connected. A hypergraph is regular if d1 = · · · = dn = d. A hypergraph
G = (V , E) is complete if E consists of all the possible edges. In this case, G is regular of degree
d = (n−1

k−1

)
.
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For the sake of simplicity, we mainly consider connected hypergraphs in the subsequent analysis.
By the techniques in [7,16], the conclusions on connected hypergraphs can be easily generalized to
general hypergraphs.

The following definition for the Laplacian tensor and signless Laplacian tensor was proposed by
Qi [16].

Definition 2.2. Let G = (V , E) be a k-uniform hypergraph. The adjacency tensor of G is defined as the
k-th order n-dimensional tensor A whose (i1 . . . ik)-entry is:

ai1...ik :=
{

1
(k−1)! if {i1, . . . , ik} ∈ E,

0 otherwise.

Let D be a k-th order n-dimensional diagonal tensor with its diagonal element di...i being di , the
degree of vertex i, for all i ∈ [n]. Then L := D − A is the Laplacian tensor of the hypergraph G , and
Q :=D +A is the signless Laplacian tensor of the hypergraph G .

By [16], zero is always the smallest H-eigenvalue of L, and we have λ(L) � λ(Q) � 2�, where
� is the maximum degree of G . For T =L, the polynomial system (λI −T )xk−1 = 0 in Definition 2.1
has the form

λxk−1
i = dix

k−1
i −

∑
{i,i2,...,im}∈E

xi2 · · · xik , for i ∈ [n]. (1)

For T =Q, the polynomial system (λI − T )xk−1 = 0 in Definition 2.1 has the form

λxk−1
i = dix

k−1
i +

∑
{i,i2,...,im}∈E

xi2 · · · xik , for i ∈ [n]. (2)

In the following, we define cored hypergraphs.

Definition 2.3. Let G = (V , E) be a k-uniform hypergraph. If for every edge e ∈ E , there is a vertex
ie ∈ e such that the degree of the vertex ie is 1, then G is called a cored hypergraph. A vertex with
degree 1 is called a core vertex, and a vertex with degree larger than 1 is called an intersection vertex.

The notion of odd-bipartite even-uniform hypergraphs was introduced in [7].

Definition 2.4. Let G = (V , E) be a k-uniform hypergraph. Then G is called odd-bipartite if k is even
and either it is trivial (i.e., E = ∅) or there is a partition of the vertex set V as V = V 1 ∪ V 2 such that
V 1, V 2 �= ∅ and every edge in E intersects V 1 with exactly an odd number of vertices.

In the introduction, we claim that n, the number of vertices in an s-cycle, needs to satisfy the
condition n � 2k − s such that each pair of consecutive edges has exactly s common vertices. We now
discuss this in detail below.

Proposition 2.1. Let G = (V , E) be a k-uniform s-cycle with n vertices and m edges, where n = m(k − s)
and 1 � s � k − 1. Then each pair of consecutive edges of G contains exactly s common vertices if and only if
n � 2k − s.

Proof. By the definition, we may assume that V = [n], and may agree that i = n + i when i and n + i
are both viewed as vertices of G . Also, we have E = {e0, e1, . . . , em−1}, where

e j = {
j(k − s) + 1, . . . , j(k − s) + k

}
( j = 0,1, . . . ,m − 1).
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Necessity. If each pair of consecutive edges of G contains exactly s common vertices, then
|e0 ∩ e1| = s. On the other hand, we have |e0 ∪ e1| + |e0 ∩ e1| = |e0| + |e1|. So we have

n � |e0 ∪ e1| = |e0| + |e1| − |e0 ∩ e1| = 2k − s.

Sufficiency. Now suppose that n � 2k − s. Then it is easy to verify that

e j ∩ e j+1 = {
( j + 1)(k − s) + 1, . . . , ( j + 1)(k − s) + s

}
( j = 0,1, . . . ,m − 2).

Since n � 2k − s implying (m − 1)(k − s)� k, we can also verify that

em−1 ∩ e0 = {1, . . . , s}.
From these relations we obtain

|e j ∩ e j+1| = s ( j = 0,1, . . . ,m − 2) and |em−1 ∩ e0| = s. �
3. Regular uniform hypergraphs and regular s-cycles

We now establish the following theorem for a connected k-uniform hypergraph G .

Theorem 3.1. Suppose that G = (V , E) is a connected k-uniform hypergraph with k � 2 and maximum de-
gree �. Then λ(Q) = 2� if and only if G is regular. Furthermore, λ(L) = 2� if and only if G is regular and
odd-bipartite.

Proof. First, we assume that G is regular. Then, by [16, Theorem 3.4] and [2] (see also [7, Lemmas 2.2
and 2.3]), if we can find a positive H-eigenvector x ∈ R

n of Q corresponding to an H-eigenvalue μ,
then μ = λ(Q). Take xi = 1 for every i. By (2), we have μ = � + � = 2�. Thus, λ(Q) = 2�.

On the other hand, assume that λ(Q) = 2�. Let x ∈ R
n be a positive H-eigenvector of Q corre-

sponding to the H-eigenvalue 2�. Assume that xi = max{x j: j ∈ [n]}. Then by (2), we have

2�xk−1
i = di x

k−1
i +

∑
{i,i2,...,ik}∈E

xi2 · · · xik ,

where di is the degree of vertex i. To make this equality hold, we must have di = � and x j = xi as
long as j ∼ i. Applying the same augment for all such j with j ∼ i, we have d j = � and xl = x j = xi
as long as l ∼ j. As G is connected, we see that d j = � for all j ∈ V . Thus G is regular.

The last conclusion of this theorem follows from the above conclusion and [9, Theorem 5.1]. �
Clearly, an s-path cannot be regular. We now consider regular s-cycles.

Proposition 3.1. Let G = (V , E) be a k-uniform s-cycle, with 1 � s � k − 1, k � 3, V = {i: i ∈ [m(k − s)]},
such that {1 + j(k − s), . . . , s + ( j + 1)(k − s)} is an edge of G for j = 0, . . . ,m − 1, where vertices
m(k − s)+ j ≡ j for any j. Then G is regular if and only if k = q(k − s) for some positive integer q. In this case,
we have d1 = · · · = dn = q, where n = m(k − s) = |V |.

Proof. If k = q(k − s), then we see that d1 = · · · = dn = q. Hence G is regular in this case. On the other
case, suppose k = q(k − s) + r, where 1 � r < k − s. Then we see that d1 = q + 1 and dk−s = q. Thus,
G cannot be regular in this case.

The conclusions of this proposition follow now. �
Since 1 � s � k − 1, we see that 2 � q � k. For a tight cycle, s = k − 1, we see that G is also regular

with q = k in this case. Thus, we have the following corollary.

Corollary 3.1. A tight cycle is regular.
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4. Odd-bipartite s-paths and s-cycles

We assume that k is even in this section, as odd-bipartite hypergraphs are only for even k.

4.1. Odd-bipartite s-paths

Our first proposition in this section shows that when k is even, all the s-paths are odd-bipartite.

Proposition 4.1. Assume that k � 4 is even. Let G = (V , E) be a k-uniform s-path, where 1 � s � k − 1.
Then G is odd-bipartite.

Proof. According to the discussion at the beginning of this paper, we may assume that V = {i: i ∈
[s + m(k − s)]} such that {1 + j(k − s), . . . , s + ( j + 1)(k − s)} is an edge of G for j = 0, . . . ,m − 1. Let
V 1 = {k,2k, . . .} and V 2 = V \ V 1. Then we see that G is odd-bipartite as each edge has exactly one
vertex in V 1. �
4.2. Odd-bipartite non-regular s-cycles

Our second proposition in this section shows that when k is even, all the non-regular s-cycles are
odd-bipartite.

Proposition 4.2. Assume that k � 4 is even. Let G = (V , E) be a k-uniform non-regular s-cycle, where 1 �
s � k − 1. Then G is odd-bipartite.

Proof. When s = 1, G is a loose cycle, thus a power hypergraph [8]. When 1 < s < k
2 , G has at least

one core vertex, thus is a cored hypergraph [8]. In both cases, G is odd-bipartite as long as k is even,
as observed in [8].

Now, by Proposition 3.1, the remaining case, after excluding regular s-cycles, is that k
2 < s < k − 2,

k = q(k − s) + r, where 1 � r � k − s − 1. We may assume that V = {i: i ∈ [m(k − s)]}, and note that
vertices j + m(k − s) ≡ j for all j. If q is odd, let V 1 = {i(k − s): i ∈ [m]} and V 2 = V \ V 1. Then each
edge has exactly q vertices in V 1. If q is even, let V 1 = {1 + (i − 1)(k − s): i ∈ [m]} and V 2 = V \ V 1.
Then each edge has exactly q + 1 vertices in V 1. In both cases, each edge has odd number of vertices
in V 1. Thus, G is odd-bipartite as long as k is even. �
4.3. Odd-bipartite regular s-cycles

We now give a sufficient and necessary condition for a regular s-cycle to be odd-bipartite.

Theorem 4.1. Let G = (V , E) be a k-uniform s-cycle with n vertices and m edges, where n = m(k− s), k is even
and 1 � s � k−1. Assume that there is an integer q such that k = q(k−s) (thus G is regular by Proposition 3.1).
Write q = 2t0 (2l0 + 1) for some nonnegative integers t0 and l0 . Then G is odd-bipartite if and only if m is
a multiple of 2t0 .

Proof. We assume that V = Zn (the set of integers modulo n). Namely, we agree that i = n+ i, when i
and n + i are both viewed as vertices of G .

Also, the edges e0, e1, . . . , em−1 of G are as follows:

e j = {
j(k − s) + 1, . . . , j(k − s) + k

}
( j = 0,1, . . . ,m − 1), (3)

where each edge consists of k cyclicly consecutive vertices of G .
Sufficiency. Suppose that m = 2t0 p0. Let q0 = 2t0 (k − s). Then we have n = m(k − s) = p0q0. Let

V 1 = {q0,2q0, . . . , p0q0}
be the set of all the multiples of q0 in the set Zn .
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Since k = q0(2l0 + 1) and n = p0q0 are both multiples of q0, we see that each set of k cyclicly
consecutive elements in Zn contains exactly k

q0
= 2l0 + 1 elements which are multiples of q0. Thus

each edge of G contains exactly 2l0 + 1 vertices in V 1. Hence G is odd-bipartite.
Necessity. We write a ∼ b if the two integers a and b have the same parity. Let

X j = {
j(k − s) + 1, . . . , ( j + 1)(k − s)

}
( j = 0,1, . . . ,m − 1). (4)

Then we have |X j | = k − s and V = Zn = ⋃m−1
j=0 X j . Also we agree that Xm+ j = X j (as subsets of Zn).

By comparing (3) and (4) we have

ei =
q−1+i⋃

j=i

X j (i = 0,1, . . . ,m − 1). (5)

Now suppose that G is odd-bipartite with the bipartition (V 1, V 2). Let

a j = |X j ∩ V 1| and b j = |e j ∩ V 1| ( j ≡ 0,1, . . . ,m − 1 mod m).

Then by the definition of odd-bipartition, all b0,b1, . . . ,bm−1 are odd.
By (5) we also have

ei ∩ V 1 =
( q−1+i⋃

j=i

X j

)
∩ V 1 =

q−1+i⋃
j=i

(X j ∩ V 1)

which implies that

bi =
q−1+i∑

j=i

a j (i ≡ 0,1, . . . ,m − 1 mod m).

From this we have

aq+i − ai =
q+i∑

j=i+1

a j −
q−1+i∑

j=i

a j = bi+1 − bi ∼ 0 (i ≡ 0,1, . . . ,m − 1 mod m). (6)

On the other hand, since Xm+i = Xi we also have

am+i = ai (i ≡ 0,1, . . . ,m − 1 mod m). (7)

Let g = gcd(m,q) be the greatest common divisor of m and q. Then g = cm+dq for some integers c
and d. So by (6) and (7) we have

ag+i ∼ ai (i ≡ 0,1, . . . ,m − 1 mod m). (8)

Now let q′ = q/g . Then q = gq′ , so by (8) we have

b0 =
q−1∑
j=0

a j =
q′−1∑
t=0

g−1∑
j=0

atg+ j ∼
q′−1∑
t=0

g−1∑
j=0

a j = q′
g−1∑
j=0

a j .

Since b0 is odd, q′ is also odd, which implies that g is a multiple of 2t0 . Thus m is also a multiple
of 2t0 . �

Fig. 1 indicates an odd-bipartite regular 3-cycle with k = 2(k − s) = 6 and m = 4. We see that G is
odd-bipartite with V 1 = {6,12} and V 2 = V \ V 1.

The smallest non-odd-bipartite even-uniform regular s-cycle may be as follows: k = 4, s = 2 and
m = 3 (thus n = 6). Using Matlab, we find that the Laplacian H-eigenvalues of this 2-cycle are 0, 1, 2
and 3 only. Thus, λ(L) = 3 < 2� = 4 in this example. This confirms Theorem 4.1.
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Fig. 1. An odd-bipartite regular 3-cycle with k = 2(k − s) = 6 and m = 4.

Corollary 4.1. In Theorem 4.1, if k is even and q is odd, then G is odd-bipartite.

If s = k − 1, then G is a tight cycle. We have the following corollary.

Corollary 4.2. Let G = (V , E) be a k-uniform tight cycle, i.e., s = k − 1. Then G is regular. Assume that k is
even. We may write k = 2t0 (2l0 + 1) for two nonnegative integers t0 and l0 . Then G is odd-bipartite if and only
if m = n is a multiple of 2t0 .

5. The largest Laplacian H-eigenvalue of odd-bipartite s-cycles

In this section, we identify the largest signless Laplacian H-eigenvalues of s-cycles in all possible
cases. When these s-cycles are odd-bipartite, these values are also their largest Laplacian H-eigen-
values.

5.1. s-cycles with core vertices

This is the case that 1 � s < k
2 . Suppose G = (V , E) is such an s-cycle. Then for each edge, there

are k − 2s core vertices, and 2s intersection vertices.
By [16, Theorem 3.4] and [2] (see also [7, Lemmas 2.2 and 2.3]), if we can find a positive

H-eigenvector x ∈ R
n of Q corresponding to an H-eigenvalue μ, then μ = λ(Q).

Now we take x ∈ R
n be a positive vector with xi = α > 0 if i is a core vertex, and x j = 1 if j is

an intersection vertex. Suppose that x is an H-eigenvector of Q corresponding to the H-eigenvalue
μ = λ(Q). Note that the degree of a core vertex is 1 and the degree of an intersection vertex is 2.
By (2), we would have

μ = 2 + 2αk−2s and μαk−1 = αk−1 + αk−2s−1,

i.e.,

μ = 2 + 2αk−2s and (μ − 1)α2s = 1.

Eliminating μ, we have

f (α) ≡ 2αk + α2s − 1 = 0. (9)

Since f (0) = −1 < 0 and f (1) = 2 > 0, (9) has a root α∗ ∈ (0,1). Let μ∗ = 2 + 2αk−2s∗ . Then
λ(Q) = μ∗ . By [8], since G is a cored hypergraph, we have λ(L) = μ∗ if k is even.

We conclude this discussion as the following theorem.

Theorem 5.1. Suppose that G = (V , E) is an s-cycle with k � 3 and 1 � s < k
2 . Then λ(Q) = 2 + 2αk−2s∗ ,

where α∗ is the unique root of (9) in (0,1). When k is even, we have λ(L) = 2 + 2αk−2s∗ too.
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Note that in this case � = 2 and we have � = 2 < λ(Q) < 2� = 4. This confirms Theorem 3.1 and
[16, Corollary 6.2].

5.2. Regular s-cycles

By Proposition 3.1 and Theorem 4.1, we have the following proposition.

Proposition 5.1. Suppose that G = (V , E) is an s-cycle with k = q(k − s)� 3. Then G is a regular hypergraph
and λ(Q) = 2q. Assume further that k is even. If either q is odd or q = 2t0 (2l0 + 1) for a positive integer t0 and
a nonnegative integer l0 , and m is a multiple of 2t0 , then we have λ(L) = 2q too.

It will be a further research topic to find the value of λ(L) for a non-odd-bipartite regular s-cycle.

5.3. Non-regular generalized tight s-cycles

In this subsection, we consider a generalized tight s-cycle G = (V , E), which is not a regular
s-cycle. We may assume that k

2 < s < k − 1 and k = q(k − s) + r, where 1 � r < k − s. Then for each
edge, there are (q + 1)r vertices with degree q + 1, and k − (q + 1)r vertices with degree q.

Again, if we can find a positive H-eigenvector x ∈ R
n of Q corresponding to an H-eigenvalue μ,

then μ = λ(Q).
Now we take x ∈ R

n be a positive vector with xi = α > 0 if i is a vertex with degree q, and x j = 1
if j is a vertex with degree q + 1. Suppose that x is an H-eigenvector of Q corresponding to the
H-eigenvalue μ = λ(Q). By (2), we should have

μ = q + 1 + (q + 1)αk−(q+1)r and μαk−1 = qαk−1 + qαk−(q+1)r−1,

i.e.,

μ = q + 1 + (q + 1)αk−(q+1)r and μ = q + qα−(q+1)r .

Eliminating μ, we have

f (α) ≡ (q + 1)αk + α(q+1)r − q = 0. (10)

Since f (0) = −q < 0 and f (1) = 2 > 0, (10) has a root α∗ ∈ (0,1). Let μ∗ = q + 1 + (q + 1)α
k−(q+1)r∗ .

Then λ(Q) = μ∗ . If k is even, then G is odd-bipartite. By [9], we have λ(L) = μ∗ in this case.
We conclude this discussion as the following theorem.

Theorem 5.2. Suppose that G = (V , E) is an s-cycle with k � 3 and k
2 < s < k − 1, k = q(k − s) + r, with

1 � r < k − s. Then λ(Q) = q + 1 + (q + 1)α
k−(q+1)r∗ , where α∗ is the unique root of (10) in (0,1). When k

is even, we have λ(L) = q + 1 + (q + 1)α
k−(q+1)r∗ too.

In this case � = q + 1 and we have � = q + 1 < λ(Q) < 2� = 2(q + 1). This also confirms Theo-
rem 3.1 and [16, Corollary 6.2].

Note that all s-cycles are covered by the discussion in these three subsections.

6. Supervertices

We now define supervertices for a k-uniform hypergraph.

Definition 6.1. Let G = (V , E) be a k-uniform hypergraph. Let i ∈ V . The vertex set

U = { j ∈ V : E j = Ei}
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is called a supervertex of G . Clearly, any vertex in the same supervertex has the same degree. We
call this degree the degree of that supervertex. In particular, if a supervertex contains a core vertex,
then all vertices in that supervertex are core vertices. We call such a supervertex a core supervertex.
Otherwise, we call it an intersection supervertex.

For example, in Fig. 1, there are four intersection supervertices {1,2,3}, {4,5,6}, {7,8,9},
{10,11,12}. For a loose cycle or a generalized loose s-cycle with 1 � s < k

2 , there are m core su-
pervertices and m intersection supervertices, where m is the number of edges in that s-cycle. Each
core supervertex has cardinality k − 2s. Each intersection supervertex has degree 2 and cardinality s.

We now have the following theorem.

Theorem 6.1. Suppose that G = (V , E) is a k-uniform hypergraph with k � 3. Let U be a supervertex of G, with
degree d and cardinality |U | � 2. Suppose that λ is a Laplacian H-eigenvalue of G, λ �= d. Let x be a Laplacian
H-eigenvector of G, corresponding to λ. Suppose i, j ∈ U . Then |xi | = |x j |. If k is odd, then xi = x j .

Proof. By (1), we have

λxk−1
i = dxk−1

i − x j

∑
e∈U

Πs∈e\{i, j}xs,

and

λxk−1
j = dxk−1

j − xi

∑
e∈U

Πs∈e\{i, j}xs.

Thus,

(λ − d)xk
i = (λ − d)xk

j .

As λ �= d, we have xk
i = xk

j . The conclusions follow from this equality. �
Note that Lemma 3.1 of [8] is a special case of this theorem.

7. Odd-uniform generalized loose s-cycles

In this section, assuming that k is odd, using Theorem 6.1, we show that the largest Laplacian
H-eigenvalue of an odd-uniform generalized loose s-cycle is equal to 2, the maximum degree of that
s-cycle. This result extends the result on odd-uniform loose cycles in Subsection 4.1 of [8]. Since k
is odd, the case that k = 2s is not included. Thus, we have 1 � s < k

2 . The s-cycle has always core
vertices.

Proposition 7.1. Suppose that G = (V , E) is an s-cycle with 1 � s < k
2 and k is odd. Then λ(L) = � = 2. If s

is even, then the only Laplacian H-eigenvalue λ of G, satisfying λ > 1, is 2.

Proof. Suppose that G has m edges. Then G has m core supervertices V i , i ∈ [m] and m intersection
supervertices Ui , i ∈ [m], displayed as U1, V 1, U2, V 2, . . . , Um, Vm, Um+1 ≡ U1, such that the edges
of G are ei = Ui ∪ V i ∪ Ui+1, i ∈ [m]. For i ∈ [m], |Ui | = s, |V i| = k − 2s. Furthermore, assume that the
vertices of G are j ∈ [n], where n = m(k− s). Then Ui = {(i −1)(k− s)+ j: j ∈ [s]}, V i = {(i −1)(k− s)+
s + j: j ∈ [k − 2s]}, for i ∈ [m].

Suppose that λ > 1, λ �= 2 is a Laplacian H-eigenvalue of G . Let z be a Laplacian H-eigenvector
corresponding to λ. By Theorem 6.1, we may assume that for i ∈ m, yi = z j for j ∈ Ui , xi = z j for
j ∈ V i . Let ym+1 ≡ y1, x0 ≡ xm , y0 ≡ ym .

By (1), for i ∈ [m], we have

λxk−1
i = xk−1

i − xk−2s−1
i ys

i ys
i+1 (11)
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and

λyk−1
i = 2yk−1

i − xk−2s
i ys−1

i ys
i+1 − xk−2s

i−1 ys−1
i ys

i−1. (12)

If s is even, by (11), we must have xi = 0 for all i ∈ [m], otherwise we would have λxk−1
i > xk−1

i >

xk−1
i − xk−2s−1

i ys
i ys

i+1 for some i, contradicting (11). This implies that yi �= 0 for at least one i. By (12),
this implies that λ = 2, a contradiction. This proves that when s is even, λ > 1 implies λ = 2. The
conclusion for the case that s is even is proved.

From now we assume that s is odd and λ > 2. Then by (11), we see that xi �= 0 implies that
yi yi+1 < 0.

(i) First assume that xi �= 0 for all i ∈ [m]. By (11), we have yi yi+1 < 0 for i ∈ [m]. Thus, m must be
even, otherwise we get a contradiction by the rule of alternating signs of y1, . . . , ym . Assume that m
is even. By (12), we have

(λ − 2)yk
i = −xk−2s

i ys
i ys

i+1 − xk−2s
i−1 ys

i−1 ys
i . (13)

Then we have

yk
1 − yk

2 + yk
3 − · · · + yk

m−1 − yk
m = 0.

Since yi yi+1 < 0 for i ∈ [m], we get a contradiction, as yk
1 − yk

2 + yk
3 − · · · + yk

m−1 − yk
m should have

the same sign as y1, which is nonzero. The conclusion follows now.
(ii) We now assume xi = 0 for all i ∈ [m]. This implies that yi �= 0 for at least one i. By (12), this

implies that λ = 2, a contradiction.
(iii) Finally, we assume that xi = 0 for some i ∈ [m] and xi �= 0 for other i ∈ [m]. Without loss of

generality, we may assume that x1 > 0 and xm = 0. By (11), we have y1 y2 < 0. By taking i = 1 in (13),
we have

(λ − 2)yk
1 = −xk−2s

1 ys
1 ys

2.

This implies that y1 > 0.
Now we use induction to show that xi yi > 0 for i = 1, . . . ,m. The case i = 1 follows from x1 > 0

and y1 > 0. We assume i � 2 and xi−1 yi−1 > 0. Then yi �= 0 since xi−1 �= 0 implying yi−1 yi < 0.
From (13) we have (since k and s are both odd):

0 < (λ − 2)yk−s
i + xk−2s

i−1 ys
i−1 = −xk−2s

i ys
i+1, (14)

which implies xi �= 0 and xi yi+1 < 0. But xi �= 0 also implies yi yi+1 < 0, so we obtain xi yi > 0 and
thus complete the inductive proof. Taking i = m in xi yi > 0, we obtain xm �= 0, a contradiction.

Thus, when s is odd, we cannot have λ > 2. This implies that λ(L) = � = 2. �
8. Odd-uniform tight s-cycles

In this section, we assume that k is odd and s = k − 1. Then we have tight s-cycles. We will see
that the results on the largest Laplacian H-eigenvalues here are very different from those in the last
section.

Proposition 8.1. Suppose that G = (V , E) is a tight s-cycle with s = k − 1 and k = 4l + 3 for a nonnegative
integer l. Then � = k. When n, the number of vertices, is even, we have λ(L) �� + 1 = k + 1.

Proof. Let x ∈ R
n be defined by x2i−1 = 1 and x2i = −1 for i ∈ [ n

2 ]. Also, we assume that xn+i ≡ xi
for any i. From this we see that the sum of any k − 1 consecutive components of x is zero, and the
product of any k − 1 = 4l + 2 consecutive components of x is (−1)2l+1 = −1. Thus we have

j+k−1∏
t= j

xt = x j

j+k−1∏
t= j+1

xt = −x j, and
i∑

j=i−k+1

x j =
i−1∑

j=i−k+1

x j + xi = xi = xk
i .
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Now multiplying the both sides of (1) by xi , we obtain

λxk
i = kxk

i −
i∑

j=i−k+1

j+k−1∏
t= j

xt = kxk
i +

i∑
j=i−k+1

x j = kxk
i + xk

i .

This shows that λ = k + 1 and x satisfy this system, i.e., λ = k + 1 is an H-eigenvalue of L. As
� = k, the conclusion follows. �

This is the second example that λ(L) > � when k is odd. The first example for this is the
3-uniform complete hypergraph, given in [9]. By using supervertices, we may generalize this result
to k-uniform regular s-cycles, with k = q(k − s), q = 4l + 3 for some l, where k − s and m are even.

We do not know what kind of result can be established for k = 4l + 1. But for k = 3, we can get
the exact value of λ(L) when n = 4, and an upper bound of λ(L) for all n.

Proposition 8.2. Suppose that G = (V , E) is a tight s-cycle with s = 2 and k = 3. Then � = 3. When n = 4,
we have λ(L) = 4. When n � 5, we have λ(L) � � + 1.5 = 4.5.

Proof. When k = 3, s = 2 and n = 4, (1) has the form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ − 3)x2
1 = −x2x3 − x2x4 − x3x4,

(λ − 3)x2
2 = −x1x3 − x1x4 − x3x4,

(λ − 3)x2
3 = −x1x2 − x1x4 − x2x4,

(λ − 3)x2
4 = −x1x2 − x1x3 − x2x3.

(15)

Summing up these four equations, we have

(λ − 3)

4∑
i=1

x2
i = −2

∑
1�i< j�4

xi x j =
4∑

i=1

x2
i − (x1 + x2 + x3 + x4)

2 �
4∑

i=1

x2
i .

Since
∑4

i=1 x2
i > 0, we have λ � 4. Combining with the conclusion of Proposition 8.1, we see that

λ(L) = 4 = � + 1.
When k = 3, s = 2, and n � 5, (1) has the form:

(λ − 3)x2
i = −xi−2xi−1 − xi−1xi+1 − xi+1xi+2,

for i ∈ [n]. Summing up it for i from 1 to n, we have

(λ − 3)

n∑
i=1

x2
i = −

n∑
i=1

(xi−1xi + xi−1xi+1 + xi xi+1)�
1

2

n∑
i=1

(
x2

i−1 + x2
i + x2

i+1

) = 3

2

n∑
i=1

x2
i .

Since
∑n

i=1 x2
i > 0, we have λ� 4.5. Thus, λ(L) � 4.5 in this case. �

Using Matlab to solve (15), we find that when k = 3, s = 2 and n = 4, the 2-cycle has only three
distinct H-eigenvalues: 4, 3 and 0.

The second conclusion of Proposition 8.2 is not sharp in the proof. Actually, our Matlab compu-
tation shows that when k = 3, s = 2 and n = 5, the 2-cycle has only three distinct H-eigenvalues: 3,
2.3966 and 0; when k = 3, s = 2 and n = 6, the 2-cycle has only four distinct H-eigenvalues: 4, 3,
1.7401 and 0. Thus, we have the following conjecture.

Conjecture 8.1. Suppose that k = 3 and s = 2. Then � = 3. When n is even, we have λ(L) = 4. When n is odd,
we have λ(L) = 3.
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9. Final remarks

In this paper, we showed that the largest signless Laplacian H-eigenvalue of a connected k-uniform
hypergraph G , where k � 3, reaches its upper bound 2�, where � is the largest degree of G , if and
only if G is regular, and that the largest Laplacian H-eigenvalue of G , reaches the same upper bound,
if and only if G is regular and odd-bipartite. We proved that an even-uniform s-path and an even-
uniform non-regular s-cycle are always odd-bipartite. Theorem 4.1 characterized odd-bipartite regular
s-cycles. We identified the largest signless Laplacian H-eigenvalue of an s-cycle. When the s-cycle
is odd-bipartite, this gives the largest Laplacian H-eigenvalue of that s-cycle. We then introduced
supervertices and showed that the largest Laplacian H-eigenvalue of an odd-uniform generalized
loose s-cycle is 2, the maximum degree of that s-cycle. We also showed that the largest Laplacian
H-eigenvalue of a k-uniform tight s-cycle is not less than the maximum degree of that s-cycle, plus
one, if the number of vertices is even and k = 4l + 3. It will be a further research topic to prove or to
disprove Conjecture 8.1, and to identify the largest Laplacian H-eigenvalue of an s-path or a general
non-odd-bipartite s-cycle, for s � 2. It will be interesting to see if one may use the tensor eigenvalue
theory to study other research topics related with s-paths and s-cycles.
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