
Linear Algebra and its Applications 457 (2014) 303–312
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

An even order symmetric B tensor is positive 

definite

Liqun Qi a,∗,1, Yisheng Song b,2

a Department of Applied Mathematics, The Hong Kong Polytechnic University, 
Hung Hom, Kowloon, Hong Kong
b School of Mathematics and Information Science, Henan Normal University, 
XinXiang, HeNan, 453007, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 April 2014
Accepted 14 May 2014
Available online xxxx
Submitted by R. Brualdi

MSC:
47H15
47H12
34B10
47A52
47J10
47H09
15A48
47H07

Keywords:
Positive definiteness
B tensor
B0 tensor

It is easily checkable if a given tensor is a B tensor, 
or a B0 tensor or not. In this paper, we show that a 
symmetric B tensor can always be decomposed to the sum 
of a strictly diagonally dominated symmetric M tensor and 
several positive multiples of partially all one tensors, and a 
symmetric B0 tensor can always be decomposed to the sum 
of a diagonally dominated symmetric M tensor and several 
positive multiples of partially all one tensors. When the order 
is even, this implies that the corresponding B tensor is positive 
definite, and the corresponding B0 tensor is positive semi-
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from the approach in the literature for proving a symmetric 
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be extended to the tensor case.
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M tensor
Partially all one tensor

1. Introduction

Denote [n] := {1, · · · , n}. A real mth order n-dimensional tensor A = (ai1···im) is a 
multi-array of real entries ai1···im , where ij ∈ [n] for j ∈ [m]. All the real mth order 
n-dimensional tensors form a linear space of dimension nm. Denote this linear space by 
Tm,n. For i ∈ [n], we call aii2···im for ij ∈ [n], j = 2, · · · , m, the entries of A in the ith 
row, where ai···i is the ith diagonal entry of A, while the other entries are the off-diagonal 
entries of A in the ith row.

Let A = (ai1···im) ∈ Tm,n. If the entries ai1···im are invariant under any permutation of 
their indices, then A is called a symmetric tensor. All the real mth order n-dimensional 
symmetric tensors form a linear subspace of Tm,n. Denote this linear subspace by Sm,n. 
Let A = (ai1···im) ∈ Tm,n and x ∈ �n. Then Axm is a homogeneous polynomial of degree 
m, defined by

Axm =
n∑

i1,···,im=1
ai1···imxi1 · · ·xim .

A tensor A ∈ Tm,n is called positive semi-definite if for any vector x ∈ �n, Axm ≥ 0, 
and is called positive definite if for any non-zero vector x ∈ �n, Axm > 0. Clearly, if 
m is odd, there is no non-zero positive semi-definite tensors. Positive definiteness and 
semi-definiteness of real symmetric tensors and their corresponding homogeneous poly-
nomials have applications in automatical control [1,5,12,27], polynomial problems [16,
24], magnetic resonance imaging [2,7,22,23] and spectral hypergraph theory [8–11,13,18,
20]. In [17], Qi introduced H-eigenvalues and Z-eigenvalues for real symmetric tensors, 
and showed that an even order real symmetric tensor is positive (semi-)definite if and 
only if all of its H-eigenvalues, or all of its Z-eigenvalues, are positive (non-negative). In 
matrix theory, it is well-known that a strictly diagonally dominated symmetric matrix is 
positive definite and a diagonally dominated symmetric matrix is positive semi-definite. 
Here, we may also easily show that an even order strictly diagonally dominated symmet-
ric tensor is positive definite and an even order diagonally dominated symmetric tensor 
is positive semi-definite. We will show this in Section 2. Based upon this, we know that 
the Laplacian tensor in spectral hypergraph theory is positive semi-definite [9–11,18,23]. 
Song and Qi [25] showed that an even order Hilbert tensor is positive definite. This also 
extends the matrix result that a Hilbert matrix is positive definite. In matrix theory, 
a completely positive tensor is positive semi-definite, and a diagonally dominated sym-
metric non-negative tensor is completely positive. In [21], completely positive tensors 
were introduced. An even order completely positive tensor is also positive semi-definite. 
Then, it was shown in [21] that a strongly symmetric, hierarchically dominated non-
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negative tensor is completely positive. These are some checkable sufficient conditions for 
positive definite or semi-definite tensors in the literature.

In the matrix literature, there is another easily checkable sufficient condition for pos-
itive definite matrices. It is easy to check a given matrix is a B matrix or not [14,15]. 
A B matrix is a P matrix [14]. It is well-known that a symmetric matrix is a P matrix if 
and only it is positive definite [3, pp. 147, 153]. Thus, a symmetric B matrix is positive 
definite.

P matrices and B matrices were extended to P tensors and B tensors in [26]. It is easy 
to check a given tensor is a B tensor or not, while it is not easy to check a given tensor 
is a P tensor or not. It was proved there that a symmetric tensor is a P tensor if and 
only it is positive definite. However, it was not proved in [26] if an even order B tensor 
is a P tensor or not, or if an even order symmetric B tensor is positive definite or not. 
As pointed out in [26], an odd order identity tensor is a B tensor, but not a P tensor. 
Thus we know that an odd order B tensor may not be a P tensor.

The B tensor condition is not so strict compare with the strongly diagonal dominated 
tensor condition if the tensor is not sparse. A tensor in Tm,n is strictly diagonally domi-
nated tensor if every diagonal entry of that tensor is greater than the sum of the absolute 
values of all the off-diagonal entries in the same row. For each row, there are nm−1 − 1
such off-diagonal entries. Thus, this condition is quite strict when n and m are big and 
the tensor is not sparse. A tensor in Tm,n is a B tensor if for every row of the tensor, the 
sum of all the entries in that row is positive, and each off-diagonal entry is less than the 
average value of the entries in the same row. An initial numerical experiment indicated 
that for m = 4 and n = 2, a symmetric B tensor is positive definite. Thus, it is possible 
that an even order symmetric B tensor is positive definite. If this is true, we will have 
an easily checkable, not very strict, sufficient condition for positive definite tensors.

However, the technique in [14] cannot be extended to the tensor case. It was proved in 
[14] that the determinant of every principal submatrix of a B matrix is positive. Thus, a 
B matrix is a P matrix. It was pointed out in [17] that the determinant of every principal 
sub-tensor of a symmetric positive definite tensor is positive, but this is only a necessary, 
not a sufficient condition for symmetric positive definite tensors. Hence, the technique 
in [14] cannot be extended to the tensor case.

In [26], P tensors were defined by extending an alternative definition for P matrices. 
But it is still unknown if an even order B tensor is a P tensor or not.

In this paper, we use a new technique to prove that an even order symmetric B ten-
sor is positive definite. We show that a symmetric B tensor can always be decomposed 
to the sum of a strictly diagonally dominated symmetric M tensor and several positive 
multiples of partially all one tensors, and a symmetric B0 tensor can always be decom-
posed to the sum of a diagonally dominated symmetric M tensor and several positive 
multiples of partially all one tensors. Even order partially all one tensors are positive 
semi-definite. As stated before, an even order diagonally dominated symmetric tensor is 
positive semi-definite, and an even order strictly diagonally dominated symmetric tensor 
is positive definite. Therefore, when the order is even, these imply that the correspond-
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ing symmetric B tensor is positive definite, and the corresponding symmetric B0 tensor 
is positive semi-definite. Hence, this gives an easily checkable, not very strict, sufficient 
condition for positive definite and semi-definite tensors.

In the next section, we study diagonally dominated symmetric tensors. In Section 3, 
we define B, B0 and partially all one tensors, and discuss their general properties. The 
main result is given in Section 4. We make some final remarks and raise some further 
questions in Section 5.

Throughout this paper, we assume that m ≥ 2 and n ≥ 1. We use small let-
ters x, u, v, α, · · · , for scalers, small bold letters x, y, u, · · · , for vectors, capital letters 
A, B, · · · , for matrices, calligraphic letters A, B, · · · , for tensors. All the tensors discussed 
in this paper are real.

2. Diagonally dominated symmetric tensors

We define the generalized Kronecker symbol as

δi1···ßm
=

{
1, if i1 = · · · = im,

0, otherwise.

The tensor I = (δi1···ßm
) is called the identity tensor of Tm,n.

Let A = (ai1···im) ∈ Tm,n. If for i ∈ [n],

ai···i ≥
∑{

|aii2···im | : ij ∈ [n], j = 2, · · · ,m, δii2···im = 0
}
,

then A is called a diagonally dominated tensor. If for i ∈ [n],

ai···i >
∑{

|aii2···im | : ij ∈ [n], j = 2, · · · ,m, δii2···im = 0
}
,

then A is called a strictly diagonally dominated tensor.
Let A = (ai1···im) ∈ Tm,n and x ∈ Cn. Define Axm−1 as a vector in Cn with its ith 

component as

(
Axm−1)

i
=

n∑
i2,···,im=1

aii2···imxi2 · · ·xim

for i ∈ [n]. For any vector x ∈ Cn, define x[m−1] as a vector in Cn with its ith component 
defined as xm−1

i for i ∈ [n]. Let A ∈ Tm,n. If there is a non-zero vector x ∈ Cn and a 
number λ ∈ C such that

Axm−1 = λx[m−1], (1)

then λ is called an eigenvalue of A and x is called an eigenvector of A, associated 
with λ. If the eigenvector x is real, then the eigenvector λ is also real. In this case, λ and 
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x are called an H-eigenvalue and an H-eigenvector of A, respectively. The maximum 
modulus of the eigenvalues of A is called the spectral radius of A, and denoted as ρ(A). 
Eigenvalues and H-eigenvalues were first introduced in [17] for symmetric tensors. The 
following theorem is from [17, Theorem 5].

Theorem 1. Suppose that A ∈ Sm,n and m is even. Then A always has H-eigenvalues. 
A is positive semi-definite if and only if all of its H-eigenvalues are non-negative. A is 
positive definite if and only if all of its H-eigenvalues are positive.

The following theorem is from [17, Theorem 6]. Theorem 6 of [17] is restricted to 
symmetric tensors. But it is true for non-symmetric tensors, and the proof is the same.

Theorem 2. Suppose that A ∈ Tm,n. Then the eigenvalues λ of A satisfy the following 
constraints: for i ∈ [n],

|λ− ai···i| ≤
∑{

|aii2···im | : ij ∈ [n], j = 2, · · · ,m, δii2···im = 0
}
.

We now have the following theorem.

Theorem 3. Let A ∈ Sm,n and m be even. If A is diagonally dominated, then A is positive 
semi-definite. If A is strictly diagonally dominated, then A is positive definite.

Proof. By Theorem 2 and the definition of diagonally dominated and strictly diagonally 
dominated tensors, all the H-eigenvalues of a diagonally dominated tensor, if exist, are 
non-negative, and all the H-eigenvalues of a strictly diagonally dominated tensor, if exist, 
are positive. The conclusions follow from Theorem 1 now. �

Let A ∈ Tm,n. If all of the off-diagonal entries of A are non-positive, then A is called 
a Z tensor. If a Z tensor A can be written as A = cI −B, such that B is a non-negative
tensor and c ≥ ρ(B), then A is called an M tensor [29]. If c > ρ(B), then A is called 
a strong M tensor [29]. It was proved in [29] that a diagonally dominated Z tensor is 
an M tensor, and a strictly diagonally dominated Z tensor is a strong M tensor. The 
properties of M and strong M tensors may be found in [4,6,29].

3. B, B0 and partially all one tensors

Let B = (bi1···im) ∈ Tm,n. We say that B is a B tensor if for all i ∈ [n]

n∑
i2,···,im=1

bii2i3···im > 0
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and

1
nm−1

(
n∑

i2,···,im=1
bii2i3···im

)
> bij2j3···jm for all (j2, j3, · · · , jm) �= (i, i, · · · , i).

We say that B is a B0 tensor if for all i ∈ [n]

n∑
i2,···,im=1

bii2i3···im ≥ 0

and

1
nm−1

(
n∑

i2,···,im=1
bii2i3···im

)
≥ bij2j3···jm for all (j2, j3, · · · , jm) �= (i, i, · · · , i).

This definition is a natural extension of the definition of B matrices [14,15,26]. It is 
easily checkable if a given tensor in Tm,n is a B tensor, or a B0 tensor or not. As discussed 
in the introduction, the definitions of B and B0 tensors are not so strict, compared with 
the definitions of diagonally dominated and strictly diagonally dominated tensors, if the 
tensor is not sparse. We also can see that a Z tensor is diagonally dominated if and only 
if it is a B0 tensor, and a Z tensor is strictly diagonally dominated if and only if it is a 
B tensor [26].

A tensor C ∈ Tm,r is called a principal sub-tensor of a tensor A = (ai1···im) ∈ Tm,n

(1 ≤ r ≤ n) if there is a set J that composed of r elements in [n] such that

C = (ai1···im), for all i1, i2, · · · , im ∈ J.

This concept was first introduced and used in [17] for symmetric tensor. We denote by 
AJ

r the principal sub-tensor of a tensor A ∈ Tm,n such that the entries of AJ
r are indexed 

by J ⊂ [n] with |J | = r (1 ≤ r ≤ n).
It was proved in [26] that all the principal sub-tensors of a B0 tensor are B0 tensors, 

and all the principal sub-tensors of a B tensor are B tensors.
Suppose that A ∈ Sm,n has a principal sub-tensor AJ

r with J ⊂ [n] with |J | = r

(1 ≤ r ≤ n) such that all the entries of AJ
r are one, and all the other entries of A are 

zero. Then A is called a partially all one tensor, and denoted by EJ . If J = [n], then we 
denote EJ simply by E and call it an all one tensor. An even order partially all one tensor 
is positive semi-definite. In fact, when m is even, if we denote by xJ the r-dimensional 
sub-vector of a vector x ∈ �n, with the components of xJ indexed by J , then for any 
x ∈ �n, we have

EJxm =
(∑

{xj : j ∈ J}
)m

≥ 0.
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4. Decomposition of B tensors

We now prove the main result of this paper.

Theorem 4. Suppose that B = (bi1···im) ∈ Sm,n is a symmetric B0 tensor. Then either B
is a diagonally dominated symmetric M tensor itself, or we have

B = M +
s∑

k=1

hkEJk , (2)

where M is a diagonally dominated symmetric M tensor, s is a positive integer, hk > 0
and Jk ⊂ [n], for k = 1, · · · , s, and Jk ∩ Jl = ∅, for k �= l, k and l = 1, · · · , s when 
s > 1. If furthermore B is a B tensor, then either B is a strictly diagonally dominated 
symmetric M tensor itself, or we have (2) with M as a strictly diagonally dominated 
symmetric M tensor. An even order symmetric B0 tensor is positive semi-definite. An 
even order symmetric B tensor is positive definite.

Proof. We now prove the first conclusion. Suppose that B = (bi1···im) ∈ Sm,n is a 
symmetric B0 tensor. Define Ĵ(B) ⊂ [n] as

Ĵ(B) =
{
i ∈ [n] : there is at least one positive off-diagonal entry in the ith row of B

}
.

If Ĵ(B) is an empty set, then B is a Z tensor, thus a diagonally dominated symmetric 
M tensor. The conclusion holds in this case. Assume that Ĵ(B) is not empty. Let B1 = B. 
For each i ∈ Ĵ(B), let di be the value of the largest off-diagonal entry in the ith row 
of B1. Let

J1 = Ĵ(B1).

We see that J1 �= ∅. Let

h1 = min{di : i ∈ J1}.

Then h1 > 0.
Now consider B2 = B1 − h1EJ1 . It is not difficult to see that B2 is still a symmetric 

B0 tensor.
We now replace B1 by B2, and repeat this process. We see that

Ĵ(B2) =
{
i ∈ [n] : there is at least one positive off-diagonal entry in the ith row of B2

}
is a proper subset of Ĵ(B1). Repeat this process until Ĵ(Bs+1) = ∅. Let M = Bs+1. We 
see that (2) holds. Then we have

Ĵ(Bk+1) = Ĵ(Bk) \ Jk,
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for k ∈ [s]. Thus, Jk ∩ Jl = ∅, for k �= l, k and l = 1, · · · , s when s > 1. This proves the 
first conclusion.

Similarly, we may prove the second conclusion, i.e., if B is a B tensor, then either B
itself is a strictly diagonally dominated symmetric M tensor, or in (2), M is a strictly 
diagonally dominated symmetric M tensor.

Suppose now B is a symmetric B0 tensor and m is even. If B itself is a diagonally 
dominated symmetric M tensor, then it is positive semi-definite by Theorem 3. Otherwise, 
(2) holds with s > 0. Let x ∈ �n. Then by (2),

Bxm = Mxm +
s∑

k=1

hkEJkxm = Mxm +
s∑

k=1

hk‖xJk
‖mm ≥ Mxm ≥ 0,

as by Theorem 3, a diagonally dominated symmetric M tensor is positive semi-definite. 
This proves the third conclusion.

The fourth conclusion can be proved similarly. �
For non-symmetric B and B0 tensors, some decomposition results may still be 

obtained. However, in this case, we cannot establish positive definiteness or semi-
definiteness results as Theorems 1 and 3 cannot be applied to non-symmetric ten-
sors.

By this theorem and Theorem 1, we have the following corollary.

Corollary 1. All the H-eigenvalues of an even order symmetric B0 tensor are non-
negative. All the H-eigenvalues of an even order symmetric B tensor are positive.

5. Final remarks and further questions

Theorem 4 gives an easily checkable sufficient condition for positive definite and semi-
definite tensors. It is much more general compared with Theorem 3. The proof technique 
of Theorem 4 is totally different that in the B matrix literature [14,15]. It decomposes 
a symmetric B tensor as the sum of two kinds of somewhat basic tensors: strictly di-
agonally dominated symmetric M tensors and positive multiples of partially all one 
tensors.

Question 1. Can we apply this technique to give more general sufficient conditions for 
positive definite and semi-definite tensors?

In [26], it was proved that an even order symmetric tensor is positive definite if and 
only if it is a P tensor, and an even order symmetric tensor is positive semi-definite if 
and only if it is a P0 tensor. Thus, an even order symmetric B tensor is a P tensor and 
an even order symmetric B0 tensor is a P0 tensor.
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Question 2. Can we show that an even order non-symmetric B tensor is a P tensor and 
an even order non-symmetric B0 tensor is a P0 tensor? After the early draft of this paper 
at arXiv, Yuan and You [28] gave a counter example to answer this question.

In the literature, we know that several classes of tensors have the following two prop-
erties:

a). If the order is even, then they are positive semi-definite;
b). If the order is odd, then their H-eigenvalues, if exist, are non-negative.

This includes diagonally dominated tensors discussed in Section 2 of this paper, com-
plete Hankel tensors and strong Hankel tensors [19], completely positive tensors [21] and 
P0 tensors [26]. Some of them guarantee that H-eigenvalues exist even when the order is 
odd.

Question 3. Does an odd order symmetric B0 tensor always have H-eigenvalues? If such 
H-eigenvalues exist, are they always non-negative?
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