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SUMMARY

In this paper, we consider the NP-hard problem of finding global minimum of quadratically constrained
multivariate bi-quadratic optimization. We present some bounds of the considered problem via approx-
imately solving the related bi-linear semidefinite programming (SDP) relaxation. Based on the bi-linear
SDP relaxation, we also establish some approximation solution methods, which generalize the methods
for the quadratic polynomial optimization in (SIAM J. Optim. 2003; 14:268–283). Finally, we present a
special form, whose bi-linear SDP relaxation can be approximately solved in polynomial time. Copyright
� 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the optimization of a bi-quadratic polynomial with quadratic constraints

min
x∈�n ,y∈�m

Q(x, y) :=
n∑

i,s=1

m∑
j,t=1

ai jst xi y j xs yt +
n∑

i=1

m∑
j=1

hi j xi y j

s.t. �k(x) := x�Mkx+(bk)�x+�k�0, k∈P,

�l(y) := y�Nl y+(dl )�y+�l�0, l ∈Q,

(1)

where Mk ∈�n×n symmetric, bk ∈�n , �k ∈� for k∈P :={1, . . . , p}, and Nl ∈�m×m symmetric,
dl ∈�m , �l ∈� for l ∈Q :={1, . . . ,q}. Without loss of generality, we assume that the coefficients
ai jst satisfy the partially symmetric property, that is: ai jst =asj it =aits j for i,s=1, . . . ,n and
j, t=1, . . . ,m. Furthermore, throughout this paper, we assume that the feasible set of (1) is
nonempty.

It is easy to see that, for fixed x or y, the problem (1) reduces to a quadratic optimization
problem with quadratic constraints, which was studied in [1]. This motivates us to call (1) a general
bi-quadratic optimization problem, or a general bi-quadratic program. Furthermore, we can assert
that (1) is NP-hard since the reduced quadratic optimization problem is NP-hard.
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It is well known that the polynomial optimization is a fundamental problem in optimization. As
such, it is widely used in many applications such as signal processing, biomedical engineering,
investment science, quantum mechanics, and statistics. Therefore, it has been a priority for many
mathematical programmers to establish efficient algorithms for polynomial optimization. In partic-
ular, higher order polynomials over quadratic constraints have been studied recently, e.g. see [2–6]
for details. As a special case of higher order polynomial optimization, the problem (1) includes the
nonhomogeneous bi-quadratic and quadratic functions in its objective and constraints, respectively.
In fact, the problem (1) is also a generalization of the bi-quadratic optimization over unit spheres
studied in [4], the bi-quadratic optimization with quadratic constraints in [6] and the quadratically
constrained quadratic optimization in [1]. The bi-quadratic optimization over unit spheres arises
from many applications such as solid mechanics, quantum physics, rank-one approximation to
the fourth-order partially symmetric tensor, signal and image processing, wireless communication
systems, data analysis, higher order statistics, and independent component analysis, e.g. see [7–20]
for details. Many real problems such as the maximum cut problem in combinatorial optimization
are the special cases of the model in [1]. On the other hand, the problem (1) also arises directly
from portfolio selection, which will be presented in Section 2.

For the bi-quadratic optimization over unit spheres in [4], Ling et al. proved that there is
no polynomial time algorithm returning a positive relative quality bound and presented various
approximation methods based on its semidefinite programming (SDP) relaxations. Recently, for
the homogeneous bi-quadratic optimization with quadratic constraints, Zhang et al. [6] proved
that each r -bound approximation solution of the relaxed bi-linear SDP can be used to generate in
randomized polynomial time an O(r )-approximation solution for the original problem, where the
constant in O(r ) does not involve the dimension of variables and the data of problems. Notice that
SDP relaxation methods are important for approximately solving quadratic optimization problems
and have received much attention recently, e.g. [1, 21–27]. Motivated by these, our study for (1)
is also based on its SDP relaxations.

Denote A := (ai jst ), then A is a real, fourth-order (n×m×n×m)-dimensional partially
symmetric tensor. In terms of A, the objective function in (1) can be written as Q(x, y)=
(Axx�)·(yy�)+(H�x)�y, where Axx� = (

∑n
i,s=1 ai jst xi xs)1� j,t�m is an m×m symmetric

matrix, and X ·Y stands for usual matrix inner product, i.e. X ·Y =Tr(X�Y ). Denote

Bk :=
[

Mk bk/2

(bk)�/2 �k

]
(k∈P) and Cl :=

[
Nl dl/2

(dl )�/2 �l

]
(l ∈Q).

It is readily to know that (1) can be written as:

min
x∈�n ,y∈�m

[
Axx� 1

2H
�x

1
2 x

�H 0

]
·
[
yy� y

y� 1

]

s.t. Bk ·
[
xx� x

x� 1

]
�0, k∈P,

Cl ·
[
yy� y

y� 1

]
�0, l ∈Q.

(2)

Notice that for any symmetric matrix X ,

X=
[
xx� x

x� 1

]

if and only if

X=
[
X1 x

x� 1

]
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and rank(X )=1. Therefore, by relaxing the rank-1 constraints concealed in (2), we obtain the
bi-linear SDP relaxation of (1) as follows:

min
X∈Sn+1,Y∈Sm+1

�(X,Y ) :=
[
AX1

1
2H

�x
1
2 x

�H 0

]
·Y

s.t. Bk ·X�0, k∈P,

Cl ·Y�0, l ∈Q,

B p+1 ·X=1, Cq+1 ·Y =1,

X=
[
X1 x

x� u

]
�0, Y =

[
Y1 y

y� v

]
�0,

(3)

where B p+1=diag(0, . . . ,0︸ ︷︷ ︸
n

,1) and Cq+1=diag(0, . . . ,0︸ ︷︷ ︸
m

,1). Here, AX1 is the m×m matrix with

(AX1) j t =
n∑

i,s=1
ai jst Xis, j, t=1,2, . . . ,m.

We denote by vbqp and �min the optimal values of (1) and (3), respectively. It is clear that
�min�vbqp , which implies that a lower bound of (1) is obtained, provided that the optimal value
�min of (3) has been found. However, the bi-linear SDP relaxation (3) by itself is also NP-hard.
The reason for this is that, for the bi-quadratic optimization over unit spheres, a special form of (1),
the corresponding bi-linear SDP relaxation and the original problem are equivalent, i.e. they have
the same optimal value and one optimal solution pair of the original problem can be obtained
from the optimal solution pair of its bi-linear SDP relaxation, see [4]. In this paper, we extend the
existing methods in [1] for quadratic optimization problems to general bi-quadratic optimization
problem with nonhomogeneous objective and constraint functions. Some obtained results in this
paper generalize the corresponding conclusions in [4, 6].

This paper mainly focus on the theoretical analysis of the approximation algorithm and is
organized as follows. After an application example in portfolio selection is presented in Section 2,
we analyze the relation between (1) with ellipsoid constraints and its bi-linear SDP relaxation
in Section 3. In Section 4, we first discuss the approximation solution of (1) in the sense of
expectation, then present an approximation method for the partially ellipsoid constraint case in the
sense of high probability. In Section 5, we present a special form of (1), whose SDP relaxation
problem can be approximately solved in polynomial time.

Some words about the notation. �n denotes the space of real n-dimensional column vectors.
For x ∈�n, x j denotes the j th component of x . Un stands for the unit sphere in �n , i.e. Un :={x∈
�n |‖x‖=1}.�m×n denotes the space of real m×n matrices. For A∈�m×n, Ai j denotes the (i, j )th
entry of A and ‖A‖F denotes the Frobenius norm of A, i.e. ‖A‖F = (Tr(A�A))1/2, where Tr(·)
means the trace of a matrix. Sn denotes the space of real symmetric n×n matrices. For A∈Sn ,
A�0(resp.A�0) means that A is positive semidefinite (resp. positive definite). Sn+ denotes the
cone of positive semidefinite matrices in Sn . For A∈Sn with |Ai j |�1 for all i and j , arcsin(A)
denotes the matrix in Sn with (i, j )th entry arcsin(Ai j ). In stands for the identity matrix with
n dimension, and ek stands for the kth coordinate vector. In addition, for a given finite set D,
Card(D) stands for the cardinality of D.

2. MOTIVATION: APPLICATION IN PORTFOLIO SELECTION

According to Markowitz’s well-known mean-variance model [28], the general single-period port-
folio selection problem can be formulated as a parametric convex quadratic program. In this section,
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we present a slightly more involved mean-variance model in portfolio selection problems, which
can be reformulated as a general bi-quadratic optimization problem (1).

We consider the portfolio selection problem in two groups of securities, where investment
decisions have an influence on each other. Assume that the groups consist of N and M securities,
respectively. We assume that the investment on the i th security of the first group of securities is
further reallocated to two different types of industries A and B, according to the special proportion
�i . The discounted returns of the industries A and B are denoted by R(1)

i A and R(1)
i B , respectively.

Assume that R(1)
i A is independent of the relative amount xi invested in the i th security, but dependent

on the amount y j invested in the j th security of the second group of security, whereas R(1)
i B

dependent only on the amount xi . Let R
(1)
i A =�(0)i1 +�(1)i1 y1+·· ·+�(1)iM yM (i =1, . . . ,N ), where �(0)i1

is a random variable with mean �i , and �(1)i j (i =1, . . . ,N, j =1, . . . ,M) are random variables

with mean zero. Let R(1)
i B =�(0)i2 +�(2)i1 x1+·· ·+�(2)i N xN (i =1, . . . ,N ), where �(0)i2 (i =1, . . . ,N ) are

random variables with mean �i , and �(2)ik (i,k=1, . . . ,N ) are random variables with mean gik .
Then, the return of a portfolio on the industry A in the first group of securities is a random variable
defined by

R(1)
A =

N∑
i=1

�i R
(1)
i A xi =

N∑
i=1

�i�
(0)
i1 xi +

N∑
i=1

M∑
j=1

�i�
(1)
i j xi y j

and its expected value is E(R(1)
A )=��x , where �= [�1�1, . . . ,�N�N ]

� and x= [x1, . . . , xN ]�. The
return of a portfolio on the industry B in the first group of securities is a random variable defined by

R(1)
B =

N∑
i=1

(1−�i )R
(1)
i B xi =

N∑
i=1

(1−�i )�
(0)
i2 xi +

N∑
i,k=1

(1−�i )�
(2)
ik xi xk

and its expected value is E(R(1)
B )=��x+x�Gx , where �= [(1−�1)�1, . . . , (1−�N )�N ]� and G=

((1−�i )gik)1�i,k�N . Similarly, we assume that the investment on the j th security of the second
group of securities is reallocated to two different types of industries C and D, according to
the special proportion � j . By similar reasoning, we obtain that the returns of a portfolio on the
industries C and D of the second group of securities are

R(2)
C =

M∑
j=1

� j	
(0)
j1 y j +

M∑
j=1

N∑
i=1

� j	
(1)
j i xi y j and R(2)

D =
M∑
j=1

(1−� j )	
(0)
j2 y j +

M∑
j,l=1

(1−� j )	
(2)
j l y j yl,

respectively. Here, 	(0)j1 ( j =1, . . . ,M) are random variables with mean 
 j , 	(1)j i (i =1, . . . ,N, j =
1, . . . ,M) are the random variables with mean zero, 	(0)j2 ( j =1, . . . ,M) are random variables

with mean � j , and 	(2)j l ( j, l=1, . . . ,N ) are the random variables with mean q jl . It is easy

to see that E(R(2)
C )=
�y and E(R(2)

D )=��y+ y�Qy, where 
= [�1
1, . . . ,�M
M ]�, �= [(1−
�M )�1, . . . , (1−�M )�M ]�, Q= ((1−� j )q jl)1� j,l�M and y= [y1, . . . , yM ]�. It is clear that the total
return of the portfolio on the industries A and C is RAC = R(1)

A +R(2)
C . We assume that the random

variables �(0)i1 , �(1)i j , 	(0)j1 , and 	(1)j i are independent of each other for i =1, . . . ,N and j =1, . . . ,M .

Under this assumption, we know that the variance of RAC is Var(RAC )=Var(R(1)
A )+Var(R(2)

C ).

Let B1 and B2 be the variance tensors of the random matrices �= (�i�
(1)
i j ) and �=

(� j	
(1)
j i ), respectively, and P1 and P2 be the variance matrices of the random vectors �(0)=

[�1�
(0)
11 , . . . ,�N�(0)N1]

� and 	(0)= [�1	
(0)
11 , . . . ,�M	(0)M1]

�, respectively. If we consider the portfolio
selection problem associated with the industries A and C under the condition that the returns on
the industries B and D reach at least the given acceptable values g and h, respectively, then, given
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a set of values for the parameter � as well as B1, B2, P1, and P2, a generalized mean-variance
model can be expressed by

min
x∈�N ,y∈�M

(B1xx
�)· yy�+(B2xx

�)· yy�+x�P1x+ y�P2y−�(��x+
�y)

s.t. ��x+x�Gx�g, ��y+ y�Qy�h,

N∑
i=1

xi =a,
M∑
j=1

y j =b,

where a and b stand for the total amount invested in the first and the second group of securities,
respectively. It is evident that the above model can be rewritten equivalently as the form of (1).

3. SDP RELAXATION OF (1) WITH ELLIPSOID CONSTRAINTS

In this section, we consider the following special form of (1):

min
x∈�n ,y∈�m

Q(x, y) :=
n∑

i,s=1

m∑
j,t=1

ai jst xi y j xs yt +
n∑

i=1

m∑
j=1

hi j xi y j

s.t. ‖Fkx+ f k‖2��k, k∈P,

‖Gl y+gl‖2��l , l ∈Q,

(4)

where Fk ∈�n×n , f k ∈�n , �k ∈{0,1} for k∈P, and Gl ∈�m×m , gl ∈�m , �l ∈{0,1} for l ∈Q.
In this case, Mk = (Fk)�Fk , bk =2(Fk)� f k and �k =‖ f k‖2−�k for k∈P, and Nl = (Gl )�Gl ,
dl =2(Gl)�gl and �l =‖gl‖2−�l for l ∈Q.

Let (X̄ , Ȳ ) be a feasible solution pair of the SDP relaxation of (4). In this section our main task
is to generate a feasible solution (x̄, ȳ) of the problem (4) from (X̄ , Ȳ ), such that

Q(x̄, ȳ)�
(1−	 f )

2(1−	g)
2

(
√

��+	 f )2(
√

��+	g)2
�(X̄ , Ȳ ), (5)

where �� :=Card{k∈P|�k =1}, �� :=Card{l ∈Q|�l =1}, 	 f :=maxk:�k=1 ‖ f k‖, and 	g :=maxl:�l=1

‖gl‖. To this end, we need the following assumption, which is a simple generalization of the
corresponding assumption in [1].

Assumption 1
The origin (0,0)∈�n×�m is a feasible solution of (4). Furthermore, for any k∈P and l ∈Q, there
hold ‖ f k‖2<�k whenever �k =1 and ‖gl‖2<�l whenever �l =1.

The following two lemmas are well-known. The first lemma is due to Sturm and Zhang [29]
and the second lemma was proved by Tseng [1].

Lemma 3.1
Let X ∈Sn be a positive semidefinite matrix of rank r . Let B∈Sn . Then, B ·X�0 if and only if
there exist w j ∈�n , j =1, . . . ,r , such that

X=
r∑
j=1

w j (w j )� and (w j )�Bw j�0, j =1, . . . ,r.

Lemma 3.2
For any scalars 
�0, � j�0 and � j�0, j=1, . . . ,r (r�1), such that

∑r
j=1� j�
 and

∑r
j=1� j =1,

there exists j̄ ∈{1, . . . ,r} such that � j̄>0 and � j̄/� j̄�
.
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We now state our main result in this section, whose proof is similar to that of Theorem 1 in [4].
However, for the sake of completeness, we still present its proof.

Theorem 3.1
Let (X̄ , Ȳ ) be a feasible solution pair of the bi-linear SDP relaxation (3) of (4). Then there exists
a feasible solution (x̄ , ȳ) of (4) satisfying (5).

Proof
Let

X̄=
[
X̂1 x̂

x̂� û

]
, Ȳ =

[
Ŷ1 ŷ

ŷ� v̂

]
, �̄=�(X̄ , Ȳ ),

and Ā∈Sm+1 defined by:

Ā :=
[
AX̂1

1
2H

� x̂
1
2 x̂

�H 0

]
−�̄Cq+1.

Then it follows that Ā · Ȳ =0 from Cq+1 · Ȳ =1. By Lemma 3.1, there exist z j = ((y j )�,v j )�
( j =1, . . . ,m+1)∈�m×�, such that

Ȳ =
m+1∑
j=1

z j (z j )� and (z j )� Āz j�0 for j =1, . . . ,m+1,

which implies that

(z j )�
[
AX̂1

1
2H

� x̂
1
2 x̂

�H 0

]
z j��̄v2j for j =1, . . . ,m+1. (6)

Since Cl · Ȳ�0 for l ∈Q and Cq+1 · Ȳ =1, we have that
∑m+1

j=1 v2j =1 and

m+1∑
j=1

((y j )�(Gl )�Gl y j +2(gl)�Gl y jv j +(‖gl‖2−�l )v
2
j )=Cl · Ȳ�0 for l ∈Q.

Consequently, it follows that

m+1∑
j=1

‖Gl y j +v j g
l‖2��l , for l ∈Q, (7)

which implies that

m+1∑
j=1

∑
l:�l=1

‖Gl y j +v j g
l‖2���.

By Lemma 3.2, there exists an index j̄ ∈{1, . . . ,m+1}, such that

v2
j̄
>0 and

∑
l:�l=1

‖Gl y j̄ +v j̄ g
l‖2/v2

j̄
���.

Moreover, we can choose j̄ to minimize the ration
∑

l:�l=1 ‖Gl y j +v j gl‖2/v2j over all j with

v2j>0. Thus, ‖Gl y j̄/v j̄ +gl‖�√
�� whenever �l =1.

Define

ỹ :=
⎧⎨
⎩
y j̄/v j̄ if x̂�Hy j̄/v j̄�0,

−y j̄/v j̄ if x̂�Hy j̄/v j̄>0,
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and �̃ :=max{�∈ [0,1]|‖Gl(�ỹ)+gl‖2��l, l ∈Q}. In the case where �l =0, from (7) and Assump-
tion 1, we know that ‖Gl y j̄‖=0 which implies that ‖Gl(� ỹ)+gl‖2��l for all �∈ [0,1]. In the
case where �l =1, we know that if x̂�Hy j̄/v j̄�0, then ‖Gl ỹ+gl‖�√

��, and otherwise ‖Gl ỹ+
gl‖�‖Gl y j̄/v j̄ +gl‖+2‖gl‖�√

��+2‖gl‖. Hence, for any �∈ [0,1]

‖Gl(� ỹ)+gl‖=‖�(Gl ỹ+gl)+(1−�)gl )‖��(
√

��+2‖gl‖)+(1−�)‖gl‖.

Since ‖gl‖<1, it holds that ‖Gl(� ỹ)+gl‖�1 whenever ��(1−‖gl‖)/(√��+‖gl‖). Therefore,

�̃� min
l:�l=1

1−‖gl‖√
��+‖gl‖ = 1−maxl:�l=1 ‖gl‖

√
��+maxl:�l=1 ‖gl‖ ,

where the equality follows from (1−�)/(
√

��+�) being a decreasing function on �∈ [0,1). Let

�̃= 1−maxl:�l=1 ‖gl‖
√

��+maxl:�l=1 ‖gl‖
and ȳ= �̃ỹ. It is clear that

‖Gl ȳ+gl‖2��l for l ∈Q. (8)

Moreover, by the choice of ỹ, we know that x̂�H ỹ�0 and x̂�H ỹ�x̂�Hy j̄/v j̄ . Consequently, it
holds that

ȳ�(AX̂1)ȳ+ x̂�H ȳ = �̃2 ỹ�(AX̂1)ỹ+ �̃x̂�H ỹ

� �̃2(ỹ�(AX̂1)ỹ+ x̂�H ỹ)

� �̃2((y j̄ )�(AX̂1)y
j̄ + x̂�Hy j̄v j̄ )/v

2
j̄

� �̃2�̄,

which implies [
ȳ ȳ�A 1

2H ȳ

1
2 (H ȳ)� 0

]
· X̄��̃2�̄, (9)

where ȳ ȳ�A= (
∑m

j,t=1ai jst ȳ j ȳt )1�i,s�n is an n×n symmetric matrix. Let Aȳ ∈Sn+1 defined by:

Aȳ =
[

ȳ ȳ�A 1
2H ȳ

1
2 (H ȳ)� 0

]
− �̃2�̄B p+1.

Then, by (9) and the fact that B p+1 · X̄=1, it follows that Aȳ · X̄�0. Applying Lemma 3.1 to X̄
and Aȳ again, we can find wi = ((xi )�,ui )� ∈�n×�, i =1, . . . ,n+1, such that

X̄=
n+1∑
i=1

wi (wi )� and (wi )�Aȳw
i�0 for i =1, . . . ,n+1,

which implies

(wi )�
[

ȳ ȳ�A 1
2H ȳ

1
2 (H ȳ)� 0

]
wi��̃2�̄u2i for i =1, . . . ,n+1. (10)
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Similarly, there exists an index ī ∈{1, . . . ,n+1}, such that

u2
ī
>0 and

∑
k:�k=1

‖Fkx ī +uī f
k‖2/u2

ī
���.

Moreover, denote

x̃ :=
⎧⎨
⎩x ī/uī if ȳ�H�x ī/uī�0,

−x ī/uī if ȳ�H�x ī/uī>0

and x̄ := �̃x̃ , where

�̃= 1−maxk:�k=1 ‖ f k‖
√

��+maxk:�k=1 ‖ f k‖ .

Thus, arguing identically as in the proof of (8), we have that ‖Fk x̄+ f k‖2��k for k∈P, which
implies, together with (8), that (x̄, ȳ) is a feasible solution of (4). Moreover, from the choice of x̄ ,
arguing similarly as in the proof of (9), we can obtain

[x̄�,1]

[
ȳ ȳ�A 1

2H ȳ

1
2 (H ȳ)� 0

][
x̄

1

]
��̃2�̃2�̄.

That is, Q(x̄, ȳ)= x̄�(ȳ ȳ�A)x̄+ x̄�H ȳ�(�̃�̃)2�(X̄ , Ȳ ). We obtain (5) and complete the
proof. �

From Theorem 3.1, we have

Corollary 3.1
Let (X∗,Y ∗) be an optimal solution pair of the bi-linear SDP relaxation (3) of (4). Then there
exists a feasible solution (x̄, ȳ) of (4) satisfying

Q(x̄, ȳ)�
(1−	 f )

2(1−	g)
2

(
√

��+	 f )2(
√

��+	g)2
�min.

Specially, when f k =0, �k =1 for all k∈P and gl =0, �l =1 for all l ∈Q, the problem (4) is
a special case of the maximization model in [6]. For this case, it holds that 	 f =	g =0,�� = p
and �� =q, and a feasible solution (x̄, ȳ) such that Q(x̄, ȳ)�(1/pq)�min can be generated by a
deterministic way, which is more practicable than the way presented in [6].

4. APPROXIMATION SOLUTION OF (1)

In this section, we study approximation solutions of (1) in the sense of expectation, based upon
its bi-linear SDP relaxation. Denote

P0={k∈P|Mk is diagonal and bk =0}, Q0={l ∈Q|Nl is diagonal and dl =0}
and make the following assumption.

Assumption 2
{x ∈�n|�k(x)�0, k∈P0} and {y∈�m|�l(x)�0, l ∈Q0} are both bounded.

Let (X̄ , Ȳ ) be a feasible solution of (3) with objective value �̄=�(X̄ , Ȳ ). Since X̄�0 and Ȳ �0,
there exist two factorization matrices U = [u1, . . . ,un+1]∈�(n+1)×(n+1) and V = [v1, . . . ,vm+1]∈
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�(m+1)×(m+1), such that X̄=U�U and Ȳ =V�V . It is clear that un+1∈Un+1 and vm+1∈Um+1,
since ‖un+1‖2= B p+1 · X̄=1 and ‖vm+1‖2=Cq+1 · Ȳ =1. Motivated by the generation method
of single random vector in [1, 30, 31], we choose independently two random vectors u and v

uniformly distributed on Un+1 and Um+1, respectively. For the obtained u, if u�un+1�0, then we
set x̂ = (x̂1, . . . , x̂n+1)� with

x̂i =

⎧⎪⎨
⎪⎩
√
X̄ii if u�ui�0,

−
√
X̄ii otherwise,

i =1, . . . ,n+1.

If u�un+1>0, then set x̂= (x̂1, . . . , x̂n+1)� with

x̂i =

⎧⎪⎨
⎪⎩

−
√
X̄ii if u�ui�0,√

X̄ii otherwise,

i =1, . . . ,n+1.

Hence, we denote the (n+1) dimension random vector x̂ with x̂n+1=1. Similarly, for the obtained
v, we can generate an (m+1) dimension random variable ŷ with ŷm+1=1. Notice that x̂ and ŷ
are independent from the independence of u and v.

We now consider the following standard SDP problems:

�̄sdp :=max
X

[
Ȳ1A

1
2H ȳ

1
2 (H ȳ)� 0

]
·X

s.t. Bk ·X= b̄k, k∈P0,

B p+1 ·X=1, X�0

(11)

and

�̄sdp :=max
Y

[
AEx̂x̂

1
2H

�Ex̂

1
2E

�
x̂ H 0

]
·Y

s.t. Cl ·Y = c̄l, l ∈Q0,

Cq+1 ·Y =1, Y �0,

(12)

where Ȳ1A is the n×n matrix with (Ȳ1A)is =
∑m

j,t=1bi jst Ȳ j t (i,s=1,2, . . . ,n), ȳ∈�m

consist of the first m components in the last column of Ȳ , Ex̂x̂ ∈Sn consist of the first n
columns and the first n rows of E[x̂ x̂�], Ex̂ ∈�n consist of the first n components in E[x̂],
b̄k = Bk · X̄�0 and c̄l =Cl · Ȳ�0. Here, E[x̂ x̂�] and E[x̂] are the expectations of x̂ x̂� and x̂ ,
respectively.

Now we are ready to state and prove the following theorem, which implies that, if we obtain an
approximation solution (X̄ , Ȳ ) of (3), then by the selection process described above, an random
vector pair (x̂ , ŷ) can be found, which is an approximation solution of (1) in expectation. Before
proceeding, we need the following technical lemma which was proved by Nesterov [32].

Lemma 4.1
Let X�0 and Xii�1 for every i =1, . . . ,n. Then arcsin(X )�X .
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Theorem 4.1
Let (X̄ , Ȳ ) be a feasible solution of (3) with objective value �̄=�(X̄ , Ȳ ). If Assumption 2 holds,
then the random vector (x̂, ŷ) generated by the pair selection process described above, satisfies

E[�k(x̂)] � 0 if k∈P0,

E[�k(x̂)] �
(
1− 2

�

)
�k
sdp if k∈P\P0,

E[�l (ŷ)] � 0 if l ∈Q0,

E[�l (ŷ)] �
(
1− 2

�

)
�l
sdp if l ∈Q\Q0

(13)

and

E[Q(x̂, ŷ)]� 4

�2
�(X̄ , Ȳ )+ 2

�

(
1− 2

�

)
�̄sdp+

(
1− 2

�

)
�̄sdp . (14)

Here, �i
sdp (i ∈P\P0) and � j

sdp ( j ∈Q\Q0) are the optimal values of the following SDP problems:

�i
sdp :=max

X
Bi ·X

s.t. Bk ·X= b̄k, k∈P0,

B p+1 ·X=1, X�0

(15)

and

� j
sdp :=max

Y
C j ·Y

s.t. Cl ·Y = c̄l, l ∈Q0,

Cq+1 ·Y =1, Y �0,

(16)

respectively.

Proof
The proof of (13) is the same as that in [1] and is omitted here. Now we prove (14). Since
|x̂i x̂s |=

√
X̄ii X̄ss for i,s=1, . . . ,n+1, it is easy to see that, if X̄ii X̄ss 
=0, then x̂i x̂s =

√
X̄ii X̄ss

if and only if u�ui and u�us have same sign. By Lemma 3.2 of Goemans and Williamson [30],
the probability that this event occurs is

p=1− 1

�
arccos

(
(ui )�us

‖ui‖‖us‖
)

=1− 1

�
arccos

(
X̄is√
X̄ii X̄ss

)
.

Consequently, it follows that

E[x̂i x̂s]=
√
X̄ii X̄ss p+

(
−
√
X̄ii X̄ss

)
(1− p)= 2

�

√
X̄ii X̄ss arcsin

(
X̄is√
X̄ii X̄ss

)
.

This indicates that the expectation of x̂ x̂� is

E[x̂ x̂�]= 2

�
DX̄ arcsin

(
D−1

X̄
X̄ D−1

X̄

)
DX̄ , (17)

where DX̄ =diag(
√
X̄11, . . . ,

√
X̄nn,1). Similarly, it can be proved that

E[ŷ ŷ�]= 2

�
DȲ arcsin(D

−1
Ȳ

Ȳ D−1
Ȳ

)DȲ , (18)
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where DȲ =diag(
√
Ȳ11, . . . ,

√
Ȳmm,1). From (18) and the independence of x̂ and ŷ, we have

E[Q(x̂, ŷ)]=
[
AEx̂x̂

1
2H

�Ex̂

1
2E

�
x̂ H 0

]
·E[ŷ ŷ�]

= 2

�

[
AEx̂x̂

1
2H

�Ex̂

1
2 E

�
x̂ H 0

]
·(DȲ arcsin(D

−1
Ȳ

Ȳ D−1
Ȳ

)DȲ ). (19)

On the other hand, it is easy to know that the dual of (12) is

�̄sdp = inf
z

∑
l∈Q0

c̄l zl +zq+1

s.t. −

⎡
⎢⎢⎣

AEx̂x̂
1

2
H�Ex̂

1

2
E�
x̂ H 0

⎤
⎥⎥⎦+ ∑

l∈Q0∪{q+1}
Cl zl �0.

(20)

For every ε>0, there exists a feasible solution {zl}l∈Q0∪{q+1} of (20) such that∑
l∈Q0

c̄l zl +zq+1��̄sdp+ε. (21)

From Lemma 4.1, it follows that DȲ arcsin(D
−1
Ȳ

Ȳ D−1
Ȳ

)DȲ � Ȳ . Together with the fact that[
AEx̂x̂

1
2H

�Ex̂

1
2 E

�
x̂ H 0

]
− ∑

l∈Q0∪{q+1}
Clzl �0,

there holds ([
AEx̂x̂

1
2H

�Ex̂

1
2E

�
x̂ H 0

]
− ∑

l∈Q0∪{q+1}
Clzl

)
·(DȲ arcsin(D

−1
Ȳ

Ȳ D−1
Ȳ

)DȲ )

�
([

AEx̂x̂
1
2H

�Ex̂

1
2 E

�
x̂ H 0

]
− ∑

l∈Q0∪{q+1}
Cl zl

)
· Ȳ .

By this, it holds that[
AEx̂x̂

1
2H

�Ex̂

1
2E

�
x̂ H 0

]
·(DȲ arcsin(D

−1
Ȳ

Ȳ D−1
Ȳ

)DȲ )

�
([

AEx̂x̂
1
2H

�Ex̂

1
2E

�
x̂ H 0

]
− ∑

l∈Q0∪{q+1}
Cl zl

)
· Ȳ

+
( ∑
l∈Q0∪{q+1}

Cl zl

)
·(DȲ arcsin(D

−1
Ȳ

Ȳ D−1
Ȳ

)DȲ )

=
[
AEx̂x̂

1
2H

�Ex̂
1
2E

�
x̂ H 0

]
· Ȳ +

(�

2
−1
) ∑
l∈Q0∪{q+1}

zlC
l · Ȳ

�
[
AEx̂x̂

1
2H

�Ex̂

1
2 E

�
x̂ H 0

]
· Ȳ +

(�

2
−1
)
(�̄sdp+ε), (22)
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where the first equality comes from the observations that Cl is diagonal for l ∈Q0∪{q+1} and
that DȲ arcsin(D

−1
Ȳ

Ȳ D−1
Ȳ

)DȲ has diagonal entries (�/2)Ȳll for all l, and the last inequality comes

from the fact that c̄l =Cl · Ȳ for l ∈Q0, Cq+1 · Ȳ =1 and (21). By taking ε→0, one obtain[
AEx̂x̂

1
2H

�Ex̂

1
2 E

�
x̂ H 0

]
·(DȲ arcsin(D

−1
Ȳ

Ȳ D−1
Ȳ

)DȲ )

�
[
AEx̂x̂

1
2H

�Ex̂

1
2E

�
x̂ H 0

]
· Ȳ +

(�

2
−1
)
�̄sdp . (23)

Moreover, it is easy to see that[
AEx̂x̂

1
2H

�Ex̂

1
2 E

�
x̂ H 0

]
· Ȳ =

[
Ȳ1A 1

2H ȳ

1
2 (H ȳ)� 0

]
·E[x̂ x̂�].

From this and (17), we can similarly prove that

[
AEx̂x̂

1
2H

�Ex̂

1
2 E

�
x̂ H 0

]
· Ȳ = 2

�

⎡
⎢⎢⎣

Ȳ1A
1

2
H ȳ

1

2
(H ȳ)� 0

⎤
⎥⎥⎦·DX̄ arcsin(D

−1
X̄

X̄ D−1
X̄

)DX̄

� 2

�

⎡
⎢⎢⎣

Ȳ1A
1

2
H ȳ

1

2
(H ȳ)� 0

⎤
⎥⎥⎦· X̄+

(
1− 2

�

)
�̄sdp

= 2

�
�(X̄ , Ȳ )+

(
1− 2

�

)
�̄sdp. (24)

By combining (19), (23) and (24), we have

E[Q(x̂, ŷ)]� 4

�2
�(X̄ , Ȳ )+ 2

�

(
1− 2

�

)
�̄sdp+

(
1− 2

�

)
�̄sdp .

We obtain the desired result and complete the proof. �

The vector pair (x̄, ȳ) described in Theorem 4.1 is an approximation solution of (1), but maybe
infeasible. To overcome this drawback, for some special forms of (1), we will present a method
for finding feasible solution with high probability, based on the method presented above.

In what follows, we consider the following case where the constraints not indexed by P0 and
Q0 are ellipsoid constraints, i.e.

�k(x) = ‖Fkx+ f k‖−1 for k∈P\P0,

�l(y) = ‖Gl y+gl‖−1 for l ∈Q\Q0.
(25)

To obtain our desired result, we assume that the origin (0,0) is a feasible solution of (1), which
satisfies strictly those constraints not indexed by P0 and Q0, i.e.

�k�0 (k∈P0), ‖ f k‖<1 (k∈P\P0) and �l�0 (l ∈Q0), ‖gl‖<1 (l ∈Q\Q0). (26)

The following lemma [33] refines the Chebychev inequality for bounded random variables.

Lemma 4.2
Let � be a random variable with standard deviation �. Suppose ��C and |�−E[�]|�K always
for some constants C and K . Then, for any t ∈ (0,C/K ],

Prob[�−E[�]� 3
2 tC]�e−t2/2.
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Let (X̄ , Ȳ ) be a feasible solution of (3) and (x̂ , ŷ) be a random vector pair generated by the
method described above. Let �0 denote the standard deviation of Q(x̂, ŷ). For every k∈P and
l ∈Q, let �kx and �ly denote the standard deviations of �k(x̂) and �l (ŷ), respectively. From the
generation process of (x̂, ŷ), it is clear that for k∈P0 and l ∈Q0, we have �k(x̂ )�0 and �l(ŷ)�0
with probability 1. And for each k∈P\P0 and l ∈Q\Q0, by the well-known Chebychev inequality,
it holds that

Prob{|�k(x̂)−E[�k(x̂)]|�εk�
k
x }�ε−2

k

and

Prob{|�l(ŷ)−E[�l(ŷ)]|��l�
l
y}��−2

l ,

provided that εk>1 and �l>1. Moreover, it is easy to prove that

|Q(x̂, ŷ)−E[Q(x̂, ŷ)]|�2

[
n∑

i,s=1

m∑
j,t=1

|ai jst |
√
X̄ii X̄ss Ȳ j j Ȳt t +

n∑
i=1

m∑
j=1

|hi j |
√
X̄ii Ȳ j j

]
,

since |x̂i x̂s |=
√
X̄ii X̄ss for i,s=1, . . . ,n and |ŷ j ŷt |=

√
Ȳ j j Ȳt t for j, t=1, . . . ,m. Consequently,

applying Lemma 4.2 with �=Q(x̂, ŷ) and t= 2
3ε0, we have

Prob[Q(x̂, ŷ)−E[Q(x̂ , ŷ)]�ε0�0]�e− 2
9 ε20 ,

when 0<ε0<
3
2�0/K with

K =2

[
n∑

i,s=1

m∑
j,t=1

|ai jst |
√
X̄ii X̄ss Ȳ j j Ȳt t +

n∑
i=1

m∑
j=1

|hi j |
√
X̄ii Ȳ j j

]
.

Therefore, if we generate x̂ and ŷ randomly and independently L times, then the probability that
one of these L samples satisfies

Q(x̂, ŷ) � E[Q(x̂, ŷ)]+ε0�0,

�k(x̂) � E[�k(x̂)]+εk�
k
x for k∈P,

�l(ŷ) � E[�l(ŷ)]+�l�
l
y for l ∈Q,

(27)

is at least 1−�L , where

� :=e− 2
9 ε20 + ∑

k∈P\P0

ε−2
k + ∑

l∈Q\Q0

�−2
l . (28)

We now construct feasible solutions with certainty, by moving (x̂, ŷ) sufficiently close toward
the origin. For each randomly generated (x̂, ŷ), let x̄ = x̂ and

ȳ=
{
ŷ if x̄�H ŷ�0,
−ŷ otherwise.

Denote

�̄x :=max{�x ∈ [0,1]|�k(�x x̄)�0, ∀ k∈P}, �̄y :=max{�y ∈ [0,1]|�l (�y ȳ)�0, ∀ l ∈Q}
and

(�̌x , �̌y) :=argmin{Q(�x x̄,�y ȳ)|(�x ,�y)∈ [0, �̄x ]×[0, �̄y]}. (29)

Remark
It is clear that (�̄x , �̄y) is well defined and can be easily computed. Moreover, (�̌x , �̌y) is an optimal
solution of a 1-dimension bi-quadratic program with special structure and can be easily computed.
In addition, from (29), we know that (�̌x , �̌y) is a pair of random variable.
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For the considered problem (1) with constraints (25) satisfying (26), we have the following
result.

Theorem 4.2
Let L�1 be a given integer. If we generate (x̂, ŷ) randomly and independently L times and construct
(x, y)= (�̌x x̄, �̌y ȳ) as described above, then under Assumption 2, each (x, y) is a feasible solution
of (1) with probability 1. Moreover, for any 0<ε0� 3

2�0/K , εk>1, �kx�E[�k(x̂)] (k∈P\P0), �l>1
and �ly�E[�l (ŷ)] (l ∈Q\Q0), the probability that one of these L samples satisfies

Q(x, y)� min
k 
∈P0

(
1−‖ f k‖√
1+�kx +εk�kx

)2

min
l 
∈Q0

⎛
⎝ 1−‖gl‖√

1+�ly+�l�ly+‖gl‖

⎞
⎠2

(E[Q(x̂, ŷ)]+ε0�0) (30)

is at least 1−�L , where � is given by (28), �kx and �ly denote the standard deviations of �k(x̂) and
�l(ŷ) respectively, and K is any constant satisfying |Q(x̂, ŷ)−E[Q(x̂, ŷ)]|�K .

Proof
It is easy to see that (x, y)= (�̌x x̄, �̌y ȳ) is a feasible solution of (1) with probability 1, since
(�̌x , �̌y)∈ [0, �̄x ]×[0, �̄y].

We now prove (30). From (26) and the definitions of P0 and Q0, it follows that for each k∈P0
and each l ∈Q0

�k(�x x̄)=�2x�k(x̂)+(1−�2x )�k�0 for any �x ∈ [0,1]

and

�l(�y ȳ)=�2y�l (ŷ)+(1−�2y)�l�0 for any �y ∈ [0,1].

From (25) and (27), we see that ‖Fk x̄+ f k‖�
√

�kx for each k∈P\P0, where �kx :=1+E[�k(x̂ )]+
εk�kx . Moreover, for each l ∈Q\Q0, if x̄�H ŷ�0, then ‖Gl ȳ+gl‖�

√
�ly ; otherwise

‖Gl ȳ+gl‖=‖−(Gl ŷ+gl)+2gl‖�‖Gl ŷ+gl‖+2‖gl‖�
√

�ly+2‖gl‖,

where �ly :=1+E[�l (ŷ)]+�l�ly . Thus, arguing identically as in the proof of Theorem 3.1, we
obtain that

�̄x� min
k 
∈P0

1−‖ f k‖√
�kx

and �̄y�min
l 
∈Q0

1−‖gl‖√
�ly+‖gl‖

. (31)

Since �kx�E[�k(x̂)] for k∈P\P0 and �ly�E[�l (ŷ)] for l ∈Q\Q0, it follows from (31) that

�̄x��̂x := min
k 
∈P0

1−‖ f k‖√
1+�kx +εk�kx

>0 and �̄y��̂y := min
k 
∈P0

1−‖gl‖√
1+�ly+�l�ly+‖gl‖

>0,

which implies that (�̂x , �̂y)∈ (0, �̄x ]×(0, �̄y]. Finally, our choice of (x̄, ȳ) implies that x̄�H ȳ�0
and x̄�H ȳ�x̂�H ŷ. Then, arguing similarly as in the proof of Theorem 3.1, we obtain

Q(�̌x x̄, �̌y ȳ)� Q(�̂x x̄, �̂y ȳ)

� �̂2x �̂
2
y((Ax̂ x̂�)· ŷ ŷ�+ x̂�H ŷ)

= �̂2x �̂
2
y Q(x̂, ŷ)

� �̂2x �̂
2
y(E[Q(x̂, ŷ)]+ε0�0),

where the last inequality comes from (27). We obtain the desired result and complete the
proof. �
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5. APPROXIMATION SOLUTION OF THE RELAXED PROBLEM

In this paper, we mainly focus on the theoretical analysis of the polynomial time approximation
algorithms for (1), which depends strongly on our ability to approximately solve the corresponding
relaxed problem (3). In this section, we discuss the following special form of (1) whose related
bi-linear SDP relaxation can be approximately solved in polynomial time.

min
n∑

i,s=1

m∑
j,t=1

ai jst xi y j xs yt

s.t. ‖x‖=1, ‖y‖=1,

x�Mkx�1, k∈P,

y�Nl y�1, l ∈Q,

(32)

where Mk (k∈P) and Nl (l ∈Q) are positive semidefinite matrices. The model (32) is also a
generalization of the problem studied in [4] and is slightly different from the problem in [6]. In
this case, the related bi-linear SDP relaxation of (32) is

�min :=min (AX )·Y
s.t. In ·X=1, Im ·Y =1,

Mk ·X�1, k∈P,

Nl ·Y�1, l ∈Q,

X�0, Y �0.

(33)

In order to study the approximation solution of (33), we need the following assumption and
lemma, where the lemma generalized the result in [4] and was proved in [6].

Assumption 3
In ·Mk<n for every k∈P, and Im ·Nl<m for every l ∈Q.

Lemma 5.1
For any X ∈Sn , the following statements hold:

(1) If ‖X‖F�1/n, then X̄ := X+(1/n)In �0.
(2) Suppose n�2. If In ·X�0 and X�−(1/n)In , then ‖X‖F�

√
1−1/n.

Since Mk(k∈P) and Nl (l ∈Q) are positive semidefinite, we have that, after some linear trans-
formations X := X−(1/n)In and Y :=Y−(1/m)Im , by Lemma 5.1, a restriction and a relaxation
of (33) can be written as

�(�) :=min �(X,Y )= (AX )·Y + 1

m
(AX )· Im + 1

n
(AIn)·Y + 1

mn
(AIn)· Im

s.t. In ·X=0, Im ·Y =0,(
Mk ·X+ 1

n
In ·Mk

)2
�1, k∈P,

(
Nl ·Y + 1

m
Im ·Nl

)2
�1, l ∈Q,

‖X‖F��, ‖Y‖F��,

(34)

where �=1/max{n,m} and �=√
1−1/max{n,m} correspond to a restriction and a relaxation,

respectively. Obviously,

�

(√
1− 1

max{n,m}

)
��min��

(
1

max{n,m}
)

.
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For any X ∈Sn , we stack up the entries of X (ignoring the symmetric part) into a vector, denoted
by vecS(X ), i.e.

vecS(X )= (X11,
√
2X12, . . . ,

√
2X1n, X22,

√
2X23, . . . ,

√
2X(n−1)n, Xnn)

�.

Then there exists a suitable quadratic function q0(u,v), such that (34) can be rewritten as:

min q0(vec(X ),vec(Y ))

s.t. vecS(In)
�vecS(X )=0, vecS(Im )

�vecS(Y )=0,(
vecS(M

k )�vecS(X )+ 1

n
In ·Mk

)2
�1, k∈P,

(
vecS(N

l )�vecS(Y )+ 1

m
Im ·Nl

)2
�1, l ∈Q,

‖vecS(X )‖��, ‖vecS(Y )‖��.

(35)

The first two equation constraints can be used to eliminate two variables, denoted by X11 and Y11,
by their linear relation with the other variables. Let u=vecS(X )\X11 and v=vecS(Y )\Y11. Then
(35) can be equivalently formulated as

min q̄0(u,v)

s.t.

(
(ak)�u+ 1

m
In ·Mk

)2
�1, k∈P,

(
(bl )�v+ 1

m
Im ·Nl

)2
�1, l ∈Q,

‖A0u‖��, ‖B0v‖��,

(36)

where q̄0(u,v) is a quadratic function, A0 and B0 are two suitable matrices, and ak (k∈P) and
bl (l ∈Q) are some suitable vectors.

It is well known that quadratic function q(x)= x�Ax+2b�x+c can be represented by the
matrix denoted by:

M(q(·))=
[
c b�

b A

]
.

Consequently, a standard SDP relaxation for the homogenized version of (36) is

z(�2) :=min Q̄0 ·Z
s.t. M̄k ·Z�1, k∈P,

N̄ l ·Z�1, l ∈Q,

Īn ·Z��2, Īm ·Z��2,

Z =

⎡
⎢⎢⎣
1 u� v�

u W U�

v U V

⎤
⎥⎥⎦�0,

(37)

where Q̄0, M̄k (k∈P), N̄ l (l ∈Q), Īn , and Īm correspond to the matrix representation of the
quadratic constraint functions in (35), respectively.

Notice that (37) can be solved in polynomial time. Based on the analysis above, we have the
following main conclusion in this section, whose proof is similar to that of Theorem 3 in [6].
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Theorem 5.1
Under Assumption 3, a (1−	)2/(

√
p+q+2+	)2�(�−1)-approximation solution of (33) can be

found in polynomial time, where �=max{m,n} and

	=max

{
1

n
In ·Mk, i ∈P,

1

m
Im ·Nl , l ∈Q

}
.

Proof
Let Z̄ be an optimal solution of (37) with �=1/�. By Theorem 1 in [1] and Assumption 3, a
feasible solution pair (ū, v̄) of (36) can be found in polynomial time, such that

q0(ū, v̄)� (1−	)2

(
√
p+q+2+	)2

z

(
1

�2

)
.

Based on the obtained (ū, v̄) and the stack relation between the vector and the matrix, we can
find a feasible solution pair (X̄ , Ȳ ) for (34) with �=1/�, such that �(X̄ , Ȳ )=q0(ū, v̄). Denote
X∗ = X̄+(1/n)In and Y ∗ = Ȳ +(1/m)Im . By Lemma 5.1(1), it holds that (X∗,Y ∗) is a feasible
solution of (33) satisfying

(AX∗)·Y ∗� (1−	)2

(
√
p+q+2+	)2

z

(
1

�2

)
. (38)

On the other hand, it is easy to see that z(�) is convex on ��0, and hence

z

(
1

�2

)
�
(
1− 1

�(�−1)

)
z(0)+ 1

�(�−1)
z

(
1− 1

�

)

� 1

�(�−1)
z

(
1− 1

�

)

� 1

�(�−1)
�min (39)

where the second inequality holds from the fact that z(0)�0 and the last inequality holds since
that z(1−1/�)��(

√
1−1/�)��min. Combining (38) and (39), one obtain

(AX∗)·Y ∗� (1−	)2

(
√
p+q+2+	)2�(�−1)

�min,

which shows that (X∗,Y ∗) is a (1−	)2/(
√
p+q+2+	)2�(�−1)-approximation solution of (33),

since 0�	<1 from Assumption 3. We complete the proof. �

Remark 5.1
(a) For two special forms of maximization problems with quadratic constraints, some methods for
finding approximation solution in polynomial time were presented by Zhang et al. under some mild
conditions, see Theorems 4–6 in [6] for details. Theorems 5.1 in this paper are slightly different
from these conclusions. (b) It is interesting to find some other forms of (1) whose bi-linear SDP
relaxation can be approximately solved in polynomial time.
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