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SUMMARY

In this paper, using variational analysis and optimization techniques, we examine some fundamental analytic
properties of Z-eigenvalues of a real symmetric tensor with even order. We first establish that the maximum
Z-eigenvalue function is a continuous and convex function on the symmetric tensor space and so provide
formulas of the convex conjugate function and �-subdifferential of the maximum Z-eigenvalue function.
Consequently, for an mth-order n-dimensional tensorA, we show that the normalized eigenspace associated

with maximum Z-eigenvalue function is �th-order Hölder stable at A with � D 1

m.3m 3/n 1 1
. As a by-

product, we also establish that the maximum Z-eigenvalue function is always at least �th-order semismooth
at A. As an application, we introduce the characteristic tensor of a hypergraph and show that the maximum
Z-eigenvalue function of the associated characteristic tensor provides a natural link for the combinatorial
structure and the analytic structure of the underlying hypergraph. Finally, we establish a variational for-
mula for the second largest Z-eigenvalue for the characteristic tensor of a hypergraph and use it to provide
lower bounds for the bipartition width of a hypergraph. Some numerical examples are also provided to show
how one can compute the largest/second-largest Z-eigenvalue of a medium size tensor, using polynomial
optimization techniques and our variational formula. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An mth-order n-dimensional tensor A consists of nm entries in real number:

AD .Ai1i2:::im/, Ai1i2:::im 2R, 1 6 i1, i2, : : : , im 6 n. (1.1)

We say a tensor A is symmetric if the value of Ai1i2:::im is invariant under any permutation of its

index fi1, i2, : : : , img. Clearly, when m D 2, a symmetric tensor is nothing but a symmetric matrix.

A symmetric tensor uniquely defines an mth-degree homogeneous polynomial function f with real

coefficient: for all x D .x1, : : : , xn/T 2R
n,

f .x/DAxm WD

n
X

i1,:::,imD1

Ai1i2���imxi1 : : : xim .
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Over the last few years, there has been a realization that there is a reasonably complete and consis-

tent theory of eigenvalues and singular values for tensors of higher order, proposed by Lim and Qi

independently, that generalizes the theory of matrix eigenvalues and singular values in various man-

ners and extent. Recently, numerical study on tensors also has attracted many researchers because

of its wide applications in polynomial optimization [1], hypergraph theory [2, 3], higher-order

Markov chain [4], signal processing [5], and image science [6]. In particular, various efficiently

numerical schemes have been proposed to find the low rank approximations of a tensor and the

eigenvalues/eigenvectors of a tensor with specific structure (cf. [7–12,43]).

Among the various definitions of an eigenvalue of a symmetric tensor, there are two particular

interesting definitions called Z-eigenvalues and H -eigenvalues (see the definition later on). Recall

that a tensor is said to be positive semidefinite if the corresponding homogeneous polynomial func-

tion of the tensor uniquely determined always takes nonnegative values. As shown in [13], a tensor

is positive semidefinite if and only if its Z-eigenvalues (resp. H -eigenvalues) are all nonnegative.

So, the Z-eigenvalues and H -eigenvalues play an important role in determining whether a sym-

metric tensor is positive semidefinite or not. On the other hand, Z-eigenvalues and H -eigenvalues

can be fundamentally different as investigated in [13]. For example, finding an H -eigenvalue of a

symmetric tensor is equivalent to solving a homogeneous polynomial equation, whereas calculating

a Z-eigenvalue is equivalent to solving nonhomogeneous polynomial equations. Moreover, a diago-

nal symmetric tensor A has exactly n many H -eigenvalues and may have more than n Z-eigenvalues

(for more details, see [13]).

Very recently, in our preceding paper [14], we investigated the analytic properties of the max-

imum H -eigenvalue function of a symmetric tensor. In particular, we showed that, for an mth-

order n-dimensional symmetric tensor A, the H -maximum eigenvalue function is 1
.2m 1/n th-order

semismooth at A when the geometric multiplicity of A is one. As an application, we proposed a

generalized Newton method to solve the space tensor conic linear programming (STCLP) prob-

lem that arises in medical imaging area. Local convergence rate of this method was established by

using the semismooth property of the maximum H -eigenvalue function. In this paper, we continue

our study and examine the analytic properties of Z-eigenvalues. We first show that the maximum

Z-eigenvalue function is continuous, convex, and differentiable almost everywhere, extending the

fundamental analytic properties of the maximum eigenvalue of a symmetric matrix. Then, we estab-

lish that the normalized eigenspace associated with maximum Z-eigenvalue function is �th-order

Hölder stable at A with � D 1
m.3m 3/n 1 1

. As a by-product, without the geometric multiplicity

assumption, we also establish that the maximum Z-eigenvalue function is always at least �th-order

semismooth atA. As an application, we introduce the characteristic tensor of a hypergraph and show

that the maximum Z-eigenvalue function of the associated characteristic tensor provides a natural

link for the combinatorial structure and the analytic structure of the underlying hypergraph. A vari-

ational formula for the second largest Z-eigenvalue for the characteristic tensor of a hypergraph is

also provided.

The organization of this paper is as follows. We first fix the notations and collect some basic

definitions in Section 2. In Section 3, by using the variational analysis techniques, we show that

the maximum Z-eigenvalue function is continuous and convex and hence differentiable almost

everywhere. In particular, we obtain the formula for calculating the convex conjugate of and

�-convex subdifferential for the maximum Z-eigenvalue function. In Section 4, for an mth-order

n-dimensional tensor A, we show that the normalized eigenspace associated with maximum

Z-eigenvalue function is �th-order Hölder stable at A with � D 1
m.3m 3/n 1 1

. We also show

that the maximum Z-eigenvalue function is always at least �th-order semismooth at A. Suffi-

cient condition ensuring the strong semismoothness of the maximum Z-eigenvalue function is

also provided. In Section 5, we introduce the characteristic tensor of a hypergraph and show

that the maximum Z-eigenvalue function of the associated characteristic tensor provides a natu-

ral link for the combinatorial structure and the analytic structure of the underlying hypergraph.

Moreover, we establish a variational formula for the second largest Z-eigenvalue for the character-

istic tensor of a hypergraph. In Section 6, numerical examples are provided to show how one can

compute the largest and second largest Z-eigenvalues of a real symmetric tensor using polynomial
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optimization technique. Finally, we conclude our paper and present some future research topics in

Section 7.

2. PRELIMINARIES

In this section, we fix the notations and collect some basic definitions and facts that we will use later

on. Let X ,Y be finite dimensional inner product spaces. We use BX (resp. BY ) to denote the unit

open ball in X (resp. Y ). Denote the space of all linear map from X to Y by L.X ,Y /. The norm of

X is defined by kxk D
p

hx, xiX for all x 2 X , where h�, �iX is the inner product in X . Consider

a locally Lipschitz function G W X ! Y . By the Rademacher’s theorem, G is differentiable almost

everywhere on X . Let DG be the set consisting of all the points where G is differentiable. Then, for

any x 2DG , the derivative of G, rG.x/ exists. Denote

JBG.x/D fV 2 L.X ,Y / W V D lim
xk!x

rG.xk/, xk 2DGg.

Then, its Clarke’s generalized Jacobian [41, 42] is defined by JC G.x/ D convJBG.x/. In particu-

lar, if Y D R and G D g where g W X ! R is locally Lipschitz, by identifying X� as X , then the

Clarke’s generalized Jacobian reduces to the Clarke’s subdifferential defined by

@C g.x/D f� 2X W h� , viX 6 gı.xI v/ for all v 2Xg,

where h�, �iX is the inner product in X and gı.xI v/ is the Clarke directional derivative of g at the

point x in the direction v given by

gı.xI v/D lim sup
y!x, t#0

g.y C tv/ g.y/

t
.

The Clarke subdifferential @C g.x/ is a nonempty, convex, and compact subset of X for each x 2X .

Recall that g is convex on X if

g.�x1 C .1 �/x2/ 6 �g.x1/C .1 �/g.x2/, 8� 2 Œ0, 1� and x1, x2 2X .

For each � > 0, define the �-convex subdifferential of g at x by

@�g.x/ WD f� 2X W h� , ´ xiX 6 g.´/ g.x/C � for all ´ 2Xg.

If � D 0, we simply call it convex subdifferential of g and denote it by @g.x/. If g is convex on X ,

then @C g.x/ D @g.x/ for all x 2 X . The Fenchel conjugate function of a convex function g on X

is denoted by g� and is defined by

g�.�/D sup
x2X

fh� , xiX  g.x/g for all � 2X .

An important property relating the Fenchel conjugate and the �-subdifferential is the so-called

generalized Fenchel inequality (cf. [15, Theorem 2.4.2 (ii)])

g.x/C g�.�/ 6 h� , xiX C � , � 2 @�g.x/.

We are now ready to state the definitions of semismooth functions and �th-order semismooth

functions.

Definition 2.1

Let G W X ! Y be a locally Lipschitz and directionally differentiable function. Then, the function

G is said to be semismooth at x if

G.xC�x/ G.x/ V�x D o.k�xk/, 8V 2 JC G.xC�x/.

Moreover, G is said to be �th-order semismooth function at x for some � 2 .0, 1� if

G.xC�x/ G.x/ V�x DO.k�xk1C�/, 8V 2 JC G.xC�x/.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:1001–1029

DOI: 10.1002/nla



1004 G. LI, L. QI AND G. YU

In particular, if � D 1, we say G is strongly semismooth at x. We also say G W X ! Y is a

semismooth (resp. �th-order semismooth, strongly semismooth) function if G is semismooth (resp.

�th-order semismooth, strongly semismooth) at x for all x 2X .

The concept of a semismooth function was originally given by Mifflin [16] when Y D R. Later

on, Qi and Sun [17] (see also [48]) extended the definition to vector value functions and showed that

semismooth functions play an important role in establishing the local convergence rate of the gen-

eralized Newton method for solving nonsmooth equations. From the definitions of the semismooth

functions, it is clear that scalar multiplication and sums of semismooth (resp. �th-order semismooth)

functions are still semismooth (resp. �th-order semismooth) functions. An important example of the

strongly semismooth function is the eigenvalue function of a symmetric matrix [18]. The next result

[18, Theorem 3.7] provides a convenient tool for proving �th-order semismoothness.

Lemma 2.1

Suppose that G W R
n ! R

m is locally Lipschitzian and directionally differentiable in a neigh-

borhood of x. Let p 2 .0, 1�. Then, G is �th-order semismooth if and only if for any x C �x 2

DG ,

G.xC�x/ G.x/ rG.xC�x/�x DO.k�xk1C�/.

Next, we recall some basic definitions and facts of tensor and its eigenvalues. Let n 2 N and let m

be an even number. Consider

S D fA WA is an mth-order n-dimensional symmetric tensorg.

Clearly, S is a vector space under the addition and multiplication defined as follows: for any t 2R,

AD .Ai1,:::,im/16i1,:::,im6n and B D .Bi1,:::,im/16i1,:::,im6n

ACB D .Ai1,:::,im CBi1,:::,im/16i1,:::,im6n and tAD .tAi1,:::,im/16i1,:::,im6n.

For each A,B 2 S , we define the inner product by

hA,BiS D

n
X

i1,:::,imD1

Ai1,:::,imBi1,:::,im .

The corresponding norm is defined by kAkS D .hA,AiS /1=2 D

0

@

n
X

i1,:::,imD1

A
2
i1,:::,im

1

A

1=2

. The unit

ball in S is denoted by BS . For a vector x 2 R
n, we use xi to denotes its i th component. We use

xŒm 1� to denote a vector in R
n such that x

Œm 1�
i D .xi /

m 1. Moreover, for a vector x 2R
n, we use

xm to denote the mth-order n-dimensional symmetric rank one tensor induced by x, that is,

.xm/i1:::im D xi1 : : : xim , 8 i1, : : : , im 2 f1, : : : ,ng.

Let A 2 S . By the tensor product (cf. [5]), Axm is a real number defined as

Axm D

n
X

i1,:::,imD1

Ai1,:::,imxi1 : : : xim D hA, xmiS

and Axm 1 is a vector in R
n whose i th component is

n
X

i2���imD1

Ai i2���imxi2 : : : xim . (2.2)

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:1001–1029
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Definition 2.2

Let A be an mth-order n-dimensional real symmetric tensor. We say � 2 R is a Z-eigenvalue of A

and x ¤ 0, x 2R
n is a Z-eigenvector corresponding to � if .x,�/ satisfies

�

Axm 1 D �x,

xT x D 1.

Moreover, � 2 R is an H -eigenvalue of A, and x ¤ 0, x 2 R
n is an H -eigenvector corresponding

to � if .x,�/ satisfies

Axm 1 D �xŒm 1�.

This definition of Z-eigenvalues and H -eigenvalues was introduced by Qi in [13]. Independently,

Lim [11] also gave the definitions via a variational approach and established an interesting Perron–

Frobenius theorem for tensors with nonnegative entries. From [13] and [19], both Z-eigenvalues and

H -eigenvalues for an even order symmetric tensor always exist. Moreover, from the definitions, we

can see that finding an H -eigenvalue of a symmetric tensor is equivalent to solving a homogeneous

polynomial equation, whereas calculating a Z-eigenvalue is equivalent to solving nonhomogeneous

polynomial equations. In general, the behaviors of Z-eigenvalues and H -eigenvalues can be quite

different. For example, a diagonal symmetric tensor A has exactly n many H -eigenvalues and may

have more than n many Z-eigenvalues (for more details, see [13]). Recently, by reducing a sym-

metric tensor to a pseudo-canonical form, Qi et al. [20] proposed a direct method for finding all

the Z-eigenvalues in the case of order three and dimension three. More recently, Kolda and Mayo

[21] provided a shifted power method for computing a Z-eigenvalue and its associated eigenvector

for a symmetric tensor. For numerical methods of finding H -eigenvalues for tensors with nonneg-

ative entries, see [12]. Recently, a new method for finding the maximum Z-eigenvalue of a weakly

nonnegative symmetric tensor using sum-of-squares programming problem is also proposed in [22].

3. THE MAXIMUM Z-EIGENVALUE FUNCTION

In this section, we examine the continuity and differentiability of the maximum Z-eigenvalue func-

tion. To do this, we first formally define the maximum Z-eigenvalue function. Because any real

symmetric tensor with even order always has a Z-eigenvalue (cf. [13, 19]), it then makes sense to

define the maximum Z-eigenvalue function �Z
1 W S !R as follows:

�Z
1 .A/D f� 2R W � is the largest Z-eigenvalue of Ag.

We first recall the following simple lemma, which will be useful for our later analysis. Its proof can

be found in [11, 13]. However, for the completeness of the paper, we present the proof here.

Lemma 3.1

Let A be an mth-order n-dimensional real symmetric tensor where m is even. Then, we have

�Z
1 .A/D max

kxkD1
Axm.

Proof

Consider the following optimization problem .P /

.P / maxx2Rn Axm

s.t. kxkm D 1.

Let f .x/ WD Axm and g.x/ WD .xT x/
m
2 D kxkm. Because f is continuous and the feasible set

fx W g.x/ D 1g is compact, a global maximizer of .P / exists. Denote a maximizer of .P / by

x0. Clearly, x0 ¤ 0. Note that g is a homogeneous polynomial with degree m. The Euler identity

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:1001–1029
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implies that rg.x/T x D mg.x/. Thus, for any x with g.x/ D 1, rg.x/ ¤ 0. So, the standard

Karush–Kuhn–Tucker (KKT) theory implies that there exists �0 2R such that

mAxm 1
0  m�0kx0k

m 2x0 Drf .x0/ �0rg.x0/D 0.

This implies that �0 is a real eigenvalue of A and so �0 6 �Z
1 .A/. Note that v.P / D Axm

0 D

xT
0

 

Axm 1
0

�

D xT
0 .�0x0/ D �0, where v.P / is the optimal value of .P /. It follows that

v.P / 6 �Z
1 .A/, that is, maxkxkmD1 Axm 6 �Z

1 .A/. Finally, noting that, for any eigenvector u

corresponds to �Z
1 .A/ with kuk D 1, we have

Aum D uT .Aum 1/D �Z
1 .A/uT uD �Z

1 .A/kuk2 D �Z
1 .A/.

Thus, �Z
1 .A/D max

kxkD1
Axm, and so, the conclusion follows . �

Remark 3.1

Define the normalized eigenspace associated with �Z
1 .A/ by EZ

1 .A/ WD fu W Aum 1 D

�Z
1 .A/u, kuk D 1g. From the proof of the Lemma 3.1, we see that

EZ
1 .A/D

˚

u WAum D �Z
1 .A/, kuk D 1

	

.

Next, we show that the maximum Z-eigenvalue function is continuous and convex.

Theorem 3.1

The function �Z
1 is a continuous and convex function on S . Moreover, its conjugate

 

�Z
1

��
can be

calculated as

 

�Z
1

��
.B/D

�

0, if B 2 convfum W kuk D 1g,

C1, else,

where convA denotes the convex hull of A and is defined by

convAD

(

s
X

iD1

�iai W �i > 0,

s
X

iD1

�i D 1, ai 2 A, s 2N

)

.

Proof

Let T WD fum W kuk D 1g � S . Because �Z
1 .A/ D maxkxkD1 Axm, we have �Z

1 .A/ D

maxB2T hB,AiS . Note that B 7! hB,AiS is affine and the supremum of a series of affine func-

tions is convex. It follows that �Z
1 is a finite-valued convex function on S and so is continuous and

convex. From the definition, it can be verified that maxB2T hB,AiS DmaxB2convT hB,AiS , and so,

�Z
1 .A/D max

B2convT
hB,AiS . (3.3)

It follows that, for each B 2 S ,
 

�Z
1

��
.B/D sup

A2S

˚

hB,AiS  �Z
1 .A/

	

D sup
A2S

˚

hB,AiS  �Z
1 .A/

	

D sup
A2S

fhB,AiS  sup
C2convT

hC,Aig

D sup
A2S

min
C2convT

fhB,AiS  hC,AiSg

D min
C2convT

sup
A2S

fhB,AiS  hC,AiSg,

where the last equality follows from the standard convex–concave minimax theorem (cf.

[15, Theorem 2.10.2]). Note that for each C 2 convT ,

sup
A2S

fhB,AiS  hC,AiSg D

�

0, if B D C,

C1, else.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:1001–1029
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Thus, the conclusion follows. �

As �Z
1 is continuous and convex, its convex �-subdifferential .� > 0/ always exists where the

convex �-subdifferential (cf. [23]) @��Z
1 is defined by

@��Z
1 .A/D

˚

B 2 S W hB,A0  AiS 6 �Z
1 .A0/ �Z

1 .A/C � for all A0 2 S
	

.

We are now ready to state the formula for the �-subdifferential of maximum Z-eigenvalue

function.

Theorem 3.2

Let A be an mth-order n-dimensional symmetric tensor where m is even. Then, for all � > 0, we

have

@��Z
1 .A/D

(

B 2 S W B D

s
X

iD1

�iu
m
i ,�i > 0,

s
X

iD1

�i D 1, kuik D 1, s 2N

and �Z
1 .A/ 6

s
X

iD1

�i

 

Aum
i

�

C �

)

.

Proof

From the generalized Fenchel inequality, we have

B 2 @��Z
1 .A/ , �Z

1 .A/C
 

�Z
1

��
.B/ 6 hA,BiS C �.

Note that

 

�Z
1

��
.B/D

�

0, if B 2 convfum W kuk D 1g,

C1, else.

So, B 2 @��Z
1 .A/ if and only if B 2 convfum W kuk D 1g and

�Z
1 .A/ 6 hA,BiS C �.

This is further equivalent to the fact that there exist s 2 N, �i > 0, i D 1, : : : , s with
Ps

iD1 �i D 1

and kuik D 1 such that

B D

s
X

iD1

�iu
m
i and �Z

1 .A/ 6

*

A,

s
X

iD1

�iu
m
i

+

S

C � D

s
X

iD1

�i

 

Aum
i

�

C �.

Thus, the conclusion follows. �

When � D 0, the convex subdifferential formula can be simplified as follows.

Corollary 3.1

Let A be an mth-order n-dimensional symmetric tensor where m is even. Then, we have

@�Z
1 .A/D conv

˚

um W u 2EZ
1 .A/

	

.

Proof

Let � D 0. Then, the preceding theorem shows that

@�Z
1 .A/D

(

B 2 S W B D

s
X

iD1

�iu
m
i ,�i > 0,

s
X

iD1

�i D 1, kuik D 1, s 2N

and �Z
1 .A/ 6

s
X

iD1

�i

 

Aum
i

�

)

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:1001–1029
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Note that �Z
1 .A/ D maxkxkD1 Axm. So, �Z

1 .A/ 6
Ps

iD1 �i

 

Aum
i

�

with �i > 0,
Ps

iD1 �i D 1

and kuik D 1 is equivalent to �Z
1 .A/DAum

i , for all i D 1, : : : , s. It follows that

@�Z
1 .A/D

(

B 2 S W B D

s
X

iD1

�iu
m
i ,�i > 0,

s
X

iD1

�i D 1, kuik D 1, s 2N

and �Z
1 .A/DAum

i

)

Therefore, the conclusion follows Remark 3.1. �

Remark 3.2

If mD 2, our subdifferential formula for �Z
1 reduces to

@�Z
1 .A/D conv

˚

uuT W
 

�Z
1 .A/,u

�

is an eigenpair of A and kuk D 1
	

,

which is the classical subdifferential formula of the maximum eigenvalue function in the matrix case

(cf. [24]).

Definition 3.1

Let A be an mth-order n-dimensional symmetric tensor where m is even. Recall that the normal-

ized eigenspace associated with �Z
1 .A/ is given by EZ

1 .A/ WD
˚

u WAum 1 D �Z
1 .A/u, kuk D 1

	

.

Then, the eigenspace associated with �Z
1 .A/ is spanEZ

1 .A/, where spanEZ
1 .A/ is the subspace

generated by EZ
1 .A/, that is, spanEZ

1 .A/ WD
S

t2R

˚

t convEZ
1 .A/

	

. We now define the geometric

multiplicity of �Z
1 .A/ as the dimension of the subspace spanEZ

1 .A/.

Corollary 3.2

Let A be an mth-order n-dimensional symmetric tensor where m is even. Then, the maximum

Z-eigenvalue function �Z
1 is locally Lipschitz and is (Fréchet) differentiable almost everywhere.

Moreover, �Z
1 is differentiable at A 2 S if and only if the geometric multiplicity of �Z

1 .A/ is one.

Proof

From the preceding theorem, the maximum Z-eigenvalue function �Z
1 is continuous and convex.

So, �Z
1 is locally Lipschitz. Then, the Radamecher theorem implies that it is (Fréchet) differen-

tiable almost everywhere. To see the last assertion, as m is even, we see that um D . u/m. So, the

geometric multiplicity of �Z
1 .A/ is one is equivalent to the fact that the set

@�Z
1 .A/D

˚

um W
 

�Z
1 .A/,u

�

is an eigenpair of A and kuk D 1
	

is a singleton. Note that a continuous convex function on a finite dimensional space is Fréchet

differentiable if and only if its subdifferential is a singleton. Thus, the conclusion follows. �

3.1. Perturbation bound

Consider A.v/ D AC
Pr

jD1 vjBj , where v D .v1, : : : , vr/ 2 R
r and A,Bj 2 S , j D 1, : : : , r .

Define the map h WRr !R by

h.v/D �Z
1 .A.v//.

Then, we see that h is a continuous and convex function on R
r . In the next discussion, we present

the following sensitivity result of the maximum Z-eigenvalue function. In the matrix case, this result

collapses to the classical sensitivity result derived in [25].

Proposition 3.1

Let A,Bj 2 S , j D 1, : : : , r . Consider the map h WRr !R defined by

h.v/D �Z
1

0

@AC

r
X

jD1

vjBj

1

A ,
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where v D .v1, : : : , vr/ 2R
r . Then, we have

sup
u2EZ

1
.A/

r
X

jD1

vj hBj ,u
miS 6 h.v/ h.0/ 6 �Z

1

0

@

r
X

jD1

vjBj

1

A .

Proof

First of all, from (3.3), we have

h.v/ h.0/D max
C2convT

*

C,AC

r
X

jD1

vjBj

+

S

 max
C2convT

hC,AiS

6 max
C2convT

*

C,

r
X

jD1

vjBj

+

S

D �Z
1

0

@

r
X

jD1

vjBj

1

A .

On the other hand, from the convexity of h, we have

h.v/ h.0/ > sup
a2@h.0/

aT v.

Note from the chain rule of the convex subdifferential (cf. [15]) that

a 2 @h.0/D

8

ˆ

<

ˆ

:

0

B

@

hB1,DiS
...

hBr ,DiS

1

C

A
WD 2 @�Z

1 .A/

9

>

=

>

;

.

So,

sup
a2@h.0/

aT v D sup
D2@�Z

1
.A/

r
X

jD1

hBj ,DiSvj D sup
�i >0,

Ps
iD1

�iD1,s2N,

kui kD1,�Z
1

.A/DAum
i

r
X

jD1

*

Bj ,

s
X

iD1

�iu
m
i

+

S

vj

D sup
�i >0,

Ps
iD1

�iD1,s2N,

kui kD1,�Z
1

.A/DAum
i

s
X

iD1

�i

*

r
X

jD1

vjBj ,u
m
i

+

S

D sup
�i >0,

Ps
iD1

�iD1,s2N,

kui kD1,�Z
1

.A/DAum
i

*

r
X

jD1

vjBj ,

s
X

iD1

�iu
m
i

+

S

D sup

kukD1,�Z
1

.A/DAum

*

r
X

jD1

vjBj ,u
m

+

S

D sup
u2EZ

1
.A/

r
X

jD1

vj hBj ,u
miS ,

where the last equality follows from Remark 3.1. �

4. STABILITY ANALYSIS OF THE NORMALIZED EIGENSPACE

In this section, we study the stability of the normalized eigenspace EZ
1 .A/, that is, how the normal-

ized eigenspace EZ
1 .A/ changes when the corresponding symmetric tensor A perturbs. To achieve

the Hölder stability, we need the following two results. The first result gives an effective estimate for

the growth rate (Łojasiewicz exponent) of a polynomial with real coefficients (for sharper exponent

under specific conditions, see [26, Theorem 2.3], [27, Lemma 4.3] and [45]). Then, the second result

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:1001–1029
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is a local error bound result that estimates how far a point to the lower level set Sf D fx W f .x/ 6 0g

is, in terms of its function value (for related error bound result, see [28, 29]).

Lemma 4.1 (cf. [30, Theorem 4.2])

Let f be a polynomial with real coefficients on R
n with degree m > 2. Suppose that f .0/D 0 and

rf .0/D 0. Then, there exist �, r , c > 0 such that

krf .x/k> cjf .x/j� for all kxk6 � with f .x/ 6 r ,

where � 6 1 .m.3m 3/n 1/ 1.

Lemma 4.2 (cf. [31, Corollary 2.1])

Let f W R
n ! R be a continuously differentiable function, and let x 2 R

n such that x 2 bdrySf ,

where Sf D fx W f .x/ 6 0g and bdryC denotes the boundary of the set C . Suppose that there exist

�, c > 0 such that krf .x/kf .x/� 1 > c for all x with kx  xk6 � and x … Sf . Then,

d.x,Sf / 6
1

c
.maxff .x/, 0g/� for all x with kx  xk6

�

2
.

Recall that, for an .n � n/ matrix M , M � 0 (resp. M � 0) means that M is negative definite

(resp. negative semidefinite). Moreover, we use In to denote the .n�n/ identity matrix. We now pro-

vide the stability result of the normalized eigenspace. We achieve this by noting that the normalized

eigenspace EZ
1 .A/ is just the optimal solution of the constraint polynomial optimization problem

.PA/ maxfAxm W kxk D 1g,

and the stability of the optimal solution of the parameterized optimization problem .PA/ can be

approached by examining the growth property of a related real polynomial, which can be regarded

as a generalized Lagrangian function of the constraint optimization problem .PA/.

Theorem 4.1

Let A be an mth-order n-dimensional symmetric tensor where m is even and m > 4.

(i) Then, the normalized eigenspace is Hölder stable at A with the order � D 1
m.3m 3/n 1 1

,

that is, there exist � > 0 and ˛ > 0 such that for any tensor B with kB  AkS 6 �,

EZ
1 .B/�EZ

1 .A/C ˛.kB  AkS /
1
d BRn , (4.4)

where d 2N with d 6 m.3m 3/n 1  1, and BRn is the unit ball in R
n.

(ii) If we further assume that the following second-order condition holds: 8 u 2EZ
1 .A/

.m 1/Aum 2  �Z
1 .A/..m 2/uuT C In/� 0 on Cu D fh 2R

n W hT uD 0g, (4.5)

then the integer d in (4.4) can be set as 1, that is, there exist � > 0 and ˛ > 0 such that for

any tensor B with kB  AkS 6 �,

EZ
1 .B/�EZ

1 .A/C ˛kB  AkS BRn .

Proof of (i)

Fix any u 2EZ
1 .A/. Let 
 > 0, and let

f .x/ WD �Z
1 .A/kxC ukm  A.xC u/m C .kxC uk2  1/2.

It can be seen that f is a real polynomial on R
n with degree m. Moreover, it can be verified that f

is nonnegative, f .0/D 0 and rf .0/D 0 (as 0 is the minimizer of f ). So, Lemma 4.1 implies that

there exist 
u, ru, cu > 0 such that

krf .x/k> cujf .x/j� D f .x/� for all kxk6 
u with f .x/ 6 ru,

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:1001–1029
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where � 6 1  .m.3m  3/n 1/ 1. Choose ıu < 
u=2 such that f .x/ 6 ru for all kxk 6 ıu (this

can be carried out as f .0/D 0 and f is continuous). Then, we see that

krf .x/k jf .x/j.1 �/ 1 D krf .x/k jf .x/j � > cu for all kxk6 2ıu.

Letting h.x/ WD f .x  u/D �Z
1 .A/kxkm  A.x/m C .kxk2  1/2, we obtain that

krh.x/k jh.x/j.1 �/ 1 > cu for all kx  uk6 2ıu.

�

As EZ
1 .A/ � fx W kxk D 1g, EZ

1 .A/ has no interior point and hence u 2 bdryEZ
1 .A/. Note that h

is nonnegative and fx W h.x/ 6 0g D fx W h.x/ D 0g D EZ
1 .A/. Applying Lemma 4.2 with f D h

and x D u, for each u 2EZ
1 .A/, we can find cu > 0 such that

d
 

x,EZ
1 .A/

�

6
1

cu

h.x/� for all x with kx  uk6 ıu, (4.6)

where � D 1 � > .m.3m 3/n 1/ 1. Now, using standard compactness argument, we show that

there exist c > 0 and ı > 0 such that

d
 

x,EZ
1 .A/

�

6
1

c
h.x/� for all x with d

 

x,EZ
1 .A/

�

6 ı. (4.7)

As EZ
1 .A/ is compact and

EZ
1 .A/�

[

u2EZ
1

.A/

�

x W kx  uk6
ıu

2

�

,

there exist l 2N and fu1, : : : ,ulg �EZ
1 .A/ such that

EZ
1 .A/�

l
[

iD1

�

x W kx  uik6
ıui

2

�

. (4.8)

Take ı D 1
2
minfıu1

, : : : , ıul
g > 0 and c D minfcu1

, : : : , cul
g > 0. Then, for each x with

d
 

x,EZ
1 .A/

�

6 ı, we can find a 2 EZ
1 .A/ such that kx  ak 6 ı. By (4.8), there exists

i0 2 f1, : : : , lg such that ka ui0k6
ıui0

2
. So,

kx  ui0k6 kx  akC ka ui0k6 ıC
ıui0

2
6 ıui0

.

Then, (4.6) implies that

d.x,EZ
1 .A// 6

1

cui0

h.x/� 6
1

c
h.x/� .

Thus, (4.7) holds. Letting ˇ WD c
1
� , this shows that for any x with d

 

x,EZ
1 .A/

�

6 ı,

�Z
1 .A/kxkm  A.x/m C .kxk2  1/2 D h.x/ > c

1
� d

 

x,EZ
1 .A/

�

1
� D ˇd

 

x,EZ
1 .A/

�

1
� . (4.9)

For the aforementioned ı, there exists � > 0 such that for any B 2 S with kB  AkS 6 �,

EZ
1 .B/�EZ

1 .A/C ı BRn . (4.10)

(Otherwise, there exists a sequence of symmetric tensors Bn with kBn  AkS ! 0 and yn 2 SBn

such that d
 

yn,E
Z
1 .A/

�

> ı. As kynk D 1, by passing to subsequence, we may assume that

yn ! y for some y with kyk D 1. Then, we have d
 

y,EZ
1 .A/

�

> ı > 0. Now, as �Z
1 is contin-

uous, we have Bn.yn/m D �Z
1 .Bn/ ! �Z

1 .A/. So, passing to limit, we see that Aym D �Z
1 .A/.
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Note that kyk D 1. So, y 2 EZ
1 .A/, which makes contradiction.) Now, fix any arbitrary B with

kB  AkS 6 �. From (4.10), we have EZ
1 .B/�EZ

1 .A/C ıBRn . Let r > 0 be a constant such that

kxm  ymkS 6 rkx  yk for all x,y 2K WD fx W kxk D 1g. (4.11)

Let d D 1
�
 1 6 m.3m  3/n 1  1 and ˛ D .ˇ 1r/d > 0. For any arbitrary v 2 EZ

1 .B/, take

u 2EZ
1 .A/ be such that kv  uk D d

 

v,EZ
1 .A/

�

. To finish the proof, it suffices to show that

kv  uk6 ˛kB  Ak
1
d

S . (4.12)

To see this, we first note that kv  uk 6 ı as EZ
1 .B/ � EZ

1 .A/C ı BRn . So, (4.9) and kvk D 1 (as

v 2EZ
1 .B/) imply that

�Z
1 .A/ Avm D �Z

1 .A/kvkm  Avm C .kvk2  1/2 > ˇkv  uk
1
� .

As u is an optimal solution of PA, we have kuk D 1 and Aum D �Z
1 .A/, and so,

kv  uk
1
� 6 ˇ 1

 

�Z
1 .A/ Avm

�

D ˇ 1 .Aum  Avm/ . (4.13)

Then, as v is optimal for .PB/, so kvk D 1 and Bum 6 Bvm. It follows from (4.11) that

Aum  Avm D .Bum  Bvm/C ..A B/um  .A B/vm/

6 .A B/um  .A B/vm

6 kum  vmkS kA BkS

6 rku vk kB  AkS .

This together with (4.13) implies that

kv  uk
1
� 6 ˇ 1 .Aum  Avm/ 6 ˇ 1rku vk kB  AkS .

So, we have kv  ukd D kv  uk
1
�
 1 6 ˇ 1rkB  AkS . Note that ˛ D .ˇ 1r/

1
d . Then,

d
 

v,EZ
1 .A/

�

D kv  uk6 ˛kB  Ak
1
d

S .

Therefore, (4.12) holds, and so, statement (i) follows.

Proof of (ii)

Suppose that the second-order condition (4.5) holds. Fix an arbitrary u 2 EZ
1 .A/ and consider the

minimization problem

.P0/ minx2Rn f .x/ WD  Axm

s.t. kxkm D 1.

Clearly, u satisfies the KKT condition of .P0/ with Lagrange multiplier �Z
1 .A/. Note that the usual

second-order sufficient condition for this problem reduces to (4.5). So, the following second-order

growth condition holds at u (for example, see [32, Corollary 1]): there exist ˇ > 0 and ı > 0

such that

 Axm C �Z
1 .A/D f .x/ f .u/ > ˇ kx  uk2 for all x 2R

n with kx  uk6 ı.

Now, using the same method of the proof as in part (1), we see that the conclusion holds. �
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4.1. Semismoothness of the maximum Z-eigenvalue function

In this subsection, as an application of the preceding stability result of the normalized eigenspace,

we examine the semismoothness of the maximum Z-eigenvalue function. Now, consider a function

f W S ! R, where S is the symmetric tensor space on R
n. Note that the symmetric tensor space

S can be identified as a finite dimensional space with an appropriate dimension. The definition of

semismoothness of f can be translated as follows:

Definition 4.1

Let f W S ! R be a locally Lipschitz and directionally differentiable function. Then, the function

f W S !R is said to be semismooth at A 2 S if

f .AC�A/ f .A/ hV.�A/,�AiS D o.k�AkS /, 8V.�A/ 2 @C f .AC�A/.

Moreover, f W S !R is said to be �th-order semismooth function for some � 2 .0, 1� at A 2 S if

f .AC�A/ f .A/ hV.�A/,�AiS DO
�

k�Ak
1C�
S

�

, 8V.�A/ 2 @C f .AC�A/.

In particular, if � D 1, we say f is a strongly semismooth function. We also say f W S ! R

is a semismooth (resp. �th-order semismooth) function on S if f is semismooth (resp. �th-order

semismooth) at A for all A 2 S .

To achieve this, we first observe from Lemma 3.1 that the maximum eigenvalue of tensors �Z
1 .A/

is indeed the optimal value of a polynomial optimization problem .PA/ maxfAxm W kxk D 1g.

Thus, the semismooth properties of the maximum Z-eigenvalue function can be approached by

examining the stability of the parameterized optimization problem .PA/, which we have already

studied earlier. We now study the �th-order semismooth properties of the maximum Z-eigenvalue

function and establish some explicit estimation of �.

Theorem 4.2

Let A be an mth-order n-dimensional symmetric tensor (m is even). Then, we have

(i) The maximum Z-eigenvalue function �Z
1 is at least �th-order semismooth at A with � D

1
m.3m 3/n 1 1

.

(ii) Moreover, if we further assume that the following second-order condition holds: for all

u 2EZ
1 .A/

.m 1/Aum 2  �Z
1 .A/

 

.m 2/uuT C In

�

� 0 on Cu D fh 2R
n W hT uD 0g, (4.14)

then the maximum Z-eigenvalue function �Z
1 is strongly semismooth at A.

Proof of (i)

Suppose that m D 2. Then, A is an .n � n/ symmetric matrix. From [18], we see that the

maximum eigenvalue function is strongly semismooth. So, without loss of generality, we may

assume that m > 4. Let A be an arbitrary mth-order n-dimensional symmetric tensor, and let

�D 1
m.3m 3/n 1 1

. Let �A be an mth-order n-dimensional symmetric tensor such that k�AkS > 0

and �1 is differentiable atAC�A. So, Corollary 3.2 implies that r�1.AC�A/D .w�A/m, where

w�A 2EZ
1 .AC�A/. Note that �1 is continuous and convex (and so, is directionally differentiable)

and the Clarke subdifferential and the convex subdifferential of �1 coincide. To see the conclusion,

we only need to show that

�Z
1 .AC�A/ �Z

1 .A/ h.w�A/m,�AiS DO
�

k�Ak
1C�
S

�

. (4.15)

To see (4.15), let r > 0 be a constant such that

kxm  ymkS 6 rkx  yk for all x,y 2K WD fx W kxk D 1g. (4.16)
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Let v 2 EZ
1 .A/ be such that kw�A  vk D d

 

w�A,E
Z
1 .A/

�

. Then, the preceding proposition

implies that there exists c > 0 such that kw�A  vk 6 ck�Ak
�
S . Clearly, vm 2 @�Z

1 .A/. It follows

from (4.16) that

�Z
1 .AC�A/ �Z

1 .A/ h.w�A/m,�AiS > hvm,�AiS  h.w�A/m,�AiS

>  kvm  .w�A/mkS k�AkS

>  rkv  w�Ak k�AkS

>  rck�Ak
1C�
S .

On the other hand, as r�1.AC�A/D .w�A/m and �Z
1 is convex, we see that

h.w�A/m, �AiS D h.w�A/m,A .AC�A/iS 6 �Z
1 .A/ �Z

1 .AC�A/.

This implies that

�Z
1 .AC�A/ �Z

1 .A/ h.w�A/m,�AiS 6 h.w�A/m,�AiS  h.w�A/m,�AiS D 0.

Therefore, we have

�Z
1 .AC�A/ �Z

1 .A/ h.w�A/m,�AiS DO
�

k�Ak
1C�
S

�

,

and so, the conclusion follows. �

Proof of (ii)

Using the same method of proof as in part (i) and using Proposition 4.1(ii) (instead of

Proposition 4.1(i)), we see that the conclusion follows. �

Remark 4.1

In Theorem 4.2, for an mth-order n-dimensional tensor A, we showed that the maximum

Z-eigenvalue function is always at least �th-order semismooth at A with � D 1
m.3m 3/n 1 1

. In

our preceding paper [14], �th-order semismoothness of the maximum H -eigenvalue function at A

with � D 1
.2m 1/n was shown under an additional assumption that the geometric multiplicity at A

is one. At this moment, it is not clear whether our method of proof here can be used to relax the

geometric multiplicity assumption in our previous �th-order semismoothness result for maximum

H -eigenvalue function with some appropriate exponent � (as we made use of the fact that an eigen-

vector associated with the maximum Z-eigenvalue is of norm one in Proposition 4.1). Moreover, one

can observe that the degree of the semismooth property is different for the maximum H -eigenvalue

function and the maximum Z-eigenvalue function. At this moment, it is not clear for us which type

of maximum eigenvalue function has a better analytic properties.

4.2. Nonsmooth Newton method for space tensor problems

Let S.4, 3/ be the space consisting of all the fourth-order three-dimensional symmetric tensors. It

is shown [6] that S.4, 3/ is of dimension 15, and so, there exists a one-to-one mapping L W R
15 !

S.4, 3/ (indeed the mapping L can be explicitly constructed; see [6, 33] for details). Let n be a nat-

ural number, Ai 2 S.4, 3/, i D 0, 1, : : : ,n and bi 2 R, i D 1, : : : ,n. Consider the STCLP problem,

which was proposed and studied in [33]:

.ST CLP / min
X2S.4,3/

hA0,X iS

s.t. hAi ,X iS 6 bi , i D 1, : : : ,n,

X 2  C.4, 3/,

where C.4, 3/ is the cone of all negative semidefinite fourth-order three-dimensional symmetric

tensor, that is, C.4, 3/ WD fA 2 S.4, 3/ W Ax4 6 0, 8 x 2 R
3g. The problem (STCLP) arises from

the medical imaging area where a high-order tensor is used to describe the non-Gaussian diffusion
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feature [6]. Recently, Li et al. [14] proposed a nonsmooth Newton method based on the maximum

H -eigenvalue for solving the space tensor problem and established that the corresponding nons-

mooth Newton method converges superlinearly to a solution with order 1C � for some unknown

constant � > 0. Here, we propose a new nonsmooth Newton method based on the maximum

Z-eigenvalue. An advantage of the new method is that we are now able to obtain the superlinear

convergence with an explicit estimate of the order 1 C �, using the semismooth property of the

maximum Z-eigenvalue established in Theorem 4.2.

Note that C.4, 3/ D fA 2 S.4, 3/ W �Z
1 .A/ 6 0g and �Z

1 is convex. We see that problem

(STCLP) is a convex programming problem. By assuming the Slater constraint qualification, solv-

ing (STCLP) is equivalent to solving its KKT system. As shown in [34] (see also [33]), C.4, 3/ is

a self-dual cone and .C.4, 3//� D C.4, 3/ D U.4, 3/, where .C.4, 3//� is the usual dual cone of

C.4, 3/, and U.4, 3/ is the rank one tensor space in S.4, 3/ defined by U.4, 3/D fA 2 S.4, 3/ WAD
Pr

jD1.aj /4, aj 2 R
3, r 2Ng, where a4 is the fourth-order three-dimensional symmetric rank one

tensor defined by .a4/i1i2i3i4 D ai1ai2ai3ai4 for each i1, i2, i3, i4 2 f1, 2, 3g. So, its KKT system is

to find y1, : : : ,yn 2R and X 2 S.4, 3/ such that

.KKT /

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

X 2  C.4, 3/ .Primal Feasible/

 A0  
Pn

iD1 yiAi 2 C.4, 3/ .Dual Feasible/

0 6 yi? .hAi ,X iS  bi / 6 0 .Complementary Slackness I/
˝

A0 C
Pn

iD1 yiAi ,X
˛

S
D 0 .Complementary Slackness II/

. (4.17)

The following proposition establishes a useful observation: Solving the KKT problem is equiv-

alent to solving the nonsmooth equation F.x/ D 0, where F W R
nC15 ! R

nC2 is defined

by

F.x/D

0

B

B

B

B

B

B

@

max
˚

�Z
1 . A0  

Pn
iD1 yiAi /,�

Z
1 . L´/

	

˝

A0 C
Pn

iD1 yiAi ,L´
˛

S

maxf y1, hA1,L´iS  b1g

...

maxf yn, hAn,L´iS  bng

1

C

C

C

C

C

C

A

, x D .y, ´/ 2R
n �R

15, (4.18)

where L W R
15 ! S.4, 3/ is the one-to-one linear mapping between R

15 and S.4, 3/. Its proof is

similar to [14, Proposition 5.1], so we omit the proof here.

Proposition 4.1

Let y 2 R
n, X 2 S.4, 3/, and x WD .y,L 1.X // 2 R

n �R
15. Then, .y,X / 2 R

n � S.4, 3/ solves

the KKT system (4.17) if and only if F.x/D 0.

From the proceeding proposition, to obtain a solution of the KKT system, it suffices to solve the

nonsmooth underdetermined equation F.x/ D 0, where F W R
nC15 ! R

nC2. Now, we state a

nonsmooth Newton method for solving the space tensor conic linear problem (STCLP):

Algorithm 1

Step 0. Choose .y.0/,X .0// 2 R
n � S.4, 3/. Compute ´.0/ D L 1.X .0//, and let x.0/ D

.y.0/, ´.0//. If F.x.0//¤ 0, then set k WD 0. Otherwise, output .y.0/,X .0//.

Step 1. Compute a Vk 2R
.nC2/�.nC15/ such that Vk 2 JC F.x.k//. ‡

Step 2. Let x.kC1/ D x.k/ C�x.k/, where �x.k/ D .V T
k

Vk/ 1V T
k

F.x.k//.

‡For a fourth-order three-dimensional tensor, one can efficiently find an eigenvector associated with its maximum
eigenvalue (e.g., see [6]), and so, one can also efficiently compute a member of the (Clarke) generalized Hessian
JC F .x.k//�R.nC2/�.nC15/.
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Step 3. If F.x.kC1// ¤ 0, then replace k by k C 1 and go back to step 1. Otherwise, let

x.kC1/ D .y.kC1/, ´.kC1// 2R
n�R

15 and output
 

y.kC1/,L 1.´.kC1//
�

2R
n�S.4, 3/.

Next, we present the superlinear convergence result of Algorithm 1 with an explicit estimate of the

convergence rate for a regular solution (see the definition in the Appendix), by using the known con-

vergence result for general nonsmooth Newton method (Lemma 7.1) and the semismooth property

of maximum Z-eigenvalue (Theorem 4.2).

Theorem 4.3

Let .y�,X �/ 2 R
n � S.4, 3/ be a solution of the KKT system of (STCLP). Let x� D

 

y�,L 1.X �/
�

2 R
n � R

15. Let x� be a regular solution, and let P be the regular space asso-

ciated with x�. Then, there exists a neighborhood N of x� such that Algorithm 1 is well defined for

any initial point x.0/ 2N0 \ .x�CP / and Algorithm 1 either terminates infinitely many iterations

or generates a sequence fx.k/g such that x.k/ converges superlinearly to x� with order at least 1C�,

where �D 1
m.3m 3/n 1 1

, that is,

lim
k!1

kx.kC1/  x�k

kx.k/  x�k1C�
<C1. (4.19)

Proof

Clearly, F is locally Lipschitz. Moreover, we note that .a, b/ 7!maxfa, bg is strongly semismooth,

any continuous differentiable function with locally Lipschitz gradient is strongly semismooth,

and composition of (�th-order) semismooth function is still (�th-order) semismooth. Then, Theo-

rem 4.2(1) implies that X 7! �Z
1 .X / is at least �th-order semismooth with � D 1

m.3m 3/n 1 1
.

It follows that F is a vector valued function where each of its coordinate is at least �th-order

semismooth. Thus, F is also at least �th-order semismooth, and so, the conclusion follows from

Lemma 7.1. �

5. APPLICATION TO SPECTRAL HYPERGRAPH THEORY

Now, consider an (undirected) hypergraph, which is a pair G D .V ,E/, where V D f1, : : : ,ng is

a finite set of vertices and E � 2V is a set of subsets of V (each of which is called a hyperedge).

A hypergraph G is said to be m-uniform for an integer m > 2 if jej D m for all e 2 E, where j � j

denotes the cardinality. That is, for an m-uniform hypergraph, each hyperedge has the same cardi-

nality m. If mD 2, then 2-uniform graphs are typically called graphs. A finite path from vertex i to

vertex j is a finite sequence of vertices with start from i and end with j such that each of its vertices

and the next vertex belong to some hyperedge. Two vertices are called connected if there is a finite

path between them. A connected component X of G is a subset of V such that any two vertices in

X are connected and no other vertex in V nX is connected to any vertex in X .

Consider an m-uniform hypergraph G D .V ,E/. Let E D fE1, : : : ,Epg, where each El ,

l D 1, : : : ,p, is a hyperedge. We define a homogeneous polynomial f associated with the

hypergraph G defined by

fG.x1, : : : , xn/D

n
X

iD1

n
X

jD1

ıij .xi  xj /m,

where ıij is defined by

ıij D

�

1, if i < j and fi , j g �El , for some l D 1, : : : ,p,

0, else.

Note that any homogeneous polynomial uniquely determines a symmetric tensor. We can define the

Laplacian tensor L of the hypergraph G by

Lxm D fG.x/ for all x 2R
n.
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In the special case when m D 2, our definition of Laplacian tensor reduces to the Laplacian matrix

as the Laplacian matrix L of a graph G D .V ,E/ satisfies the following property: for all x 2R
n,

xT Lx D
X

i<j , .i ,j /2E

.xi  xj /2.

Remark 5.1

Recently, Hu and Qi [3] studied the algebraic connectivity of a 4-uniform hypergraph by introducing

a different definition of the Laplacian tensor as follows: For a 4-uniform hypergraph G D .V ,E/,

its Laplacian tensor T corresponds to the following quartic form:

T x4 WD
X

Ep2E

L.Ep/x4,

where each Ep is an hyperedge of G and

L.Ep/x4 D
1

84
Œ.xi C xj C xk  3xl/

4 C .xi C xj C xl  3xk/4

C .xi C xk C xl  3xj /4 C .xj C xk C xl  3xi /
4�.

It can be seen that our definition of a Laplacian tensor is a direct extension of the matrix cases and

works for m-uniform hypergraph with m > 4.

We now define the characteristic tensor C of an m-uniform hypergraph G by C D  L. The

following theorem summarizes some basic features of the characteristic tensor.

Theorem 5.1

Let C be the characteristic tensor of an m-uniform hypergraph G where m is even. Then, the

following statements hold:

(1) The characteristic tensor C is negative semidefinite in the sense that Cxm 6 0 for all x 2R
m.

(2) The maximum Z-eigenvalue of the characteristic tensor C is 0, and a D 1p
n

1n is a cor-

responding eigenvector where 1n 2 R
n is the vector whose components are all equal to

one.

(3) The dimension of the eigenspace of the maximum Z-eigenvalue equals the number of the

connected component of the m-uniform hypergraph G.

Proof of (1)

Clearly, fG.x/ > 0 for all x 2R
n. So, we see that

Cxm D Lxm D fG.x/ 6 0 for all x 2R
n.

�

Proof of (2)

Consider a D 1p
n

1n. Then, a D .a1, : : : , an/ with ai D
1p
n
for each i D 1, : : : ,n and kak D 1.

Note that

Cam D fG.a/D 

n
X

iD1

n
X

jD1

ıij .ai  aj /m D 0.

So, a is a global maximizer of .P / maxx2RnfCxm W kxk D 1g and the optimal value of .P / is 0.

Thus, the conclusion follows from Lemma 3.1. �
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Proof of (3)

Let the connected component of G be fV 1, : : : ,V qg, where q 2 N. For each l D 1, : : : , q, define

al D .al
1, : : : , al

n/, where for each i D 1, : : : ,n,

al
i D

�

1, if i 2 Vl ,

0, else.

Then, we see that

C.al/m D fG.al/D 

n
X

iD1

n
X

jD1

ıij

�

al
i  al

j

�m

D 0,

where the last equality holds as al
i  al

j D 0 if i , j in the same connected component and ıij D 0 if

i , j in different connected components. So, each al is an eigenvector associated with the maximum

Z-eigenvalue of L, l D 1, : : : , q. Note that fa1, : : : , aqg is linearly independent. So, the dimension

of the eigenspace is at least q. Now, consider any eigenvector x D .x1, : : : , xn/ associated with the

maximum Z-eigenvalue. Then,

Cxm D fG.x/D 

n
X

iD1

n
X

jD1

ıij .xi  xj /m D 0.

As m is even, this implies that ıij .xi  xj / D 0 for all i , j D 1, : : : ,n. Take each connected

component V l , it follows that xi D xj if i , j 2 V l . Note that
Sq

lD1
V l D V . It follows that

x D ˛1a1 C � � � C ˛qaq ,

for some .˛1, : : : ,˛q/¤ 0. This shows that the dimension of the eigenspace equals q. �

The following corollary provides the link between the combinatorial structure and the analytic

structure of the hypergraph.

Corollary 5.1

Let G be an m-uniform hypergraph G where m is even, and let C be its characteristic tensor. Then,

the following statements are equivalent:

(1) G is connected.

(2) The geometric multiplicity of �Z
1 .C/ is one.

(3) The maximum Z-eigenvalue function �Z
1 is differentiable at C.

Proof

[.1/, .2/ ] This equivalence follows from the preceding theorem by letting the number of the

connected component be one.

[.2/, .3/ ] This equivalence follows by Corollary 3.2.

�

Next, we denote the second largest Z-eigenvalue of the characteristic tensor by �Z
2 .C/, that is,

�Z
2 .C/ WDmax

˚

� 2R W � is a Z-eigenvalue of C and �¤ �Z
1 .C/

	

.

The following proposition provides a variational characterization of the second largest Z-eigenvalue

of the characteristic tensor.

Proposition 5.1

Let C be the characteristic tensor of an m-uniform hypergraph G, where m is even. Then, we have

�Z
2 .C/D max

x2Rn

n

Cxm W kxk D 1 and x 2
 

spanEZ
1 .C/

�?o

.
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Proof

Consider the maximization problem

.P0/ max
x2Rn

n

Cxm W kxkm D 1 and x 2
 

spanEZ
1 .C/

�?o

.

To finish the proof, it suffices to show that v.P0/ D �Z
2 .C/, where v.P0/ is the optimal value of

.P0/.

Let a be a maximizer of the problem .P0/. Then, by the KKT condition, we have kak D 1,

a 2 .spanEZ
1 .C//?, and there exist � 2R and u 2 spanEZ

1 .C/ such that

 mCam 1 Cm�aC uD 0.

This implies that

 m.Cam 1/T uCkuk2 D . mCam 1 Cm�aC u/T uD 0.

From the construction of the characteristic tensor, one can write C D
Pr

jD1 
j wm
j , where 
j 6 0,

wj 2 R
n, j D 1, : : : , r , r 2 N, and ym denotes the rank one tensor defined by .ym/i1,:::,im D

yi1 : : : yim . So, we have Cam 1 D
Pr

jD1 
j .hwj , ai/
m 1wj , and hence

 m

r
X

jD1


j

 

wT
j a

�m 1
wT

j uCkuk2 D 0.

As u 2 spanEZ
1 .C/ and EZ

1 .C/ is symmetric (that is, if v 2 EZ
1 .C/, then  v 2 EZ

1 .C/), there

exist s 2 N, ˛i > 0, i D 1, : : : , s, such that u D
Ps

iD1 ˛ivi with vi 2 EZ
1 .C/. Note that, for each

i D 1, : : : , s,

0D �Z
1 .C/D Cvm

i D

r
X

jD1


j

 

wT
j vi

�m
.

This together with 
j 6 0 and m even implies that 
j wT
j vi D 0 for all j D 1, : : : , r and i D 1, : : : , s.

So, 
j wT
j uD 
j wT

j

 
Ps

iD1 ˛ivi

�

D 0 for all j D 1, : : : , r , and hence

0D m

r
X

jD1


j

 

wT
j a

�m 1
wT

j uCkuk2 D kuk2.

Thus, uD 0 and Cam 1 D �a. So, � is a Z-eigenvalue of C with an eigenvector a 2
 

spanEZ
1 .C/

�?

with kak D 1. Moreover, we also have �D �aT a D Cam D v.P0/. We now show that �¤ �1.A/.

To see this, we proceed by the method of contradiction and suppose that � D �Z
1 .C/. Then,

Cam D �Z
1 .C/ and kak D 1. Then, we see that a is an eigenvector of the maximum Z-eigenvalue.

This contradicts the fact that a 2
 

spanEZ
1 .C/

�?
with kak D 1. So, by the definition of �Z

2 .C/, we

have

v.P0/D � 6 �Z
2 .C/.

To see the reverse inequality, let a be an eigenvector of �Z
2 .C/. Then, we can write aD �xCuwith

� > 0, x 2 spanEZ
1 .C/ with kxk D 1 and u 2

 

spanEZ
1 .C/

�?
. It follows that aT x D .�xCu/T x D

�kxk2 D �. Note that there exists r 2N such that C D
Pr

jD1 
j wm
j . It follows that

�Z
2 .C/aD Cam 1 D

r
X

jD1


j

 

wT
j a

�m 1
wj
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As x 2 spanEZ
1 .C/, similar as before, we can show that 
j wT

j x D 0, j D 1, : : : , r . It then follows

that

��Z
2 .C/D �Z

2 .C/aT x D

r
X

jD1


j

 

wT
j a

�m 1
wT

j x D 0.

As �Z
2 .C/ < �Z

1 .C/ D 0. So, � D 0. This implies that a D u 2
 

spanEZ
1 .C/

�?
. This together with

kak D 1 gives us that a is feasible for .P0/. Thus, we see that

�Z
2 .C/ 6 v.P0/.

This completes the proof. �

Consider a hypergraph G D .V ,E/, where V D f1, : : : ,ng is a finite set of vertices and E � 2V

is a set consisting of all the hyperedges. The edge cut or coboundary, EX , of the set X � V is

defined as the set of all hyperedges e 2 E such that there are two vertices u, v 2 e with u 2 X

and v … X . A bisection of G is a two-partition fX ,Y g of the vertex set V D f1, : : : ,ng in which

jX j D jY j if n is even or jX j D jY j  1 if n is odd. The bisection problem is to find a bisection for

which EX is as small as possible. The bipartition width bw.G/ of the hypergraph G is defined as

the optimal value of the bisection problem, that is,

bw.G/ WDmin
n

jEX j WX � V I jX j D
hn

2

io

,

where Œa� denotes the integer part of the number a. Calculating the exact value of the bipartition

width is, in general, a hard problem even for the graph case. Below, we shall see that one can use

the second largest eigenvalue to provide a lower bound for the bipartition width of a connected

hypergraph.

Proposition 5.2

Let G D .V ,E/ be an m-uniform connected hypergraph where m is an even number and

V D f1, : : : ,ng is a finite set of vertices. Let C be the characteristic tensor of G and let �Z
2 .C/

be the second largest eigenvalue of C. Let X be a subset of the vertex set V . Then, we have

jEX j>
 4�Z

2 .C/

m2

�

jX jjn X j

n

�
m
2

.

Moreover, we have

bw.G/ >

8

<

:

 4�Z
2

.C/

m2

�

n2 1
4n

�
m
2

, if n is odd,

 4�Z
2

.C/

m2

 

n
4

�
m
2 , if n is even.

Proof

The inequality is immediate if X D ; and X D V . So, let us consider the case when X is a proper

nonempty subset of V . Let w D
P

i2X ei , where ei D .0, : : : , 0, 1, 0, : : : , 0/ 2 R
n is the vector

whose i th component is one and all the other components are all zero. Let w D ˇ1n C u, where

ˇ D jX j
n

and u D
P

i2X ei  
jX j
n

1n. Then, uT 1n D 0. Note that 1n 2 EZ
1 .C/ and spanE´

1 .C/

is a one-dimensional subspace as G is connected. So, u 2
 

spanE´
1 .C/

�?
. It is easy to see that

kuk D

q

jX j.n jX j/
n

. Let u D u
kuk . Then, u 2

 

spanE´
1 .C/

�?
and kuk D 1. So, from the preceding

proposition, we see that

�Z
2 .C/ > Cum D

Cum

kukm
D Cum

�

n

jX j.n jX j/

�
m
2

. (5.20)
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Now, from the construction of the characteristic tensor, one can write C D
Pr

kD1 
kvm
k

with

vT
k

1n D 0 for some r 2N and vk 2R
n, k D 1, : : : , r . So, we see that

Cum D C.w ˇ1n/m D

r
X

kD1


k

 

vT
k .w  ˇ1n/

�m
D

r
X

kD1


k

 

vT
k w

�m
D Cwm D 

X

i ,j

ıij .wi wj /m.

(5.21)

Note that w D
P

i2X ei , and hence,

X

i ,j

ıij .wi  wj /m D
X

i2X ,j…X ,i<j ,fi ,j g�E

1 6 max
e2E

fje \X j.m je \X j/gjEX j6
m2

4
jEX j,

where the last inequality follows as the discrete function f W f1, : : : ,mg ! R defined by

k 7! k.m k/ attains its maximum at k Dm=2. Thus, it follows from (5.20) and (5.21) that

�Z
2 .C/ > Cum

�

n

jX j.n jX j/

�
m
2

D 
X

i ,j

ıij .wi  wj /m

�

n

jX j.n jX j/

�
m
2

>  
m2

4
jEX j

�

n

jX j.n jX j/

�
m
2

,

and hence, the first assertion follows. The second assertion follows by taking jX j D n
2
if n is even

and jX j D n 1
2

if n is odd in the first assertion. �

Remark 5.2

When m D 2, our lower bounds for the edge cut and bipartition width collapses the classical result

for the connected graph cases (cf. [35, 36]). As an illustration, when m D 2, the lower bound for

edge cuts reads

jEX j>  �Z
2 .C/

�

jX jjn X j

n

�

D maxfxT
Cx W xT 1n D 0, kxk D 1g

�

jX jjn X j

n

�

DminfxT Lx W xT 1n D 0, kxk D 1g

�

jX jjn X j

n

�

,

where L is the Laplacian matrix of the graph G. Note that minfxT Lx W xT 1n D 0, kxk D 1g D �1,

where �1 is the second smallest eigenvalue of the Laplacian matrix L. It follows that jEX j >

�1
jX jjn X j

n
, which is the classical result of the lower bound for the edge cut for a connected graph.

The case for the bipartition width is also similar.

6. COMPUTATION OF THE LARGEST/SECOND-LARGEST Z-EIGENVALUE

In this section, we explain how one can compute the largest/second-largest Z-eigenvalue of sym-

metric tensors, using polynomial optimization techniques and our variational formula developed in

the previous sections.

6.1. Computation of the largest Z-eigenvalue

In this subsection, we first discuss how to compute the largest Z-eigenvalue for a general symmetric

tensor. From Lemma 3.1, the largest Z-eigenvalue of an mth-order n-dimensional symmetric tensor

can be computed as

�Z
1 .A/D max

kxkD1
Axm D minff .x/ W h.x/D 0g,
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Let f .x/D  Axm and h.x/D kxk2  1. Then, the largest Z-eigenvalue cam be found by solving

the following polynomial optimization problem.

.P 0/ �Z
1 .A/D minff .x/ W h.x/D 0g.

In general, solving .P 0/ is an NP-hard (non-deterministic polynomial-time hard) problem when

m > 4. So, finding the largest Z-eigenvalue problem is, in general, also an NP-hard problem.

Recently, Kolda and Mayo [21] proposed a shifted power method for finding a Z-eigenvalue of a

general symmetric tensor. However, the Z-eigenvalue found by the method developed in [21] need

not be the largest one. Moreover, another power-type method was proposed in [12] for calculat-

ing the largest H -eigenvalue (which is a different notion of Z-eigenvalue) of a nonnegative tensor.

Unfortunately, this method does not work for finding the Z-eigenvalue and heavily relies on the

nonnegative assumption. To the best of our knowledge, the only exact method for finding the largest

Z-eigenvalue was established in [20], which only works for the fourth-order three-dimensional sym-

metric tensor. In what follows, we introduce a new method for finding the largest Z-eigenvalue for

a general symmetric tensor, which utilizes the polynomial optimization technique. With the help

of large-scale semidefinite programming problem (SDP) solvers, it can be used to find the largest

Z-eigenvalue for a medium-size symmetric tensor.

To do this, we recall some basic facts as below. For a real polynomial (polynomial with real

coefficients) f , we use degf to denote the degree of f . We say that a real polynomial f is sum

of squares (SOS) if there exist real polynomials fj , j D 1, : : : , r , such that f D
Pr

jD1 f 2
j . An

important property of the SOS polynomials is that checking whether a polynomial is SOS or not is

equivalent to solving an SDP. For details, see [37].

For each k 2N, the kth Lasserre’s relaxation for solving .P 0/ is
 

RP 0
k

�

max 


s.t. f .x/ 
 D �0.x/C �.x/h.x/

�0 is SOS, deg�0 6 k,

� are real polynomials, deg.�h/ 6 k.

As shown in [37], for each fixed k 2 N,
 

RP 0
k

�

can be equivalently rewritten as an SDP. We

note that an SDP can be efficiently solved and has found numerous application in various areas.

Moreover, it is easy to see that, for each k 2 N, max
 

RP 0
k

�

6 max
 

RP 0
kC1

�

6 min.P 0/. We now

show that the optimal value of the relaxation problem
 

RP 0
k

�

asymptotically converges to min.P 0/

using the celebrated positivity characterization from real algebraic geometry (Appendix).

Proposition 6.1

It holds that limk!1max
 

RP 0
k

�

Dmin.P 0/.

Proof

Let r WD min.P 0/ and fix any � > 0. Then, we have f .x/  r C � > 0 for all x 2 K, where

K D fx W h.x/D 0g D fx W ˙h.x/ > 0g. Define the quadratic module as follows:

M.h, h/D f�0 C .�1  �2/h j �i is SOS, i D 0, 1, 2, 3, 4g.

It is clear that  h 2 M.h, h/ and fx W  h.x/ > 0g is compact. Thus, Putinar positivstellen-

satz (Lemma 7.2) implies that f  r C � 2 M.h, h/. This shows that there exists k 2 N,

r  � 6 max.RPk/. Thus, the conclusion follows. �

Numerical experience indicates that (and recently was justified theoretically in a generical sense

in [38]) the relaxation is often exact for small relaxation order k (usually k 6 4). Moreover, one

can certify the global optimality by verifying some suitable technical condition called flat trunca-

tion condition [37]. On the other hand, the size of the equivalent SDP problem of the relaxation

problem increases dramatically when the dimension/order of the tensor increases. For example, as

illustrated in Table I, for a fourth-order 60-dimensional tensor, the equivalent SDP problem for the

fourth relaxation problem has 1830 variables and 595, 664 constraints. Fortunately, a robust SDP
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software (SDPNAL [39]) has been established very recently, which enables us to solve large-scale

SDP (dimension up to 2000 and number of constraint of the SDP up to 1 million). This, in turn,

helps us to find the largest Z-eigenvalue for medium size problem.

Example 6.1

A fourth-order n-dimensional symmetric tensor defined by

Aijkl D
1

24
.i C j  k  l/, 1 6 i < j < k < l 6 n, and Aijkl DA�.ijkl/,

where �.ijkl/ denotes a permutation of its index fi , j , k, lg. The corresponding polynomial

optimization problem .P 0/, in this case, becomes

min f .x/ WD
X

16i<j <k<l6n

. i  j C kC l/xixj xkxl

s.t. h.x/D kxk2  1D 0.

Example 6.2

An fourth-order n-dimensional symmetric tensor defined by

Aijkl D
1

24
. i  j  k  l/, 1 6 i < j < k < l 6 n, and Aijkl DA�.ijkl/,

where �.ijkl/ denotes a permutation of its index fi , j , k, lg. The corresponding polynomial

optimization problem .P 0/, in this case, becomes

min f .x/ WD
X

16i<j <k<l6n

.i C j C kC l/xixj xkxl

s.t. h.x/D kxk2  1D 0.

Example 6.3

Let n be an even number. Let V D f1, : : : ,ng. We generate a random graph G D .V ,E/ with

jV j D n as follows. Select a random subset M � V with jM j D n=2. The edges ei ,j , .i , j / ª M ,

are generated with probability 1=2. A fourth-order n-dimensional symmetric tensor is defined by

Ai i i i D 1, i D 1, : : : ,n,

Ai ijj D 
1

3
, .i , j / 2E, and Aijkl D 0 otherwise.

The corresponding polynomial optimization problem .P 0/, in this case, becomes

min f .x/ WD
X

16i6n

x4
i C 2

X

.i ,j /2E

x2
i x2

j

s.t. h.x/D kxk2  1D 0.

In fact, the optimal value of this optimization problem .P 0/ indeed returns the stability number of

the random graph G we generated.

Table I summarizes the numerical results of Examples 6.1–6.3, where we compute the largest

eigenvalue by first converting the fourth-order relaxation of the equivalent polynomial optimization

to an SDP problem and solving this SDP problem using SDPNAL. All numerical experiments are

performed on a desktop, with 3.47 GHz quad-core Intel E5620 Xeon 64-bit CPUs and 4 GB RAM,

equipped with MATLAB 7.13 (R2011b). In particular, the data in Table I are explained as follows.

� m: the order of the symmetric tensor;

� n: the dimension of the symmetric tensor;
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Table I. Numerical Results for Example 6.1–6.3

Problem m n NV NC �Z
1 .A/ Global optimality (Yes/No) Time (s)

Example 6.1 4 20 210 8854 21.4745 Yes 2.20
Example 6.1 4 30 465 40,919 48.3792 Yes 44.59
Example 6.1 4 40 820 123,409 87.1374 Yes 246.59
Example 6.1 4 50 1275 292,824 140.405 Yes 1159.5
Example 6.2 4 20 210 8854 46.0150 Yes 14.41
Example 6.2 4 30 465 40,919 88.8139 Yes 49.72
Example 6.2 4 40 820 123,409 136.4154 Yes 290.20
Example 6.2 4 50 1275 292,824 187.6926 Yes 1494.64
Example 6.3 4 40 820 123,409 15.9999 Yes 159.75
Example 6.3 4 50 1275 292,824 18.9999 Yes 806.18
Example 6.3 4 60 1830 595,664 24.0001 Yes 3387.17

� N V : the number of variables of the equivalent SDP problem;

� NC : the number of constraints in the equivalent SDP problem;

� �Z
1 .A/: the calculated largest Z-eigenvalue;

� Global optimality (Yes/No): whether the global optimality is certified or not; and

� Time: the CPU-time measured in seconds.

We observe that, for all the aforementioned numerical examples, the largest Z-eigenvalues can be

found successfully for medium size tensors (dimension ranges from 20 to 60). On the other hand, in

general, to find the largest eigenvalue of a large-scale tensor, one has to exploit the structure (e.g.,

sparsity structure) of the underlying tensor. It would be interesting to see how one could exploit the

structure of a tensor to reduce the corresponding computation cost in the aforementioned algorithm.

6.2. Computation of the second largest eigenvalue for connected hypergraph

In this subsection, we discuss the computation of the second largest eigenvalue for the characteristic

tensor of a hypergraph. For the characteristic tensor C of a connected hypergraph G, we have seen

that its largest eigenvalue is zero and its second largest eigenvalue provides a lower bound for the

bipartition width. Thus, it is important to compute or estimate the second largest eigenvalue of the

characteristic tensor. From our variational formula for second largest eigenvalue (Proposition 5.1)

and noting that G is connected, Theorem 5.1 implies that

�Z
2 .C/Dmax

˚

Cxm W 1T
n x D 0, kxk D 1

	

.

Let f .x/ D  Cxm, h1.x/ D 1T
n x, and h2.x/ D kxk2  1. Then, the second largest eigenvalue for

Laplacian tensor for a connected hypergraph G equals the negative optimal value of the following

polynomial optimization problem

.P / minff .x/ W h1.x/D 0, h2.x/D 0g.

For each k 2N, the kth Lasserre’s relaxation for solving .P / is

.RPk/ max 


s.t. f .x/ 
 D �0.x/C �l.x/h1.x/C �2.x/h2.x/

�0 is SOS, deg�0 6 k,

�l are real polynomials, deg.�lhl/ 6 k, l D 1, 2.

Similarly, we can show that the optimal value of .P / can be approximated by a sequence of SDP.

Proposition 6.2

It holds that limk!1max.RPk/Dmin.P /.
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Proof

Let r WD min.P / and fix any � > 0. Then, we have f .x/  r C � > 0 for all x 2 K, where

K D fx W h1.x/D 0, h2.x/D 0g D fx W ˙h1.x/ > 0,˙h2.x/ > 0g. Define the quadratic module as

follows:

M.h1, h1, h2, h2/D f�0 C .�1  �2/h1 C .�3  �4/h2 j �i is SOS, i D 0, 1, 2, 3, 4g.

It is clear that  h2 2 M.h1, h1, h2, h2/ and fx W  h2.x/ > 0g is compact. Thus, Putinar pos-

itivstellensatz (Lemma 7.2) implies that f  r C � 2 M.h1, h1, h2, h2/. This shows that there

exists k 2N, r  � 6 max.RPk/. Thus, the conclusion follows. �

In what follows, as an illustration, we use two simple numerical examples to explain how one

can compute/approximate the second largest eigenvalue for the characteristic tensor of a hyper-

graph (and so, the bipartition width) using the common global polynomial optimization software

Gloptipoly3 [40] (for other popular software see [46, 47]). An important feature of the software

Gloptipoly3 is that it can certify the global optimality using tools from real algebraic geometry

[40, 44].

Example 6.4

Consider the following connected uniform four-hypergraph G D .V ,E/, where V D f1, 2, 3, 4, 5, 6g

and E D f.1, 2, 3, 4/, .1, 2, 5, 6/, .3, 4, 5, 6/g. It can be verified that

�Z
2 .C/Dmax

˚

Cxm W 1T
n x D 0, kxk D 1

	

D min

(

f .x/ W

6
X

iD1

xi D 0,

6
X

iD1

x2
i  1D 0

)

,

where

f .x/D .x1  x2/4 C .x1  x3/4 C .x1  x4/4 C .x1  x5/4 C .x1  x6/4

C .x2  x3/4 C .x2  x4/4 C .x2  x5/4 C .x2  x6/4

C .x3  x4/4 C .x3  x5/4 C .x3  x6/4 C .x4  x5/4

C .x4  x6/4 C .x5  x6/4.

As we explained before, the problem .P / minff .x/ W
P6

iD1 xi D 0,
P6

iD1 x2
i  1 D 0g can be

solved by using Gloptipoly3. Indeed, by running the following simple code using Gloptipoly3, the

software indicates that the fourth-order relaxation .RP4/ gives the global minimum 4 of .P / and

returns a global minimizer Œ 0.4082, 0.4082, 0.4082, 0.4082, 0.4082, 0.4082�T .

Thus, we see that �Z
2 .C/D 4. Letting mD 4 and nD 6, our estimate of bipartition width gives

us that bw.G/ >
 4�Z

2
.C/

m2

 

n
4

�
m
2 D 9

4
. Note that bw.G/ must be an integer. So, bw.G/D 3. On the

other hand, it is easy to verify directly from the definition of bipartition width that bw.G/ D 3 in

this case.

Example 6.5

Consider the following connected uniform four-hypergraph G D .V ,E/, where V D

f1, 2, 3, 4, 5, 6, 7, 8, 9, 10g and

E D f.1, 2, 3, 4/, .3, 4, 5, 6/, .5, 6, 7, 8/, .6, 7, 8, 9/, .7, 8, 9, 10/, .1, 2, 9, 10/g.

It can be verified that

�Z
2 .C/Dmax

˚

Cxm W 1T
n x D 0, kxk D 1

	

D min

(

f .x/ W

10
X

iD1

xi D 0,

10
X

iD1

x2
i  1D 0

)

,
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where

f .x/D
X

j2f2,3,4,9,10g
.x.1/ x.j //4 C

X

j2f3,4,9,10g
.x.2/ x.j //4 C

X

j2f4,5,6g
.x.3/ x.j //4

C
X

j2f5,6g
.x.4/ x.j //4 C

X

j2f6,7,8g
.x.5/ x.j //4 C

X

j2f7,8,9g
.x.6/ x.j //4

X

j2f8,9,10g
.x.7/ x.j //4 C

X

j2f9,10g
.x.8/ x.j //4 C .x.9/ x.10//4I

As we explained before, the problem .P / minff .x/ W
P10

iD1 xi D 0,
P10

iD1 x2
i  1 D 0g can be

solved by using Gloptipoly3. Indeed, by running a similar simple code as in the preceding exam-

ple via Gloptipoly3, the software indicates that the third-order relaxation .RP3/ gives the global

minimum 0.4 of .P / and returns a global minimizer

Œ0.4509, 0.4509, 0.2129, 0.2129, 0.1939, 0.1879, 0.4636, 0.4636, 0.0107, 0.0079�T .

So, in this case, �2.C/D 0.4920.

7. CONCLUSION AND REMARKS

In this paper, using variational analysis techniques, we examined some fundamental analytic prop-

erties of Z-eigenvalues of a symmetric tensor with even order. As applications, we introduced the

characteristic tensor of a hypergraph and showed that the maximum Z-eigenvalue function of the

associated characteristic tensor provides a natural link for the combinatorial structure and the ana-

lytic structure of the underlying hypergraph. We also established a variational formula for the second

largest Z-eigenvalue for the characteristic tensor of a hypergraph.

Below, we present a few open questions and remarks:

� For an mth-order n-dimensional tensor A, we showed that the maximum Z-eigenvalue func-

tion is always at least �th-order semismooth at A with � D 1
m.3m 3/n 1 1

. In our preceding

paper [14], �th-order semismoothness of the maximum H -eigenvalue function at A with

� D 1
.2m 1/n is shown under an additional assumption that the geometric multiplicity at A

is one. It would be interesting to see whether our method of proof here can be used to relax

the geometric multiplicity assumption in our previous �th-order semismoothness result for

maximum H -eigenvalue function with some appropriate exponent �.

� We made use of the concept of Z-eigenvalue to study some very basic properties of hyper-

graphs. It would be useful to exploit more in this direction to establish further results (for

example, bounds on the maximal cliques and chromatic number). Recently, some progresses

has been made in [2] using the concept of H -eigenvalues via an algebraic approach. It would

be also interesting to see how one could link these two approaches together.

� We established the variational characterization of the second largest Z-eigenvalue for the char-

acteristic tensor of a uniform graph. It would be useful to see whether this variational charac-

terization continues to hold for more general tensors or not. Moreover, we have explained how

one can compute the largest and second largest Z-eigenvalues for using polynomial optimiza-

tion techniques together with our variational characterization. Detail study of the convergence

rate and effective error estimate of this method would be interesting topics to examine.

These will be our future research topics and will be examined in a forthcoming study.

APPENDIX A

Nonsmooth Newton method for underdetermined equations

Consider a general nonsmooth equation G.x/ D 0, where G W R
m ! R

l with m > l . The general

algorithm of the nonsmooth Newton method for a underdetermined equation is stated as follows:
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Algorithm 0

Step 0. Choose x.0/ 2 R
m. If G.x.0// ¤ 0, then set k WD 0 and go to step 1. Otherwise, output

x.0/.

Step 1. Compute a Vk 2R
l�m such that Vk 2 JC G.x.k//.

Step 2. Let x.kC1/ D x.k/ C�x.k/, where

�x.k/ D V T
k

 

VkV T
k

� 1
G.x.k//.

Step 3. If G.x.kC1// ¤ 0, then replace k by k C 1 and go back to step 1. Otherwise, output

x.kC1/ 2R
m.

We now recall the definition of regular solution and the local convergence result of a nonsmooth

Newton method for underdetermined equations, which was presented in [14].

Definition 7.1

For a nonlinear equation G.x/ D 0, where G W R
m ! R

l with m > l . We say x� is a regular

solution of this equation if G.x�/D 0 and there exists a neighborhood N of x� such that

(a) rank.V /D l for all V 2 JC G.x/ and x 2N \ fx WG.x/¤ 0g; and

(b) R.V T .V V T / 1/� P for all V 2 JC G.x/ and x 2N\fx WG.x/¤ 0g, where R.A/ denotes

the range of an .m � l/ matrix A, which is defined by R.A/ D fAx W x 2 R
lg � R

m, and P

is some vector space in R
m.

Moreover, the vector space P in (b) is called the regular space associated with x�.

Lemma 7.1 (cf. [14, Theorem 5.1])

Consider an underdetermined equation G.x/D 0, where G WRm !R
l with m > l . Let x� be a reg-

ular solution and P be the regular space associated with x�. If we further assume that G is �th-order

semismooth for some � 2 .0, 1�. Then, Algorithm 0 either terminates infinitely many iterations or

generates a sequence fx.k/g such that x.k/ converges to x� with order .1C �/ , that is,

lim
k!1

kx.kC1/  x�k

kx.k/  x�k1C�
<C1.

Positivity characterization from real algebraic geometry

A quadratic module generated by polynomials g1, : : : ,gm 2 RŒx� is defined as M.g1, : : : ,gm/ WD

f�0C�1g1C� � �C�mgm j �i is sum of squares polynomial, i D 0, 1, : : : ,mg. We say M.g1, : : : ,gm/

is archimedean if there exists p 2M.g1, : : : ,gm/ such that fx W p.x/ > 0g is compact.

We now recall the following important certificate for positivity of a polynomial over a semialge-

braic set under the assumption that the associated quadratic module is archimedean (and hence, the

semialgebraic set must be compact).

Lemma 7.2 (Putinar positivstellensatz)

Let f ,gj , j D 1, : : : ,m, be real polynomials with K WD fx W gj .x/ > 0, j D 1, : : : ,mg ¤

;. Suppose that f .x/ > 0 for all x 2 K and M.g1, : : : ,gm/ is archimedean. Then, f 2

M.g1, : : : ,gm/.
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