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Abstract. Diffusion Kurtosis Imaging (DKI) is a new Magnetic Resonance
Imaging (MRI) model to characterize the non-Gaussian diffusion behavior in

tissues. In reality, the term bDapp −

1

6
b2D2

appKapp in the extended Stejskal
and Tanner equation of DKI should be positive for an appropriate range of
b-values to make sense physically. The positive definiteness of the above term
reflects the signal attenuation in tissues during imaging. Hence, it is essential
for the validation of DKI.

In this paper, we analyze the positive definiteness of DKI. We first char-
acterize the positive definiteness of DKI through the positive definiteness of
a tensor constructed by diffusion tensor and diffusion kurtosis tensor. Then,
a conic linear optimization method and its simplified version are proposed to
handle the positive definiteness of DKI from the perspective of numerical com-
putation. Some preliminary numerical tests on both synthetical and real data
show that the method discussed in this paper is promising.

2000 Mathematics Subject Classification: Primary: 90C25, 90C33; Secondary: 35P30.
Key words and phrases: Diffusion kurtosis tensor, positive definiteness, conic linear

programming.
The second author is partially supported by the National Natural Science Foundation of China

(Grant No. 10871144). The third author is partially supported by the National Natural Science
Foundation of China (Grant No. 30870713) and the Tianjin Bureau of Public Health Foundation
(Grant No. 09KY10 and 11KG108). The fourth author is partially supported by the Hong Kong
Research Grant Council (Projects: PolyU 5019/09P and PolyU 5018/08P).

1 c©200X AIMSciences



2 Shenglong Hu Zheng-Hai Huang Hong-Yan Ni and Liqun Qi

1. Introduction

Magnetic Resonance Imaging (MRI) [6], especially Diffusion Tensor Imaging
(DTI), has proved to be powerful when we investigate the anatomical connection-
s of the human nervous system in vivo and non-invasively [2, 4, 5, 6]. However,
DTI suffers a great limitation due to its inability of dealing with non-Gaussian d-
iffusion. Hence, serval new models were proposed recently to solve this problem.
These include the approaches based on High Angular Resolution Diffusion Imaging
(HARDI) techniques: radial basis functions [28], Spherical Harmonics (SH) [10],
etc; and the approaches based on some extensions of the Stejskal and Tanner e-
quation: Higher Order Tensors (HOT) [14, 15, 16, 18], Diffusion Kurtosis Imaging
(DKI) [12, 13, 17, 24] which is a fourth-order truncation of the HOT model, etc.

Among the above models for dealing with non-Gaussian diffusion, we are in-
terested in DKI here. It has been proved that DKI has the ability to deal with
non-Gaussian diffusion [12, 13, 17, 21, 24]. One of the key issue in DKI is to handle
the diffusion kurtosis tensor in that model [12, 17, 21]. A diffusion kurtosis tensor
W is a fourth-order three-dimensional supersymmetric tensor [21, 22]. It has fifteen
independent elements Wijkl with Wijkl being invariant for any permutation of its
indices i, j, k, l = 1, 2, 3 [21]. It comes from the following extended Stejskal and
Tanner equation [12, 25]:

ln[S(b)/S(0)] = −bDapp +
1

6
b2D2

appKapp,(1)

where Kapp is the apparent kurtosis coefficient (AKC) at a specific direction x =
(x1, x2, x3)

T ∈ S2 (the unit sphere in ℜ3), which is defined by

Kapp :=
M2

D

D2
app

Wx4,(2)

with

Dapp := Dx2 :=
∑3

i,j=1 Dijxixj ;

MD := D11+D22+D33

3 ;

Wx4 :=
∑3

i,j,k,l=1 Wijklxixjxkxl.

(3)

Dapp is known as apparent diffusion coefficient (ADC), MD as the mean ADC and
b as the b-value which has the following relationship:

b = γ2g2δ2(∆−
δ

3
),

here g is the gradient strength, γ is the proton gyromagnetic ratio, δ is a pulse
duration, ∆ is a time interval between the centres of the diffusion sensitizing gradient
pulse. In diffusion imaging, the diffusion tensor D should be restricted to have
positive eigenvalues [1, 3, 11]. This is due to the fact that the process of diffusion
is physically not defined for the negative domain. Actually, D is related to the
covariance matrix of the diffusion displacement probability, which must be positive
definite.

Equation (1) was derived in [12] as the core model of DKI to estimate Dapp and
Kapp through measured ln[S(b)/S(0)]. Mathematically, the right-hand side of (1) is
an approximation (up to the fourth-order) of ln[S(b)/S(0)] viewed as a function of b.
Note that odd orders are zero in this situation. On the other hand, the core model
for DTI, corresponding to (1) after removing the term 1

6b
2D2

appKapp, is a second-
order approximation. Hence, in the aspect of mathematics, the model of DKI is
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Positive Definiteness of DKI 3

nothing but a try to detect information from the residual of the approximation by
DTI. Nevertheless, the link between the fourth-order approximation term and the
apparent diffusion kurtosis Kapp is one of the celebrated contributions in [12].

Once the imaging model is represented in mathematical language, there are
mathematical rules. That is to say, there are preconditions for the “equality” of
ln[S(b)/S(0)] and its approximation as stated in (1). The major precondition is:
there is a range of b-values for the model (1) to make sense. Without loss of general-
ity, we denote by this range as [0, bmax], since only nonnegative b-values are used in
DKI. Intuitively speaking, the range [0, bmax] is one’s Trust Region for the model
(1).

After determining the trust region, we can get that when b ∈ [0, bmax], the
right-hand side of (1) approximates ln[S(b)/S(0)] well. Due to the signal at-
tenuation, ln[S(b)/S(0)] < 0 for any b > 0, especially for b ∈ (0, bmax]. So,
bDapp −

1
6b

2D2
appKapp > 0 for b ∈ (0, bmax] in view of model (1). However, how to

guarantee this is a difficult issue in DKI. To our best knowledge, this issue has not
been covered yet. Similar to DTI and its extensions [1, 3, 11, 23], we formally name
such a problem as the positive definiteness of DKI. Actually, the positive definite-
ness for diffusion imaging has a long history and is of great importance, which is
essential for the model to make sense physically [1, 3, 11, 13, 17]. Actually, in [13],
a stronger requirement was imposed, i.e., the derivative of bDapp − 1

6b
2D2

appKapp

with respect to b is positive.
For the convenience of the sequel analysis, we give an explicit statement here.

Problem 1. The positive definiteness of DKI means: for any b-value b ∈ (0, bmax],

bDx2 −
1

6
b2(MD)2Wx4 > 0

holds for any x ∈ S2.

Since b ∈ (0, bmax], Problem 1 means

Dx2 −
1

6
b(MD)2Wx4 > 0

for any x ∈ S2 and b ∈ (0, bmax]. To guarantee this, it is sufficient to make sure

Dx2 −
1

6
bmax(MD)2Wx4 > 0(4)

for any x ∈ S2, since D is positive definite. Hence, the positive definiteness of DKI
(Problem 1) is completely characterized by (4).

1.1. Notation. For the convenience of the sequel analysis, here we give some no-
tation. Let p ∈ ℜ[x] be a polynomial in the indeterminate x taking value in ℜm,
then p is called positive definite (positive semidefinite, respectively) if p(x) > 0 for
all x ∈ ℜm \{0} (p(x) ≥ 0 for all x ∈ ℜm, respectively). If p is homogeneous, then p
is positive definite (positive semidefinite, respectively) if and only if p(x) > 0 for all
x ∈ Sm−1 (p(x) ≥ 0 for all x ∈ Sm−1, respectively). Here Sm−1 is the unit sphere
in the m-dimensional standard Euclidean space.

For every supersymmetric tensor T of order n and dimension m, we associate it
with a polynomial p ∈ ℜ[x] uniquely. Namely, p(x) :=

∑m

i1,...,in=1 Ti1...inxi1 · · ·xin

for any x ∈ ℜm. Conversely, given a homogeneous polynomial p ∈ ℜ[x], we could
uniquely determine a supersymmetric tensor T such that the polynomial associates
to T is p. Thus, T is called positive definite (positive semidefinite, respectively) if p is
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positive definite (positive semidefinite, respectively). We will denote by T ≻ 0 (T �
0, respectively) if T is positive definite (positive semidefinite, respectively). Similar
to those in (3), we abbreviate

∑m

i1,...,in=1 Ti1...inxi1 · · ·xin as Txn for convenience.
Now, for any two tensors T and S of the same size, say order n and dimension m,
the inner product of T and S is defined as T • S :=

∑m

i1,...,in=1 Ti1...inSi1...,in . For
any two tensors S and T of the same dimension, say m, and order k and order n,
respectively, we define the tensor product S

⊗

T of S and T as the supersymmetric
tensor uniquely determined by the polynomial (Sxk)(Txn). For three tensors S, T ,
and R of appropriate sizes, we use S

⊗

T
⊗

R to denote (S
⊗

T )
⊗

R.

1.2. Optimization Problem. In this subsection, we describe the positive defi-
niteness of DKI in more detail associated with the practical computation during
imaging postprocess.

The above mentioned positive definite problem of DKI comes from the parameters
estimation in imaging postprocess. The strategy for Diffusion Kurtosis Imaging
process is: divide the imaging body into serval slices, and partition every slice into
many voxels. m gradient diffusion directions {g(j) ∈ S2 | j = 1, . . . ,m} are chosen.
On every direction, serval, say k + 1, b-values {b0, b1, . . . , bk} are taken. Now, take
the numerical postprocess for one voxel as an example. For every direction, we
record the (average) signal S(bi) for the imaging of the i-th b-value.

So, we have k + 1 signal S(bi) (including S(0) usually, so let b0 = 0 without
loss of generality) for every direction. The following is the traditional method to
estimate diffusion tensor D and diffusion kurtosis tensor W :

Step 1 For every direction, estimate Dapp and Kapp for that direction using
(1) and the k signal S(bi) for that direction. Namely, find Dapp and Kapp

through the following nonlinear equations:










0 = −ln[S(b1)/S(0)]− b1Dapp +
1
6b

2
1D

2
appKapp,

...
0 = −ln[S(bk)/S(0)]− bkDapp +

1
6b

2
kD

2
appKapp.

(5)

Here bi for i = 1, . . . , k are the k nonzero b-values in the experiment. There
are two variables Dapp and Kapp in the above nonlinear equations (5). The-
oretically, a solution of (1.5) can be decided for k=2. However, there exist
random errors, systematical errors and so on. Hence, we need more than
2 nonzero b-values in general to get a least square solution. Actually, the
following minimization problem is solved instead of (5):

min ‖y‖2
s.t. yi = −ln[S(bi)/S(0)]− biDapp +

1
6b

2
iD

2
appKapp, i = 1, . . . , k.

(6)

Step 2 Then, estimate diffusion tensor D from the m estimated Dapp’s and
diffusion kurtosis tensor W from the m estimated Kapp’s, respectively. We

first form a vector z(1) with its i-th element being the i-th estimated Dapp.
Then, solve the following equations to get diffusion tensor D:















z
(1)
1 = D(g(1))2,

...

z
(1)
m = D(g(m))2.
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Similarly, using D, the estimated Dapp, Kapp, (2) and (3), we can get a vector

z(2) and the following equations for W :














z
(2)
1 = W (g(1))4,

...

z
(2)
m = W (g(m))4.

Since W is supersymmetric in DKI, there are 15 independent variables in W .
So, at least 15 non-collinear directions, i.e., m ≥ 15, are needed to estimate
W .

Similar to Step 1, we use two minimization problems instead of the above
linear systems to get least square solutions:

min ‖y‖2

s.t. yi = z
(1)
i −D(g(i))2, i = 1, . . . ,m,

(7)

and

min ‖y‖2

s.t. yi = z
(2)
i −W (g(i))4, i = 1, . . . ,m.

(8)

Obviously, the traditional procedure consisting of Step 1 and Step 2 does not
guarantee the positive definiteness of DKI (Problem 1) theoretically. Now, with t
being an auxiliary variable, we propose our optimization model which serves as a
suggestion for solving Problem 1.

min t
s.t. y(i−1)m+j = −ln[S(bi)/S(0)]− biD • g(j)(g(j))T

+ 1
6b

2
i
(D11+D22+D33)

2

9 W • (g(j)
⊗

g(j)
⊗

g(j)
⊗

g(j)),
i = 1, . . . , k, j = 1, . . . ,m,

(t, y) ∈ Lkm+1,
D ≻ 0,

6
bmax

I
⊗

D − (D11+D22+D33)
2

9 W ≻ 0.

(9)

Here Lkm+1 := {(t, y) ∈ ℜ × ℜkm | t ≥ ‖y‖2} is a second order cone with size
km+ 1. Note that (9) is a nonlinear conic minimization problem in general. Here
we state the main theoretical result.

Theorem 1.1. The solution of (9) satisfies the positive definiteness property in
Problem 1.

Proof. Since D ≻ 0, we get that Dx2 > 0 for any x ∈ S2. Note that

6

bmax

I
⊗

D −
(D11 +D22 +D33)

2

9
W ≻ 0

means

0 < (
6

bmax

I
⊗

D −
(D11 +D22 +D33)

2

9
W ) • (x

⊗

x
⊗

x
⊗

x)

=
6

bmax

(I • x
⊗

x)(D • x
⊗

x)− (MD)2Wx4

=
6

bmax

Dx2 − (MD)2Wx4,

for any x ∈ S2. Here, the first equality follows from the definitions of MD and Wx4

(3), and the last from the definition of Dx2 (3) and x ∈ S2.
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Remark 1. At the end of this section, we give some remarks on the minimization
problem (9) and those in Step 1 and Step 2.

• We note that minimization problem (9) without the last two positive defi-
niteness constraints is exactly a combination of minimization problems (6),
(7) and (8). That is to say, we can combine Step 1 and Step 2 in the above
discussion into one minimization problem. Such a combination will result in
better approximation, i.e., the estimated D and W can fit the measured signal
in view of (1) better. Nevertheless, the combined minimization problem is a
nonlinear optimization problem with size larger than (6), (7) and (8).

• Comparing with (6) (an unconstrained nonlinear least square problem), (7)
and (8) (two unconstrained linear least square problems), numerical methods
for (9) (even without the positive definiteness constraints) are less efficient
and robust. Hence, people likes to use Step 1 and Step 2 above instead of
(9). However, (9) has two advantages: (i) it can provide a positive definite
diffusion tensor D which is of fundamental necessary [1, 3, 11, 23], while Step
1 and Step 2 above cannot guarantee this theoretically; (ii) it solves Problem
1 as well, which is essential for DKI as discussed above.

• In the next section, we will derive fast numerical solution method for (9).

2. Theory and Method

In this section, we discuss practical numerical solution methods for Problem
1. At first, we consider the numerical method for (9). Note that minimization
problem (9) is a nonlinear conic optimization problem which is already hard to
handle. Moreover, the last positive definite tensor conic constraint in (9) makes
it intractable apparently [22]. However, the special fourth order three-dimensional
property of W gives an exception. At first, we prove the following result.

Theorem 2.1. Minimization problem (9) can be transformed into the following
linear conic minimization problem:

min t

s.t. y(i−1)m+j = −ln[S(bi)/S(0)]− biD • g(j)(g(j))T

+ 1
6b

2
iK • (g(j)

⊗

g(j)
⊗

g(j)
⊗

g(j)),
i = 1, . . . , k, j = 1, . . . ,m,

(t, y) ∈ Lkm+1,
D ≻ 0,

6
bmax

I
⊗

D −K ≻ 0.

(10)

Proof. Denote by the feasible solution set of (9) as F1 and that of (10) as F2. Then,
for any (t, y,D,W ) ∈ F1, we have (t, y,D, (MD)

2W ) ∈ F2; and conversely, for any
(t, y,D,K) ∈ F2, we have (t, y,D, K

(MD)2 ) ∈ F1 (MD > 0 since D ≻ 0). Note that

the objective functions of both (9) and (10) are t. Hence, the optimal values of (9)
and (10) are equal, since the projects of their feasible solution sets on the variable t
are the same. Moreover, we can derive an optimal solution of one from an optimal
solution of the other in view of the above relation. The proof is complete.

Now, compared with the models which have sophisticated optimization softwares
SeDuMi and SDPT3 [26, 27], the only difficulty in (10) is the last positive definite
tensor conic constraint. Nevertheless, the following lemma provides a solution for
this problem.

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Lemma 2.2. Every positive semidefinite (hence, positive definite) real ternary
quartic is a sum of at most six squares of quadratic forms.

Proof. From [7, Theorem 2.3], we know that every positive semidefinite real ternary
quartic p have a positive semidefinite matrix representation in the power vector
g := (x2

1, x1x2, x1x3, x
2
2, x2x3, x

2
3)

T [7, Pages 2-4]. That is to say that there exists a
positive semidefinite matrix M ∈ S6×6 such that p(x) = gTMg, here Sk×k means
the k×k symmetric matrix space for a positive integer k. A direct decomposition for
positive semidefinite matrix will yield the desired result. The proof is complete.

Now, using Lemma 2.2 and the fact that the cone of positive symmetric matrices
is solid, we can derive an equivalent linear conic minimization problem from (10)
with only positive definite matrix cone (positive tensor cone of order two [22]) and
second order cone constraints.

min t
s.t. y(i−1)m+j = −ln[S(bi)/S(0)]− biD • g(j)(g(j))T

+ 1
6b

2
iK • (g(j)

⊗

g(j)
⊗

g(j)
⊗

g(j)),
i = 1, . . . , k, j = 1, . . . ,m,

P(S) = 6
bmax

I
⊗

D −K,

(t, y) ∈ Lkm+1,
D ≻ 0, S ≻ 0.

(11)

Here P is a linear operator which maps a 6× 6 symmetric matrix S into a fourth-
order three-dimensional supersymmetric tensor T such that the polynomials are
equal: (x2

1, x
2
2, x

2
3, x1x2, x1x3, x2x3)S(x

2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3)

T = Tx4 for any
x ∈ ℜ3. In the following remark, we give an explicit formula of this linear operator.

Remark 2. We note that a fourth-order three-dimensional supersymmetric tensor
T has only 15 independent elements [21, 22]; while a symmetric matrix S has 21
independent elements. However, we could uniquely determine the supersymmetric
tensor T from S by the following formula [3]:

S =

















H4,0,0 0 0 1
2H3,1,0

1
2H3,0,1 0

0 H0,4,0 0 1
2H1,3,0 0 1

2H0,3,1

0 0 H0,0,4 0 1
2H1,0,3

1
2H0,1,3

1
2H3,1,0

1
2H1,3,0 y6 H2,2,0

1
2H2,1,1

1
2H1,2,1

1
2H3,0,1 0 1

2H1,0,3
1
2H2,1,1 H2,0,2

1
2H1,1,2

0 1
2H0,3,1

1
2H0,1,3

1
2H1,2,1

1
2H1,1,2 H0,2,2

















+

















0 y1 y2 0 0 y4
y1 0 y3 0 y5 0
y2 y3 0 y6 0 0
0 0 y6 −2y1 −y4 −y5
0 y5 0 −y4 −2y2 −y6
y4 0 0 −y5 −y6 −2y3

















,

(12)

where yi are free parameters for all i ∈ {1, 2, . . . , 6}, and Hi,j,k are coefficients of
the following representation of Tx4:

Tx4 :=
∑

i+j+k=4

Hi,j,k(x1)
i(x2)

j(x3)
k.

Hence, we can easily give the operator P in view of (12).

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Remark 3. We note that although minimization problem (11) is equivalent to (10)
in theoretical, the practical computation of (11) will be unstable, since variables D
and K are not in the same order of magnitude, and variable S is in small order of
magnitude. In practical computation, D is of order O(10−3) while W is of order
O(1). Hence, K and S are of order O(10−6). So, we should scale K and S to get
stable numerical results. For example, replacing K and S in (11) by K

bmax
and S

bmax
,

respectively, is a good choice.

Through the above analysis, we did not touch the method to decide bmax. In
general, the determination of bmax is as hard as the estimation problem (9) itself.
Here we give two heuristic methods to determine bmax for the considered voxel:

• We can first use Step 1 and Step 2 to estimate diffusion tensor D and d-
iffusion kurtosis tensor W , then we use D and W to compute the largest
(DappKapp)

∗ := max{DappKapp | x ∈ S2}, and finally set bmax := 6
(DappKapp)∗

.

We can use some discrete method to get the largest (DappKapp)
∗. We note

that a stronger relation was obtained in [13, Inequality (A2)] as bmax ≤
3

(DappKapp)∗
, which is a consequence of a stronger condition than that in Prob-

lem 1.
• We can just take simply the largest b-value we experimented, since the b-
values we conducted are of course in our Trust Region. However, this method
is feasible only for moderate b-values (e.g., 2000s/mm2 to 3000s/mm2), since
the method is conservative when the tested b-value is too large.

Now, we can use sophisticated optimization softwares to solve minimization problem
(11). For example, SeDuMi [26] and SDPT3 [27] can be employed to solve it. Till
now, we complete the theoretical analysis as well as the practical methodology for
Problem 1. For the convenience of reference, we denote by the above method as
Conic.

2.1. Comparisons. In view of the proof in Theorem 2.1, we give some observations
on the relationships between serval generalizations of DTI.

Remark 4. Using the idea in the proof of Theorem 2.1, we can restate the model
(1) with (2) and (3) as

ln[S(b)/S(0)] = −bDx2 +
1

6
b2Kx4(13)

for the diffusion tensor D and the fourth-order tensor K. Here K
(MD)2 is actually

the diffusion kurtosis tensor W in (3).
While the HOT model (here we only consider the real case up to fourth-order)

in [14, Equation (25)] has the following form:

ln[S(b)/S(0)] = −b(2)D(2)x2 + b(4)D(4)x4,(14)

where

b(2) = γ2g2δ2(∆−
δ

3
) and b(4) = γ4g4δ4(∆−

3δ

5
),

and D(2) and D(4) are a second-order and a fourth-order tensors, respectively.
The fourth-order generalized DTI (GDTI) considered in [3, 18, 23] has the fol-

lowing form:

ln[S(b)/S(0)] = −bHx4(15)

for a fourth-order tensor H .

Inverse Problems and Imaging Volume X, No. X (200X), X–XX



Positive Definiteness of DKI 9

From (13), (14) and (15), we have:

• First, b(2) = b. Then, since δ and ∆ are known constants during imaging, we
can get that b(4) = κb2 for a positive constant κ. Absorbing this constant κ
into tensor D(4), (14) now is essential (13). Hence, DKI proposed in [12] is a
special case of HOT proposed in [14] in this sense.

• Like HOT, (15) has higher order generalization [18, 23]. Nevertheless, it is
hard to point out the relationship between GDTI and HOT (hence, DKI),
since the right-hand side of (15) is always linear in b while that of (14) is
always nonlinear in b.

In the following, we compare our conic method Conic with existing methods for
dealing with positive definiteness in diffusion imaging.

• When letting Kapp ≡ 0 in (1), we arrive at DTI model. There is discussion on
positive definiteness for DTI in the literature, see for example, [1]. The method
in [1] is: parameterize diffusion tensor D as its eigenvalues (λ1, λ2, λ3) and
Euler-angles (α1, α2, α3); restrict the eigenvalues (λ1, λ2, λ3) in a reasonable
range, say (10−7, 10−2), to ensure the positive definiteness of D; and, use some
nonlinear optimization method, say sequential quadratic programming (SQP),
to solve the resulting constrained nonlinear optimization problem. Please see
[1, Pages 123-124] for a comprehensive reference.

• For the fourth-order GDTI model (15) considered in [3], they first use Lemma
2.2 to convert the corresponding optimization problem into a minimization
problem involving positive semidefiniteness constraint like that in (9). Then,
they employ a matrix decomposition technique to handle the positive semidef-
initeness constraint, hence the resulting minimization problem becomes a fa-
miliar nonlinear minimization problem. By the way, a Riemannian framework
which is similar to our positive definiteness constraint formula for (15) was
proposed in [11]. Nevertheless, they use general nonlinear optimization meth-
ods to solve their minimization problems. Please see [3, Pages 310-313] and
[11, Page 860] for comprehensive references.

• For general GDTI considered in [23], they use the space tensor conic formula
[22]. They also use a nonlinear optimization method to solve it.

• Our minimization problem (11) is a linear minimization problem under conic
constraints. Unlike general nonlinear formulae in [1, 3, 11, 23], (11) can be
solved in polynomial-time [26, 27]. Compared to the parameterization meth-
ods in [1, 3], the conic constraints in (11) have more simpler representations.
Moreover, the resulting minimization problem (11) is linear. To our best
knowledge, not only the conic formula but also the solution method suggested
here are different from those in the literature.

2.2. A Simplified Practical Method. The theoretical analysis of Problem 1
results in a conic linear minimization problem (11). Although (11) is a linear opti-
mization problem with simple formula, it is in the language of conic optimization.
In this subsection, we give a simplified version of (11) in the language of famil-
iar nonlinear programming which also presents another perspective to handle the
positive definiteness of DKI (Problem (1)).

Besides that, there is another major factor that motivates us to consider a prac-
tical method for the traditional strategy, i.e., Step 1 and Step 2. When doing
theoretical research, we can generate data set with as many b-values and directions
as we want. Nevertheless, the data sets generated from hospitals for patients are
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limited in view of the many b-values and directions. Take the situation in Tianjin
First Central Hospital as an example, usually, 30 directions and two moderate b-
values (e.g., 1000s/mm2, 2000s/mm2) are allowed by the reality. The time needed
for a scanner to get a data set around 70 × 128 × 128 voxels of two b-values and
30 gradient directions for a patient’s brain is around twenty minutes. Any longer
time is unbearable for a patient. As we all know, such a data set is some kind of
limitation to investigate DKI [12, 17]. At least, there should be serval b-values for
estimating Dapp and Kapp, see (6).

While, since conventional DTI is unable to handle non-Gaussian diffusion, how
could we detect non-Gaussian diffusion from the above described data through DKI?
This is just the problem Tianjin First Central Hospital faces to.

Putting aside Problem 1, when we use the traditional method (Step 1 and Step 2),
30 directions seem to be enough for the estimation problems (7) and (8), while only
two nonzero b-values will result in unstable numerical computation for the nonlinear
minimization (6). We note that: theoretically, two nonzero b-values together with
S(0) are enough for the nonlinear minimization (6), but the practical errors in data
as well as the order of magnitude of Dapp being O(10−3) in general will result in
unstable, even incorrect, numerical results.

Here, as a try to slove the above mentioned problems, we consider the following
three minimization problems:

min ‖y‖2
s.t. yi = −ln[S(bi)/S(0)]− biDapp +

1
6b

2
iD

2
appKapp, i = 1, . . . , k,

Dapp > 0,
DappKapp ≤ 6

bmax
,

(16)

min ‖y‖2

s.t. yi = z
(1)
i −D(g(i))2, i = 1, . . . ,m,

D ≻ 0,

(17)

and minimization problem (8).
Comparing with (6) and (7) in Step 1 and Step 2, we add more constraints into

(16) and (17), respectively. Intuitively, constraintD ≻ 0 in (17) is for the purpose of
guaranteeing the positive definiteness of diffusion tensor D, and the two inequality
constraints in (16) is for Problem 1. Note that (17) can be casted into the following
linear problem:

min t

s.t. yi = z
(1)
i −D(x(i))2, i = 1, . . . ,m,

D ≻ 0,
(t, y) ∈ Lm+1,

(18)

where Lm+1 denotes a second order cone with size m + 1. (18) can be efficiently
solved through optimization softwares, say, SeDuMi and SDPT3. Obviously, (18) is
different from the method in [1] for guaranteeing the positive definiteness of DTI.

Remark 5. As the practical data sets got in hospitals for patients have few b-values,
typically k = 2 (usually k = 1), the resulting minimization problem (6) is of less
robust. However, the additional constraints in (16) can narrow the feasible solution
set of (6) largely while keep the theoretical optimal solution. Such a strategy can
make minimization problem (16) more robust than (6). Hence, we are expected
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to get more robust, also more exact (due to the positive definiteness) information,
from (16) than that from (6).

Remark 6. We note that since we impose positive constraint for Dapp in (16),
the positive definiteness constraint for matrix D in (17) can be omitted in practice.
In our implementation for the method in this subsection, we drop this positive
definite constraint. We use it to test the real data set described in the next section.
Nevertheless, only 283 voxels out of 5130 voxels where the computed D is not
positive definite if (16) is used for estimating Dapp and Kapp.

We denote the practical method proposed in this subsection as PosDef for the
convenience of reference in the sequel analysis.

2.3. Principal Parameters. In the numerical computation, we need some pa-
rameters of DKI. Of course, we put emphasis on the diffusion kurtosis tensor. We
refer to [17, 12, 20, 21] for more parameters for DKI. Here we just discuss some prin-
cipal parameters for illustration. In [21], based on the definition of D-eigenvalues of
W , we can derive the mean kurtosis MK and the largest kurtosis LK . D-eigenpair
(λ, x) means λ ∈ ℜ and x ∈ ℜ3 satisfying the following polynomial system:

{

Wx3 = λDx,
Dx2 = 1.

(19)

In [21], in order to find the D-eigenvalues, we must get the inverse D̄ of D first, then

define a new fourth-order tensor W̄ by W̄ijkl :=
∑3

h=1 D̄ihWhjkl (see [21, Equation
(7) and Theorem 4] for more detail). The D-eigenvalues are calculated through D
and W̄ . We note that W is of magnitude order of O(1) in the practical computation,
and D is of order O(10−3). So, small error in D can result in great disturbance in
D̄, hence in W̄ . Therefore, the computed D-eigenvalues are unstable in view of the
practical computation in general. So, this, together with the limited source data
sets in practice, can result in blur parameters maps based on D-eigenvalues.

Nevertheless, from the formula of Kapp in (2), we see that

KappD
2
app = M2

DWx4.

Hence the fourth-order term in (1) is 1
6b

2M2
DWx4 = 1

6b
2Kx4, here K is the tensor

in (11). Since the difference of DTI and DKI is this term and it is completely
characterized by tensor K, we can investigate the information provided by tensor
K instead. We think, of course, that the interest of DKI is on the tensor K. Now,
similar to a matrix, consider λ ∈ ℜ and x ∈ ℜ3 satisfying the following system:

{

Kx3 = λx,
xTx = 1.

(20)

The above system (20) is the Z-eigenvalue problem proposed in [19]. The difference
between (20) and (19) is that λ computed through (20) is of the same order of
magnitude of K in general. Moreover, since MD is a constant once we got D. We
can find the Z-eigenvalues of W instead of that for K:

{

Wx3 = λx,
xTx = 1.

(21)

Note that there is no effect of D in (21) now, and the magnitude of W is O(1). So,
we are expected to have a more stable numerical computation than that based on
D-eigenvalues. At last, the expected Z-eigenvalues of K are just (MD)2 times of
those of W , see (20) and (21).
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So, in this paper, we will investigate the parameter maps derived from the Z-
eigenvalues of the tensor K. Especially, we will concentrate on the largest Z-
eigenvalue and the mean of Z-eigenvalues. Here, we define the tensor K for PosDef

and the LS method (Step 1 and Step 2) just as the tensor (MD)2W . We note that
the computed Z-eigenvalues of tensor K are not the kurtosis, they are parameters
for the fourth-order term in DKI, i.e., the additional information provided other
than DTI.

3. Numerical Study

In this section, we report some numerical results based on both synthetical and
real data for Conic, PosDef and the traditional LS method [12, 17] (see more
details in Step 1 and Step 2, we abbreviate it as LS). Since we consider data sets with
only two nonzero b-values, a lower and upper bound for the indeterminate is added
to LS to get reasonable Kapp. All the numerical implementation are done on a PC
with CPU of 3.4 GHz and RAM of 2.0 GB, and all codes are written in MATLAB.
We use SDPT3 [27] to solve Conic (please see [27] for the method of formulating
(11) into the required formula in SDPT3), while MATLAB Optimization Tools
fmincon and lsqlin for constrained least square and unconstrained linear least square
minimization problems in PosDef and LS. We use the method proposed in [21,
Pages 153-155] to find all the Z-eigenvalues of the computed tensor K. Note that
(20) is just the model discussed in [21] with D = I, the identity matrix.

Firstly, we present some numerical results on synthetical data. The synthetical
data are generated by using the following multi-tensor model [9]:

Si(b, gi) =

n
∑

k=1

1

n
e−bDkg

2

i + ξ,

where b is the b-value; gi is the i-th gradient direction for i ∈ {1, 2, . . . , N}; n ∈
{1, 2, 3, 4} is the number of fibers and D1 := [1390, 355, 355]× 10−6mm2/s; while
Dk for k ∈ {2, 3, 4} are generated by rotating D1 with π

n
(k − 1) in the x-y plane

deasil, we see that Dk is dependent on the chosen n for individual experiment;
and, ξ is the Rician noise with standard deviation of 1

σ
, which produces an signal

to noise ratio (SNR) of σ. In the numerical simulation, we choose N = 30 and
b = 1000, 2000s/mm2.

We analyze the absolute error of the true logarithm signal and the estimated
logarithm signal for four cases, i.e., with different n. The SNR varies from 5 to 50.
We simulate every case 100 times to get the mean absolute error. The numerical
results are mapped in Figures 1-4.

From Figures 1-4, we find the followings:

• Although there are more constraints in (16) than those in (6), the estimation
of (16) is not worse than that of (6). Note that, more constraints for an
minimization problem will increase the optimal value in general, i.e., increase
the error in our cases. Nevertheless, the well performance of PosDef in this
test indicates that Problem 1 is essential for DKI. The results are similar for
Conic.

• We note thatConic works better than bothPosDef and LS when SNR is low.
This coincides with the theoretical analysis: First note that Conic has more
constraints than that of PosDef and LS. When SNR is low, the error between
the estimated signal and the true signal is large, while the estimation methods
compute D and W to fit the estimated signal. Hence, the fewer constraints in
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the method, the better the computed D and W fitting the estimated signal,
i.e., the worse the computed D and W fitting the true signal. When SNR
is high, the error between the estimated signal and the true signal is small.
Hence, the better the computed D and W fit the estimated signal, the better
the computed D and W fit the true signal.

• The positive definiteness methods Conic and PosDef can provide a reason-
able estimation for even complicated case we tested, i.e., n = 4.

Secondly, we report some numerical results on a real data set. It is a human
brain data set of 128× 128× 73 voxels. The data set was acquired by a volunteer
on a 3.0T scanner at b = 0, b = 1000s/mm2 and b = 2000s/mm2 with 30 encoding
directions using a protocol approved by Tianjin First Central Hospital. In the
following, we just list the numerical results of one slice (Slice 33) of the data set.
We use bmax = 2000s/mm2 throughout our computation.

We map some of the computational results in Figures 5-9. Figures 5-9 repre-
sent the ADC value of diffusion tensor D, the FA (Fractional Anisotropy) value
of diffusion tensor D, the largest Z-eigenvalue of the tensor K, the mean of the
Z-eigenvalues of the tensor K and the largest AKC value (the largest D-eigenvalue
of tensor W ) computed by LS, PosDef and Conic (left to right), respectively.

All the above figures are just for some intuitive illustrations. It can be seen
that Conic and PosDef can provide ADC and FA images similar to LS; and, the
former gives slightly more clear images computed from the fourth-order tensor K
as well as the largest AKC value map than LS. Compared with Figure 5, Figure 7
represents some complementary information to the ADC map. Hence, these indicate
that imposing Problem 1 into the analysis of DKI may provide us more useful
information.

4. Conclusion

In this paper, we proposed a parameter estimation method (Conic) in DKI
involving the positive definiteness. Such a method was analyzed both theoretically
and practically. The preliminary numerical behavior of this method, its simplified
version and that of the traditional LS method were compared on both synthetical
and real data. We found that detecting positive definiteness of DKI has the potential
to archive more useful information for us. An important aspect of the practical
method discussed in this paper is that it was also designed to handle clinic data
which is a “limited” data set compared to the data sets analyzed in the literature.
There are a lot of issues, such as segmentation, registration and fiber tracking based
on DKI using the methods proposed here. These are our future topics. Since GDTI
and HOT are different in general, the positive definiteness of GDTI discussed in [23]
cannot be transplanted to that of HOT directly. Hence, the positive definiteness of
HOT is worth investigating. A stronger requirement than the positive definiteness
of DKI was imposed in [13, Appendix], it would be interesting to extend the method
in this paper to consider that.
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Figure 1. Comparisons of LS, PosDef and Conic on synthetic
data with one fiber.
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Figure 2. Comparisons of LS, PosDef and Conic on synthetic
data with two fibers.
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Figure 3. Comparisons of LS, PosDef and Conic on synthetic
data with three fibers.
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Figure 4. Comparisons of LS, PosDef and Conic on synthetic
data with four fibers.

Figure 5. ADC value map: LS, PosDef and Conic.
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Figure 6. FA value map: LS, PosDef and Conic.
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Figure 7. The largest Z-eigenvalue map: LS, PosDef and Conic.

Figure 8. The mean Z-eigenvalue map: LS, PosDef and Conic.
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Figure 9. AKC value map: LS, PosDef and Conic.
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