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1. Introduction

Eigenvalues of tensors, proposed by Qi (2005) and Lim (2005) independently, have attracted much
attention in the literature and found various applications in science and engineering (see Balan, 2012;
Cartwright and Sturmfels, 2011; Chang et al. 2008, 2011; Comon et al., 2008; Hu and Qi, 2012; Hu
et al., 2012; Li et al., 2013; Lim, 2007; Ng et al., 2009; Pearson, 2010; Qi 2006, 2007, 2011; Qi
et al., 2010; Ragnarsson and Van Loan, 2011; Rota Bulò and Pelillo, 2009; Yang and Yang, 2010;
Zhang et al., 2012, and references therein). There are several generalizations of eigenvalues, singular
values and decompositions from symmetric matrices to higher order symmetric tensors (see Brachat
et al., 2010; Cartwright and Sturmfels, 2011; Chang et al., 2009; Comon et al., 2008; Lim, 2005;
Oeding and Ottaviani, 2011; Qi 2005, 2006, and references therein). In any case, not all the properties
of the eigenvalues of matrices are preserved for higher order tensors. In this paper, we concentrate
on the eigenvalues introduced by Qi (2005) (see Definition 2.1).

The concept of symmetric hyperdeterminant was introduced by Qi (2005) to investigate the eigen-
values of a symmetric tensor. It is based on the resultant of a homogeneous polynomial system, which
is defined in Definition 1.1 (Theorem 3.2.3 in Cox et al., 1998; Morozov and Shakirov 2010, 2011).

For a positive integer n, an n-tuple α = (α1, . . . ,αn) of nonnegative integers, and an n-tuple x :=
(x1, . . . , xn)T of indeterminate variables, denote by xα the monomial

∏n
i=1 xαi

i . Denote by C the field
of complex numbers, and Z the ring of integers.

Definition 1.1. For fixed positive degrees d1, . . . ,dn , let f i :=∑
|α|=di

ci,αxα be a homogeneous polyno-
mial of degree di in C[x] for i ∈ {1, . . . ,n}. Then the unique polynomial RESd1,...,dn ∈ Z[{ui,α}], which
has the following properties, is called the resultant of degrees (d1, . . . ,dn).

(i) The system of polynomial equations f1 = · · · = fn = 0 has a nontrivial solution in Cn if and only
if Resd1,...,dn ( f1, . . . , fn) = 0.

(ii) Resd1,...,dn (xd1
1 , . . . , xdn

n ) = 1.
(iii) RESd1,...,dn is an irreducible polynomial in C[{ui,α}].

The differences between the capital notation RESd1,...,dn and the notation Resd1,...,dn ( f1, . . . , fn) for
a specific system ( f1, . . . , fn) are: the former is understood as a polynomial in the variables {ui,α |
|α| = di, i ∈ {1, . . . ,n}} and the latter is understood as the evaluation of RESd1,...,dn at the point {ui,α =
ci,α} with {ci,α} being given by f i . Consequently, Resd1,...,dn ( f1, . . . , fn) is a number in C. When d1 =
· · · = dn = d, we simplify RESd,...,d (respectively Resd,...,d) as RES (respectively Res). The value of d will
be clear from the content.

Let T = (ti1...im ) be an m-th order n-dimensional tensor, x = (xi) ∈ Cn (the n-dimensional complex
space) and T xm−1 be an n-dimensional vector with its i-th element being

n∑
i2=1

. . .

n∑
im=1

tii2...im xi2 . . . xim .

It is actually a tensor contraction (Landsberg, 2011). The symmetric hyperdeterminant for symmet-
ric tensors of order m is defined as the resultant RES of degrees (m − 1, . . . ,m − 1) such that the
value of the symmetric hyperdeterminant for a specific symmetric tensor T , which is denoted by
Res(T xm−1), is the resultant of the polynomial system T xm−1 = 0. The symmetric hyperdeterminant
of a symmetric tensor is equal to the product of all of the eigenvalues of that tensor (Qi, 2005).

Recently, Li et al. (2013) proved that the constant term of the E-characteristic polynomial5 of ten-
sor T (not necessarily symmetric) is a power of the resultant Res(T xm−1) of the polynomial system
T xm−1 = 0. They further found that Res(T xm−1) is an invariant of T under the orthogonal linear
transformation group. Li et al. (2013) pointed out that Res(T xm−1) deserves further study, since it

5 The characteristic polynomial for another type of eigenvalues, E-eigenvalues, proposed by Qi (2005).
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has close relation to the eigenvalue theory of tensors. In this paper, we generalize the definition of
symmetric hyperdeterminant to nonsymmetric tensors and study it systematically. The following is
the definition.

Definition 1.2. Let RES be the resultant of degrees (m − 1, . . . ,m − 1) which is a polynomial in vari-
ables {ui,α | |α| = m − 1, i ∈ {1, . . . ,n}}. Let tensor T = (tii2...im ) ∈ T(Cn,m) (the space of m-th order
n-dimensional tensors). The determinant DET of m-th order n-dimensional tensors is defined as the
polynomial with variables {vii2...im | i, i2, . . . , im ∈ {1, . . . ,n}} through replacing ui,α in the polynomial
RES by

∑
(i2,...,im)∈X(α) vii2...im . Here X(α) := {(i2, . . . , im) ∈ {1, . . . ,n}m−1 | xi2 . . . xim = xα}. The value

of the determinant Det(T ) of the specific tensor T is defined as the evaluation of DET at the point
{vii2...im = tii2...im }.

For the convenience of the subsequent analysis, we define DET(T ) as the polynomial with vari-
ables {tii2...im | i, i2, . . . , im ∈ {1, . . . ,n}} through replacing vii2...im in DET by tii2...im . There can be some
specific relations on the variables {tii2...im }, such as some being zero. In this case, T is considered as
a tensor of indeterminate variables, while it is considered as a tensor of numbers in C when we talk
about Det(T ).

Given a tensor T ∈ T(Cn,m), we can associate to it a multilinear function f : Cn × · · · × Cn → C
as f (x(1), . . . ,x(m)) :=∑

1�i1,...,im�n ti1...im x(1)
i1

. . . x(m)
im

. The hyperdeterminant is defined as the unique
irreducible polynomial (up to a scalar factor) HDET such that its evaluation Hdet(T ) at T is zero
if and only if there are nonzero x( j) for all j ∈ {1, . . . ,m} such that ∂ f

∂x( j)
i

= 0 for all i ∈ {1, . . . ,n}
and j ∈ {1, . . . ,m}. Then, the tensor determinant is different from the hyperdeterminant investigated
in Bézout (1779); Cayley (1843, 1845); Cox et al. (1998); Dixon (1906); Gelfand et al. (1992, 1994);
Macaulay (1902); de Silva and Lim (2008); Sylvester (1840).

It is easy to see from Definition 1.2 that the tensor determinant generalizes the matrix determi-
nant (Horn and Johnson 1985, 1994; Strang, 1993) and the symmetric hyperdeterminant (Qi, 2005).
Consequently, the notation Det(·) is meaningful with both a matrix and a tensor as arguments. It
should be pointed out that the same thing under the notion resultant6 has been extensively studied
in the monograph by Dolotin and Morozov (2007). In this paper, we give some new developments of
the tensor determinant, and especially investigate some properties related to the eigenvalue theory of
tensors proposed by Qi (2005) and Lim (2005).

The rest of this paper is organized as follows.
In the next section, we present some basic properties of the determinant. Then, in Section 3, we

show that the solvability of a polynomial system is characterized by the determinant of the leading
coefficient tensor of that polynomial system.

Block tensors are discussed in Section 4. We give an expression of the determinant of a tensor,
which has an “upper block triangular” structure, in terms of the determinants of its two diagonal
sub-tensors.

As a simple application of the determinant theory, we show, in Section 5, that if the leading
coefficient tensor of a polynomial system is a triangular tensor with nonzero diagonal elements, then
the system definitely has a solution in the complex space.

Based on a result of Morozov and Shakirov (2011), in Subsection 6.1, we give a trace formula for
the determinant. This formula involves some differential operators. Using this formula, we establish
an explicit formula for the determinant when the dimension is two. As this needs to use some results
in Subsection 6.2, we do this in Section 7.

The determinant contributes to the characteristic polynomial theory of tensors. In Subsections 6.2
and 6.3, we analyze various related properties of the characteristic polynomial and the determinant.
Especially, a trace formula for the characteristic polynomial is presented, which has potential applica-
tions in various areas, such as scientific computing and geometrical analysis of eigenvalues. We also

6 As resultant is created for a general polynomial system (Definition 1.1), we prefer to Definition 1.2 which is unambiguous
as well.
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generalize the eigenvalue representation for the determinant of a matrix to the determinant of a ten-
sor. We show that the k-th order trace of a tensor is equal to the sum of the k-th powers of the
eigenvalues of this tensor, and the coefficients of its characteristic polynomial are recursively gener-
ated by the higher order traces. Based on the characteristic polynomial, a sufficient and a necessary
condition for the positive semidefiniteness problem of an even order tensor are presented (Proposi-
tion 6.14 and Remark 6.15).

In Section 7, we give explicit formulae for the second order trace of a tensor, and the determinant
and the characteristic polynomial of a tensor when the dimension is two.

We generalize Geršgorin’s inequality for the determinant of a matrix to that for a tensor in Sec-
tion 8. It gives estimation for the determinant in terms of the entries of the underlying tensor.

Some final remarks are given in Section 9.
The following is the notation that is used in the sequel. Scalars are written as lowercase letters

(λ,a, . . .); vectors are written as bold lowercase letters (x = (xi), . . .); matrices are written as italic
capitals (A = (aij), . . .); tensors are written as calligraphic letters (T = (ti1...im ), . . .); and, sets are
written as blackboard bold letters (T,S, . . .).

Given a ring K (hereafter, we mean a commutative ring with 1 (see Lang, 2002), e.g., C), we
denote by K[E] the polynomial ring consisting of polynomials in the set E of indeterminate variables
with coefficients in K. Especially, we denote by K[T ] the polynomial ring consisting of polynomials
in indeterminate variables {ti1...im } with coefficients in K, and similarly for K[λ], K[A], K[λ,T ], etc.

For a matrix A, AT denotes its transpose and Tr(A) denotes its trace. We denote by N+ the set of
all positive integers and ei the i-th identity vector, i.e., the i-th column vector of the identity matrix I .
Throughout this paper, unless stated otherwise, integers m,n � 2 and tensors refer to m-th order n-
dimensional tensors with entries in C. We use T = (ti1 i2...im ) to mean both a tensor of indeterminate
variables ti1 i2...im and a specific tensor in T(Cn,m), which are clear from the content.

2. Basic properties of the determinant

Let I be the identity tensor of appropriate order and dimension, e.g., ii1...im = 1 if and only if
i1 = · · · = im ∈ {1, . . . ,n}, and zero otherwise. The following definitions were introduced by Qi (2005).

Definition 2.1. Let T ∈ T(Cn,m). For some λ ∈ C, if polynomial system (λI − T )xm−1 = 0 has a
solution x ∈ Cn \ {0}, then λ is called an eigenvalue of the tensor T and x an eigenvector of T
associated with λ.

We denote by σ(T ) the set of all eigenvalues of the tensor T .

Definition 2.2. Let T be an m-th order n-dimensional tensor of indeterminate variables and λ be an
indeterminate variable. The determinant DET(λI − T ) of λI − T which is a polynomial in (C[T ])[λ],
denoted by χT (λ), is called the characteristic polynomial of the tensor T .

For a specific T ∈ T(Cn,m), χT (λ) ∈ C[λ]. When there is no confusion, we simplify χT (λ) as
χ(λ). Denote by V( f ) the algebraic set associated to the principal ideal 〈 f 〉 generated by f (Cox
et al. 1998, 2006; Lang, 2002). By Definitions 1.1, 1.2, 2.1 and 2.2, we have the following result.

Theorem 2.3. Let T be an m-th order n-dimensional tensor of indeterminate variables. Then χ(λ) ∈ C[λ,T ]
is homogeneous of degree n(m − 1)n−1 , and for a specific tensor T ∈ T(Cn,m),

V
(
χ(λ)

)= σ(T ). (1)

When T is symmetric, Qi proved (1), see Theorem 1(a) in Qi (2005). If λ is a root of χ(λ) of
multiplicity s, then we call s the algebraic multiplicity of eigenvalue λ.

For f ∈ K[x], we denote by deg( f ) the degree of f . If every monomial in f has degree deg( f ),
then f is called homogeneous of degree deg( f ).



Author's personal copy

512 S. Hu et al. / Journal of Symbolic Computation 50 (2013) 508–531

Proposition 2.4. Let T be an m-th order n-dimensional tensor of indeterminate variables tii2...im . Then:

(i) For every i ∈ {1, . . . ,n}, define Ki as the polynomial ring

C
[{

t ji2...im

∣∣ j, i2, . . . , im ∈ {1, . . . ,n}, j �= i
}]

.

Then DET(T ) ∈ Ki[{tii2...im | i2, . . . , im ∈ {1, . . . ,n}}] is homogeneous of degree (m − 1)n−1 .
(ii) DET(T ) ∈ C[T ] is irreducible and homogeneous of degree n(m − 1)n−1 .

(iii) Det(I) = 1.

Proof. Denote by RES the resultant of degrees (m − 1, . . . ,m − 1) which is a polynomial in the
variables {ui,α | |α| = m − 1, i ∈ {1, . . . ,n}} by Definition 1.1. Then, by Proposition 13.1.1 in Gelfand
et al. (1994) (see also p. 713 in Morozov and Shakirov (2011)), RES is homogeneous of degree
(m − 1)n−1 in the variables {ui,α | |α| = m − 1} for every i ∈ {1, . . . ,n}. Consequently, by the replace-
ment in Definition 1.2, the determinant DET(T ) is homogeneous of degree (m − 1)n−1 in the variables
{tii2...im | i2, . . . , im ∈ {1, . . . ,n}} for every i ∈ {1, . . . ,n}. This is exactly statement (i).

By (i), we immediately get that DET(T ) ∈ C[T ] is homogeneous of degree n(m − 1)n−1. We claim
that DET(T ) ∈ C[T ] is irreducible. Suppose on the contrary that DET(T ) ∈ C[T ] can be reduced as
the product of two homogeneous polynomials in C[T ] as

DET(T ) = f (T )g(T ) (2)

with deg( f ) � 1 and deg(g) � 1. If we replace the indeterminate variable tii2...im with (i2, . . . , im) ∈
X(α) in the tensor T by the variable ui,α

|X(α)| and denote the resulting tensor by U , then we get that

RES = DET(U) = f (U)g(U).

Here the first equality follows from Definition 1.2 and the second from (2). Obviously, f (U), g(U) ∈
C[{ui,α}] are nonzero and of degrees deg( f ) and deg(g) respectively. Then, RES is reduced as a prod-
uct of polynomials of positive degrees. This contradicts Definition 1.1(iii). Hence, RES(T ) ∈ C[T ] is
irreducible.

(iii) follows from Definitions 1.1(ii) and 1.2. �
By Proposition 2.4, we have the following corollary.

Corollary 2.5. Let T ∈ T(Cn,m). If for some i, tii2...im = 0 for all i2, . . . , im ∈ {1, . . . ,n}, then Det(T ) = 0. In
particular, the determinant of the zero tensor is zero.

Proof. Let V be an m-th order n-dimensional tensor of indeterminate variables vii2...im and Ki :=
C[{v ji2...im | j, i2, . . . , im ∈ {1, . . . ,n}, j �= i}]. Then by Proposition 2.4(i), DET(V) is a homogeneous
polynomial in the variable set {vii2...im | i2, . . . , im ∈ {1, . . . ,n}} with coefficients in the ring Ki . More-
over, Det(T ) is just the evaluation of DET(V) at the point V = T . As tii2...im = 0 for all i2, . . . , im ∈
{1, . . . ,n} by the assumption, Det(T ) = 0 as desired. �

By Proposition 2.4(ii), we have another corollary as follows.

Corollary 2.6. Let T ∈ T(Cn,m) and γ ∈ C. Then

Det(γ T ) = γ n(m−1)n−1
Det(T ).

3. Solvability of polynomial equations

Letting matrix A ∈ T(Cn,2), we know that (Lang, 1987; Strang, 1993):

(i) Det(A) = 0 if and only if Ax = 0 has a solution in Cn \ {0}, and
(ii) Det(A) �= 0 if and only if Ax = b has a unique solution in Cn for every b ∈ Cn .
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We generalize such a result to the tensor determinant and the nonlinear polynomial system in this
section.

Theorem 3.1. Let T ∈ T(Cn,m). Then,

(i) Det(T ) = 0 if and only if T xm−1 = 0 has a solution in Cn \ {0}.
(ii) If Det(T ) �= 0, then for any b ∈ Cn, A ∈ T(Cn,2), and B j ∈ T(Cn, j) for j ∈ {3, . . . ,m − 1}, T xm−1 =

(Bm−1)xm−2 + · · · + (B3)x2 + Ax + b has a solution in Cn.

Proof. (i) It follows from Definitions 1.1 and 1.2 immediately.
(ii) Suppose that Det(T ) �= 0. For any b ∈ Cn , A ∈ T(Cn,2), and B j ∈ T(Cn, j) for j ∈ {3, . . . ,m−1},

we define tensor U ∈ T(Cn+1,m) as follows:

ui1 i2...im :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ti1i2...im ∀i j ∈ {1, . . . ,n}, j ∈ {1, . . . ,m},
−bi1 ∀i1 ∈ {1, . . . ,n} and i2 = · · · = im = n + 1,

−ai1i2 ∀i1, i2 ∈ {1, . . . ,n} and i3 = · · · = im = n + 1,

−bk
i1...ik

∀i1, . . . , ik ∈ {1, . . . ,n} and ik+1 = · · · = im = n + 1,

∀k ∈ {3, . . . ,m − 1},
0 otherwise.

(3)

Actually, the tensor U is the tensor corresponding to the homogeneous polynomial in n + 1 vari-
ables by homogenizing T xm−1 = (Bm−1)xm−2 + · · · + (B3)x2 + Ax + b. By Corollary 2.5, we have that
Det(U) = 0 since ui1 i2...im = 0 whenever i1 = n+1. Hence, by (i), there exists y := (xT ,α)T ∈ Cn+1 \{0}
such that Uym−1 = 0. Consequently, by (3) and the first n equations in Uym−1 = 0, we know that

T xm−1 − α
(Bm−1)xm−2 − · · · − αm−3(B3)x2 − αm−2 Ax − αm−1b = 0. (4)

Furthermore, we claim that α �= 0. Otherwise, from (4), T xm−1 = 0 which means Det(T ) = 0 by (i). It
is a contradiction. Hence, from (4) we know that x

α is a solution to

T xm−1 = (Bm−1)xm−2 + · · · + (B3)x2 + Ax + b.

The proof is complete. �
So, like the matrix determinants of linear equations, the tensor determinants are criteria for

the solvability of nonlinear polynomial equations. It is interesting to investigate whether T xm−1 =
(Bm−1)xm−2 + · · · + (B3)x2 + Ax + b has only finitely many solutions whenever Det(T ) �= 0.

4. Block tensors

In the content of matrices, if a square matrix A can be partitioned as

A =
(

B D
0 C

)
with square sub-matrices B and C , and sub-matrix D , then Det(A) = Det(B)Det(C) (Lang, 1987;
Strang, 1993). We now generalize this property to tensors. The following definition is straightforward.

Definition 4.1. Let T ∈ T(Cn,m) and 1 � k � n. Tensor U ∈ T(Ck,m) is called a sub-tensor of T as-
sociated to the index set { j1, . . . , jk} ⊆ {1, . . . ,n} if and only if ui1...im = t ji1 ... jim

for all i1, . . . , im ∈
{1, . . . ,k}.

Though Definition 4.1 is for a specific tensor, the generalization to tensors of indeterminate vari-
ables is straightforward. Given a set E ⊆ Cn , we denote by I(E) ⊆ C[x] the ideal of polynomials in
C[x] which vanish identically on E. Given a set of polynomials F := { f1, . . . , f s: f i ∈ C[x]}, we denote
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by V(F) ⊆ Cn the algebraic set associated to F, i.e., the set of the common roots of polynomials in F
(Cox et al., 1998; Lang, 2002).

Theorem 4.2. Let T be an m-th order n-dimensional tensor of indeterminate variables such that there exists
an integer k ∈ {1, . . . ,n − 1} satisfying tii2...im ≡ 0 for every i ∈ {k + 1, . . . ,n} and all indices i2, . . . , im such
that {i2, . . . , im} ∩ {1, . . . ,k} �= ∅. Denote by U and V the sub-tensors of T associated to {1, . . . ,k} and
{k + 1, . . . ,n}, respectively. Then, it holds that

DET(T ) = [
DET(U)

](m−1)n−k[
DET(V)

](m−1)k

. (5)

A word on the notation is necessary before the proof. Though with the same notation, implic-
itly, DET(T ) is understood as the determinant for m-th order n-dimensional tensors, DET(U) for m-th
order k-dimensional tensors and DET(V) for m-th order (n−k)-dimensional tensors. The actual mean-
ings are clear from the content. The notation Det is similar.

Proof of Theorem 4.2. We first show that for any specific tensor T satisfying the hypothesis,

Det(T ) = 0 ⇐⇒ Det(U)Det(V) = 0. (6)

Suppose that Det(T ) = 0. Then there exists x ∈ Cn \ {0} such that T xm−1 = 0 by Theorem 3.1(i).
Denote by u ∈ Ck the vector consisting of x1, . . . , xk , and v ∈ Cn−k the vector consisting of xk+1, . . . , xn .
If v �= 0, then from T xm−1 = 0 we get that Vvm−1 = 0. Consequently, Det(V) = 0 by Theorem 3.1(i).
Otherwise, u �= 0 and v = 0. This, together with T xm−1 = 0, implies that Uum−1 = 0. Thus, Det(U) = 0
by Theorem 3.1(i). Hence, we have

Det(T ) = 0 �⇒ Det(U)Det(V) = 0.

Conversely, suppose that Det(U)Det(V) = 0. If Det(U) = 0, then there exists u ∈ Ck \ {0} such that
Uum−1 = 0. Denote x := (uT ,0)T ∈ Cn \ {0}, then T xm−1 = 0, which implies Det(T ) = 0 by Theo-
rem 3.1(i). If Det(U) �= 0, then Det(V) = 0, which implies that there exists v ∈ Cn−k \ {0} such that
Vvm−1 = 0. Now, by the vector v and the tensor T , we construct the vector b ∈ Ck as

bi :=
n∑

j2,..., jm=k+1

ti j2... jm v j2−k . . . v jm−k, ∀i ∈ {1, . . . ,k}; (7)

the matrix A ∈ T(Ck,2) as

aij :=
∑

(q2,...,qm)∈D( j)

tiq2...qm

∏
qw>k

vqw−k, ∀i, j ∈ {1, . . . ,k} (8)

with D( j) := {(q2, . . . ,qm) | j = qp for some p ∈ {2, . . . ,m}, and ql ∈ {k + 1, . . . ,n}, l �= p}; and, the
tensors Bs ∈ T(Ck, s) for s ∈ {3, . . . ,m − 1} as

bs
i j2... js

:=
∑

(q2,...,qm)∈Ds( j2,..., js)

tiq2...qm

∏
qw>k

vqw−k, ∀i, j2, . . . , js ∈ {1, . . . ,k} (9)

with

Ds( j2, . . . , js) := {
(q2, . . . ,qm)

∣∣ {qt2 , . . . ,qts } = { j2, . . . , js} for some pairwise

different t2, . . . , ts in {2, . . . ,m}, and ql ∈ {k + 1, . . . ,n}, l /∈ {t2, . . . , ts}
}
.

Since Det(U) �= 0, by Theorem 3.1(ii),

Uum−1 + (Bm−1)um−2 + · · · + (B3)u2 + Au + b = 0
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has a solution u ∈ Ck . Let x := (uT ,vT )T ∈ Cn \ {0} as v ∈ Cn−k \ {0}. By (7), (8) and (9), we have that(T xm−1)
i = (Uum−1 + (Bm−1)um−2 + · · · + (B3)u2 + Au + b

)
i = 0, ∀i ∈ {1, . . . ,k}.

Furthermore,(T xm−1)
i = (Vvm−1)

i = 0, ∀i ∈ {k + 1, . . . ,n}.
Consequently, T xm−1 = 0 which implies Det(T ) = 0 by Theorem 3.1(i).

Hence, we proved (6). In the following, we show that (5) holds. Note that the dimension of
T(Cn,m) is nm . The set of tensors satisfying the hypothesis of this theorem forms a vector sub-
space S of T(Cn,m) with dimension knm−1 + (n − k)m−1. Consequently, the number of variables of
the polynomial DET(T ) is knm−1 + (n − k)m−1. In the following, the ambient space for the algebraic
sets is understood as S. As sets of variables, the sets of entries of U and V are subsets of the set of
entries of T . Hence, we can view DET(U),DET(V) ∈ C[T ]. By (6), we have

V
(
DET(U)DET(V)

)= V
(
DET(T )

)
,

which implies that

I
(
V
(
DET(T )

))= I
(
V
(
DET(U)DET(V)

))
.

By Proposition 2.4(ii), both DET(U) ∈ C[U ] and DET(V) ∈ C[V] are irreducible. Consequently,

I
(
V
(
DET(T )

))= I
(
V
(
DET(U)DET(V)

))= 〈
DET(U)DET(V)

〉
.

Let
√〈DET(T )〉 be the radical ideal of the ideal 〈DET(T )〉 (Lang, 2002). Then, Hilbert’s Nullstellensatz

(see Theorem 4.2 in Cox et al. (2006)) implies that√〈
DET(T )

〉= I
(
V
(
DET(T )

))= 〈
DET(U)DET(V)

〉
.

Since both
√〈DET(T )〉 and 〈DET(U)DET(V)〉 are principal ideals and C[T ] is a unique factorization

domain, we have that

DET(T ) = (
DET(U)

)r1
(
DET(V)

)r2 (10)

for some r1, r2 ∈ N+ .
By Proposition 2.4(i), DET(T ) is homogeneous of degree (m − 1)n−1 in the variables {t1i2...im |

i2, . . . , im ∈ {1, . . . ,n}}. By the hypothesis, DET(V) is independent of the variables {t1i2...im | i2, . . . , im ∈
{1, . . . ,n}}. By Proposition 2.4(i) again, DET(U) is homogeneous of degree (m − 1)k−1 in the variables
{t1i2...im | i2, . . . , im ∈ {1, . . . ,k}}. Consequently, r1 = (m − 1)n−k by (10). Now, comparing the degrees
of the both sides of (10) with Proposition 2.4(ii), we get r2 = (m − 1)k and hence (5). The proof is
complete. �
5. A simple application: Triangular tensors

Let T = (ti1...im ) ∈ T(Cn,m). If ti1...im ≡ 0 whenever min{i2, . . . , im} < i1, then T is called an upper
triangular tensor. If ti1...im ≡ 0 whenever max{i2, . . . , im} > i1, then T is called a lower triangular
tensor. If T is either upper or lower triangular, then T is called a triangular tensor. In particular,
a diagonal tensor is a triangular tensor.

Theorem 4.2 presents the determinant formula for “upper block triangular” tensors. By similar
proof of Theorem 4.2, it can be proved that the result holds true for lower block triangular tensors as
well. Consequently, we have the following proposition.

Proposition 5.1. Suppose that T ∈ T(Cn,m) is a triangular tensor. Then

Det(T ) =
n∏

i=1

(ti...i)
(m−1)n−1

.
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It is a generalization of Section 3.1.5 in Dolotin and Morozov (2007).

Corollary 5.2. Suppose that T ∈ T(Cn,m) is a triangular tensor. Then

σ(T ) = {
ti...i

∣∣ i ∈ {1, . . . ,n}},
and the algebraic multiplicity of ti...i is (m − 1)n−1 for all i ∈ {1, . . . ,n}.

Proof. By Definition 2.2, χ(λ) is defined as the determinant of tensor λI −T . Since T is a triangular
tensor, λI − T is a triangular tensor as well. The diagonal elements of λI − T are {λ − ti...i | i ∈
{1, . . . ,n}}. Consequently, χ(λ) = Det(λI − T ) =∏n

i=1(λ − ti...i)
(m−1)n−1

by Proposition 5.1. By Theo-
rem 2.3, σ(T ) consists of the roots of the characteristic polynomial χ(λ) of the tensor T . Then, the
proof is complete. �

With Theorem 3.1, we have the following simple application of the determinant theory.

Theorem 5.3. Suppose that T is a triangular tensor with nonzero diagonal elements. Then for any b ∈ Cn,
A ∈ T(Cn,2), and B j ∈ T(Cn, j) for j ∈ {3, . . . ,m − 1}, T xm−1 = (Bm−1)xm−2 + · · · + (B3)x2 + Ax + b
has a solution in Cn.

6. The characteristic polynomial

By Definition 2.2, for any T ∈ T(Cn,m), its characteristic polynomial is χ(λ) = Det(λI − T ). In
this section, we discuss some properties of the characteristic polynomial of a tensor related to the
determinant. To this end, we give a trace formula for the determinant in Subsection 6.1 first. This
result, due to Morozov and Shakirov (2011), is a corner stone for the subsequent analysis of the
characteristic polynomials.

6.1. A trace formula of the determinant

Let T ∈ T(Cn,m). Define the following differential operators:

ĝi :=
n∑

i2=1

. . .

n∑
im=1

tii2...im

∂

∂aii2

. . .
∂

∂aiim

, ∀i ∈ {1, . . . ,n}, (11)

where A is an auxiliary n×n matrix consists of indeterminate variables aij ’s. It is clear that for every i,
ĝi is a differential operator which belongs to the operator algebra C[∂ A], here ∂ A is the n × n matrix
with elements ∂

∂aij
’s. The Schur polynomials are defined as:

p0(t0) = 1, and pk(t1, . . . , tk) :=
k∑

i=1

∑
d j>0,

∑i
j=1 d j=k

∏i
j=1 td j

i! , ∀k � 1, (12)

where {t0, t1, . . .} are variables. Motivated by Cooper and Dutle (2012) and Morozov and Shakirov
(2011), we define the d-th order trace of the tensor T as

Trd(T ) := (m − 1)n−1

[ ∑
∑n

i=1 ki=d

n∏
i=1

(ĝi)
ki

((m − 1)ki)!

]
Tr
(

A(m−1)d). (13)

We show in Proposition 6.4 that Tr1(T ) = (m − 1)n−1∑n
i=1 ti...i . Hence, it is a generalization of the

trace of a matrix. Trd(T )’s are called higher order traces for d > 1.
We now have the following proposition.
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Proposition 6.1. Let T ∈ T(Cn,m) and the notation be defined as above. Then,

DET(T ) = 1 +
∞∑

k=1

pk

(
−Tr1(I − T )

1
, . . . ,−Trk(I − T )

k

)
. (14)

Proof. This result follows from Proposition II in Morozov and Shakirov (2011), the identity log(DET(I −
A)) = Tr(log(I − A)) for the matrix A, and the definitions of the Schur polynomials and the higher
order traces. As the proof is a restatement of those from Sections 4–8 in Morozov and Shakirov (2011)
in the language of tensors, we omit it. �

The following proposition is useful in the sequel, which also helps to give an expression of DET(T )

with only finitely many terms.

Proposition 6.2. Let T ∈ T(Cn,m) and the notation be defined as above. Then, the following hold:

(i) for every d ∈ N+ , Trd(T ) ∈ C[T ] is homogeneous of degree d;
(ii) for every k ∈ N+ , pk(− Tr1(T )

1 , . . . ,− Trk(T )
k ) ∈ C[T ] is homogeneous of degree k; and,

(iii) for any integer k > n(m − 1)n−1 , pk(− Tr1(T )
1 , . . . ,− Trk(T )

k ) ∈ C[T ] is zero.

Proof. (i) By the formulae of ĝi ’s as in (11), it is easy to see that

∑
∑n

i=1 ki=d

n∏
i=1

(ĝi)
ki

((m − 1)ki)! ∈ C[T , ∂ A]

is homogeneous, and more explicitly, homogeneous of degree d in the variable T and homogeneous
of degree (m − 1)d in the variable ∂ A. It is also known that

Tr
(

Ak)=
n∑

i1=1

. . .

n∑
ik=1

ai1i2ai2i3 . . .aik−1 ik aiki1 ∈ C[A] (15)

is homogeneous of degree k. These, together with (13), imply that Trd(T ) ∈ C[T ] is homogeneous of
degree d as desired.

(ii) It follows from (i) and the definitions of the Schur polynomials as in (12) directly.
(iii) From Proposition 2.4(ii), it is clear that DET(B) is an irreducible polynomial which is homo-

geneous of degree n(m − 1)n−1 in the variables {bi1...im }. In the following, let B := I − T . Since the
entries of B consist of 1 and the entries of the tensor T , the highest degree of DET(I −T ) viewed as
a polynomial in C[T ] is not greater than n(m − 1)n−1. This, together with (14) and (ii) which asserts
that pk(− Tr1(T )

1 , . . . ,− Trk(T )
k ) ∈ C[T ] is homogeneous of degree k, implies the result (iii).

The proof is complete. �
By Proposition 6.2 and (14), we immediately get

DET(T ) = 1 +
n(m−1)n−1∑

k=1

pk

(
−Tr1(I − T )

1
, . . . ,−Trk(I − T )

k

)
. (16)

This is a trace formula for the tensor determinant. It provides a way to approach the computation
of the tensor determinant. However, it involves the higher order traces of tensors, and hence the
differential operators ĝi ’s. It is very hard to compute them (Dolotin and Morozov, 2007; Morozov and
Shakirov, 2011). In Section 7, we give an explicit formulae for the second order trace of a tensor of
arbitrary dimension and the determinant of a tensor when n = 2.
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6.2. Basic properties of the characteristic polynomial

Some basic properties of the characteristic polynomial are derived in this subsection.

Theorem 6.3. Let T ∈ T(Cn,m) and the notation be defined as above. Then

χ(λ) = Det(λI − T )

= λn(m−1)n−1 +
n(m−1)n−1∑

k=1

λn(m−1)n−1−k pk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

)

=
∏

λi∈σ (T )

(λ − λi)
mi ,

where mi is the algebraic multiplicity of the eigenvalue λi .

Proof. The first equality follows from Definition 2.2, and the last one from Theorem 2.3.
By Proposition 6.2 and (16), we can get that

χ(1) = Det(I − T ) = 1 +
n(m−1)n−1∑

k=1

pk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

)
. (17)

Consequently, when λ �= 0,

χ(λ) = Det(λI − T )

= λn(m−1)n−1
Det

(
I − T

λ

)

= λn(m−1)n−1

[
1 +

n(m−1)n−1∑
k=1

pk

(
−Tr1(

T
λ

)

1
, . . . ,−Trk(

T
λ

)

k

)]

= λn(m−1)n−1

[
1 +

n(m−1)n−1∑
k=1

1

λk
pk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

)]

= λn(m−1)n−1 +
n(m−1)n−1∑

k=1

λn(m−1)n−1−k pk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

)
.

Here the second equality comes from Corollary 2.6, the third from (17), and the fourth from Proposi-
tion 6.2. Hence, the result follows from the fact that the field C is of characteristic zero. The proof is
complete. �

Theorem 6.3 gives a trace formula for the characteristic polynomial of the tensor T as well as an
eigenvalue representation for it.

Here are some properties concerning the coefficients of χ(λ).

Proposition 6.4. Let T ∈ T(Cn,m) and the notation be defined as above. Then,

(i) p1(−Tr1(T )) = −Tr1(T ) = −(m − 1)n−1∑n
i=1 tii...i ,

(ii) p2(− Tr1(T )
1 ,− Tr2(T )

2 ) = 1
2 ([Tr1(T )]2 − Tr2(T )), and

(iii) pn(m−1)n−1 (− Tr1(T )
1 , . . . ,− Trn(m−1)n−1 (T )

n(m−1)n−1 ) = (−1)n(m−1)n−1
Det(T ).
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Proof. (i) By (12), we know that p1(−Tr1(T )) = −Tr1(T ). Furthermore, by (13), it is easy to see that

Tr1(T ) = (m − 1)n−1
n∑

i=1

ĝi

(m − 1)! Tr
(

Am−1)

= (m − 1)n−1

(m − 1)!
n∑

i=1

[
n∑

i2=1

. . .

n∑
im=1

tii2...im

∂

∂aii2

. . .
∂

∂aiim

]
Tr
(

Am−1)

= (m − 1)n−1

(m − 1)!
n∑

i=1

[
n∑

i2=1

. . .

n∑
im=1

tii2...im

∂

∂aii2

. . .
∂

∂aiim

]

·
(

n∑
i1=1

. . .

n∑
im−1=1

ai1i2ai2i3 . . .aim−2im−1aim−1i1

)

= (m − 1)n−1

(m − 1)!
n∑

i=1

[
tii...i

∂

∂aii
. . .

∂

∂aii
(aii)

m−1
]

= (m − 1)n−1
n∑

i=1

tii...i .

Here, the fourth equality follows from the fact that: (a) the differential operator in the right hand side
of the third equality contains only items ∂

∂ai�
’s for � ∈ {1, . . . ,n} and the total degree is m − 1, and

(b) only terms in Tr(Am−1) that contain the same ∂
∂ai�

’s of total degree m − 1 can contribute to the
result and this case occurs only when every � = i by (15). Consequently, the result (i) follows.

(ii) follows from the definition (12) by direct calculation.
(iii) By Theorem 6.3, it is clear that

χ(0) = Det(−T ) = pn(m−1)n−1

(
−Tr1(T )

1
, . . . ,−Trn(m−1)n−1(T )

n(m − 1)n−1

)
.

Moreover, DET(−T ) ∈ C[T ] is homogeneous of degree n(m − 1)n−1 by Proposition 2.4(ii), which im-
plies that Det(−T ) = (−1)n(m−1)n−1

Det(T ). Consequently, the result follows. �
Corollary 6.5. Let T ∈ T(Cn,m) and the notation be defined as above. Then,

(i)
∑

λi∈σ(T ) miλi = (m − 1)n−1∑n
i=1 tii...i = Tr1(T ),

(ii)
∑

λi∈σ(T ) miλ
2
i = Tr2(T ), and

(iii)
∏

λi∈σ(T ) λ
mi
i = Det(T ).

Here mi is the algebraic multiplicity of the eigenvalue λi .

Proof. The results (i) and (iii) follow from the eigenvalue representation of χ(λ) in Theorem 6.3 and
the coefficients of χ(λ) in Proposition 6.4 immediately. For (ii), by Proposition 6.4(ii) and Newton’s
identities for the roots and the coefficients of a polynomial, we get that

∑
i< j,λi ,λ j∈σ(T ) mim jλiλ j =

p2(− Tr1(T )
1 ,− Tr2(T )

2 ) = 1
2 ([Tr1(T )]2 − Tr2(T )). Consequently, (ii) follows from (i) and the perfect

square formula. �
Remark 6.6. In Qi (2005), Qi proved the results in Corollary 6.5(i) and (iii) for T ∈ S(Rn,m) (the space
of real symmetric tensors of order m and dimension n). By Theorem 3.1 and Corollary 6.5, we see that
the solvability of a homogeneous polynomial equation is characterized by the zero eigenvalue of the
underlying tensor.
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In the following, we generalize Corollary 6.5(i) and (ii) to Trk(T ) for all k ∈ {1, . . . ,n(m − 1)n−1}.
To this end, we need the following lemmas.

Lemma 6.7. Let pk(t1, . . . , tk) be the Schur polynomials defined as (12). Then, for all k ∈ N+ ,

∂

∂ti
pk = pk−i, ∀i ∈ {1, . . . ,k}. (18)

Proof. The case for i = k is easy to see, since p0 = 1 and the only monomial in pk having the variable
tk is tk by (12).

Now, we show the cases i ∈ {1, . . . ,k − 1}. For each fixed i, we have that pk−i(t1, . . . , tk−i) =∑k−i
s=1

∑
d j>0,

∑s
j=1 d j=k−i

∏s
j=1 td j

s! by (12). To prove (18), it is sufficient to show that there is

a one-to-one correspondence between the monomials in pk−i and these in pk(t1, . . . , tk) =∑k
w=1

∑
d j>0,

∑w
j=1 d j=k

∏w
j=1 td j
w! having variable ti , and their coefficients satisfying the derivative re-

lation.
First, the one-to-one correspondence between the monomials in pk−i and these in pk having

variable ti is obvious: for any monomial c
∏s

j=1 td j with nonzero coefficient c in pk−i , there is the
monomial dti

∏s
j=1 td j with nonzero coefficient d in pk , and vice verse.

Second, suppose that c
s!
∏s

j=1 td j with nonzero coefficient c is a monomial in the polyno-
mial pk−i for some s ∈ {1, . . . ,k − i} and d1, . . . ,ds . Then, by (12), we see that the number of
cases of the ordered s-tuples (q1, . . . ,qs) such that

∑s
j=1 q j = k − i and q j > 0, j ∈ {1, . . . , s} re-

sulting in
∏s

j=1 td j is c. For any such ordered (q′
1, . . . ,q′

s), we get s + 1 ordered (s + 1)-tuples
(i,q′

1, . . . ,q′
s), (q

′
1, i, . . . ,q′

s) . . . , (q′
1, . . . ,q′

s, i) such that every (s + 1)-tuple results in ti
∏s

j=1 td j . Note
that some of the (s + 1)-tuples may be the same. Let r be the degree of the variable ti in the mono-
mial ti

∏s
j=1 td j . Consequently, the number of cases of the ordered (s + 1)-tuples (q1, . . . ,qs,qs+1)

such that
∑s+1

j=1 q j = k and q j > 0, j ∈ {1, . . . , s + 1} resulting in ti
∏s

j=1 td j is (s+1)c
r . These, together

with (12), imply that the monomial c
s!
∏s

j=1 td j in pk−i corresponds to the following monomial in pk:

(s + 1)c

r

1

(s + 1)! ti

s∏
j=1

td j .

The derivative of this monomial with respective to ti is exactly c
s!
∏s

j=1 td j . The proof is complete. �
Lemma 6.8. Let x = (x1, . . . , xn) and h1, . . . ,hn ∈ C[x] be polynomials. If there is some f ∈ C[x] satisfying
the following system of differential equations

∂

∂xi
f = hi, ∀i ∈ {1, . . . ,n}

and f (0) = 0, then f is unique.

Proof. First, f (0) = 0 implies that the constant term of f is zero. Then, as C is algebraically closed
and of characteristic zero, it is sufficient to prove that every monomial of positive degree in f is
uniquely determined by the differential equations. This is easy to see: (i) every monomial of f con-
taining the variable xi is uniquely determined by the i-th differential equation in the hypothesis, and
(ii) every monomial of positive degree of f has at least one variable in the set {xi | i ∈ {1, . . . ,n}}. The
proof is complete. �
Lemma 6.9. Let pk(t1, . . . , tk) be the Schur polynomials defined as (12). Then, for all k ∈ N+ ,

kpk = ktk +
k−1∑
i=0

iti pk−i . (19)
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Proof. On the one side, by Lemmas 6.7 and 6.8, we know that for all k ∈ N+ , pk defined as (12) is
the unique polynomial satisfying

∂

∂ti
pk = pk−i, ∀i ∈ {1, . . . ,k}. (20)

On the other side, we show that polynomials qk(t1, . . . , tk) defined through the recursive formulae

q0 = 1, kqk = ktk +
k−1∑
i=0

itiqk−i, ∀k = 1,2, . . . (21)

satisfy (20) through replacing pk ’s by qk ’s as well. Consequently, qk = pk for all k ∈ N and (19) follows.
The proof is by induction, the first step for k = 1 is obvious, since ∂

∂t1
q1 = 1 = q0. Second, suppose

that all of {q1, . . . ,qk} satisfy (20) for some k � 1, we prove that qk+1 satisfies (20) as well. It is
easy to see that ∂

∂tk+1
qk+1 = 1 = q0 by (21) and the fact that qs is independent of tk+1 for s � k. For

s ∈ {1, . . . ,k}, by (21)

(k + 1)
∂

∂ts
qk+1 = ∂

∂ts

(
k∑

i=0

itiqk+1−i

)

=
∑

0�i�k, i �=s

iti
∂

∂ts
qk+1−i + sts

∂

∂ts
qk+1−s + sqk+1−s

=
k∑

i=0

iti
∂

∂ts
qk+1−i + sqk+1−s

=
k+1−s∑

i=1

iti
∂

∂ts
qk+1−i + sqk+1−s

=
k+1−s∑

i=1

itiqk+1−i−s + sqk+1−s

=
k−s∑
i=1

itiqk+1−s−i + (k + 1 − s)tk+1−s + sqk+1−s

= (k + 1 − s)qk+1−s + sqk+1−s

= (k + 1)qk+1−s,

where the fourth equality follows from the fact that qw is independent of ts for w � s − 1, the
fifth from the inductive hypothesis, the sixth from the fact that q0 = 1, and the seventh from (21).
Therefore, qk+1 satisfies (20). Then, qk satisfies (20) for all k ∈ N+ by induction. The proof is com-
plete. �

Now, we are in the position to give the main theorem in this section.

Theorem 6.10. Let T ∈ T(Cn,m). Denote by pi the codegree i coefficient of the characteristic polynomial of
the tensor T . Then, for all k ∈ {1, . . . ,n(m − 1)n−1},

Trk(T ) = −kpk −
k−1∑
i=1

pi Trk−i(T ).
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Moreover, for all k ∈ {1, . . . ,n(m − 1)n−1},

Trk(T ) =
∑

λi∈σ (T )

miλ
k
i ,

where mi is the algebraic multiplicity of the eigenvalue λi .

Proof. The first half of this theorem follows from Theorem 6.3 and Lemma 6.9 by inserting ti with
− Tri(T )

i . The second half follows from the first half and Newton’s identities on the roots and the
coefficients of a polynomial: for a univariate polynomial equation

tk + a1tk−1 + · · · + ak = 0,

let si be the sum of the i-th powers of its roots with multiplicity. Then,

si = −iai −
i−1∑
j=1

si− ja j .

The proof is complete. �
Remark 6.11. Theorem 6.10 reveals two facts: (i) the coefficients of the characteristic polynomial of
a tensor are recursively generated by the higher order traces of the tensor, and (ii) the higher order
traces of a tensor are elementary symmetric functions of powers of the eigenvalues of the tensor. It
is a generalization of Newton’s identities on the characteristic polynomial for a matrix to a tensor. It
also indicates the fundamental roles of the higher order traces in the eigenvalue theory of tensors.

6.3. Positive semidefinite tensors

In this subsection, we present a sufficient and a necessary condition, based on the characteristic
polynomial, for an even order tensor to be positive semidefinite.

A tensor T ∈ S(Rn,m) is called positive semidefinite if and only if xT (T xm−1) � 0 for all x ∈ Rn .
Obviously, m being even is necessary for positive semidefinite tensors.

Lemma 6.12. Let T ∈ S(Rn,m) and m be even. Then, T is positive semidefinite if all the real eigenvalues of T
are nonnegative.

Proof. The result follows from Theorem 5 in Qi (2005). �
The following classical result on real roots of a polynomial is Déscartes’ Rule of Signs, see Theo-

rem 1.5 in Sturmfels (2002).

Lemma 6.13. The number of positive real roots of a polynomial is at most the number of sign changes in its
coefficients.

Let sgn(·) be the sign function for scalars, i.e., sgn(γ ) = 1 if γ > 0, sgn(0) = 0 and sgn(γ ) = −1 if
γ < 0.

Proposition 6.14. Let m be even, T ∈ T(Rn,m), and

χ(λ) = λn(m−1)n−1 +
n(m−1)n−1∑

k=1

λn(m−1)n−1−k pk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

)
.
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If

sgn

(
pk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

))
= (−1)k (22)

for all pk(− Tr1(T )
1 , . . . ,− Trk(T )

k ) �= 0 with 1 � k � n(m − 1)n−1 , then T is positive semidefinite.

Proof. Suppose that m is even and n is odd. Then, n(m − 1)n−1 is odd. Consequently,

φ(λ) := χ(−λ)

= −λn(m−1)n−1 +
n(m−1)n−1∑

k=1

(−1)k+1λn(m−1)n−1−k pk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

)
.

Then, by Lemma 6.13, φ defined as above has no positive real root, since the sign of the coefficient
of φ is negative when it is nonzero. Hence, χ has no negative real root. Consequently, T is positive
semidefinite by Lemma 6.12.

The proof for the other case for m and n is similar. Consequently, the result follows. The proof is
complete. �
Remark 6.15. If tensor T ∈ S(Rn,m) is nonzero and positive semidefinite, then −T isn’t positive
semidefinite. Consequently, (22) with T being replaced by −T fails to hold by Proposition 6.14.
Hence, Proposition 6.14 provides a necessary as well as a sufficient condition for a nonzero tensor
to be positive semidefinite. In the next section, the coefficients of the characteristic polynomial are
discussed. When n = 2, Theorem 7.7 gives explicit formulae for them. Then, it is easy to check the
corresponding hypothesis in Proposition 6.14 in this case. While, for many tensors, both T and −T
will fail to satisfy the hypotheses of Proposition 6.14, then the criteria will be inconclusive about the
tensor’s semidefiniteness.

7. The second order trace

We discuss more on the higher order traces of a tensor T ∈ T(Cn,m) in this section. Note that
the trace formulae of both the characteristic polynomial and the determinant depend on the d-th
order traces of the underlying tensor for all d ∈ {1, . . . ,n(m − 1)n−1}. However, it is very complicated
(Cooper and Dutle, 2012; Morozov and Shakirov, 2011). In this section, we give preliminary results
on the computation of the d-th order traces of a tensor. In particular, we give explicit formulae of
Tr2(T ) for a tensor T of arbitrary order and dimension, and the characteristic polynomial χ(λ) and
the determinant Det(T ) of a tensor T when n = 2.

The following lemma is a generalization of Proposition 6.4(i).

Lemma 7.1. Let T ∈ T(Cn,m) and the notation be defined as above. We have

(ĝi)
k

((m − 1)k)! Tr
(

A(m−1)k)= tk
ii...i (23)

for all k � 0 and i ∈ {1, . . . ,n}. So,

n∑
i=1

(ĝi)
k

((m − 1)k)! Tr
(

A(m−1)k)=
n∑

i=1

tk
ii...i . (24)

Proof. By (11) and (15), similar to the proof of Proposition 6.14(i), we have

(ĝi)
k Tr

(
A(m−1)k)=

[
n∑

i2=1

. . .

n∑
im=1

tii2...im

∂

∂aii2

. . .
∂

∂aiim

]k

Tr
(

A(m−1)k)
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=
[

n∑
i2=1

. . .

n∑
im=1

tii2...im

∂

∂aii2

. . .
∂

∂aiim

]k

·
(

n∑
i1=1

. . .

n∑
i(m−1)k=1

ai1i2ai2i3 . . .ai(m−1)k−1i(m−1)k ai(m−1)ki1

)

=
[

tii...i
∂

∂aii
. . .

∂

∂aii

]k

(aii)
(m−1)k

= (
(m − 1)k

)!tk
ii...i,

which implies (23), and hence (24). �
Before further analysis, we need the following combinatorial result.

Lemma 7.2. Let i �= j, k � 1, h � 1 and s ∈ {1, . . . ,min{h,k}(m − 1)} be arbitrary but fixed. Then, the coeffi-
cient of the following term

(aii)
k(m−1)−s(aij)

s(a ji)
s(a jj)

h(m−1)−s

in the expansion of Tr(A(k+h)(m−1)) is(
k(m − 1)

s

)(
h(m − 1) − 1

s − 1

)
+
(

h(m − 1)

s

)(
k(m − 1) − 1

s − 1

)
.

Proof. For the convenience of the subsequent analysis, we define a packaged element of i as an ordered
collection of aij , a jj ’s and a ji in the form:

aij a j j . . .a jj︸ ︷︷ ︸
p

a ji .

The number p of a jj ’s in a packaged element of i can vary from 0 to the maximal number. A packaged
element of j can be defined similarly.

Note that any term in

Tr
(

A(k+h)(m−1)
)=

n∑
i1=1

. . .

n∑
i(k+h)(m−1)=1

ai1 i2ai2 i3 . . .ai(k+h)(m−1)−1i(k+h)(m−1)
ai(k+h)(m−1)i1

which results in (aii)
k(m−1)−s(aij)

s(a ji)
s(a jj)

h(m−1)−s has either the packaged elements of i or the
packaged elements of j, not both, if we count from the left most in the expression, and is totally
determined by the numbers of a jj ’s in the packaged elements and the positions of the packaged
elements in the expression

ai1i2ai2i3 . . .ai(k+h)(m−1)−1i(k+h)(m−1)
ai(k+h)(m−1)i1 . (25)

So, the coefficient of the term (aii)
k(m−1)−s(aij)

s(a ji)
s(a jj)

h(m−1)−s in the expansion

Tr
(

A(k+h)(m−1)
)=

n∑
i1=1

. . .

n∑
i(k+h)(m−1)=1

ai1 i2ai2 i3 . . .ai(k+h)(m−1)−1i(k+h)(m−1)
ai(k+h)(m−1)i1

is totally determined by the number of cases how the packaged elements are arranged multiplying
the number of cases of the positions of the packaged elements in the expression (25).
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In the following, we consider only the situation of packaged elements of i. The other situation is
similar. Note that there are altogether s packaged elements of i in every expression (25) which result
in

(aii)
k(m−1)−s(aij)

s(a ji)
s(a jj)

h(m−1)−s. (26)

Firstly, note that there are h(m − 1) − s a jj ’s in (26). Then we have(
h(m − 1) − s + (s − 1)

s − 1

)
=
(

h(m − 1) − 1
s − 1

)
different cases of s packaged elements of i with every case resulting in

(aij)
s(a ji)

s(a jj)
h(m−1)−s.

Secondly, for an arbitrary but fixed case of s packaged elements of i in the first step, we get k(m − 1)

“mixed” elements consisting of the s packaged elements and the rest k(m − 1) − s aii ’s. Consequently,
there are exactly(

k(m − 1)

s

)
cases of the expression (25), under which the expression (25) results in the term

(aii)
k(m−1)−s(aij)

s(a ji)
s(a jj)

h(m−1)−s.

Therefore, the number of times of the term (26) occurs in the expansion Tr(A(k+h)(m−1)) is(
k(m − 1)

s

)(
h(m − 1) − 1

s − 1

)
in the situation of packaged elements of i.

By the symmetry of i and j, we can prove similarly that, in the situation of packaged elements
of j, the number of times of the term (26) that occurs in the expansion Tr(A(k+h)(m−1)) is(

h(m − 1)

s

)(
k(m − 1) − 1

s − 1

)
.

Hence, we have that the coefficient of term (aii)
k(m−1)−s(aij)

s(a ji)
s(a jj)

k(m−1)−s in the expansion
Tr(A(k+h)(m−1)) is(

k(m − 1)

s

)(
h(m − 1) − 1

s − 1

)
+
(

h(m − 1)

s

)(
k(m − 1) − 1

s − 1

)
.

The proof is complete. �
In the sequel, in order to make the operators in (11) more convenient to use and the resulting

formulae more tidy, we reformulate ĝi in the following way:

ĝi =:
∑

1�i2�i3�···�im�n

wii2...im

∂

∂aii2

. . .
∂

∂aiim

, ∀i ∈ {1, . . . ,n}. (27)

Lemma 7.3. Let T ∈ T(Cn,m). For arbitrary i < j, and h,k � 1, we have

(ĝi)
h(ĝ j)

k

(h(m − 1))!(k(m − 1))! Tr
(

A(h+k)(m−1)
)

=
(

h + k

hk(m − 1)

)min{h,k}(m−1)∑
s=1

∑
(a1,...,ah)∈Ds

(b1,...,bk)∈Es

s
h∏

p=1

k∏
q=1

wii...i j . . . j︸ ︷︷ ︸
ap

w j i . . . i︸︷︷︸
bq

j... j, (28)
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with Ds := {(a1, . . . ,ah) | a1 + · · · + ah = s, 0 � ap � m − 1, ∀p ∈ {1, . . . ,h}} and Es := {(b1, . . . ,bk) |
b1 + · · · + bk = s, 0 � bq � m − 1, ∀q ∈ {1, . . . ,k}}.

Proof. Let w := min{h,k}(m − 1), Ds := {(a1, . . . ,ah) | a1 + · · · + ah = s, 0 � ap � m − 1, ∀p ∈
{1, . . . ,h}} and Es := {(b1, . . . ,bk) | b1 + · · · + bk = s, 0 � bq � m − 1, ∀q ∈ {1, . . . ,k}} for all s ∈
{1, . . . , w}. By (27) and (15), we have

(ĝi)
h(ĝ j)

k Tr
(

A(h+k)(m−1)
)

=
[ ∑

i2�···�im

wii2...im

∂

∂aii2

. . .
∂

∂aiim

]h[ ∑
j2�···� jm

w jj2... jm

∂

∂a jj2

. . .
∂

∂a jjm

]k

· Tr
(

A(h+k)(m−1)
)

=
[ ∑

i2�···�im

wii2...im

∂

∂aii2

. . .
∂

∂aiim

]h[ ∑
j2�···� jm

w jj2... jm

∂

∂a jj2

. . .
∂

∂a jjm

]k

·
(

n∑
i1=1

. . .

n∑
i(h+k)(m−1)=1

ai1i2ai2i3 . . .ai(h+k)(m−1)−1i(h+k)(m−1)
ai(h+k)(m−1)i1

)

=
(

w∑
s=1

∑
(a1,...,ah)∈Ds, (b1,...,bk)∈Es

h∏
p=1

k∏
q=1

wii...i j . . . j︸ ︷︷ ︸
ap

w j i . . . i︸︷︷︸
bq

j... j

·
(

∂

∂aii

)h(m−1)−s(
∂

∂aij

)s(
∂

∂a ji

)s(
∂

∂a jj

)k(m−1)−s
)

·
{

w∑
s=1

[(
k(m − 1)

s

)(
h(m − 1) − 1

s − 1

)
+
(

h(m − 1)

s

)(
k(m − 1) − 1

s − 1

)]

· (aii)
h(m−1)−s(aij)

s(a ji)
s(a jj)

k(m−1)−s

}

=
w∑

s=1

∑
(a1,...,ah)∈Ds, (b1,...,bk)∈Es

h∏
p=1

k∏
q=1

wii...i j . . . j︸ ︷︷ ︸
ap

w j i . . . i︸︷︷︸
bq

j... j

· s
((

k(m − 1)
)!(h(m − 1) − 1

)! + (
h(m − 1)

)!(k(m − 1) − 1
)!).

Here, the third equality follows from Lemma 7.2. Consequently, (28) follows. �
Especially, the following is a direct corollary of Lemma 7.3.

Corollary 7.4. Let T ∈ T(Cn,m). For arbitrary i < j, we have

ĝi ĝ j

[(m − 1)!]2
Tr
(

A2(m−1)
)=

m−1∑
s=1

(
2s

m − 1

)
wii...i j . . . j︸ ︷︷ ︸

s

w ji...i j . . . j︸ ︷︷ ︸
m−1−s

.

Given an index set L := {k1, . . . ,kl} with ks taking value in {1, . . . ,n} for s ∈ {1, . . . , l}, denote by
Hi(L) the set of indices in L taking value i for i ∈ {1, . . . ,n}. We denote by |E| the cardinality of a
set E.
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Theorem 7.5. Let T ∈ T(Cn,m). We have

Tr2(T ) = (m − 1)n−1

[
n∑

i=1

(ĝi)
2

(2(m − 1))! +
∑
i< j

ĝi ĝ j

[(m − 1)!]2

]
Tr
(

A2(m−1)
)

= (m − 1)n−1

[
n∑

i=1

t2
ii...i +

∑
i< j

m−1∑
s=1

(
2s

m − 1

)

·
( ∑

|Hi({i2,...,im})|=m−1−s, |H j({i2,...,im})|=s

tii2...im

)

·
( ∑

|Hi({ j2,..., jm})|=s, |H j({ j2,..., jm})|=m−1−s

t j j2... jm

)]
.

Proof. The result follows from Lemma 7.1, Corollary 7.4, (11) and (27) immediately. �
Remark 7.6. By Proposition 6.4, Theorem 7.5, and Corollary 6.5, we see that∑

i< j, λi ,λ j∈σ (T )

mim jλiλ j = 1

2

([
Tr1(T )

]2 − Tr2(T )
)

= (m − 1)n−2
∑
i< j

m−1∑
s=1

s

( ∑
|Hi({i2,...,im})|=m−1−s, |H j({i2,...,im})|=s

tii2...im

)

·
( ∑

|Hi({ j2,..., jm})|=s, |H j({ j2,..., jm})|=m−1−s

t j j2... jm

)
,

where mi is the algebraic multiplicity of λi . The left most expression is a degree two elementary
symmetric polynomial on the eigenvalues, the middle expression is the codegree two coefficient of
the characteristic polynomial, and the right most expression is a polynomial in the entries of the
tensor which is invariant under action of the permutation group on n elements to its indices.

When n = 2, we can get the coefficients of the characteristic polynomial χ(λ) explicitly in terms
of the entries of the underlying tensor by using Theorem 6.3, Lemmas 7.1 and 7.3. It is an alternate to
Sylvester’s formula (Sylvester, 1840). In the following theorem, w , Ds ’s and Es ’s are defined as those
in Lemma 7.3.

Theorem 7.7. Let T ∈ T(C2,m). We have

χ(λ) = λ2(m−1) +
2(m−1)∑

k=1

λ2(m−1)−k
k∑

i=1

1

i!
∑

d j>0,
∑i

j=1 d j=k

i∏
j=1

−Trd j (T )

d j

with

Trd(T ) = (m − 1)

{(
td

11...1 + td
22...2

)+
∑

h+k=d,h,k�1

w∑
s=1

s(h + k)

hk(m − 1)

·
[ ∑

(a1,...,ah)∈Ds

(b1,...,bk)∈Es

h∏
p=1

k∏
q=1

( ∑
|H1({i2,...,im})|=m−1−ap, |H2({i2,...,im})|=ap

t1i2...im

)
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·
( ∑

|H1({ j2,..., jm})|=bp , |H2({ j2,..., jm})|=m−1−bp

t2 j2... jm

)]}

for d ∈ {1, . . . ,2(m − 1)}.

It follows from Theorem 6.3 and Corollary 2.6 that Det(T ) = (−1)n(m−1)n−1
χ(0). Thus, when n = 2,

we get an explicit formula for Det(T ) as

Det(T ) =
2(m−1)∑

i=1

1

i!
∑

d j>0,
∑i

j=1 d j=2(m−1)

i∏
j=1

−Trd j (T )

d j
.

When m = 3, we have the following corollary.

Corollary 7.8. Let T ∈ T(C2,3). We have

χ(λ) = λ4 − λ3 Tr1(T ) + 1

2
λ2([Tr1(T )

]2 − Tr2(T )
)

+ 1

12
λ
(−2

[
Tr1(T )

]3 + 6 Tr1(T )Tr2(T ) − 4 Tr3(T )
)

+ 1

24

([
Tr1(T )

]4 − 6
[
Tr1(T )

]2
Tr2(T )

+ 8 Tr1(T )Tr3(T ) + 3
[
Tr2(T )

]2 − 6 Tr4(T )
)

and

Det(T ) = 1

24

([
Tr1(T )

]4 − 6
[
Tr1(T )

]2
Tr2(T )

+ 8 Tr1(T )Tr3(T ) + 3
[
Tr2(T )

]2 − 6 Tr4(T )
)

with

Tr1(T ) = 2(t111 + t222),

Tr2(T ) = 2
(
t2

111 + t2
222

)+ 2(t112 + t121)(t212 + t221) + 4(t122t211),

Tr3(T ) = 2
(
t3

111 + t3
222

)
+ 3

2
(t112 + t121)

[
(t212 + t221)t222

]+ 3t122
[
(t212 + t221)

2 + t211t222
]

+ 3

2
(t212 + t221)

[
(t112 + t121)t111

]+ 3t211
[
(t112 + t121)

2 + t122t111
]
,

Tr4(T ) = 2
(
t4

111 + t4
222

)
+ 4

3
(t112 + t121)

[
t2

222(t212 + t221)
]+ 8

3
t122

[
t222(t212 + t221)

2 + t2
222t211

]
+ 4

3
(t212 + t221)

[
t2

122(t112 + t121)
]+ 8

3
t211

[
t111(t112 + t121)

2 + t2
111t122

]
+ t111(t121 + t121)t222(t212 + t221) + 3

[
t111(t121 + t112)

][
t211(t221 + t212)

]
+ 2

[
(t121 + t112)

2 + t122t111
][

t211t222 + (t212 + t221)
2]+ 4t2

122t2
211.
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8. Geršgorin’s inequality of the determinant

We generalize Geršgorin’s inequality for matrices (see Problem 6.1.3 in Horn and Johnson (1985))
to tensors in this section.

Lemma 8.1. Let T ∈ T(Cn,m) and ρ(T ) := maxλ∈σ(T ) |λ| be its spectral radius. Then,

ρ(T ) � max
1�i�n

(
n∑

i2,...,im=1

|tii2...im |
)

.

Proof. The result follows from Theorem 6 in Qi (2005) immediately. �
Proposition 8.2. Let T ∈ T(Cn,m). Then,

∣∣Det(T )
∣∣� ∏

1�i�n

(
n∑

i2,...,im=1

|tii2...im |
)(m−1)n−1

. (29)

Proof. If
∑n

i2,...,im=1 |tii2...im | = 0 for some i ∈ {1, . . . ,n}, then Det(T ) = 0 by Proposition 2.4(i). Conse-
quently, (29) follows trivially.

In the following, suppose that
∑n

i2,...,im=1 |tii2...im | �= 0 for all i ∈ {1, . . . ,n}. Let tensor U ∈ T(Cn,m)

be defined as

uii2...im := tii2...im∑n
i2,...,im=1 |tii2...im | , ∀i, i2, . . . , im ∈ {1, . . . ,n}. (30)

Then, by Lemma 8.1, we have that ρ(U) � 1. This, together with Corollary 6.5, further implies that∣∣Det(U)
∣∣� 1.

Moreover, by Proposition 2.4(ii) and (30), it is clear that

∣∣Det(U)
∣∣= |Det(T )|∏

1�i�n(
∑n

i2,...,im=1 |tii2...im |)(m−1)n−1 .

Consequently, (29) follows. The proof is complete. �
9. Final remarks

In this paper, we introduced the determinant of a tensor and investigated its various properties.
The simple application in Section 5 demonstrates that the determinant theory is applicable and worth
further exploring.

Certainly, there are many other issues for further research in the theory of the determinant, which
is surely one of the foundations of the eigenvalue theory of tensors. For example:

• More explicit formulae and relations for the higher order traces and the characteristic polynomials
of general tensors, like those in Theorems 6.10, 7.5 and 7.7, and Corollary 7.8. This can provide
approaches for the computation of the eigenvalues, which are crucial in applications.

• The applications to the spectral hypergraph theory. In Corollary 3.14 in Cooper and Dutle (2012),
the traces Tri(H) for i ∈ {1, . . . ,k − 1} for the adjacency tensor H of a k-uniform hypergraph
are proved to be zero. This, together with Theorem 6.10, implies that the spectrum of a uniform
hypergraph has special structures.
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• More properties about the determinants. For example, given a matrix A, Laplace’s formula (see
p. 7 in Horn and Johnson (1985)) reads:

Det(A) =
n∑

j=1

(−1)i+ jai j Mij (31)

with minor Mij being defined to be the determinant of the (n − 1) × (n − 1) matrix that results
from A by removing the i-th row and the j-th column. If a generalization of (31) can be de-
rived for the determinant of a tensor, many other useful inequalities, for example, Oppenheim’s
inequality, can be proved for the determinants.
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