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New ALS Methods With Extrapolating Search
Directions and Optimal Step Size for Complex-Valued
Tensor Decompositions

Yannan Chen, Deren Han, and Liqun Qi

Abstract—In signal processing, data analysis and scientific
computing, one often encounters the problem of decomposing a
tensor into a sum of contributions. To solve such problems, both
the search direction and the step size are two crucial elements in
numerical algorithms, such as alternating least squares algorithm
(ALS). Owing to the nonlinearity of the problem, the often used
linear search direction is not always powerful enough. In this
paper, we propose two higher-order search directions. The first
one, geometric search direction, is constructed via a combination
of two successive linear directions. The second one, algebraic
search direction, is constructed via a quadratic approximation
of three successive iterates. Then, in an enhanced line search
along these directions, the optimal complex step size contains two
arguments: modulus and phase. A current strategy is ELSCS
that finds these two arguments alternately. So it may suffer from
a local optimum. We broach a direct method, which determines
these two arguments simultaneously, so as to obtain the global
optimum. Finally, numerical comparisons on various search di-
rection and step size schemes are reported in the context of blind
separation-equalization of convolutive DS-CDMA mixtures. The
results show that the new search directions have greatly improve
the efficiency of ALS and the new step size strategy is competitive.

Index Terms—Alternating least squares, block component
model, CANDECOMP, CDMA, complex step size, PARAFAC,
search direction, tensor decompositions.

1. INTRODUCTION

mth-order tensor is a quantity of which the elements are
addressed by m indices. The problem of decomposing a
higher-order tensor into a sum of products of lower-order ten-
sors finds more and more important applications in signal pro-
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cessing, data analysis, and scientific computing [3], [10], [20],
[26], [28]. This decomposition is a generalization of singular
value decomposition (SVD) that gives a low-rank approxima-
tion to a matrix (a second-order tensor), while a direct general-
ization of SVD is nontrivial.

To describe the problem under consideration, we briefly in-
troduce the CANDECOMP/PARAFAC (CP).

Definition 1.1: (CP): A CP of a third-order tensor
Y € CI*/*K i5 a decomposition of ) as a linear combi-
nation of a minimal number of rank-1 tensors,

R
)7:z:h,nos7,oar7

r=1

where o denotes the outer product, h,., s, and a, are the rth
columns of three matrices H € CT*E S € C7*E and A €
CEXR respectively.

Higher-order extension of CP is straightforward.

The CP can be dated back to the work of Hitchcock in 1927
[18], [19]. However it is out of the interests of researchers until
the study of Carroll and Chang [4] and Harshman [17] in the
fields of psychometries and phonetics in 1970, respectively.
Recently, people find its applications in chemometrics [28]
and independent component analysis [5], [11]. Moreover,
Sidiropoulos et al. get its applications in wireless communi-
cation [27], where they propose a blind CP-based receiver for
instantaneous CDMA mixtures impinging on an antenna array.

In several applications, a tensor ) might result from contri-
butions that are not rank-1 tensors.

Definition 1.2: (Mode-n Product): The mode-2 and mode-3
products of a third-order tensor H € C/*E*F by the matrices
S € C’*F and A € CK*P denoted by H e5 S and H e3 A,
result in an (I x J X P) tensor and an (I x L x K) tensor,
respectively, with elements defined by

L P
(He38), = Z hipsji, (He3 Ay := Z hitp .
=1 p=1

Nonrank-one contributions lead to another decomposition,
block component model (BCM), which is more general than CP
and is defined as follows.

Definition 1.3: (BCM): A third-order tensor Y € C/>*/*K
follows a BCM if it can be written as

R
y:ZH" S, o5 A,. (1

r=1
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The vectors h,, € CT*! s, € C7*! and a, € CK*! of CP
are now replaced by a tensor H,. € CT*I*F and two matrices
S, € C7*L and A, € CEXP respectively. This model is
recently independently introduced by de Almeida ez al. [8], [9]
and by De Lathauwer [12], [13], [22], [25].

Computationally, ALS is a classical and unsophisticated
method for CP [3], [17], [20], [28]. However, ALS needs a
large number of iterations to converge due to the fact that the
convergent rate of many iterations is almost null. To accelerate
the rate of convergence of ALS, the line search along the
incremental direction of an old iterate to a new one is proposed
by Harshman [17]. For real-valued tensors, the optimal step
size can be calculated because it is a solution of a polyno-
mial equation with a single argument. This method is called
“enhanced line search” (ELS) [6], [29], [30]. Since BCM is a
generalization of CP, ALS for CP is generalized to compute
BCM immediately [9], [14], [22], [25].

More recently, for complex-valued tensors that follow CP and
BCM, Nion and De Lathauwer propose a line search scheme that
is named as “enhanced line search with complex step” (ELSCS)
[23], [24], where a complex step size factor p := me'® contains
two independent arguments: modulus m and phase 6. In order
to find the optimal step size, ELSCS proceeds in an alternating
minimization manner, which consists of two steps: firstly, find
the optimal modulus m for a fixed phase 6; secondly, find the
optimal € for a fixed m. That is to say, ELSCS needs to solve
two polynomial equations alternately to update m and 6. After
several iterations, a local optimal step size factor appears.

ELS and ELSCS can enhance the performance of ALS, which
is verified numerically in [23], [24], [29], and [30]. Nonetheless,
the current search direction in ELS and ELSCS is the difference
between two successive previous iterates, which sometimes, due
to the nonlinearity of the cost function in ALS, is not suitable
to generate search directions that accelerate the rate of conver-
gence greatly. Comon et al. give an example in Section V-B of
[6] to illustrate the poorness of linear direction, and they assert
that: “if the directions provided by the algorithm are bad, ELS
cannot improve much on the convergence.”

From the viewpoint of numerical optimization, the higher-
order information is necessary to construct efficient search di-
rections. Some gradient based optimization methods, including
nonlinear conjugate-gradient, limited-memory BFGS and trun-
cated Newton’s method, are employed to exploit higher-order
search directions for CP [1], [2]. However, if the gradient of the
cost function is unknown or expensive to compute, such as the
one considered in Section V where an argument matrix S, has a
special Toeplitz structure, these optimization methods may lose
their advantages.

Based on ALS, we propose two extrapolating search direc-
tions containing higher-order information. The obtained search
directions enjoy the advantages of preserving the structure of
contributions and requiring slight additional costs of computa-
tion. At the same time the efficiency of the corresponding ALS
methods can be enhanced greatly.

The first direction is called “geometric search direction”,
which is formed by adding the transformation of directions to
the often used linear direction. The resulting direction is a linear
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combination of three previous iterates. When the combination
parameter is set to zero, the geometric search direction reduces
to a linear direction. The freedom in setting the combination
parameter provides us the possibility of obtaining better search
directions.

The second direction is named “algebraic search direction”,
where the higher-order information is collected by exploiting
the quadratic extrapolation technique. The resulting direction is
a convex combination of the quadratic extrapolating direction
and the linear direction, and it is also a linear combination of
three previous iterates.

After setting down the search direction, we proceed to find
the modulus and phase of the optimal complex step size factor.
Instead of ELSCS that finds them alternately, we broach a di-
rect method that solves a system of two polynomial equations
with two arguments simultaneously. Using the results of alge-
braic geometry [7], such system of polynomials has solutions
if and only if its resultant vanishes, where the resultant is a de-
terminant of a single argument polynomial matrix. We give a
novel method to compute all roots of the resultant. Then, all the
solutions of the polynomial system can be found immediately.
Finally, the optimal step size factor is the one that minimizes the
cost function restricted in the search direction.

This paper is organized as follows. The geometric and the
algebraic search directions are presented in Section II. In
Section III, we broach the technique of computing the optimal
complex step size factor. The new ALS algorithm is described
in Section IV. Some preliminary simulation results are reported
in Section V. Finally, some concluding remarks are drawn in
Section VL.

II. SEARCH DIRECTIONS

A. Preliminaries and the Linear Search Direction

Given a tensor ) € CI*/*K 3 BCM of Y consists of the
estimation of two matrices S, € C/*%, A, € CK*P and a
tensor H,. € CT*IXP for = 1,..., R such that definition (1)
holds. Denote S and A as the .J x RL and the K x RP matrices
resulted from the concatenation of the R matrices S, and A,
respectively. Denote H as the I x RLP matrix whose elements
are the elements of the tensors H,., which are stacked as follows
H, ,—1)Lr+@-1)P+p = H.(4,1,p). Thus,a BCM of ) can be
formulated by finding S, A and H such that

Y=(SorA)H"

where Y is the J K x I matrix representation of ) with elements
defined as Y (;_1yx 4k, = Yijk, and O denotes the partition-
wise Kronecker product of S and A. This product results in a
JK x RLP matrix definedby SOr A :=[S1 ® A4,...,Sr®
Ag], and ® denotes the Kronecker product.

Computationally, the task is to find an estimator )7 of ),
which builds from the estimators S, A, and H of S, A, and
H, such that the following cost function

=1V =IVIF=1Y - (SorAHHT|}F @)
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is minimized. Here, || - || is the Frobenius norm. When L =
P = 1, a BCM reduces to a CP, and the partition-wise Kro-
necker product ® g is replaced by the Khatri-Rao product ® that
is also called a column-wise Kronecker product.

Owing to the multilinearity of BCM in three estimators,
people consider one estimator at a time in minimizing the
cost function, while fixing the other two. Obviously, this is a
linear least squares problem that is easy to solve. Then, three
estimators are found by alternately solving these linear least
squares problems. In this way, ALS algorithm appears.

Harshman observes via simulation that sometimes a large
number of ALS iterates have almost null convergence rate and
the estimators here increase gradually along fixed directions
[17]. To accelerate the rate of convergence, at the nth iteration,
he takes the increment in estimators as the linear search direc-
tions

Giin§ =80 —§0-2) 3)
Giin) := A(D — A2 )
Giinyy) =H""D — {2 (5)

where S A(m=1) and H(™~1) are the estimators of S, A,
and H, respectively, obtained from the (n. — 1)th ALS iteration
and S("’z), A("”), and H(—2) are the estimators obtained
from the (n — 2)th ALS iteration. These linear directions are
widely used.

B. Geometric Search Direction

Since the cost function (2) is obviously nonlinear, the search
directions (3)—(5) based on linearization are not good enough to
accelerate the rate of convergence of ALS. Now, we add some
higher-order information to the linear search directions and get
the new geometric extrapolating search directions.

We take an estimator S for example, and the geometric search
directions in the other two estimators A and H could be ob-
tained in a similar way. Suppose at iteration n(n > 3), three pre-
vious iterates S("~1), §(m=2) and §("=3) are known. At iterate
§(n—2) Glingn) — S(n—=1) _ §(n—2) jg 4 forward linear search
direction and Glingn_l) = S§(n-2) _ §(n=3) j5 a backward
linear search direction. From this point of view, the change from
the backward direction to the forward direction is Gling") —
Glinfgn_l). When the rate of convergence is slow, S(=1) js not
far from S("—2), Therefore, we regard that the variation trend
of the directions remains hold. So we add some variational in-
formation to the linear direction (3) and get the new geometric
extrapolating search direction

Ggeo(sn) = Glingn) + 7 (Glin(sn) - Glin(gn_l))

=(1+7)8" D —(1+2r,)802
+mSn=® (6)

where 71 is a positive parameter. When 71 tends to zero, the
geometric direction tends to the linear direction. Thus, a small
value of 71 is preferable. It is worthwhile to note that the geo-
metric direction preserves the Toeplitz structure in an argument
matrix S,..
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In the same way, we can get the geometric directions of esti-
mators A and H

Ggeoy = (1+7m)A™) — (14 27)A—2

+ TlA(n—?)) 7)
Ggeosy) = (1 +7)H" ™) — (1 + 27)HC"™?)
+ TlH(nf?’), 8)

C. Algebraic Search Direction

Let us consider using the quadratic interpolation technique to
extrapolate the new iterates and form the new algebraic extrap-
olating search directions.

We also take S for example. Consider S™M asa sample from
a continuous path S(t) in an unknown argument ¢, and the se-
quence of iterates {S(™} locate in {t(™)} such that S =
S(t™). If we know the information about t("~1), ¢(*=2) "and
t("=3) we can form a quadratic approximation gq(t) to S(t) by
interpolating the three pieces of information available to obtain

(t — t=2)(t — t("=3))
(t(n=1) — ¢(n=2))(¢(n=1) — (n=3))

(t — t=D)(t — t("=3))
(t(n=2) — t(n=1))(t(n=2) — ¢(n=3))
(t = ")t — ¢2)
(t(n=3) — t(n=1))(¢(n=3) — ¢(n=2))"

§,(t) = §D

4 §(-2)

4§09

For simplicity, we make an additional assumption that the
prediction of the new iterate (") and three previous iterates
(=1 4(n=2) +(n=3) have the identical distances, that is to say,
t(new) _ t(nfl) — t(nfl) _ t(n72) — t(n72) _ t(n73). So the
expression of Sq(t(“‘*w)) is not dependent on ¢. Then, by some
calculation, we have éq(t(“ew)) = 38(n—1)_38(n—2) 4 §(n-3)
The displacement from S"~2) to S (t("™)) forms the
quadratic approximate search direction

(t(new) ) _ S(n—Z)

unagn) = Sq
=381 _4§n=2) 4 §(n=3) )

The algebraic extrapolating search direction is the convex
combination of the linear search direction (3) and the quadratic
one (9)

Galgg‘n) = (1 - T2)Glingn) + 7_2(;1'qua‘(gn)
=(1+2m)S" Y — (14 37,)S2

+ S (10

where 75 € [0, 1]. The Toeplitz structure in S, is also preserved.
In the same way, we get the algebraic extrapolating search

directions of A and H,

G := (1 + 2m) A=) — (1 4 37,) A"~

+ A3 (11
Gargly) = (14 2m)H ™ — (14 37 H" 2
+ Tzlil("73). (12)
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Note that, the geometric direction (6) is a linear combination
of the linear direction (3) and the quadratic direction (9) with
coefficients (1 — 271) and 71, respectively. Therefore, both the
geometric directions and the algebraic ones have some second-
order information. Moreover, the computational cost of them is
ignorable in numerical algorithms.

III. THE OPTIMAL STEP SIZE

)

At iteration n, when the search directions Gg"), G(A" and
GSLI) are determined, we perform a line search process

S(new) — g(n72) + ka(gn) (13)

A(new) :A(n72) + png) (14)

He) =H®? 4 G4 (15)

where p is a step size factor and the directions here can be
the geometric search directions (6)—(8) or the algebraic search
directions (10)—(12). Then, started from S(new) s A (new) , and
H®ew)  ALS iterates are performed to get the next estimators
S, A and H™,

In the line search framework, the step size scheme affects the
rate of convergence of a numerical algorithm. Harshman choose
a fixed value between 1.2 and 1.3 to be the step size factor [17].
For real-valued tensors, Rajih et al. introduce the ELS that cal-
culate the optimal step size factor by rooting a polynomial [29],
[30]. For the complex-valued tensors, Nion and De Lathauwer
propose ELSCS that is an alternating polynomial rooting algo-
rithm to approximate the optimal complex step size factor [23],
[24].

The optimal complex step size factor is the minimum of the
following objective function in a single complex argument p

(g(new) Or A(new))I:I(new)T ||%‘
on (A2 4+ pG ()
(16)

o)=Y -
=1~ (872 + &)
(D 4 G T
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Denoting the JK x [ matrices T3, T, Ty, and T as (where
the superscripts (n) and (n — 2) are omitted for convenience of
notation)

T3 := (Gs Or GA)G—IS
Ty:=(SOrRGA+GsOrA)G] + (Gs Or G4)HT
(
(

T;:=(SOrA)G,+(SOrGA+GsOr A)HT
Ty := (S ORr A)HT Y.
a7
Then the objective function (16) can be rewritten in a compact
form as

¢ =1p>T3 + p>T2 + pT1 + Tol|3
=||Tu/|% = u*T*Tu (18)
where

T := [Vec(Ts3), Vec(Ts), Vec(T1), Vec(Toh)] (19)

is an I.JK x 4 matrix, Vec is the operator that writes a matrix
A € C'*7 in a vector format by concatenation of the columns
such that [Vec(A)];4j—nyr == A, u = (p,p%,p,1)7 and
the superscript * denotes the conjugate transpose.

Define a 4 x 4 matrix A := T*T. Then it can be represented
by a componentwise form A,,,, = amnn + 18mn for m,n =
1,2,3,4, where aump = Qpm and Bpn = —Bam.

Let p := me'® = m(cosf + isinf) be a complex step size
factor, where m and 6 are its modulus arzld phase, respectively.
Define ¢ := tan (£), then cos§ = (1+t2§ and sinf = (1_?9).
The task is now to find the optimal m and # that minimize the
objective function (18).

The partial derivative of ¢(™) with respect to /. can be ex-
pressed as

™) u; Cu,,
om,_ |tan($)=t = (1+2)3 (20)
where u; := (#5,#°, ..., 1) T, u,, := (m® m* ...,1)T and C

is a 7 X 6 matrix (21), shown at the bottom of the page. On the
other hand, the partial derivative of ¢(") with respect to  can
be expressed as

(™) B
o0 tan( %):t -

u;r Du,,
1+ 2)?
where D is a 7 x 6 matrix, shown in (23) at the bottom of the
next page.

(22)

60&11 —100[12 80[13 + 40[22
0 20012 —32f13
1817 —10aq9 —40013 + 12a90
C .= 0 40,812 0
180[11 100[12 —400(13 + 120[22
0 20512 32013
611 10a12 Sz + 4o

—6a14 — 6aas dogy +2a33 —2a34
360514 + 12053 —1624 4334
90(114 — 6(123 —20(124 + 6@33 —20{34
—120814 + 24323 0 8034 21)
—900&14 + 60(23 —200&24 + 60(33 20(34
360514 + 12023 16324 4334
6014 + 6aro3 dooy + 2033 2034



5892

The optimal condition for a complex p = me*® to be the
optimal step size factor is that

AP (™) 0
om 00

From the partial derivatives (20) and (22), the above optimal
condition holds if and only if (n, t) is a solution of the following
system of two polynomial equations:

f(m,t) :==u Cu,, =0
’ 24
{g(m,t) :=u/ Du,, = 0. @4
Then, we can regard f and g as polynomials in m with some
polynomials in ¢ as its coefficients. That is to say, we rewrite
(24) as

m,t) = c1(t)m® + cz(t)mi+ et eg(t) =0 05

{ £( ’
g(m,t) = di(t)m> + da(t) -+ de (1)

where ci(t) := u, Cey, and di(t) := u/ De, are sixth-order
polynomials in £, and ey, is the kth column of an identity matrix.

By the Sylvester theorem [7], (25) has solutions if and only if
its resultant vanishes. The resultant here is a determinant of the
following 10 x 10 polynomial matrix:

C1 Co C3 Cy Cs Cg 0 0 0 0
0 C1 Co C3 C4 Cs Cg 0 0 0
0 0 C1 Co C3 Cq4 Cjp Cg 0 0
0 0 0 C1 Co C3 C4 Cj Cg 0
0 0 0 0 (&1 C9 C3 Cy4 Cs Cg
di dy ds dy ds d¢ 0 0 0 O
0 di do ds dye ds dg O 0 O
0 0 dy do ds3 dy ds d¢ 0 O
0 0 0 di do ds dy ds dg O
0 0 0 0 d do dy dy ds dg

The useful roots of this resultant are solved as follows. First,
notice that dg = 0. Then

o Bt VBt o,

34

m =20

are solutions of (25) with objective function value a44. These
two roots are useless, since their modului are zeros. The other
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roots of the resultant can be found via solving a determinant of
the following 9 X 9 polynomial matrix

C1 C2 C3 Cy Cs Cg 0 0 0

0 C1 Co C3 C4 Cjp Cg 0 0

0 0 C1 Co C3 C4 Cj Cg 0

0 0 0 C1 C9 C3 C4 Cs Cg
Y:=|di do ds da d5 O O 0O O (26)

0 di do ds do ds 0 0 O

0 0 di do dg dga ds 0O O

0 0 0 di do ds dg ds O

0 0 0 0 di do ds da ds
Obviously, the determinant det(Y') is a 54th-order polynomial
in ¢, due to the polynomials ¢; for k = 1,...,6 and dj, for
k = 1,...,5 are all of order six. The 54th-order polynomial

here suffers from a trouble that its coefficients are complicated
and unobtainable.

We give a novel method to compute all the roots of the de-
terminant det(Y'). Since all the elements of the matrix Y are
sixth-order polynomials in ¢ except some zeros, we rewrite Y
as

T =118 + Dot® + Dat* + Tyt® + D5t + Tt + 7

where the elements of I', are the coefficients of (7 — k)th-order
term of the corresponding elements of Y. That is to say

Fk =
Cri Cre Cpz Cra Cps Cpg 0 0 0
0 Cri Cra Crz Crs Cis Cre 0 0
0 0 Cr Cr2 Crz Cra Cis Crs 0
0 0 0 Cri Cra Crz Cra Crs Cie
Dyy Dro Dy Dpgy Dz 0 0 0 0O
0 Dri1 Dp2 Drz Drg Dps 0 0 0O
0 0 Dp1 Drz Drg Drg Dps 0 0O
0 0 0 D1 Dr2 Dipg Dipsa Dyps 0
0 0 0 0 Dy Dro Dz Dps Dys

27)

fork =1,2,...,7.

Then, we have the following important theorem, which is an
extension of the method in [15]. And it is the support theory of
a Matlab function roots when M = 1 [21].

_2ﬁ12 4ﬂ13 _6/814 - 2ﬂ23 4/324 _2[334 0
—40&12 160&13 —360&14 — 40[23 160[24 —40[34 0
—2B12 —20B13 90814 — 2323  —20024 2034 O
D .= —80(12 0 1200[14 — 80&23 0 —80534 0 (23)
2612 —20P13 —90B14 + 20623 —20B24 2034 O
—40&12 —160&13 —360&14 - 40[23 —160[24 —40[34 0
2012 4313 6614 + 2023 4324 2034 O
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Theorem I1l.1: Suppose 'y fork =1,2,..., N+1are M X
M matrices, and I'; is nonsingular. Then all the roots of the
M N th-order polynomial equation

det (Cyt" + Tot" ' .-+ Tnt + 1) =0

are exactly the eigenvalues of the following M N x M N matrix

S N IS e I —T7' Ty —T7' TNy
I 0 e 0 0
0 I e 0 0
0 0 . I 0
(28)

where I is a M x M identity matrix.

From this theorem, all the roots in ¢ of the determinant det(Y')
can be found via computing all the eigenvalues of the matrix
(28) with M = 9 and N = 6. Hence, it is stable. Then, we ig-
nore complex-valued roots since they are meaningless. For each
real-valued root ¢, we substitute it into the polynomials system
(25) and solve the system to get the corresponding modului .
After this, we find all the critical points of the objective function
#(™). Finally, the optimal step size factor is the one that gives the
smallest objective function value.

To state succinctly, we sum up an algorithm.

Subroutine for the optimal complex step size.

Given: iterates g("*Q), A(m=2) anqd I:I("*2), and directions
G, G and G,

S1. Compute A = T*T, where T is from (17) and (19).
S2. Calculate C and D in (21) and (23), respectively.
S3.Form I', forp = 1,...,7in (27) and build (28).

S4. Compute all the eigenvalues ¢ of (28).

SS5. For each real ¢, find the corresponding real m by (25).
Then, the optimal step size is the one with the minimal
objective function value.

The matrix A is necessary for both ELSCS and the method
presented here. Computing T; for ¢ = 3,2, 1,0 in (17) requires
4JKRLP + 121 JK RLP flops. Then, computing A requires
201 J K flops because of symmetry. Therefore, the total number
of operations for A is O(IJKRLP).

The computational cost after A of the optimal complex step
size method here comes mainly from the computation of all the
eigenvalues of a 54 x 54 matrix (28), where about 10 - 542 flops
are required theoretically [16].

On the other hand, ELSCS requires a few alternating mini-
mizations between m and ¢ to get a step size factor. Thus, its
cost is computing the roots of some fifth- and sixth-order poly-
nomials, which needs O(10 - 6®) flops. It’s cheap.

We give a heuristic strategy to compute an approximate op-
timal step size factor, since computing all the eigenvalues of
the 54 X 54 matrix (28) is time-consuming when compared with
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ELSCS. In the context of line search, we believe the phase 6 is
close to zero, so the parameter ¢ = tan (g) is also close to zero.
Omitting some higher order terms of polynomial det(Y') should
not greatly affect the optimum. Hence, for the purpose of easily
computing and resulting in a real-valued root, we truncate the
polynomial to a linear function. In this case, we only need to
compute the constant and linear terms of det(Y). The constant
term is a determinant det(I'7). The linear term is a sum of deter-
minants det(D;) fori = 1,2,...,9, where D; is a9 X 9 matrix
obtained by replacing the elements of ith row of I'7 by the cor-
responding elements of I'¢. Hence, the computational cost is ten
9 x 9 determinants that needs 10 - %93 flops. Whenever the pa-
rameter ¢ is determined, we compute the optimal modulus m by
ELS that is used in ELSCS. We argue that this heuristic scheme
is as cheap as ELSCS at least.

IV. THE NEwW ALS ALGORITHM

Based on the analysis above, we give the new ALS algo-
rithm with extrapolating search direction and optimal step size
schemes.

New ALS

Initialize: Choose three iterates S(©), S, §(2) A (0) A1),
A HO HD H® andsetn = 3.

while [|Y*=D — Y(»=2)|| 1 > ¢ (e.g., e = 107%) do
S1. Compute directions (6)—(8) or (10)-(12).

S2. Find the optimal step size factor p(™).

S3IF ™) (p™) < (1),

build A and H®*) from (14) and (15);

else

set A(mew) = A (n—1) gpnq F(new) = H(n—1),

S4. Update S by A(mew) apq H(mew),

SS. Update ING by S™) and H(®e™),

S6. Update H™) by S(™) and A,

S7.Setn :=n+ 1.

end

The ALS iterations including S4-S6 are the same as the ones
presented in [22] and [25]. In the remainder of this section, we
go to the details and analyze their computational complexity.
For the convenience of notation, the superscripts are omitted.

First, update S, when A and H are known. To preserve the
Toeplitz structure, we update the generator vector s, € C’/+1—1
of matrix S, € C’*L. From (1), Y = Zle H, @5 S, o3
A,, where ) € CI*/xK 1 e CI*IXP and A, € CEXP,
Computing G, := H, e3 A, € CIXIXK requires O(PILK)
flops. Then ) = 25:1 G, 3 S,. Define Yy := Y(:,:,k) €
CI*7 and G, := G, (:,:, k) € CI*L as the frontal slice of the
correspond tensors, then Y = Zle G, STT . Rearrange G,
to get M, such that Vec(G,xS,) = M,s,, where M, €
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CIT*(J+L=1) ig a sparse matrix with at most LI nonzeros in
each column. Define
My, Mg S1
M= | : :

Mk Mrx SR
and Y(KJI>< 1) with [Y(KJIX 1)]i+(j—1)1+(k—1)JI
Then

= YVijk.

Y(K.]IXI) — Ms

where M € CKJIXR(J+L-1) is 3 gparse matrix with at most
K LT nonzeros in each column. Solving the equation by sparse
matrix algorithm requires O (KIL - R*(J + L —1)?) flops.
Therefore, the total number of operations for updating S is
o (RLPIK + R?LI(J+ L — 1)2K).

Second, update A, where S and H are known. Computing
Q, = H, & S, € CI*7XF requires O(LI.JP) flops. Then
Y= Zle Q,e3A,. Rearranging the tensors here as a matrix

form, we get Y (71xK) ZT 1 Q(HXP Al = QAT, where
JIxP
[YUIDXE o e = Ve QY NiGinr, =

[Qr]ijp and Q = (Ql ..... QR) € C/IXRP " Then
A = (QIYWUIXENT, Computmg the pseudoinverse ma-
trix Q' and the matrix multiplication require O ((JI)2RP)
and O (RPIJK) flops, respectively. Thus, there are
O ((JI)?RP + RPIJK) operations.

Finally, update H, where S and A are known. Since
YUEXD = (8§ ©op AYHT, computing Z := S Op A €
CTEXRLP and its pseudoinverse matrix require O (RLPJK)
and O ((JK)?RLP) flops, respectively. Then computing
H = (Z'YVUKXD)T requires O (RLPIJK) flops. Totally,
O ((JK)?RLP + RLPIJK) flops are required.

V. SIMULATION RESULTS

We are going to examine the performance of the new search
directions and the new step size. For these purpose, we apply
these techniques to solve the problem of blind separation-equal-
ization of convolutive DS-CDMA mixtures received by an an-
tenna array after multipath propagation, and compare them with
the basic ALS and the ALS with ELSCS.

We make the same assumptions as those in [22], [24], and
[25], i.e., we assume that the signal of the rth user is subject to
inter-symbol-interference over L consecutive symbols and that
this signal arrives at antenna array via P specular paths. For user
r,r=1,..., R, the I x L frontal slice H,.(:, :, p) of H,. collects
samples of the convolved spreading waveform associated to the
pth path, p = 1,...,P. The J x L matrix S, holds the .J
transmitted symbols and has a Toeplitz structure. The K x P
matrix A, collects the response of the K antennas according to
the angles of arrival of the P paths.

In our experiments, we consider R = 4 users, pseudorandom
spreading codes of length I = 8, a short frame of J = 50 QPSK
symbols, K = 4 antennas, L. = 2 interfering symbols, and P =
2 paths per user. The signal-to-noise ratio (SNR) at the ir}put
of the BCM receiver is defined by SNR = 10log;, (%) ,

(V1%
where ) is the complex-valued noise-free tensor of observa-
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Fig. 1. BER versus SNR.

tions and N is the tensor of zero-mean white (in all dimen-
sions) Gaussian noise. We run 1000 Monte Carlo experiments.
For each one, the initialization of the iterate is performed by se-
lecting the best one from ten different random starting points,
which obey the standard Gaussian distribution. We stop the al-
gorithm when the iteration number exceeds 500 or the stopping
tolerance || Y™ — Y(»=V||p < ¢ is satisfied, where ¢ = 107,

A. The First Result: Step Size

In line search methods, the step size is important. Here, in
ALS framework, we test five sorts of step size strategies with
the same linear search directions.

* “Basic ALS”, whose step size factor is always one.

* “ELSCS” that seeks the complex step size factor in an al-

ternating manner [24].

e “OSS-real” that finds the optimal real step size factor.

e “OSS-complex” is the optimal complex step size.

* And “OSS-simplify” is the heuristic implementation of the
optimal complex step size scheme described in the last
paragraph of Section III.

Next, we give the results based on statistics.

Which line search scheme gives the most accurate signal es-
timation? We show the bit error rate (BER) over all users in
Fig. 1. First, OSS-complex works as good as ELSCS. Second,
compared with them, OSS-real and OSS-simplify work a little
bit worse. We recall that the imaginary part of the step size factor
of OSS-real and OSS-simplify is zero and a heuristic guesswork,
respectively. Thus, iterates are easy to be trapped around a false
local optimum, sometimes.

Which line search scheme is the fastest one? We illustrate in
Table I the possibility of each step size strategy being the winner
of these five strategies from a numerical viewpoint. The prob-
ability that OSS-simplify wins on a given problem in terms of
iteration number is about 72.6%, and the corresponding proba-
bility in terms of CPU time is about 93.3%. We say two algo-
rithms have the same CPU time if the difference of the corre-
sponding CPU times is less than a tenth of a second. This rule
is also valid in Table II.
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TABLE 1
THE POSSIBILITY THAT EACH STEP SIZE STRATEGY WINS (%)

Basic 0OSS-
ALS ELSCS real complex simplify
Tter. 0.2 39.1 20.2 30.8 72.6
Times | 0.6 58.8 51.6 29.0 93.3
TABLE II

THE POSSIBILITY THAT EACH SEARCH DIRECTION WINS (%)

none linear geometric algebraic
Iter. 0 2.8 46.8 58.0
Times 0 16.2 82.5 89.8
400 T T T T T T
Basic ALS
= | SCS
880 F 088-real
= = = 0SS-complex
300 F OSS-simplify |
250 b
[2]
= \
® 200t 1
g \
150 i
100 ]
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SNR (dB)
Fig. 2. Performance of mean number of iterations.
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Fig. 3. Performance of mean CPU times.

From Table I, although the OSS-complex do not work well,
the OSS-simplify that is a heuristic implementation of OSS-
complex outperforms all the other line search strategies.

How much does OSS-simplify faster than the others? Figs. 2
and 3 illustrate the performance of mean value as well as stan-
dard deviation of iterations and CPU times, respectively. Form
the two figures, we get the following conclusions.
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Fig. 4. Tterations versus values of 77 and 75.

* Basic ALS that takes a fixed unit step size converges
slowly. Hence an adaptive step size strategy is necessary.

* Compared with OSS-real, the complex step size strategies
could improve ALS by saving about five iterations. Hence,
the imaginary part of the step size factor is valuable. Conse-
quently, a real step size is not recommended in algorithms
for complex-valued tensor decompositions.

* When we look into the three complex step size strategies,
OSS-complex takes exactly the optimal complex step size
factor, ELSCS may take a local optimal one and OSS-
simplify takes an approximate one. Compared with the
OSS-complex, ELSCS saves about two ALS iterations, and
OSS-simplify saves about seven ALS iterations. This phe-
nomena confirms that in numerical applications, inexact
line search methods perform better than the exact one. On
the other hand, the comparative result of the CPU times for
the three complex step size schemes are almost the same
as that of iterations. From this observation we argue that
the costs for computing a complex step size factor by these
schemes are negligible when compared with the costs of
ALS iterations (forming the search direction).

* ELSCS performs quite well. The main reason is that the
local minimum of the objective function is usually unique,
which means that ELSCS always obtains the global op-
timal complex step size factor.

B. The Second Result: Directions

First, we assign two values to the parameters 71 and 7> in-
volved in the geometric and algebraic search directions, respec-
tively. Since no ideal of solving this problem from a theoret-
ical point of view currently, we run 500 Monte Carlo tests with
SNR = 0 dB. Fig. 4 shows the mean iterations versus some
values of 71 and 79. Obviously, 71 = 0.3 and 7 = 0.4 are the
best choices for these two directions, respectively. Therefore,
we keep these values for 7 and 7 in the following simulations.

Next, we test four kinds of search directions in an ALS
framework to observe their performances, where all the step
size scheme are the fastest OSS-simplify.

e “None”: basic ALS, no line search.
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e “Linear”: linear directions (3)—(5) that is often used.

* “Geometric”: geometric directions (6)—(8).

* “Algebraic”: algebraic directions (10)—(12).

We now give some results based on statistics.

Which search direction gives the most accurate signal estima-
tion? The average bit error rate (BER) over all users is illustrated
by Fig. 5. Compared to the often used linear directions, the new
geometric and algebraic directions have more chance to point to
the accurate decomposition of tensors.

Which search direction is the fastest one? See Table II. Com-
pared with the low percentage that the linear direction wins, the
geometric and algebraic directions work much better. This re-
sult indicates the importance of search directions. Additionally,
the algebraic directions works slightly better than the geometric
ones.

How much does the new directions faster than the others?
Figs. 6 and 7 show the performance of mean value as well as
standard deviation of iterations and CPU times, respectively.
From them, we get some results as follows.

* Compared with basic ALS, the algorithm using linear di-

rections saves about 54% ALS iterations and 47% CPU
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times averagely. The result of this experiment is consistent
with the fact that a line search method can accelerate ALS.

* The algorithms using the geometric and algebraic direc-

tions save about 67% ALS iterations and 62% CPU times.
This is better than the results of linear directions. When
higher-order information is exploited in search directions,
the iterations and CPU times of ALS are reduced signifi-
cantly, although the memory is slightly enlarged.
Since the vertical segments denoting standard deviation of
the new geometric and algebraic directions are all lower
than the average line of the often used linear directions,
we say that the new directions are superior to the linear
direction in a large possibility. This is concordant with the
result in Table II.

* The algebraic directions that formed by the convex combi-
nation of the linear and quadratic extrapolating directions
are more suitable for noise corrupted data than the geo-
metric ones. We believe that the Lagrangian extrapolating
technique has a large potential for extracting higher-order
information and forming better search directions.

C. The Third Result: Nearly Collinear Case

When the signals of the users are nearly collinear, which may
happen in practice, the convergent rate of ALS is very slow.
In the experiment of this subsection, the first user’s signal is
random QPSK symbols, and the other users’ signals differ from
it in just one bit. The condition number of factor A is 10, and
tensor ) is noise free.

The typical curve of the cost function values versus iterations
is shown by Fig. 8. Obviously, all the algorithms converge to
the right decomposition. The new ALS algorithms with extrap-
olating search directions and optimal step size strategies out-
perform the existing algorithms. Since some second-order in-
formation is used, we observe a faster local convergence rate
when iterations approach the solution.

VI. CONCLUSION

In this paper, we applied the extrapolating technique to con-
struct two new search directions and proposed a novel tech-
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nique to compute the optimal complex step size factor. Sim-
ulation results showed that these techniques have successfully
and remarkably improved the rate of convergence of ALS. All
the techniques could be used to compute the decomposition of
complex-valued tensors that follow CP and BCM.

For the extraction of the second-order information, three iter-
ates were used to form the search directions, so the new method
can be viewed as a multistep method. How to explore the poten-
tiality of multistep method and form effective search directions?
This is one of our further works.
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