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the order is even, both infinite and finite dimensional Hilbert
tensors are positive definite. We also show that the m-order
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1. Introduction

In linear algebra, an n-dimensional Hilbert matrix Hn = (Hij) is a square matrix with
entries being the unit fractions, i.e.,

Hij = 1
i + j − 1 , i, j = 1, 2, . . . , n,

which was introduced by Hilbert [5]. Clearly, an n-dimensional Hilbert matrix is sym-
metric and positive definite, and is a compact linear operator on finite dimensional
space. Many nice properties of n-dimensional Hilbert matrix have been investigated by
Frazer [4] and Taussky [15]. An infinite dimensional Hilbert matrix

H∞ =
(

1
i + j − 1

)
, i, j = 1, 2, . . . , n, . . .

can be regarded as a bounded linear operator from Hilbert space l2 into itself (here,
lp (0 < p < ∞) is a space consisting of all sequences x = (xi)∞i=1 satisfying

∑∞
i=1 |xi|p <

+∞), but not compact operator (Choi [3] and Ingham [6]). The spectral properties of
infinite dimensional Hilbert matrix have been studied by Magnus [9] and Kato [7].

As a natural extension of a Hilbert matrix, the entries of an m-order n-dimensional
Hilbert tensor (hypermatrix) Hn = (Hi1i2···im) are defined by

Hi1i2···im = 1
i1 + i2 + · · · + im −m + 1 , i1, i2, . . . , im = 1, 2, . . . , n.

The entries of an m-order infinite dimensional Hilbert tensor (hypermatrix) H∞ =
(Hi1i2···im) are defined by

Hi1i2···im = 1
i1 + i2 + · · · + im −m + 1 , i1, i2, . . . , im = 1, 2, . . . , n, . . . .

The Hilbert tensor may be regarded as derived from the integral

Hi1i2···im =
1∫

0

ti1+i2+···+im−m dt. (1.1)

Clearly, both Hn and H∞ are positive (Hi1i2···im > 0) and symmetric (Hi1i2···im
are invariant for any permutation of the indices), and an m-order n-dimensional Hilbert
tensor Hn is a Hankel tensor with v = (1, 1

2 ,
1
3 , . . . ,

1
nm ) (Qi [12]), and an m-order infinite

dimensional Hilbert tensor H∞ is a Hankel tensor with v = (1, 1
2 ,

1
3 , . . . ,

1
n , . . .).

For a vector x = (x1, x2, . . . , xn)T ∈ R
n, Hnx

m−1 is a vector defined by

(
Hnx

m−1)
i
=

n∑ xi2 · · ·xim

i + i2 + · · · + im −m + 1 , i = 1, 2, . . . , n. (1.2)

i2,...,im=1
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Then xT (Hnx
m−1) is a homogeneous polynomial, denoted by Hnx

m, i.e.,

Hnx
m = xT

(
Hnx

m−1) =
n∑

i1,i2,...,im=1

xi1xi2 · · ·xim

i1 + i2 + · · · + im −m + 1 , (1.3)

where xT is the transposition of x.
For a real vector x = (x1, x2, . . . , xn, xn+1, . . .) ∈ l1 (here l1 is a space of sequences

whose series is absolutely convergent), H∞xm−1 is an infinite dimensional vector defined
by

(
H∞xm−1)

i
=

∞∑
i2,...,im=1

xi2 · · ·xim

i + i2 + · · · + im −m + 1 , i = 1, 2, . . . . (1.4)

Accordingly, H∞xm is given by

H∞xm = lim
n→∞

Hnx
m =

∞∑
i1,i2,...,im=1

xi1xi2 · · ·xim

i1 + i2 + · · · + im −m + 1 . (1.5)

Then H∞xm is exactly a real number for each real vector x ∈ l1, i.e., H∞xm < ∞. In
fact, since

∑∞
i=1 |xi| < ∞ for x = (x1, x2, . . . , xn, xn+1, . . .) ∈ l1, we have

H∞xm = lim
n→∞

Hnx
m = lim

n→∞

n∑
i1,i2,...,im=1

xi1xi2 · · ·xim

i1 + i2 + · · · + im −m + 1

� lim
n→∞

n∑
i1,i2,...,im=1

|xi1xi2 · · ·xim |
1 + 1 + · · · + 1︸ ︷︷ ︸

m

−m + 1

= lim
n→∞

n∑
i1,i2,...,im=1

|xi1 ||xi2 | · · · |xim |

= lim
n→∞

(
n∑

i=1
|xi|

)m

=
( ∞∑

i=1
|xi|

)m

< ∞.

In Section 2 we will prove that H∞xm−1 is well defined, i.e., H∞xm−1 ∈ lp (1 < p < ∞)
for all real vector x ∈ l1.

Both infinite and finite dimensional Hilbert tensors Hn and H∞ are positive tensors.
Thus, they are strictly copositive, i.e.,

Hnx
m > 0 for all x ∈ R

n
+ \ {θ}

and

H∞xm > 0 for all real nonnegative vector x ∈ l1 \ {θ},
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where θ is zero vector with all entries being 0 and R
n
+ = {x ∈ R

n; xi � 0, i = 1, 2, . . . , n}.
The concept of (strictly) copositive tensors was introduced and used by Qi [11].

When the order m is even, both infinite and finite dimensional Hilbert tensors are
positive definite. The concept of positive (semi-)definite tensors was introduced by Qi
[10].

Theorem 1.1. Let m,n be two positive integers and m be even. Then both m-order Hilbert
tensors Hn and H∞ are positive definite, i.e.,

Hnx
m > 0 for all x ∈ R

n \ {θ}

and

H∞xm > 0 for all real vector x ∈ l1 \ {θ}.

Proof. By (1.1), for each positive integer n and x ∈ R
n, we have

Hnx
m =

n∑
i1,i2,...,im=1

1∫
0

ti1+i2+···+im−mxi1xi2 · · ·xim dt

=
1∫

0

n∑
i1,i2,...,im=1

(
m∏
j=1

tij−1xij

)
dt

=
1∫

0

(
n∑

i=1
ti−1xi

)m

dt

� 0.

This shows that Hn is positive semi-definite.
Now we assume that Hn is not positive definite. Then there exists x̄ ∈ R

n \ {θ} such
that Hnx

m = 0. Then from the derivation in the last paragraph, we see that

1∫
0

(
n∑

i=1
ti−1x̄i

)m

dt = 0.

By the continuity, we have

n∑
i=1

ti−1x̄i ≡ 0 for all t ∈ [0, 1].

Letting t = 0, we have x̄1 = 0 and so,
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t
(
x̄2 + tx̄1 + · · · + tn−2x̄n

)
= 0 for all t ∈ [0, 1].

So, for all t ∈ (0, 1], we have

x̄2 + tx̄1 + · · · + tn−2x̄n = 0.

Again by continuity, we see that

x̄2 + tx̄1 + · · · + tn−2x̄n = 0 for all t ∈ [0, 1].

Letting t = 0, we see that x̄2 = 0. Repeating this process, we see that

x̄i = 0 for all i = 1, . . . , n.

Therefore, x̄ = θ, which forms a contradiction. Hence Hn is positive definite.
Similarly, we can show that H∞ is positive definite. �
In the remainder of this paper, we will investigate some other nice properties of infinite

and finite dimensional Hilbert tensors such as spectral radius and operator norm and
so on.

In Section 2, we will prove that the m-order infinite dimensional Hilbert tensor (hy-
permatrix) H∞ = (Hi1i2···im) defines a bounded and positively (m − 1)-homogeneous
operator from l1 into lp (1 < p < ∞). When (H∞xm−1)[

1
m−1 ] is well defined for all real

vector x ∈ l1, let

F∞x =
(
H∞xm−1)[ 1

m−1 ] and T∞x =
{ ‖x‖2−m

1 H∞xm−1, x �= θ

θ, x = θ,
(1.6)

where x[ 1
m−1 ] = (x

1
m−1
1 , x

1
m−1
2 , . . . , x

1
m−1
n , . . .) and θ is zero vector with entries being all 0.

We will show that T∞ is a bounded, continuous and positively homogeneous operator
from l1 into lp (1 < p < ∞) and F∞ is a bounded, continuous and positively homogeneous
operator from l1 into lp (m− 1 < p < ∞). Furthermore, their norms are at most π√

6 .
In Section 3, we will study the spectral properties of an m-order n-dimensional

Hilbert tensor Hn. With the help of the finite dimensional Hilbert inequality, the largest
H-eigenvalue (spectral radius) of Hilbert tensor Hn is at most nm−1 sin π

n , and the largest
Z-eigenvalue (E-spectral radius) of Hn is at most n

m
2 sin π

n . Furthermore, the spectral
radius of Hilbert tensor Hn is strictly increasing with respect to the dimensionality n

and its E-spectral radius is nondecreasing with respect to the dimensionality n.

2. Infinite dimensional Hilbert tensors

For 0 < p < ∞, lp is the space consisting of all sequences x = (xi) satisfying

∞∑
|xi|p < ∞.
i=1
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If p � 1, then a norm on lp is defined by

‖x‖p =
( ∞∑

i=1
|xi|p

) 1
p

.

In fact, the space (lp, ‖ · ‖p) is a Banach space for p � 1.
Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two Banach spaces, and T : X → Y be an operator

and r is a real number. T is called

• r-homogeneous if T (tx) = trTx for each t ∈ K and all x ∈ X;
• positively homogeneous if T (tx) = tTx for each t > 0 and all x ∈ X;
• bounded if there is a real number M > 0 such that

‖Tx‖Y � M‖x‖X , for all x ∈ X.

Let T be a bounded, continuous and positively homogeneous operator from X into Y .
Then the norm of T can be defined by

‖T‖ = sup
{
‖Tx‖Y : ‖x‖X = 1

}
. (2.1)

When (H∞xm−1)[
1

m−1 ] is well defined for all real vector x ∈ l1, let

F∞x =
(
H∞xm−1)[ 1

m−1 ] (2.2)

and

T∞x =
{ ‖x‖2−m

1 H∞xm−1, x �= θ

θ, x = θ,
(2.3)

where x[ 1
m−1 ] = (x

1
m−1
1 , x

1
m−1
2 , . . . , x

1
m−1
n , . . .) and θ is zero vector with entries being all 0.

Clearly, both F∞ and T∞ are continuous and positively homogeneous. With the help of
the well known series

∞∑
i=1

1
ip

< ∞ for ∞ > p > 1 and
∞∑
i=1

1
i2

= π2

6 ,

now we discuss properties of the infinite dimensional Hilbert tensor.

Theorem 2.1. Let F∞ and T∞ be defined by Eqs. (2.2) and (2.3), respectively. Then

(i) if x ∈ l1, then T∞x ∈ lp for 1 < p < ∞;
(ii) if x ∈ l1, then F∞x ∈ lp for m− 1 < p < ∞.
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Furthermore, T∞ is a bounded, continuous and positively homogeneous operator from
l1 into lp (1 < p < ∞) and F∞ is a bounded, continuous and positively homogeneous
operator from l1 into lp (m− 1 < p < ∞). In particular,

‖T∞‖ = sup
‖x‖1=1

‖T∞x‖2 � π√
6

and

‖F∞‖ = sup
‖x‖1=1

‖F∞x‖2(m−1) �
π√
6
.

Proof. For x ∈ l1,

∣∣(H∞xm−1)
i

∣∣ = lim
n→∞

∣∣∣∣∣
n∑

i2,...,im=1

xi2 · · ·xim

i + i2 + · · · + im −m + 1

∣∣∣∣∣
� lim

n→∞

n∑
i2,...,im=1

|xi2 · · ·xim |
i + 1 + · · · + 1︸ ︷︷ ︸

m−1

−m + 1

= 1
i

lim
n→∞

n∑
i2,...,im=1

|xi2 ||xi3 | · · · |xim |

= 1
i

lim
n→∞

(
n∑

k=1

|xk|
)m−1

= 1
i

( ∞∑
k=1

|xk|
)m−1

= 1
i
‖x‖m−1

1 .

Then (i) for p > 1, it follows from the definition of T∞ that

∞∑
i=1

∣∣(T∞x)i
∣∣p =

∞∑
i=1

∣∣(‖x‖2−m
1 H∞xm−1)

i

∣∣p

= ‖x‖(2−m)p
1

∞∑
i=1

∣∣(H∞xm−1)
i

∣∣p

� ‖x‖(2−m)p
1

∞∑
i=1

(
1
i
‖x‖m−1

1

)p

= ‖x‖p1
∞∑ 1

ip
< ∞
i=1
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since
∑∞

i=1
1
ip < ∞ for p > 1, and thus T∞x ∈ lp for all x ∈ l1. Moreover, we also have

‖T∞x‖p =
( ∞∑

i=1

∣∣(T∞x)i
∣∣p) 1

p

� M‖x‖1, (2.4)

where M = (
∑∞

i=1
1
ip )

1
p > 0. So, T∞ is a bounded operator from l1 into lp (1 < p < ∞).

In particular, take p = 2, M = (
∑∞

i=1
1
i2 ) 1

2 = π√
6 . It follows from (2.1) and (2.4) that

‖T∞‖ = sup
‖x‖1=1

‖T∞x‖2 � π√
6
.

(ii) for p > m− 1, it follows from the definition of F∞ that

∞∑
i=1

∣∣(F∞x)i
∣∣p =

∞∑
i=1

∣∣(H∞xm−1)
i

∣∣ p
m−1

�
∞∑
i=1

(
1
i
‖x‖m−1

1

) p
m−1

= ‖x‖p1
∞∑
i=1

1
i

p
m−1

< ∞

since
∑∞

i=1
1

i
p

m−1
< ∞ for p > m − 1, and hence F∞x ∈ lp for all x ∈ l1. Moreover, we

also have

‖T∞x‖p =
( ∞∑

i=1

∣∣(F∞x)i
∣∣p) 1

p

� C‖x‖1, (2.5)

where C = (
∑∞

i=1
1

i
p

m−1
)

m−1
p > 0. So, F∞ is a bounded operator from l1 into lp (m−1 <

p < ∞). Similarly, take p = 2(m− 1), C = π√
6 . It follows from (2.1) and (2.5) that

‖F∞‖ = sup
‖x‖1=1

‖T∞x‖2(m−1) �
π√
6
.

This completes the proof. �
It follows from the definition (1.4) that H∞xm−1 is continuous, positively (m− 1)-

homogeneous, and so from the proof of Theorem 2.1, it also is bounded.

Theorem 2.2. Let H∞ be an m-order infinite dimensional Hilbert tensor and f(x) =
H∞xm−1. Then f is a bounded, continuous and positively (m−1)-homogeneous operator
from l1 into lp (1 < p < ∞).
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Remark 1. It is well known that Hilbert matrix H∞ is a bounded linear operator from
l2 into l2 and

‖H∞‖2 = sup
‖x‖2=1

‖H∞x‖2 = π.

For more details, see [3]. Then if the Hilbert matrix H∞ is regarded as a bounded linear
operator from l1 into l2, whether ‖H∞‖ = sup‖x‖1=1 ‖H∞x‖2 is exactly equal to π√

6
or another number? Furthermore, may the values of ‖T∞‖ = sup‖x‖1=1 ‖T∞x‖2 and
‖F∞‖ = sup‖x‖1=1 ‖F∞x‖2(m−1) be worked out exactly?

3. Finite dimensional Hilbert tensors

For x ∈ R
n and ∞ > p � 1, it is known well that

‖x‖p =
(

n∑
i=1

|xi|p
) 1

p

is the norm defined on R
n for each p � 1 and

‖x‖p � ‖x‖r � n
1
r− 1

p ‖x‖p for p > r. (3.1)

Then for a continuous, positively homogeneous T : Rn → R
n, it is obvious that

‖T‖p = max
‖x‖p=1

‖Tx‖p

is the operator norm of T for each p � 1 (Song and Qi [13]). When (Hnx
m−1)[

1
m−1 ] is

well defined for all x ∈ R
n, let

Fnx =
(
Hnx

m−1)[ 1
m−1 ]

and

Tnx =
{ ‖x‖2−m

2 Hnx
m−1, x �= θ

θ, x = θ,
(3.2)

where x[ 1
m−1 ] = (x

1
m−1
1 , x

1
m−1
2 , . . . , x

1
m−1
n )T and θ = (0, 0, . . . , 0)T . Clearly, both Fn and

Tn are continuous and positively homogeneous. The following Hilbert inequality is well
known (Frazer [4]).

Lemma 3.1. Let x = (x1, x2, . . . , xn)T ∈ R
n. Then

n∑
i=1

n∑
j=1

|xi||xj |
i + j − 1 �

(
n sin π

n

) n∑
k=1

x2
k = ‖x‖2

2n sin π

n
. (3.3)
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Recall that λ ∈ C is called an eigenvalue of Hn, if there is a vector x ∈ R
n \ {θ} such

that

Hnx
m−1 = λx[m−1], (3.4)

where x[m−1] = (xm−1
1 , . . . , xm−1

n )T , and call x an eigenvector associated with λ. We call
such an eigenvalue H-eigenvalue if it is real and has a real eigenvector x, and call such
a real eigenvector x an H-eigenvector. A number μ ∈ C is called E-eigenvalue of Hn, if
there is a vector x ∈ Rn \ {θ} such that

{Hnx
m−1 = μx

xTx = 1,
(3.5)

and call a vector x an E-eigenvector associated with μ. If x is real, then μ is also
real. In this case, μ and x are called Z-eigenvalue of Hn and Z-eigenvector associated
with μ, respectively. These concepts were first introduced by Qi [10] for the higher order
symmetric tensors. Lim [8] independently introduced the notion of eigenvalue for higher
order tensors but restricted x to be a real vector and λ to be a real number.

Since Hilbert tensor is positive (all entries are positive) and symmetric, then the
following conclusions (i) were easily obtained from Chang, Pearson and Zhang [2], Qi
[11], Song and Qi [14] and Yang and Yang [17,16], and the conclusions (ii) can be obtained
from Chang, Pearson and Zhang [1] and Song and Qi [13].

Lemma 3.2. Let ρ(Fn) and ρ(Tn) respectively denote the largest modulus of the eigenval-
ues of operators Fn and Tn. Then

(i) (ρ(Fn))m−1 is a positive H-eigenvalue of Hn with a positive H-eigenvector, i.e. all
components are positive and

ρ(Fn)m−1 = max
{
Hnx

m; x ∈ R
n
+, ‖x‖m = 1

}
; (3.6)

(ii) ρ(Tn) is a positive Z-eigenvalue of Hn with a nonnegative Z-eigenvector and

ρ(Tn) = max
{
Hnx

m; x ∈ R
n, ‖x‖2 = 1

}
. (3.7)

Now we give the upper bounded of the eigenvalues of operators Fn and Tn.

Theorem 3.3. Let Hn be an m-order n-dimensional Hilbert tensor. Then

(i) for all E-eigenvalues (Z-eigenvalues) μ of Hilbert tensor Hn,

|μ| � ρ(Tn) � n
m
2 sin π

n
;



Y. Song, L. Qi / Linear Algebra and its Applications 451 (2014) 1–14 11
(ii) for all eigenvalues (H-eigenvalues) λ of Hilbert tensor Hn,

|λ| � ρ(Fn)m−1 � nm−1 sin π

n
.

Proof. For x ∈ R
n \ {θ}, it follows from Lemma 3.1 that

∣∣Hnx
m
∣∣ =

∣∣∣∣∣
n∑

i1,i2,...,im=1

xi1xi2 · · ·xim

i1 + i2 + · · · + im −m + 1

∣∣∣∣∣
�

n∑
i1,i2,...,im=1

|xi1xi2 · · ·xim |
i1 + i2 + 1 + · · · + 1︸ ︷︷ ︸

m−2

−m + 1

=
n∑

i1,i2,...,im=1

|xi1 ||xi2 | · · · |xim |
i1 + i2 − 1

=
(

n∑
i1=1

n∑
i2=1

|xi1 ||xi2 |
i1 + i2 − 1

)
n∑

i3,i4,...,im=1
|xi3 ||xi4 | · · · |xim |

�
(
‖x‖2

2n sin π

n

)( n∑
i=1

|xi|
)m−2

=
(
n sin π

n

)
‖x‖2

2‖x‖m−2
1 . (3.8)

(i) From (3.1), it follows that ‖x‖1 � √
n‖x‖2 for x ∈ R

n. Then we have

Hnx
m �

(
n sin π

n

)
‖x‖2

2‖x‖m−2
1

�
(
n sin π

n

)
n

m−2
2 ‖x‖m2

=
(
n

m
2 sin π

n

)
‖x‖m2 ,

and hence, for x ∈ R
n \ {θ},

Hn

(
x

‖x‖2

)m

= 1
‖x‖m2

Hnx
m � n

m
2 sin π

n
.

It follows from (3.7) of Lemma 3.2(ii) that

ρ(Tn) � n
m
2 sin π

n
.

(ii) From (3.1), it follows that
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‖x‖2 � n
1
2− 1

m ‖x‖m and ‖x‖1 � n1− 1
m ‖x‖m

for m � 2 and x ∈ R
n. Then by (3.8), we have

Hnx
m �

(
n sin π

n

)
‖x‖2

2‖x‖m−2
1

�
(
n sin π

n

)(
n1− 2

m ‖x‖2
m

)(
n(1− 1

m )(m−2)‖x‖m−2
2

)
=

(
n sin π

n

)(
nm−2‖x‖mm

)
=

(
nm−1 sin π

n

)
‖x‖mm,

and hence, for x ∈ R
n \ {θ},

Hn

(
x

‖x‖m

)m

= 1
‖x‖mm

Hnx
m � nm−1 sin π

n
.

It follows from (3.6) of Lemma 3.2(i) that

ρ(Fn)m−1 � nm−1 sin π

n
.

This completes the proof. �
Recall that an m-order r-dimensional B is called a principal sub-tensor of an m-order

n-dimensional tensor A = (Ai1···im) (r � n), if B consists of rm elements in A = (ai1···im):
for a set N that composed of r elements in {1, 2, . . . , n},

B = (Ai1···im), for all i1, i2, . . . , im ∈ N .

The concept was first introduced and used by Qi [10] for the higher order symmetric
tensor. Clearly, an m-order n1-dimensional Hilbert tensor Hn1 is a principal sub-tensor
of m-order n2-dimensional Hilbert tensor Hn2 if n1 � n2.

Theorem 3.4. If n < k, then

ρ(Fn) < ρ(Fk) and ρ(Tn) � ρ(Tk).

Proof. Since n < k, then Hn is a principal sub-tensor of Hk. It follows from
Lemma 3.2(i) that ρ(Fn)m−1 is a positive eigenvalue of Hn with positive eigenvector
x(n) = (x(n)

1 , . . . , x
(n)
n ), and hence ρ(Fn)m−1 is an eigenvalue of Hk with corresponding
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eigenvector x′ = (x(n)
1 , . . . , x

(n)
n , 0, . . . , 0︸ ︷︷ ︸

k−n

). Since ρ(Fk)m−1 is positive eigenvalue of Hk

with positive eigenvector x(k) = (x(k)
1 , . . . , x

(k)
k ) by Lemma 3.2(i), then

ρ(Fn)m−1 < ρ(Fk)m−1,

and hence, ρ(Fn) < ρ(Fk).
Similarly, applying Lemma 3.2(ii), we also have

ρ(Tn) � ρ(Tk).

The desired conclusion follows. �
Remark 2.

(i) In Theorem 3.4, the monotonicity of the spectral radius with respect to the dimen-
sionality n is proved. Then whether or not the eigenvector x(n) associated with the
spectral radius is the same monotonicity.

(ii) In Theorem 3.3, the upper bounds of two classes of spectral radii are established. It
is not clear whether these two upper bounds may be attained or only one of these
two upper bounds may be attained or both cannot be attained.
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