
Received: 10 June 2021 Revised: 31 October 2021 Accepted: 24 November 2021

DOI: 10.1111/sapm.12474

ORIG INAL ARTICLE

Radial spiky steady states of a flux-limited
Keller–Segel model: Existence, asymptotics,
and stability

Zhi-AnWang1 Xin Xu2

1 Department of Applied Mathematics,
The Hong Kong Polytechnic University,
Hung Hom, Hong Kong
2 Chern Institute of Mathematics and
LPMC, Nankai University, 94 Weijin
Road, Tianjin 300071, China

Correspondence
Zhi-AnWang,Department ofApplied
Mathematics, TheHongKongPolytechnic
University,HongKong.
Email:mawza@polyu.edu.hk

Funding information
NationalNatural ScienceFoundationof
China;ResearchGrantsCouncil,Univer-
sityGrantsCommittee

Abstract
This paper is concerned with the radial stationary prob-
lem of a flux-limited Keller–Segel model derived in
a multidimensional bounded domain with Neumann
boundary conditions. With the global bifurcation theory
and Helly compactness theorem by treating the chemo-
tactic coefficient as a bifurcation parameter, we establish
the existence of nonconstant monotone radial station-
ary solutions and further show that the radial stationary
solution will tend to a Dirac delta mass as the chemo-
tactic coefficient tends to infinity. By using the stability
criterion of Crandall and Rabinnowitz, we prove the lin-
earized stability of bifurcating stationary solutions near
the bifurcation points.
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1 INTRODUCTION

Chemotaxis, the directed movement of species in response to chemical stimuli, is a fundamen-
tal cellular process in many important biological phenomena such as embryonic development,1
wound healing,2 blood vessel formation,3 pattern formation,4,5 and so on. Mathematical models
of chemotaxis from bothmicroscopic (individual) andmacroscopic (population) scales have been
developed and widely studied as one of the most popular topics in modern mathematical biology.
The canonical macroscopic chemotaxis model was proposed by Keller–Segel in Ref. 6 to describe
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the aggregation of cellular slime molds Dictyostelium discoideum and in Ref. 7 to describe the
wave propagation of bacterial chemotaxis. Because of the presence of the critical mass and spatial
dimensions in determining whether solutions undergo smooth dispersion or blow-up, the Keller–
Segel system and its variants have attracted enormous attentions from researcher (cf. Refs. 8–13).
In this paper, we are interested in the flux-limited Keller–Segel (FLKS) system, where some

special forms of such system have already been introduced in Refs. 9, 14. Based on the assumption
that the chemotactic flux is bounded in modeling velocity saturation in large gradient environ-
ment, the FLKS system reads

⎧⎪⎨⎪⎩
𝜕𝑡𝜌 = Δ𝜌 − ∇ ⋅ (𝜒𝜌𝜙(|∇𝑆|)∇𝑆),

𝜕𝑡𝑆 − Δ𝑆 + 𝛼𝑆 = 𝜌,

(𝜌, 𝑆)(0, 𝑥) = (𝜌0, 𝑆0)(𝑥),

(1)

where 𝜌(𝑡, 𝑥) denotes the cell density and 𝑆(𝑡, 𝑥) the chemical signal concentration at time 𝑡 > 0

and position 𝑥. 𝜙∈ 𝐶3(ℝ;ℝ+) is referred to as the chemotactic sensitivity function describing the
signal response mechanism and 𝜒 > 0 is the chemotactic coefficient. Here limited flux means
there is a positive constant 𝐴∞ such that

max
𝑟∈ℝ+

|𝑟𝜙(𝑟)| = 𝐴∞ and 𝜙(0) > 0. (2)

Themotivation to study the FLKS system (1)–(2) comes from its derivation from kinetic chemo-
taxis model. Patlak15 first used the kinetic theory to express the chemotactic velocity in terms of
the average of velocities and run times of individual cells. Subsequently this approach was essen-
tially boosted by Alt16 and developed by Othmer, Dunber, and Alt17 using a velocity-jump process,
which assumes that cells run with some velocity and at random instants of time they changes
velocities (directions) according to a Poisson process. Denoting by 𝑓(𝑡, 𝑥, 𝑣) the cell number den-
sity, at time 𝑡 and position 𝑥, moving with a velocity 𝑣 ∈ 𝑉 (compact set of ℝ𝑛 with rotational
symmetry), the governing evolution equation of this process is described by a kinetic equation
reading as:

𝜕𝑓

𝜕𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 = ∫

𝑉

(
𝑇[𝑆](𝑣, 𝑣′)𝑓(𝑡, 𝑥, 𝑣′) − 𝑇[𝑆](𝑣′, 𝑣)𝑓(𝑡, 𝑥, 𝑣)

)
𝑑𝑣′. (3)

The tumbling kernel 𝑇[𝑆](𝑣, 𝑣′) describes the frequency of changing trajectories from velocity 𝑣′

(anterior) to 𝑣 (posterior) depending on the chemical concentration 𝑆 or its gradient. The advan-
tage of kinetic models over macroscopic models is that details of the run-and-tumble motion at
individual scales can be explicitly incorporated into the tumbling kernel and thenpassed tomacro-
scopic quantities through bottom-up scaling (cf. Refs. 18–23), where the rigorous justification of
upscaling limits have been studied inmanyworks (see Refs. 24–28 and reference therein). As such
the flux-limited term in the system (1) was derived from the so-called smoothed stiffness response
in the signaling response of cells considered in the kinetic equation (3). When cells (like bacte-
ria) respond to temporal gradients along their pathways, the tumbling kernel may depend on the
pathway (directional) derivative in the form of (cf. Refs. 29, 22, 23):

𝑇[𝑆](𝑣, 𝑣′) = 𝜆0 + 𝜎Ψ(𝐷𝑡𝑆∕𝜀), 𝐷𝑡𝑆 = 𝜕𝑡𝑆 + 𝑣′∇𝑆, (4)
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where 𝜆0 denotes a basal meaning tumbling frequency, 𝜎 accounts for the variation of tumble
frequency modulation,Ψ denotes the signal response (sensing) function, and the parameter 𝜀 > 0

represents the stiffness of response. The stiffness of signal response has shown to be important
to describe the traveling pulses of bacterial chemotaxis observed in the experiment29,30,31 and is
related to instabilities for both of the FLKS systemand the kinetic equation.32,33 With the parabolic
scaling 𝑡 → 𝜀2𝑡, 𝑥 → 𝜀𝑥, the macroscopic limits of (3) with tumbling kernel (4) leads to the flux-
limited equation in (1) satisfying the condition (2) whenΨ is a decreasing function expressing the
fact that cells are less likely to tumble when the chemical concentration increases (see details in
Refs. 34, 29).
The boundedness assumption (2) on the chemotactic flux ensures that solutions of (1) exist

globally in time (cf. Refs. 14, 35), unlike the Keller–Segel system for which finite time blow-up
may occur. In ℝ𝑛(𝑛 = 2, 3), the large-time behavior of solutions (1) with (2) was studied in Ref.
34 for any initial mass ∫

ℝ𝑛 𝜌0(𝑥)𝑑𝑥 if 𝛼 > 0 and for small initial mass if 𝛼 = 0. When 𝛼 = 0,
the nonconstant radially symmetric steady states were found by the shooting method with some
tricky transformation in Ref. 34. It was shown that the cell total mass, denoted by𝑚, is an impor-
tant parameter. In dimension 𝑛 = 2, radial symmetric solutions exist if and only if𝑚 >

8𝜋

𝜙(0)
with

max
𝑟∈ℝ+

𝜙(𝑟) = 𝜙(0). While in dimension 𝑛 > 2, there is no positive nonconstant radial steady state
for any finite mass. The main purpose of this paper is to study the stationary problem of (1) with
(2) in a bounded domain Ω ⊂ ℝ𝑛(𝑛 ≥ 2) with Neumman boundary conditions for 𝛼 > 0. With
the Neumann boundary conditions, the integration of the first equation of (1) yields the cell mass
conservation:

∫
Ω

𝜌(𝑥, 𝑡)𝑑𝑥 = ∫
Ω

𝜌0(𝑥)𝑑𝑥 ∶= 𝑚,

where𝑚 > 0 is a constant denoting the cell total mass. Therefore, the relevant stationary problem
of (1) reads as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ𝜌 − ∇ ⋅ (𝜒𝜌𝜙(|∇𝑆|)∇𝑆) = 0, 𝑥 ∈ Ω,

Δ𝑆 − 𝛼𝑆 + 𝜌 = 0, 𝑥 ∈ Ω,

𝜕𝜌

𝜕𝜈
(𝑥) =

𝜕𝑆

𝜕𝜈
(𝑥) = 0, 𝑥 ∈ 𝜕Ω,

∫
Ω

𝜌(𝑥)d𝑥 = 𝑚,

(5)

where 𝜈 denotes the outer unit normal vector of 𝜕Ω. It is quite difficult to establish the existence of
nonconstant solutions to (5) for a general domainΩ ⊂ ℝ𝑛(𝑛 ≥ 2) due to the cross-diffusion nature
and nonlinearity of 𝜙. As in Ref. 34, we will focus on the existence of nonconstant radial solutions
to (5) subject to the condition (2). It was shown inRef. 34 that (1)–(2) has nononconstant stationary
solutions in ℝ𝑛(𝑛 = 2, 3) if 𝛼 > 0, while if 𝛼 = 0, the nonconstant radially symmetric stationary
solutions exist only if 𝑛 = 2 and 𝑚 >

8𝜋

𝜙(0)
. The result of this paper will show that when (1)–(2)

with 𝛼 > 0 is considered in a bounded domain Ω ⊂ ℝ𝑛(𝑛 ≥ 2) with Neumman boundary condi-
tions, it admits nonconstant radial stationary solutions, which gives a very different result from
the whole space ℝ𝑛(𝑛 ≥ 2) shown in Ref. 34. Unlike the classical Keller–Segel system where 𝜙 is
constant, 𝜌 cannot be solved in terms of 𝑆 from the first equation of (5). When 𝛼 = 0, a tricky vari-
able transformation was used in Ref. 34 to convert the radial form of (5) into a first-order ordinary
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differential equation so that shooting method can be applied. This idea, however, is inapplicable
to the case 𝛼 > 0. In this paper, we consider the radially symmetric solutions of (5) in multidi-
mensions and employ the global bifurcation theory by treating the chemotactic coefficient 𝜒 > 0

as a bifurcation parameter to establish the existence of nonconstant radial solutions to (5) (see
Theorem 1), find the asymptotic profile of radial stationary solutions as 𝜒 → ∞ (see Theorem 2)
byHelly compactness theorem and establish the linearized stability of bifurcating stationary solu-
tions near bifurcation points (see Theorem 3) by the Crandall and Rabinnowitz stability criterion.
For the one-dimensional case, similar results can be directly obtained by the same approaches
with much less endeavors, see Ref. [10] for details. We remark that the global bifurcation theory
has been successfully used to establish the existence of nonconstant steady states of various one-
dimensional chemotaxis systems in Ref. 36 first and then in Refs. 37–39. Another way to establish
the existence of stationary solutions of chemotaxis models is the Degree theory as in Refs. 40, 41.
The rest of this paper is organized as follows. In Section 2, we consider (1)–(2) with 𝛼 > 0 in

Ω ⊂ ℝ𝑛(𝑛 ≥ 2) and establish the existence of radially symmetric nonconstant stationary solutions
by the global bifurcation theory. In Section 3, we derive asymptotic profiles of radially symmet-
ric stationary solutions as 𝜒 → ∞. In the final Section 4, we explore the linearized stability of
bifurcating stationary solutions near bifurcation points.

2 RADIAL STEADY STATES INMULTIDIMENSIONS

In this section, we explore the existence of radially symmetric solutions of (5) onΩ = 𝐵𝑅(0), where
𝐵𝑅(0) is the ball in ℝ𝑛 (𝑛 ≥ 2) with radius 𝑅 centered at origin. In the sequel, when we say a
solution of (5), it always means a nonconstant solution unless otherwise stated. For convenience,
we denote 𝜓(|∇𝑆|2) = 𝜙(|∇𝑆|), where 𝜙(⋅) ∈ 𝐶3(ℝ;ℝ+). Then (5) becomes

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ𝜌 − ∇ ⋅ (𝜒𝜌𝜓(|∇𝑆|2)∇𝑆) = 0, 𝑥 ∈ 𝐵𝑅(0),

Δ𝑆 − 𝛼𝑆 + 𝜌 = 0, 𝑥 ∈ 𝐵𝑅(0),

𝜕𝜌

𝜕𝜈
(𝑥) =

𝜕𝑆

𝜕𝜈
(𝑥) = 0, 𝑥 ∈ 𝜕𝐵𝑅(0),

∫
𝐵𝑅(0)

𝜌(𝑥)d𝑥 = 𝑚,

(6)

where 𝜓 satisfies the following condition from (2):

max
𝑟∈ℝ

|𝑟𝜓(𝑟2)| = 𝐴∞ and 𝜓(0) > 0. (7)

Next we focus on the radially symmetric solution of (6)–(7), that is, (𝜌, 𝑆)(𝑥) = (𝜌, 𝑆)(|𝑥|) =∶ 𝜌(𝑟).
To settle the possible singularity, we assume that 𝜌′(0) = 𝑆′(0) naturally. Then the radial solution
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(𝜌, 𝑆)(𝑟) satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜌′′(𝑟) +
𝑛−1

𝑟
𝜌′(𝑟) − 𝜒[𝜌(𝑟)𝜓(|𝑆′(𝑟)|2)(𝑆′′(𝑟) +

𝑛−1

𝑟
𝑆′(𝑟))

+𝑆′(𝑟)𝜌′(𝑟)𝜓(|𝑆′(𝑟)|2) + 2(𝑆′(𝑟))2𝑆′′(𝑟)𝜌(𝑟)�̇�(|𝑆′(𝑟)|2)] = 0, 𝑟 ∈ (0, 𝑅),

𝑆′′(𝑟) +
𝑛−1

𝑟
𝑆′(𝑟) + 𝜌(𝑟) − 𝛼𝑆(𝑟) = 0, 𝑟 ∈ (0, 𝑅),

𝜌′(0) = 𝜌′(𝑅) = 𝑆′(0) = 𝑆′(𝑅) = 0,

∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 =

𝑚

𝜔𝑛−1

,

(8)

where𝜔𝑛−1 is the surface area of unit sphere and by �̇�(𝑠)we denote the derivative of𝜓with respect
to 𝑠. In the following, for brevity, we denote

𝑀 =
𝑛𝑚

𝜔𝑛−1𝑅𝑛
. (9)

Then ∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 = 𝑀

𝑅𝑛

𝑛
and (𝑀,

𝑀

𝛼
) is a constant solution of (8) and the system (8) can be

equivalently written as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[𝑟𝑛−1(𝜌′(𝑟) − 𝜒𝜌(𝑟)𝑆′(𝑟)𝜓(|𝑆′(𝑟)|2))]′ = 0 𝑟 ∈ (0, 𝑅),

(𝑟𝑛−1𝑆′(𝑟))′ − 𝛼𝑟𝑛−1𝑆(𝑟) + 𝑟𝑛−1𝜌(𝑟) = 0, 𝑟 ∈ (0, 𝑅),

𝜌′(0) = 𝜌′(𝑅) = 𝑆′(0) = 𝑆′(𝑅) = 0,

∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 = 𝑀

𝑅𝑛

𝑛
.

(10)

Below we employ the global bifurcation theory to establish the existence of solutions of (8) by
using 𝜒 > 0 as the bifurcation parameter. Sometimes we use (8), while sometimes we use equiv-
alent equations (10) for the sake of convenience.

2.1 A priori bound

We first derive a priori bound for solutions of (8) needed for the global bifurcation theory.

Lemma 1. Suppose 𝜌 and 𝑆 are the positive classical solution of (8). Then it follows that

𝑀 exp[−𝜒𝑅𝐴∞] ≤ 𝜌(𝑟) ≤ 𝑀 exp[𝜒𝑅𝐴∞], ∀ 𝑟 ∈ [0, 𝑅] (11)

and

𝑀

𝛼
exp[−𝜒𝑅𝐴∞] ≤ 𝑆(𝑟) ≤ 𝑀

𝛼
exp[𝜒𝑅𝐴∞], ∀ 𝑟 ∈ [0, 𝑅], (12)

where 𝐴∞ is given in (7).
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Proof. Integrating the first equation in (10) over [0, 𝑟], we have

𝜌′(𝑟) = 𝜒𝜌(𝑟)𝑆′(𝑟)𝜓(|𝑆′(𝑟)|2). (13)

This along with (7) gives that

|(ln 𝜌(𝑟))′| = |||||𝜌
′(𝑟)

𝜌(𝑟)

||||| = 𝜒|𝑆′(𝑟)𝜓(|𝑆′(𝑟)|2)| ≤ 𝜒𝐴∞. (14)

Because ∫ 𝑅

0
𝑟𝑛−1𝜌d𝑟 =

𝑅𝑛𝑀

𝑛
, there exists 𝑟0 ∈ (0, 𝑅) such that 𝜌(𝑟0) = 𝑀 by the mean value theo-

rem of integrals. So (14) implies that

| ln(𝜌(𝑟)) − ln𝑀| ≤ 𝜒𝑅𝐴∞, (15)

which gives (11). We proceed to derive the bounds of 𝑆(𝑟). First if 𝑆 attains its maximum at an inte-
rior point 𝑟∗ ∈ (0, 𝑅), thatmax𝑟∈[0,𝑅] 𝑆(𝑟) = 𝑆(𝑟∗). Then applying the strong maximum principle
on the second equation of (8), we obtain that

𝑆′′(𝑟∗) = −𝜌(𝑟∗) + 𝛼𝑆(𝑟∗) ≤ 0, (16)

which is

𝑆(𝑟∗) ≤ 𝜌(𝑟∗)

𝛼
≤ 𝑀

𝛼
exp[𝜒𝑅𝐴∞]. (17)

If 𝑆 attains its maximum at 𝑅 with 𝑆(𝑅) >
𝑀

𝛼
exp[𝜒𝑅𝐴∞], which along with (11) implies that

𝛼𝑆 − 𝜌 > 0, then it follows from the Hopf boundary lemma that 𝑆′(𝑅) > 0. This contradicts
boundary conditions. Hence if 𝑆 attains its maximum at 𝑅, then 𝑆(𝑅) ≤ 𝑀

𝛼
exp[𝜒𝑅𝐴∞]. By similar

arguments, if 𝑆 attains its maximum at 0, then 𝑆(0) ≤ 𝑀

𝛼
exp[𝜒𝑅𝐴∞]. Collecting above results,

we conclude that 𝑆(𝑟) ≤ 𝑀

𝛼
exp[𝜒𝑅𝐴∞] for 𝑟 ∈ [0, 𝑅]. By similar arguments, we can show that

𝑆(𝑟) ≥ 𝑀

𝛼
exp[−𝜒𝑅𝐴∞]. This gives (12) and completes the proof. ■

2.2 Existence of solutions

In this subsection, we use the global bifurcation theory to establish the existence of solutions to
(8). To this end, we denote

𝑋 = {𝑓 ∈ 𝐻2(𝐵𝑅(0))|𝑓 is a radial symmetric function with 𝑓′(0) = 𝑓′(𝑅) = 0},

𝑌 = {𝑓 ∈ 𝐿2(𝐵𝑅(0))|𝑓 is a radial symmetric function},

𝑌0 =

{
𝑓 ∈ 𝑌 ∶ ∫

𝑅

0

𝑟𝑛−1𝑓(𝑟)d𝑟 = 0

}
, (18)
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where 𝑓 = 𝑓(𝑟). Now we define  ∶ 𝑋 × 𝑋 × ℝ → 𝑌0 × 𝑌 × ℝ and

(𝜌, 𝑆, 𝜒) = −

⎛⎜⎜⎜⎝
1(𝑟)

𝑆′′(𝑟) +
𝑛−1

𝑟
𝑆′(𝑟) + 𝜌(𝑟) − 𝛼𝑆(𝑟)

∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 − 𝑀

𝑅𝑛

𝑛

⎞⎟⎟⎟⎠, (19)

where

1(𝑟) = 𝜌′′(𝑟) +
𝑛 − 1

𝑟
𝜌′(𝑟) − 𝜒[𝜌(𝑟)𝜓(|𝑆′(𝑟)|2)(𝑆′′(𝑟) +

𝑛 − 1

𝑟
𝑆′(𝑟))

+ 𝑆′(𝑟)𝜌′(𝑟) + 2(𝑆′(𝑟))2𝑆′′(𝑟)𝜌(𝑟)�̇�(|𝑆′(𝑟)|2)]. (20)

It is obvious that all solutions (𝜌, 𝑆) of (𝜌, 𝑆, 𝜒) = 0 with fixed 𝜒 > 0 are the solutions of (8) and
vice versa. Because  ∶ 𝑋 × 𝑋 × ℝ → 𝑌0 × 𝑌 × ℝ is 𝐶1-smooth and at the fixed point (𝜌0, 𝑆0) ∈

𝑋 × 𝑋, the Frechet derivative of  is

𝐷(𝜌,𝑆)(𝜌0, 𝑆0, 𝜒)(𝜌, 𝑆) = −

⎛⎜⎜⎜⎝
2(𝑟)

−𝑆′′ −
𝑛−1

𝑟
𝑆′(𝑟) + 𝛼𝑆 − 𝜌

∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟

⎞⎟⎟⎟⎠ (21)

for any (𝜌, 𝑆) ∈ 𝑋 × 𝑋, where

2(𝑟) = 𝜌′′(𝑟) +
𝑛 − 1

𝑟
𝜌′(𝑟) − 𝜒[𝑆′

0
𝜓
(|𝑆′

0
(𝑟)|2) 𝜌′ + 𝜌′

0
𝜓
(|𝑆′

0
(𝑟)|2) 𝑆′

+ 2�̇�
(|𝑆′

0
(𝑟)|2) 𝜌′

0
(𝑆′

0
)2𝑆′ + 𝜌(𝑆′

0
)2𝑆′′

0
𝜓
(|𝑆′

0
|2) + 2𝜌0𝑆

′
0
𝑆′𝑆′′

0
𝜓
(|𝑆′

0
|2)

+ 𝜌0𝑆
′
0
𝑆′′𝜓

(|𝑆′
0
|2) + 2𝜌0(𝑆

′
0
)2𝑆′′

0
�̇�
(|𝑆′

0
|2) 𝑆′ + 𝜌

(
𝑆′′
0

+
𝑛 − 1

𝑟
𝑆′
0

)
𝜓
(|𝑆′

0
|2)

+ 𝜌0

(
𝑆′′ +

𝑛 − 1

𝑟
𝑆′

)
𝜓
(|𝑆′

0
|2) + 2𝜌0

(
𝑆′′
0

+
𝑛 − 1

𝑟
𝑆′
0

)
𝜓
(|𝑆′

0
|2) 𝑆′

0
𝑆′].

(22)

Then we have the following results.

Lemma 2. For any fixed point (𝜌0, 𝑆0) ∈ 𝑋 × 𝑋, the Frechet derivative in (21), 𝐷(𝜌,𝑆)(𝜌0, 𝑆0, 𝜒) ∶

𝑋 × 𝑋 → 𝑌0 × 𝑌 × ℝ is a Fredholm operator with zero index.

Proof. Denote

𝐷(𝜌,𝑆)(𝜌0, 𝑆0, 𝜒)(𝜌, 𝑆) = 1(𝜌, 𝑆) + 2(𝜌, 𝑆), (23)
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where

1(𝜌, 𝑆) =

⎛⎜⎜⎜⎝
2

−𝑆′′ −
𝑛−1

𝑟
𝑆′(𝑟) + 𝛼𝑆 − 𝜌

0

⎞⎟⎟⎟⎠, and 2(𝜌, 𝑆) =

⎛⎜⎜⎜⎝
0

0

∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟

⎞⎟⎟⎟⎠, (24)

where 2 is defined in (22). Because 2 is a compact operator, by the well-known fact that the
perturbation of a compact operator does not change the Fredholmness and the index of the origi-
nal operator (see chapter 2 in Ref. 42), we only need to show that 1 is a Fredholm operator with
index zero.
Observe that the term containing the second-order derivatives of 𝜌 and 𝑆 in the first and second

components of 1 can be written as(
−1 𝜒𝜓(|𝑆′

0
|2)[𝜌0𝑆

′
0
+ 𝜌0]

0 −1

)(
𝜌′′

𝑆′′

)
. (25)

By Remark 2.5 of case 3 in Ref. 43,1 is elliptic and satisfies Agmon’s condition (see Ref. 44). Using
Theorem 3.3 and Remark 3.4 in Ref. 43, we know1 and hence𝐷(𝜌,𝑆)(𝜌0, 𝑆0, ) ∶ 𝑋 × 𝑋 → 𝑌 × 𝑌

is a Fredholm operator with zero index. With a similar argument as in the proof of Lemma 2.3 in
Ref. 39, we finish the proof. ■

Now we take 𝜌0 = 𝛼𝑆0 = 𝑀. Then all possible bifurcation values of 𝜒 with the bifurcation
points (𝑀,

𝑀

𝛼
, 𝜒) should satisfy

𝑁

(
𝐷(𝜌,𝑆)

(
𝑀,

𝑀

𝛼
, 𝜒

))
≠ {0}.

The null space of 𝐷(𝜌,𝑆)(𝑀,
𝑀

𝛼
, 𝜒) is the space of solutions (𝜌, 𝑆) satisfying

⎧⎪⎨⎪⎩
−[𝜌′′ +

𝑛−1

𝑟
𝜌′] + 𝜒𝑀𝜓(0)[𝑆′′ +

𝑛−1

𝑟
𝑆′] = 0, 𝑟 ∈ (0, 𝑅)

−[𝑆′′ +
𝑛−1

𝑟
𝑆′] + 𝛼𝑆 − 𝜌 = 0, 𝑟 ∈ (0, 𝑅)

∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 = 0.

(26)

Now we consider the following eigenvalue problem for the radial function 𝑢(𝑟), which is{
𝑢′′(𝑟) +

𝑛−1

𝑟
𝑢′(𝑟) + 𝜆𝑢(𝑟) = 0, 𝑟 ∈ (0, 𝑅),

𝑢′(0) = 𝑢′(𝑅) = 0.
(27)

It is well known that all the solutions of (27) are

𝑢(𝑟) = 𝑟
1−

𝑛

2 𝐽𝛾(
√

𝜆𝑟), (28)

where 𝛾 =
𝑛

2
− 1 and 𝐽𝛾(𝑟) denotes the Bessel function of the first kind of order 𝛾 (see Ref. 45).

Multiplying 𝑟𝑛−1 by the equation of 𝑢 in (27) and integrating the results over [0, 𝑅], if 𝜆 ≠ 0, we



WANG and XU 9

can easy obtain that

∫
𝑅

0

𝑟𝑛−1𝑢(𝑟)d𝑟 = 0. (29)

Because 𝑢′(𝑅) = 0, that is ( 𝑛

2
− 1)𝐽𝛾(

√
𝜆𝑅) = 𝑅

√
𝜆𝐽′

𝛾(
√

𝜆𝑅). By 𝑞𝑖 we denote the 𝑖-th positive root
of the equation (𝑛

2
− 1

)
𝐽𝛾(𝑞) = 𝑞𝐽′

𝛾(𝑞), (30)

with 𝑞𝑖 < 𝑞𝑖+1 for all 𝑖 = 1, 2, …. Then the eigenfunctions of (27) corresponding to 𝑞𝑖 are

𝑢𝑖(𝑟) = 𝑟
1−

𝑛

2 𝐽𝛾

(𝑞𝑖

𝑅
𝑟
)

, 𝑖 = 1, 2, … (31)

in which we take 𝜆 ∶= 𝜆𝑖 =
𝑞2
𝑖

𝑅2
> 0. Denote 𝑢0(𝑟) = 1 for 𝜆 ∶= 𝜆0 = 0.

Because the system (26) is linear, its solution is of the form (𝜌, 𝑆)(𝑟) =
∑∞

𝑗=0
(𝑡𝑗, 𝑠𝑗)𝑢𝑗(𝑟). Observe

that 𝑡0 = 𝑠0 = 0 by ∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 = 0. Inserting (𝜌, 𝑆) into (26), we have

⎧⎪⎨⎪⎩
𝑡𝑗 − 𝜒𝑀𝜓(0)𝑠𝑗 = 0,

𝑞2
𝑗

𝑅2
𝑠𝑗 + 𝛼𝑠𝑗 − 𝑡𝑗 = 0,

(32)

whose nontrivial solutions exists if and only if 𝜒 = �̄�𝑗 satisfying

�̄�𝑗 =
𝛼 +

𝑞2
𝑗

𝑅2

𝑀𝜓(0)
(33)

for𝑚 = 1, 2, …. Hence the null space 𝑁(𝐷(𝜌,𝑆)(𝑀,
𝑀

𝛼
, �̄�𝑗)) is one-dimensional and

𝑁

(
𝐷(𝜌,𝑆)

(
𝑀,

𝑀

𝛼
, �̄�𝑗

))
= span{(�̄�𝑗, �̄�𝑗)}, (34)

where

�̄�𝑗(𝑟) =

(
𝛼 +

𝑞2
𝑗

𝑅2

)
𝑢𝑗(𝑟), �̄�𝑗(𝑟) = 𝑢𝑗(𝑟). (35)

The transversality condition

𝐷(𝜌,𝑆)𝜒
(
𝑀,

𝑀

𝛼
, �̄�𝑗

)(
�̄�𝑗, �̄�𝑗

)
∉ 𝑅

(
𝐷(𝜌,𝑆)

(
𝑀,

𝑀

𝛼
, �̄�𝑗

))
(36)
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can be easily checked by

𝐷(𝜌,𝑆)𝜒
(
𝑀,

𝑀

𝛼
, �̄�𝑗

)
(�̄�𝑗, �̄�𝑗) =

⎛⎜⎜⎜⎝
𝑀𝜓(0)

𝑞2
𝑗

𝑅2

0

0

⎞⎟⎟⎟⎠𝑢𝑗(𝑟), (37)

and𝑀𝜓(0)
𝑞2
𝑗

𝑅2
≠ 0.

By Theorem4.3 in Ref. 43, for any positive integer 𝑗, �̄�𝑗 is a bifurcation value; there exists (−𝛿, 𝛿)

with 𝛿 > 0 and 𝐶3- smooth mapping: 𝜏 ∈ (−𝛿, 𝛿) ↦ (𝜌𝑗(𝜏), 𝑆𝑗(𝜏)) ∈ 𝑋 × 𝑋 and 𝜏 ∈ (−𝛿, 𝛿) ↦

𝜒𝑗(𝜏) ∈ ℝ such that

𝜒𝑗(0) = �̄�𝑗 (38)

and

(𝜌𝑗(𝜏, 𝑟), 𝑆𝑗(𝜏, 𝑟)) =

(
𝑀,

𝑀

𝛼

)
+ 𝜏(�̄�𝑗(𝑟), �̄�𝑗(𝑟)) + 𝑜(𝜏) (39)

is a solution of (8). In addition, all nonconstant solutions of (8) near the bifurcation point
(𝑀,

𝑀

𝛼
, �̄�𝑗) live on the curve

𝑗 = (𝜌𝑗(𝜏, 𝑟), 𝑆𝑗(𝜏, 𝑟), 𝜒𝑗(𝜏)), 𝜏 ∈ (−𝛿, 𝛿), 𝑗 ≥ 1. (40)

Denote the component of nontrivial solutions that contains 1 by .
Theorem 1. Let 𝜓 ∈ 𝐶2(ℝ;ℝ+) satisfy (7). Then for any fixed constants𝑀 > 0 defined in (9) and

𝜒 > �̄�1 =
𝛼 +

𝑞2
1

𝑅2

𝑀𝜓(0)
, (41)

there exists a positive solution (𝜌, 𝑆) of (8) satisfying 𝜌′, 𝑆′ < 0 on (0, 𝑅), where (𝑀,
𝑀

𝛼
) is the constant

solution of (8).

Proof. The proof consists of several steps shown below.
Step 1.
We will prove that 𝜒 > 0 on . Denote 1 = {(𝜌, 𝑆, 𝜒) ∈ |𝜒 > 0}. Then 1 is nonempty

because (𝑀,
𝑀

𝛼
, �̄�1) ∈ 1. Observing that 1 is open in , we only need to show 1 is closed

in  to finish the proof of Step 1.
Take (𝜌𝑘, 𝑆𝑘, 𝜒𝑘) ∈ 1 → some (𝜌, 𝑆, 𝜒) ∈  as 𝑘 → ∞ in the topology in𝑋 × 𝑋 × ℝ and hence

in 𝐶2(�̄�𝑅(0)) × 𝐶2(�̄�𝑅(0)) × ℝ by the elliptic regularity. Because 𝜒𝑘 ≥ 0 for all 𝑘, then 𝜒 ≥ 0. If
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𝜒 = 0, we know

⎧⎪⎨⎪⎩
𝜌′′ +

𝑛−1

𝑟
𝜌′ = 0,

𝑆′′ +
𝑛−1

𝑟
𝑆′ − 𝛼𝑆 + 𝜌 = 0,

∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 = 𝑀

𝑅𝑛

𝑛
,

(42)

because (𝜌, 𝑆, 𝜒) ∈ . Solving the first equation of (42) with 𝜌′(𝑅) = 0, which is (𝑟𝑛−1𝜌(𝑟)′)′ = 0,
we have 𝜌′ ≡ 0 and hence (𝜌, 𝑆) ≡ (𝑀,

𝑀

𝛼
). Then (𝜌, 𝑆, 𝜒) = (𝑀,

𝑀

𝛼
, 0) is a new bifurcation point,

which is impossible because we have shown all possible bifurcation values of 𝜒 are given by (33).
Thus, we have 𝜒 > 0, which implies1 is closed in  and hence1 = .
Step 2. We will prove that on , 𝜌(𝑟), 𝑆(𝑟) > 0 for 𝑟 ∈ [0, 𝑅]. Denote 2 = {(𝜌, 𝑆, 𝜒) ∈ |𝜌 >

0, 𝑆 > 0 for 𝑟 ∈ [0, 𝑅]}. Clearly 2 is nonempty because (𝑀,
𝑀

𝛼
, �̄�1) ∈ 2. Obviously, 2 is open

in . Next, we prove2 is closed in .
Take (𝜌𝑘, 𝑆𝑘, 𝜒𝑘) ∈ 2 → some (𝜌, 𝑆, 𝜒) ∈  as 𝑘 → ∞ in the topology in𝑋 × 𝑋 × ℝ and hence

in 𝐶2(�̄�𝑅(0)) × 𝐶2(�̄�𝑅(0)) × ℝ by the elliptic regularity. Because 𝜌𝑘, 𝑆𝑘 > 0, we know 𝜌, 𝑆 ≥ 0.
Assume there exists 𝑟0 ∈ [0, 𝑅] such that 𝑆(𝑟0) = 0. Applying the strong maximum principle and
Hopf boundary point lemma to the following Neumann problem:{

𝑟𝑆′′ + (𝑛 − 1)𝑆′ − 𝛼𝑟𝑆 + 𝑟𝜌 = 0 on 𝑟 ∈ (0, 𝑅)

𝑆′(0) = 𝑆′(𝑅),
(43)

we get 𝑆 ≡ 0, which implies that 𝜌 ≡ 0. This is impossible because ∫ 𝑅

0
𝜌(𝑟)d𝑟 = 𝑀𝑅 > 0. Thus,

𝑆 > 0 on [0, 𝑅]. Similarly, if there exists 𝑟0 ∈ [0, 𝑅] such that 𝜌(𝑟0) = 0, applying strong maximum
principle and Hopf boundary point lemma on{

𝑟𝜌′′ + (𝑛 − 1)𝜌′ − 𝜒[𝜌𝜓(𝑟𝑆′′ + (𝑛 − 1)𝑆′) + 𝑆′𝜌′ + 2�̇�𝑟(𝑆′)2𝑆′′𝜌] = 0 on 𝑟 ∈ (0, 𝑅)

𝜌′(0) = 𝜌′(𝐿),
(44)

where the coefficients are bounded because 𝜓 ∈ 𝐶2(ℝ,ℝ+) and 𝑆 ∈ 𝐶2(�̄�𝑅(0)), we have 𝜌 ≡ 0,
which is impossible. Thus, 𝜌 > 0 on [0, 𝑅]. So2 is closed in  and then2 = .
Step 3. Consider the “positive part” of curve  (the part of 𝜏 ∈ (0, 𝛿)), denoted as + in the

sequel. Then we will prove that 𝜌′(𝑟), 𝑆′(𝑟) < 0 for 𝑟 ∈ (0, 𝑅) on +∖{(𝑀,
𝑀

𝛼
, �̄�1)}.

Denote 3 = {(𝜌, 𝑆, 𝜒) ∈ +∖{(𝑀,
𝑀

𝛼
, �̄�1)}|𝜌′ < 0, 𝑆′ < 0 for 𝑟 ∈ [𝜖, 𝑅)}, where 0 < 𝜖 < 𝑅 is

arbitrarily small.
Because all the points on + near the bifurcation point (𝑀,

𝑀

𝛼
, �̄�1) can be written as

(𝜌(𝜏, 𝑟), 𝑆(𝜏, 𝑟)) =

(
𝑀,

𝑀

𝛼

)
+ 𝜏(�̄�1(𝑟), �̄�1(𝑟)) + 𝑜(𝜏), (45)

for some small 𝜏 ∈ (0, 𝛿), where 𝛾 =
𝑛

2
− 1 and

�̄�1(𝑟) =

(
𝛼 +

𝑞2
1

𝑅2

)
𝑟
1−

𝑛

2 𝐽𝛾

(𝑞1𝑟

𝑅

)
, �̄�1(𝑟) = 𝑟

1−
𝑛

2 𝐽𝛾

(𝑞1𝑟

𝑅

)
. (46)
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It is easy to see �̄�′
1
(𝑟), �̄�′

1
(𝑟) < 0 on 𝑟 ∈ (0, 𝑅). Then (𝜌(𝜏, 𝑟), 𝑆(𝜏, 𝑟)) ∈ 3 for 𝜏 small enough,which

implies that3 is nonempty.
Nowwe show3 is open in+∖{(𝑀,

𝑀

𝛼
, �̄�1)}. Assume that there exists a sequence (𝜌𝑘, 𝑆𝑘, 𝜒𝑘) ∈

+∖{(𝑀,
𝑀

𝛼
, �̄�1)} converging to (𝜌, 𝑆, 𝜒) ∈ 3 as 𝑘 → ∞ in the topology of 𝑋 × 𝑋 × ℝ and hence

𝐶2(�̄�𝑅(0)) × 𝐶2(�̄�𝑅(0)) × ℝ. Because 𝜌′, 𝑆′ < 0, for large 𝑘, we have 𝜌′
𝑘
, 𝑆′

𝑘
≤ 0 on [𝜖, 𝑅) and hence

𝜌′
𝑘
, 𝑆′

𝑘
< 0 on any compact subset of [𝜖, 𝑅). So we can show the nondegeneracy of the second order

of 𝜌 and 𝑆 at 𝑟 = 𝑅 to ensure 𝜌′
𝑘
, 𝑆′

𝑘
< 0 on [𝜖, 𝑅), which is 𝜌′′(𝑟) ≠ 0, 𝑆′′(𝑟) ≠ 0 at 𝑟 = 𝑅. Observe

that {(
𝑆′
)′′

+
𝑛−1

𝑟

(
𝑆′
)′

−
(

𝑛−1

𝑟2
+ 𝛼

)
𝑆′ = −𝜌′ > 0, 𝑟 ∈ [𝜖, 𝑅),

𝑆′(0) = 𝑆′(𝑅) = 0.
(47)

By Hopf boundary point lemma, we have 𝑆′′(𝑅) > 0. Because

𝑟𝜌′′ + (𝑛 − 1)𝜌′ − 𝜒[𝜌𝜓(𝑟𝑆′′ + (𝑛 − 1)𝑆′) + 𝑆′𝜌′ + 2�̇�𝑟(𝑆′)2𝑆′′𝜌] = 0, (48)

we have 𝜌′′(𝑅) = 𝜒𝜓(0)𝜌(𝑅)𝑆′′(𝑅), which implies that 𝜌′′(𝑅) > 0. Then we have proved that 𝜌′
𝑘
,

𝑆′
𝑘
< 0 on [𝜖, 𝑅) for large 𝑘, which immediately gives the openness of3.
Wewill prove3 is closed in +∖{(𝑀,

𝑀

𝛼
, �̄�1)} to finish this step. Assume there exists a sequence

(𝜌𝑘, 𝑆𝑘, 𝜒𝑘) ∈ 3 converging to (𝜌, 𝑆, 𝜒) ∈ +∖{(𝑀,
𝑀

𝛼
, �̄�1)} as 𝑘 → ∞. Obviously, 𝜌′, 𝑆′ ≤ 0. If

there exists 𝑟0 ∈ [𝜖, 𝑅) such that 𝑆′(𝑟0) = 0, applying the strong maximum principle to (47), we
have 𝑆′ ≡ 0 and hence 𝑆 ≡ 𝑀

𝛼
and 𝜌 ≡ 𝑀. So 𝜒 is a bifurcation value and 𝜒 should be equal to

�̄�𝑗 for some 𝑗 = 1, 2, …, where 𝑗 = 1 is impossible because (𝜌, 𝑆, 𝜒) ∈ +∖{(𝑀,
𝑀

𝛼
, �̄�1)}. 𝑗 ≥ 2 is

impossible because 𝜌𝑘, 𝑆𝑘 are monotone while all the points near (𝑀,
𝑀

𝛼
, �̄�𝑗) for 𝑗 ≥ 2 are not

possible either. Thus, 𝑆′ < 0 on [𝜖, 𝑅). Integrating the first equation of (10), byNeumann boundary
conditions, we know

𝜌′(𝑟) = 𝜒𝜌(𝑟)𝜓(|𝑆′(𝑟)|2)𝑆′(𝑟), for 𝑟 ∈ (0, 𝑅). (49)

Because 𝜌 > 0 on [0, 𝑅], 𝜓 > 0 on ℝ+, we have 𝜌′ < 0 on [𝜖, 𝑅). Thus, 3 is closed. Because 𝜖 is
arbitrary, taking 𝜖 → 0 gives us that 𝜌′, 𝑆′ < 0 on (0, 𝑅) for all points (𝜌, 𝑆, 𝜒) belonging to the
curve +∕{(𝑀,

𝑀

𝛼
, �̄�1)}.

Step 4. From Theorem 4.4 in Ref. 43, it follows that + satisfies at least one of the following
alternatives:

(a) it is not compact in 𝑋 × 𝑋 × ℝ;
(b) it contains a point (𝑀,

𝑀

𝛼
, 𝜒∗), 𝜒∗ ≠ �̄�1;

(c) it contains a point (𝑀 + �̂�,
𝑀

𝛼
+ �̂�, 𝜒) with 0 ≠ (�̂�, �̂�) ∈ 𝑍, where 𝑍 denotes a closed linear

subspace of 𝑋 × 𝑋 and is a complement of 𝑁(𝐷(𝜌,𝑆)𝐹(𝑀,
𝑀

𝛼
, �̄�1)) = span{(�̄�1, �̄�1)}), namely,

𝑍 =

{
(𝜌, 𝑆) ∈ 𝑋 × 𝑋

|||∫ 𝑅

0

(�̄�1(𝑟)𝜌(𝑟) + �̄�1(𝑟)𝑆(𝑟))d𝑥 = 0

}
. (50)
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We will show that the situation (a) must occur.
If (b) happens, then 𝜒∗ must be some bifurcation value �̄�𝑗 and 𝑗 ≥ 1. By the arguments in in

Step 3, this situation is impossible. If (c) happens, then (𝑀 + �̂�,
𝑀

𝛼
+ �̂�, 𝜒) ∈ +∖{(𝑀,

𝑀

𝛼
, �̄�1)} and

by Step 3, �̂�′, �̂�′ < 0 in (0, 𝑅). Because (�̂�, �̂�) ∈ 𝑍, then

0 = ∫
𝑅

0

[(
𝛼 +

𝑞2
1

𝑅2

)
�̂�(𝑟) + �̂�(𝑟)

]
𝑢1(𝑟)d𝑟 (51)

= −∫
𝑅

0

[(
𝛼 +

𝑞2
1

𝑅2

)
�̂�′(𝑟) + �̂�′(𝑟)

]
𝑈1(𝑟)d𝑟 > 0, (52)

where 𝑈1(𝑟) is the primitive of 𝑢1(𝑟) and 𝑈1(𝑟) > 0 on (0, 𝑅). This is a contradiction. So the situ-
ation (a) must occur.
Step 5. We prove below that the monotone positive solution of (8) exists for all 𝜒 > �̄�1.
By the estimate of 𝜌 and 𝑆 in Lemma 1, we know if 𝜒 is bounded from above by a positive

constant, 𝜌 and 𝑆 are bounded in 𝐻3(�̄�𝑅(0)) by elliptic regularity theory, which contradicts the
fact that + is not compact. So the coordinate of 𝜒 should cover (�̄�1,∞) and we finish our
proof. ■

3 ASYMPTOTIC PROFILE AS 𝝌 → ∞

In this section, we are devoted to proving the following results, which state the asymptotic profile
of solutions as 𝜒 → ∞.

Theorem 2. Let (𝜌, 𝑆) be the positive and monotone decreasing solution of (8) given in Theorem 1.
Then we have

𝜌(𝑟) →
𝑀𝑅𝑛

𝑛

𝛿(𝑟)

𝑟𝑛−1
as 𝜒 → ∞ (53)

in the sense of distribution, where 𝛿(𝑟) is the Dirac delta function, and 𝑆(𝑟) → 𝑆∞(𝑟) pointwise on
(0, 𝑅] as 𝜒 → ∞, where

𝑆∞(𝑟) =

{
𝐶2𝑆∞(𝑟; 2)

𝐶𝑛𝑆∞(𝑟; 𝑛)
=

⎧⎪⎨⎪⎩
𝐶2

√
𝛼[𝐾1(

√
𝛼𝑅)𝐼0(

√
𝛼𝑟) + 𝐼1(

√
𝛼𝑅)𝐾0(

√
𝛼𝑟)], 𝑛 = 2,

𝐶𝑛[𝑐1𝑟
1−

𝑛

2 𝐼𝛾(
√

𝛼𝑟) + 𝑐2𝑟
1−

𝑛

2 𝐾𝛾(
√

𝛼𝑟)], 𝑛 ≥ 3,
(54)

where 𝐼𝛾(𝑠) and 𝐾𝛾(𝑠) are the modified Bessel functions of the first and the second kinds with 𝛾 =
𝑛

2
− 1,

𝑐1 = 𝑅
−

𝑛

2

[(
1 −

𝑛

2

)
𝐾𝛾(

√
𝛼𝑅) +

√
𝛼𝑅𝐾′

𝛾(
√

𝛼𝑅)
]
,

𝑐2 = −𝑅
−

𝑛

2

[(
1 −

𝑛

2

)
𝐼𝛾(

√
𝛼𝑅) +

√
𝛼𝑅𝐼′𝛾(

√
𝛼𝑅)

]
, (55)
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and 𝐶𝑛 satisfies

𝐶𝑛 =
𝑀𝑅𝑛

𝑛 ∫ 𝑅

0
𝑟𝑛−1𝑆∞(𝑟; 𝑛)d𝑟

, 𝑛 = 2, 3, … (56)

Moreover, for 𝑛 = 2, we have 𝐶2 =

√
𝛼𝑀𝑅2

2𝐼1(
√

𝛼𝑅)
.

Proof. Recall ∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 =

𝑀𝑅𝑛

𝑛
. For any fixed 𝜀 ∈ (0, 𝑅], we have

𝜀𝑛−1 ∫
𝑅

𝜀

𝜌(𝑟)d𝑟 ≤ ∫
𝑅

0

𝑟𝑛−1𝜌(𝑟)d𝑟,

that is, ∫ 𝑅

𝜀
𝜌(𝑟)d𝑟 ≤ 𝑀𝑅𝑛

𝑛𝜀𝑛−1
. Then by the Helly’s compactness theorem (see Ref. 46), we know that

𝜌(𝑟) converges to some 𝜌∞(𝑟) pointwise on 𝑟 ∈ [𝜀, 𝑅] after passing to a subsequence of 𝜒 → ∞.
By the diagonal argument of compactness, 𝜌(𝑟) → 𝜌∞(𝑟) pointwise on (0, 𝑅] after passing to a
subsequence of 𝜒 → ∞.
To show (53), we only need to show 𝜌∞(𝑟) = 0 on (0, 𝑅]. Arguing by contradiction, we suppose

that 𝜌∞(𝑟0) > 0 for some 𝑟0 ∈ (0, 𝑅]. Observe that 𝜌(𝑟) is decreasing on (0, 𝑅) and hence 𝜌∞(𝑟) is
nonincreasing on (0, 𝑅). By the definition of 𝜌∞(𝑟), we know that for any positive constant 𝑐, there
exists a positive constant𝑀𝑟0

such that |𝜌∞(𝑟0) − 𝜌(𝑟0)| < 𝑐, whenever𝜒 > 𝑀𝑟0
. Taking 𝑐 = 𝜌(𝑟0),

we get 𝜌∞(𝑟0) < 2𝜌(𝑟0) for large 𝜒. Then with our assumption 𝜌∞(𝑟0) > 0, we have

0 <
𝜌∞(𝑟0)

2
< 𝜌(𝑟0) ≤ 𝜌

(𝑟0
2

)
< 2𝜌∞

(𝑟0
2

)
(57)

for large 𝜒 > 0, where the third inequality comes from that 𝜌∞(𝑟) is nonincreasing on (0, 𝑅). So
for 𝑟 ∈ [

𝑟0

2
, 𝑟0], we have

0 <
𝜌∞(𝑟0)

2
< 𝜌(𝑟0) ≤ 𝜌(𝑟) ≤ 𝜌

(𝑟0
2

)
< 2𝜌∞

(𝑟0
2

)
. (58)

Recall the differentiation of second equation in (8)

(𝑆′′)′ +
𝑛 − 1

𝑟
(𝑆′)′ −

(
𝑛 − 1

𝑟2
+ 𝛼

)
𝑆′ + 𝜌′ = 0 (59)

and the equation 𝜌′ = 𝜒𝜌𝜓(|𝑆′|2)𝑆′, which comes form the integration of the first equation in
(10). Combining these two equations, we have (𝑆′)′′ +

𝑛−1

𝑟
(𝑆′)′ + (𝜒𝜌𝜓(|𝑆′|2) − 𝛼 −

𝑛−1

𝑟2
)𝑆′ = 0.

Observing that 𝑆′′′ +
𝑛−1

𝑟
(𝑆′)′ = (𝑟

𝑛−1

2 𝑆′)′′𝑟
1−𝑛

2 −
(𝑛−1)(𝑛−3)

4𝑟2
𝑆′, we can write this equation as

⎧⎪⎨⎪⎩
(
𝑟

𝑛−1

2 𝑆′

)′′

+
(
𝜒𝜌𝜓(|𝑆′|2) − 𝛼 −

𝑛−1

𝑟2
−

(𝑛−1)(𝑛−3)

4𝑟2

)(
𝑟

𝑛−1

2 𝑆′

)
= 0,

𝑆′(0) = 𝑆′(𝑅) = 0.

(60)
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Recall max𝑦∈ℝ |𝑦𝜓(𝑦2)| = 𝐴∞ > 0. By (7) and 𝜓 is 𝐶2 smooth, we know that 𝜒𝜌𝜓(|𝑆′|2) − 𝛼 −
𝑛2−1

4𝑟2
→ ∞ as 𝜒 → ∞ uniformly on [

𝑟0

2
, 𝑟0] because 𝑟0 > 0. So the Sturm oscillation theorem

implies that the sign of 𝑟
𝑛−1

2 𝑆′, and hence 𝑆′, changes many times on [
𝑟0

2
, 𝑟0] for large 𝜒, which

contradicts the fact that 𝑆′ < 0 on (0, 𝑅). Thus, 𝜌∞(𝑟) = 0 on (0, 𝑅].
Now we consider the asymptotic behavior of 𝑆 as 𝜒 → ∞. Similarly, we know 𝑆(𝑟) → some

𝑆∞(𝑟) on (0, 𝑅] after passing to a subsequence of 𝜒 → ∞ and 𝑆∞ should satisfy

𝑆′′
∞(𝑟) +

𝑛 − 1

𝑟
𝑆′
∞(𝑟) − 𝛼𝑆∞(𝑟) = 0, 𝑟 ∈ (0, 𝑅], 𝑆′

∞(𝑅) = 0. (61)

Taking 𝑆∞(𝑟) = 𝑟
1−

𝑛

2 𝑈(𝑟), then we have

𝑈′′(𝑟) +
1

𝑟
𝑈′(𝑟) −

(
𝛼 +

(𝑛 − 2)2

4𝑟2

)
𝑈(𝑟) = 0. (62)

Taking 𝑠 =
√

𝛼𝑟, we can see

d2

d𝑠2
𝑈 +

1

𝑠

d

d𝑠
𝑈 −

(
1 +

(𝑛 − 2)2

4𝑠2

)
𝑈 = 0, (63)

whose solutions are the modified Bessel functions of the first kind, 𝐼𝛾(𝑠), and the second kind
𝐾𝛾(𝑠) with 𝛾 =

𝑛−2

2
. So

𝑆∞(𝑟) = 𝐶𝑛

[
𝑐1𝑟

1−
𝑛

2 𝐼𝛾(
√

𝛼𝑟) + 𝑐2𝑟
1−

𝑛

2 𝐾𝛾(
√

𝛼𝑟)

]
, (64)

where 𝐶𝑛 is a constant depending on 𝑛 and 𝑐1, 𝑐2 can be written explicitly below. For 𝑛 = 2, which
means 𝛾 = 0, we have

𝑆∞(𝑟) = 𝐶2

[
𝑐1𝐼0(

√
𝛼𝑟) + 𝑐2𝐾0(

√
𝛼𝑟)

]
, (65)

and 𝑆′
∞(𝑅) = 0 implies that 𝑐1 =

√
𝛼𝐾1(

√
𝛼𝑅) and 𝑐2 =

√
𝛼𝐼1(

√
𝛼𝑅). For 𝑛 ≥ 3, 𝑐1 = 𝑅

−
𝑛

2 [(1 −
𝑛

2
)𝐾𝛾(

√
𝛼𝑅) +

√
𝛼𝑅𝐾′

𝛾(
√

𝛼𝑅)] and 𝑐2 = −𝑅
−

𝑛

2 [(1 −
𝑛

2
)𝐼𝛾(

√
𝛼𝑅) +

√
𝛼𝑅𝐼′𝛾(

√
𝛼𝑅)] to ensure the

boundary condition 𝑆′(𝑅) = 0. The uniqueness of limits implies (54) and themass constraint gives
us (56) immediately. For 𝑛 = 2, thanks to the recurrence relations

𝑟𝐼′
1
(𝑟) + 𝐼1(𝑟) = 𝑟𝐼0(𝑟), 𝑟𝐾′

1
(𝑟) + 𝐾1(𝑟) = −𝑟𝐾0(𝑟), (66)

and the fact that lim
𝑟→0

𝑟𝐾1(𝑟) = 1, we directly calculate that

𝐶2 =

√
𝛼𝑀𝑅2

2𝐼1(
√

𝛼𝑅)
. (67)
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Indeed from ∫ 𝑅

0
𝑟𝑆(𝑟)d𝑟 =

𝑀𝑅2

2
, we can formally write

𝐶2 =
𝑀𝑅2

2 ∫ 𝑅

0
𝑟𝑆∞(𝑟; 2)d𝑟

. (68)

Note that

∫
𝑅

0

𝑟𝐼0(𝑟)d𝑟 = ∫
𝑅

0

[𝑟𝐼′
1
(𝑟) + 𝐼1(𝑟)]d𝑟 = 𝑅𝐼1(𝑅) − ∫

𝑅

0

𝐼1(𝑟)d𝑟 + ∫
𝑅

0

𝐼1(𝑟)d𝑟 = 𝑅𝐼1(𝑅),

∫
𝑅

0

𝑟𝐾0(𝑟)d𝑟 = −∫
𝑅

0

[𝑟𝐾′
1
(𝑟) + 𝐾1(𝑟)]d𝑟

= 1 − 𝑅𝐾1(𝑅) + ∫
𝑅

0

𝐾1(𝑟)d𝑟 − ∫
𝑅

0

𝐾1(𝑟)d𝑟 = 1 − 𝑅𝐾1(𝑅). (69)

Then

∫
𝑅

0

𝑟𝑆∞(𝑟; 2)d𝑟

= ∫
𝑅

0

√
𝛼𝐾1

(√
𝛼𝑅

)
𝑟𝐼0

(√
𝛼𝑟

)
d𝑟 + ∫

𝑅

0

√
𝛼𝐼1

(√
𝛼𝑅

)
𝑟𝐾0

(√
𝛼𝑟

)
d𝑟

= 𝛼
−

1

2 [𝐾1

(√
𝛼𝑅

)
∫

√
𝛼𝑅

0

𝑟𝐼0 (𝑟) d𝑟 + 𝐼1

(√
𝛼𝑅

)
∫

√
𝛼𝑅

0

𝑟𝐾0 (𝑟) d𝑟]

= 𝑅𝐾1

(√
𝛼𝑅

)
𝐼1

(√
𝛼𝑅

)
− 𝑅𝐼1

(√
𝛼𝑅

)
𝐾1

(√
𝛼𝑅

)
+ 𝛼

−
1

2 𝐼1

(√
𝛼𝑅

)

=
𝐼1

(√
𝛼𝑅

)
√

𝛼
. (70)

Substituting this into (68) yields (67) and hence completes the proof. ■

4 STABILITY OF BIFURCATING SOLUTIONS

In this section, we show that any bifurcating solution near the bifurcation point (𝑀,
𝑀

𝛼
, �̄�𝑗) is

asymptotically stable. Without loss of generality, we only consider the monotone solution near
the first bifurcation point (𝑀,

𝑀

𝛼
, �̄�1) as obtained in Theorem 1, where the solution, denoted by

(𝜌1(𝜏, 𝑟), 𝑆1(𝜏, 𝑟)), can be written as (see (46))

(𝜌1(𝜏, 𝑟), 𝑆1(𝜏, 𝑟)) =

(
𝑀,

𝑀

𝛼

)
+ 𝜏(�̄�1(𝑟), �̄�1(𝑟)) + 𝑜(𝜏), 𝜏 ∈ (−𝛿, 𝛿) (71)
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for some 𝛿 > 0, where (�̄�1(𝑟), �̄�1(𝑟)) = (𝛼 +
𝑞2
1

𝑅2
, 1)𝑢1(𝑟) is a solution of (8) and all nonconstant

solutions of (8) near (𝑀,
𝑀

𝛼
, �̄�1) live on the curve 1 = (𝜒1(𝜏), 𝜌1(𝜏, 𝑟), 𝑆1(𝜏, 𝑟)) for 𝜏 ∈ (−𝛿, 𝛿).

Let  be a closed complement of 𝑁(𝐷(𝜌,𝑆)(𝑀,
𝑀

𝛼
, �̄�1)) = span{(�̄�1(𝑟), �̄�1(𝑟))} in 𝑋 × 𝑋 as fol-

lowing

 = {(𝜌, 𝑆) ∈ 𝑋 × 𝑋|∫ 𝑅

0

𝑟𝑛−1�̄�1(𝑟)𝜌(𝑟) + 𝑟𝑛−1�̄�1(𝑟)𝑆(𝑟)d𝑟 = 0}. (72)

By Theorem 1.7 in Ref. 47, we have

(𝜌1(𝜏, 𝑟), 𝑆1(𝜏, 𝑟)) −

(
𝑀,

𝑀

𝛼

)
− 𝜏

(
�̄�1(𝑟), �̄�1(𝑟)

)
∈ , ∀𝜏 ∈ (−𝛿, 𝛿). (73)

Recall that (𝜌1, 𝑆1, 𝜒1) are 𝐶3 smooth functions of 𝜏 and we have the following expansions:

⎧⎪⎪⎨⎪⎪⎩
𝜌1(𝜏, 𝑟) = 𝑀 + 𝜏

(
𝛼 +

𝑞2
1

𝑅2

)
𝑢1(𝑟) + 𝜏2𝜙1(𝑟) + 𝜏3𝜂1(𝑟) + 𝑜(𝜏3)

𝑆1(𝜏, 𝑟) =
𝑀

𝛼
+ 𝜏𝑢1(𝑟) + 𝜏2𝜙2(𝑟) + 𝜏3𝜂2(𝑟) + 𝑜(𝜏3)

𝜒1(𝜏) = �̄�1 + 𝜏�̃�2 + 𝜏2�̃�3 + 𝑜(𝜏2),

(74)

where (𝜙1, 𝜙2), (𝜂1, 𝜂2) ∈ , �̃�2 and �̃�3 are constants. By the mass constraint of 𝜌 and 𝑆, we know

∫
𝑅

0

𝑟𝑛−1𝜙𝑖(𝑟)d𝑟 = ∫
𝑅

0

𝑟𝑛−1𝜂𝑖(𝑟)d𝑟 = 0, 𝑖 = 1, 2. (75)

Now inserting (74) into (10) with the Taylor expansion of 𝜓, we have

{𝑟𝑛−1[𝜏�̄�′
1
+ 𝜏2𝜙′

1
+ 𝜏3𝜂′

1
+ 𝑜(𝜏3) − (�̄�1 + 𝜏�̃�2 + 𝜏2�̃�3 + 𝑜(𝜏2))(𝑀 + 𝜏�̄�1 + 𝜏2𝜙1 + 𝜏3𝜂1 + 𝑜(𝜏3))

⋅(𝜏�̄�′
1
+ 𝜏2𝜙′

2
+ 𝜏3𝜂′

2
+ 𝑜(𝜏3))(𝜓(0) + 𝜓′(0)(𝜏�̄�′

1
+ 𝜏2𝜙′

2
+ 𝜏3𝜂′

2
)2 + 𝑜(𝜏3))]}′ = 0 (76)

and

[𝑟𝑛−1(𝜏�̄�′
1
+ 𝜏2𝜙′

2
+ 𝜏3𝜂′

2
+ 𝑜(𝜏3))]′ − 𝛼𝑟𝑛−1

(
𝑀

𝛼
+ 𝜏�̄�1 + 𝜏2𝜙2 + 𝜏3𝜂2 + 𝑜(𝜏3)

)
+ 𝑟𝑛−1(𝑀 + 𝜏�̄�1 + 𝜏2𝜙1 + 𝜏3𝜂1 + 𝑜(𝜏3)) = 0. (77)

Collecting the 𝑂(𝜏2) terms in (77) gives

(𝑟𝑛−1𝜙′
2
)′ − 𝛼𝑟𝑛−1𝜙2 + 𝑟𝑛−1𝜙1 = 0. (78)
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Multiplying (78) by 𝑢1(𝑟) and integrating over [0, 𝑅], we have

∫
𝑅

0

𝑟𝑛−1

[
𝑢1(𝑟)𝜙1(𝑟) −

(
𝛼 +

𝑞2
1

𝑅2

)
𝑢1(𝑟)𝜙2(𝑟)

]
d𝑟 = 0. (79)

Recall that (𝜙1, 𝜙2) ∈ , which implies that

∫
𝑅

0

𝑟𝑛−1

[(
𝛼 +

𝑞2
1

𝑅2

)
𝑢1(𝑟)𝜙1(𝑟) + 𝑢1(𝑟)𝜙2(𝑟)

]
d𝑟 = 0. (80)

By (79) and (80), it is easy to see that

∫
𝑅

0

𝑟𝑛−1𝑢1(𝑟)𝜙1(𝑟)d𝑟 = ∫
𝑅

0

𝑟𝑛−1𝑢1(𝑟)𝜙2(𝑟)d𝑟 = 0. (81)

Now we consider the 𝑂(𝜏2) terms in (76)

{𝑟𝑛−1[𝜙′
1
− �̄�1𝑀𝜙′

2
𝜓(0) − �̄�1�̄�1�̄�

′
1
𝜓(0) − �̃�2𝑀�̄�′

1
𝜓(0)]}′ = 0. (82)

Multiplying (82) by 𝑢1(𝑟) and integrating the result by parts along with (81) we have

�̃�2 =
1

2𝑀2𝜓(0)

(
𝛼 +

𝑞2
1

𝑅2

)2 ∫ 𝑅

0
𝑢3
1
(𝑟)𝑟𝑛−1d𝑟

∫ 𝑅

0
𝑢2
1
(𝑟)𝑟𝑛−1d𝑟

. (83)

Lemma 3. Consider the eigenvalue problem of (10) as 𝜏 → 0 (i.e., linearization of (10) at (𝑀,
𝑀

𝛼
))

⎧⎪⎪⎨⎪⎪⎩
[𝑟𝑛−1(𝜌′ − �̄�1𝑀𝜓(0)𝑆′)]′ = 𝜂𝑟𝑛−1𝜌, 𝑟 ∈ (0, 𝑅),

(𝑟𝑛−1𝑆′)′ − 𝛼𝑟𝑛−1𝑆 + 𝑟𝑛−1𝜌 = 𝜂𝑟𝑛−1𝑆, 𝑟 ∈ (0, 𝑅),

𝜌′(0) = 𝜌′(𝑅) = 𝑆′(0) = 𝑆′(𝑅) = 0,

∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 = 0,

(84)

where 𝜂 is the eigenvalue of (84) with corresponding eigenfunction (𝑟𝑛−1𝜌, 𝑟𝑛−1𝑆). Then 0 is the only
eigenvalue of (84) when Re 𝜂 ≥ −�̂� with �̂� > 0 small.

Proof. The solution of the linear system (84) has the form of

𝜌 =

∞∑
𝑘=0

𝑎𝑘𝑢𝑘, 𝑆 =

∞∑
𝑘=0

𝑏𝑘𝑢𝑘. (85)
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Inserting (85) into (84), we have

⎧⎪⎪⎨⎪⎪⎩

𝑞2
𝑘

𝑅2
𝑎𝑘 − �̄�1𝑀𝜓(0)

𝑞2
𝑘

𝑅2
𝑏𝑘 = −𝜂𝑎𝑘,(

𝑞2
𝑘

𝑅2
+ 𝛼

)
𝑏𝑘 − 𝑎𝑘 = −𝜂𝑏𝑘,

(86)

where 𝑎0 = 𝑏0 = 0 by ∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 = 0. Then 𝜂 is an eigenvalue of (84) if and only if there exists

𝑘 > 0 with (𝑎𝑘, 𝑏𝑘) ≠ (0, 0) such that

𝜂2 +

(
2𝑞2

𝑘

𝑅2
+ 𝛼

)
𝜂 +

𝑞2
𝑘

𝑅2

(
𝑞2
𝑘

𝑅2
+ 𝛼 − �̄�1𝑀𝜓(0)

)
= 0. (87)

Because the discriminant of the above equation isΔ = 𝛼2 +
4�̄�1𝑀𝜓(0)𝑞2

𝑘

𝑅2
> 0, then the equation has

two roots 𝜂1 and 𝜂2 satisfying

𝜂1 + 𝜂2 = −

(
2𝑞2

𝑘

𝑅2
+ 𝛼

)
< 0, 𝜂1𝜂2 =

𝑞2
𝑘

𝑅2

(
𝑞2
𝑘

𝑅2
+ 𝛼 − �̄�1𝑀𝜓(0)

)
=

𝑞2
𝑘
(𝑞2

𝑘
− 𝑞2

1
)

𝑅4
. (88)

So 𝜂1𝜂2 = 0 as 𝑘 = 1 and 𝜂1𝜂2 > 0 as 𝑘 > 1. Therefore 0 is the only eigenvalue fulfilling Re 𝜂 ≥ −�̂�

for arbitrarily small �̂� > 0. ■

Next we study the asymptotic stability of (𝜌1, 𝑆1)(𝜏, 𝑟), which is determined by the sign of the
real part of eigenvalue 𝜆 of the following eigenvalue problem:

⎧⎪⎪⎨⎪⎪⎩
[𝑟𝑛−1(𝜌′ − 𝜒1(𝜏)(𝑆

′
1
𝜓(|𝑆′

1
|2)𝜌 + 𝜌1𝜓(|𝑆′

1
|2)𝑆′ + 2𝜌1(𝑆

′
1
)2�̇�(|𝑆′

1
|2)𝑆))]′ = 𝜆𝑟𝑛−1𝜌, 𝑟 ∈ (0, 𝑅)

(𝑟𝑛−1𝑆′)′ − 𝛼𝑟𝑛−1𝑆 + 𝑟𝑛−1𝜌 = 𝜆𝑟𝑛−1𝑆, 𝑟 ∈ (0, 𝑅)

𝜌′(0) = 𝜌′(𝑅) = 𝑆′(0) = 𝑆′(𝑅) = 0,

∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟 = 0.

(89)

It is easy to see when 𝜏 = 0, 0 is an eigenvalue. When 𝜏 ≠ 0, define ∶ 𝑋 × 𝑋 → 𝑌0 × 𝑌 × ℝ by

(𝜌, 𝑆) =

⎛⎜⎜⎜⎝
𝑟𝑛−1𝜌 −

1

𝑅
∫ 𝑅

0
𝑟𝑛−1𝜌(𝑟)d𝑟

𝑟𝑛−1𝑆

0

⎞⎟⎟⎟⎠. (90)

Then the following eigenvalue problem:

𝑟𝑛−1𝐷(𝜌,𝑆)(𝜌𝜏, 𝑆𝜏, 𝜒1(𝜏))(𝜌, 𝑆) = 𝜆(𝜌, 𝑆), (𝜌, 𝑆) ∈ 𝑋 × 𝑋, (91)
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is equivalent to (89). Then we can easily see that 𝜆 = 0 is a simple eigenvalue of the pair
(𝑟𝑛−1𝐷(𝜌,𝑆)(𝑀,

𝑀

𝛼
, �̄�1),) by the Fredholmness of 𝑟𝑛−1𝐷(𝜌,𝑆)(𝑀,

𝑀

𝛼
, �̄�1) and the fact that

(�̄�1, �̄�1) ∉ 𝑅(𝑟𝑛−1𝐷(𝜌,𝑆)(𝑀,
𝑀

𝛼
, �̄�1)).

Theorem3. Let �̃�2 be defined in (83) and assume that �̃�2 > 0. For 𝜏 ∈ (−𝛿, 𝛿) and 𝜏 ≠ 0, the steady-
state (𝜌1(𝜏, 𝑟), 𝑆1(𝜏, 𝑟)) is asymptotically stable if 𝜏 > 0 and unstable if 𝜏 < 0.

Proof. Recall that 𝜆 = 0 is a simple eigenvalue of the pair (𝑟𝑛−1𝐷(𝜌,𝑆)(𝑀,
𝑀

𝛼
, �̄�1),). UsingCorol-

lary 1.13 in Ref. 48 with “𝐾” in this corollary being identity, there exists 𝐶1-smooth mapping
𝜆1(𝜒): 𝑁 → ℝ and 𝜆2(𝜏) ∶ (−𝛿, 𝛿) → ℝ, where 𝑁 is a neighborhood of �̄�1, such that 𝜆1(�̄�1) = 0,
𝜆2(0) = 0, and 𝜆1(𝜒) is a real eigenvalue of

𝑟𝑛−1𝐷(𝜌,𝑆)
(
𝑀,

𝑀

𝛼
, 𝜒

)
(𝜌, 𝑆) = 𝜆(𝜌, 𝑆), (𝜌, 𝑆) ∈ 𝑋 × 𝑋, (92)

and 𝜆2(𝜏) is an eigenvalue of (91) and hence (89). In the complex plane, in any small neighborhood
of the origin, 𝜆1(𝜒) is the only eigenvalue of (92) and 𝜆2(𝜏) is the only eigenvalue of (89), namely,
𝜆 = 𝜆2(𝜏). Hence it remains only to determine the sign of 𝜆2(𝜏).
Write eigenfunction of (92) as (𝜌(𝜒, 𝑟), 𝑆(𝜒, 𝑟)). By Corollary 1.13 in Ref. 48, this eigenfunction

depends on 𝜒 smoothly and is uniquely determined by

(𝜌(�̄�1, 𝑟), 𝑆(�̄�1, 𝑟))) = (�̄�1(𝑟), �̄�1(𝑟)), (𝜌(𝜒, 𝑟), 𝑆(𝜒, 𝑟)) − (�̄�1(𝑟), �̄�1(𝑟)) ∈ . (93)

Differentiating (92) with respect to 𝜒 and then setting 𝜒 = �̄�1, we have

⎧⎪⎨⎪⎩
[𝑟𝑛−1(�̇�′ − 𝑀𝜓(0)𝑆′ − �̄�1𝑀𝜓(0)�̇�′)]′ = �̇�1(�̄�1)�̄�1𝑟

𝑛−1, 𝑟 ∈ (0, 𝑅),

(𝑟𝑛−1�̇�′)′ − 𝛼𝑟𝑛−1�̇� + 𝑟𝑛−1�̇� = �̇�1(�̄�1)𝑟
𝑛−1�̄�1, 𝑟 ∈ (0, 𝑅),

𝜌′(0) = 𝜌′(𝑅) = 𝑆′(0) = 𝑆′(𝑅) = 0.

(94)

Multiplying the �̇�-equation by 𝑢1 and the �̇�-equation by 𝑞2
1

𝑅2
𝑢1, adding the resulting equations,

integrating with respect to 𝑟 over [0, 𝑅], we get

�̇�1(�̄�1) =
𝑞2
1

𝛼𝑅2 + 2𝑞2
1

𝑀𝜓(0) > 0. (95)

From Theorem 1.16 in Ref. 48, we know whenever 𝜆2(𝜏) ≠ 0,

lim
𝜏→0

−𝜏𝜒′
1
(𝜏)�̇�1(�̄�1)

𝜆2(𝜏)
= 1, (96)

where 𝜒1(𝜏) = �̄�1 + 𝜏�̃�2 + 𝑜(𝜏2) and hence 𝜒′
1
(𝜏) = �̃�2 + 𝑜(𝜏). Therefore �̃�2 > 0 implies that

sgn 𝜆2(𝜏) = −sgn 𝜏 for small 𝜏 ≠ 0. To conclude our results, it suffices to show that 𝜆2(𝜏) is not
a complex eigenvalue with positive real part. This would follow from the standard eigenvalue per-
turbation theory if we can show that the eigenvalue problem (84) (namely, the limit of (89) as
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𝜏 → 0) has no nonzero eigenvalues with nonnegative real parts. This, however, has been shown
in Lemma 3. Therefore, we conclude our results and complete the proof. ■

Remark 1. Recalling the explicit expression �̃�2 given in (83), we find the sign of �̃�2 is the same
as that of ∫ 𝑅

0
𝑢3
1
(𝑟)𝑟𝑛−1d𝑟. If 𝑛 = 3, �̃�2 > 0 will follow automatically. To see this, we first notice

that 𝑢1(𝑟) = 𝑟
−

1

2 𝐽 1

2

(
𝑞1

𝑅
𝑟) =

√
2𝑅

𝜋𝑞1

sin
𝑞1
𝑅

𝑟

𝑟
for 𝑛 = 3, by the fact that 𝐽 1

2

(𝑥) =
√

2

𝜋𝑥
sin 𝑥, where 𝑞1 ∈

[𝜋,
3

2
𝜋] is the first positive root of the equation tan 𝑥 = 𝑥. By direct calculations, we have

∫
𝑅

0

𝑢3
1
(𝑟)𝑟𝑛−1d𝑟 =

(
2𝑅

𝜋𝑞1

) 3

2

∫
𝑅

0

(sin
𝑞1

𝑅
𝑟)3

𝑟
d𝑟 =

(
2𝑅

𝜋𝑞1

) 3

2

∫
𝑞1

0

(sin 𝑟)3

𝑟
d𝑟, (97)

where ∫ 𝑞1

0

(sin 𝑟)3

𝑟
d𝑟 > ∫

3

2
𝜋

0

(sin 𝑟)3

𝑟
d𝑟 > 0, because sin 𝑟 < 0 for 𝑟 ∈ (𝜋,

3

2
𝜋), and

∫
3

2
𝜋

0

(sin 𝑟)3

𝑟
d𝑟 = ∫

1

2
𝜋

0

(sin 𝑟)3

𝑟
d𝑟 + ∫

𝜋

1

2
𝜋

(sin 𝑟)3

𝑟
d𝑟 + ∫

3

2
𝜋

𝜋

(sin 𝑟)3

𝑟
d𝑟 (98)

= ∫
1

2
𝜋

0

(sin 𝑟)3

𝑟
d𝑟 + ∫

𝜋

1

2
𝜋

(sin 𝑟)3

𝑟
d𝑟 − ∫

𝜋

1

2
𝜋

(sin 𝑟)3

2𝜋 − 𝑟
d𝑟 (99)

= ∫
1

2
𝜋

0

(sin 𝑟)3

𝑟
d𝑟 + ∫

𝜋

1

2
𝜋

[
(sin 𝑟)3

𝑟
−

(sin 𝑟)3

2𝜋 − 𝑟

]
d𝑟 (100)

> 0, (101)

by the fact that (sin 𝑟)3

𝑟
> 0 on [0,

1

2
] and (sin 𝑟)3

𝑟
−

(sin 𝑟)3

2𝜋−𝑟
> 0 on [

1

2
𝜋, 𝜋).

When 𝑛 = 2, using Mathematica, we can find ∫ 𝑅

0
𝐽3
0
(
𝑞1

𝑅
𝑟)𝑟d𝑟 =

𝑅2

𝑞2
1

∫ 𝑞1

0
𝐽3
0
(𝑟)d𝑟 > 0. Because 𝐽0

is a sign-changing functionwithout explicit representation, we are unable to verify this rigorously.
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