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Abstract

Based on the method of matched asymptotic expansions and Banach fixed point theorem, we rigorously 
construct infinitely many self-similar blow-up profiles for the parabolic-elliptic Keller-Segel system

⎧⎨⎩
∂tu = Δu − ∇ · (u∇Φu) ,

0 = ΔΦu + u,

u(·,0) = u0 ≥ 0
in Rd ,

where d ∈ {3, · · · ,9}. Our findings demonstrate that the infinitely many backward self-similar profiles ap
proximate the rescaling radial steady-state near the origin (i.e. 0 < |x| ≪ 1) and 2(d−2)

|x|2 at spatial infinity 
(i.e. |x| ≫ 1). We also establish the convergence of the self-similar blow-up solutions as time tends to the 
blow-up time T > 0. Our results can give a refined description of backward self-similar profiles for all 
|x| ≥ 0 rather than for 0 < |x| ≪ 1 or |x| ≫ 1, indicating that the blow-up point is the origin and

u(x, t) ∼ 1 
|x|2 , x ≠ 0, as t → T .
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1. Introduction

This paper is concerned with the parabolic-elliptic Keller-Segel system{︃
∂tu = Δu − ∇ · (u∇Φu) ,

0 = ΔΦu + u,
in Rd, (1.1)

equipped with an initial data u(·,0) = u0, where d ∈ {3, · · · ,9}. The system (1.1) is the so-called 
minimal chemotaxis used to describe the chemotactic motion of mono-cellular organisms, where 
u(x, t) represents the cell density and Φu stands for the concentration of the chemoattractant 
[36]. System (1.1) also models the self-gravitating matter in stellar dynamics in astrophysical 
fields [54]. This system has been extensively studied due to its rich biological and physical back
grounds and lot of interesting results have been obtained, e.g., see [6,15,19,22,33--35,39,52,55] 
and references therein.

For any radial initial data u0 ∈ L∞(Rd), there exists a maximal time of existence T > 0 such 
that (1.1) admits a unique smooth solution on (0, T ) × Rd , see [27]. One may refer to [2,3] for 
other local well-posedness spaces. Due to the quadratic nature of the convective term in (1.1), 
the solutions may blow up in finite time T < +∞ in the sense that

lim sup
t→T 

||u(t)||L∞(Rd ) = +∞.

If blow-up occurs, then it holds that

||u(t)||L∞(Rd ) ≥ (T − t)−1, 0 < t < T,

by a comparison principle. We say that the blow-up is of type I if

lim sup
t→T 

(T − t)||u(t)||L∞(Rd ) < ∞,

otherwise, the blow-up is of type II. The blow-up set B(u0) is defined by

B(u0) := {x0 ∈ Rd : |u(xj , tj )| → ∞ for some sequence (xj , tj ) → (x0, T )},
and we call x0 the blow-up point. Thanks to the divergence structure of (1.1), the total mass of 
the solution is conserved in the following sense:

M(u0) :=
∫︂
Rd

u0(x)dx =
∫︂
Rd

u(x, t)dx, 0 ≤ t < T .
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Problem (1.1) admits the following scaling invariance: for all a ∈ Rd and λ > 0, the function

uλ,a(x, t) = 1 
λ2 u

(︃
x − a

λ 
,

t

λ2

)︃
(1.2)

also solves (1.1). This scaling invariance gives rise to the notion of the mass-criticality in the 
sense that

∥uλ,a∥L1(Rd ) = λd−2∥u∥L1(Rd ),

by which d = 2 is referred to as the mass critical case, while d = 1 and d ≥ 3 the mass sub-critical 
and the mass super-critical cases, respectively.

The solution of (1.1) exists globally for d = 1 as proved in [13,44]. The critical mass threshold 
8π acts as a sharp criterion separating the global existence from finite-time blow-up in the case 
of d = 2, see [5,7,13,14,23]. The 8π mass threshold implies that supposing

u0 ≥ 0, (1 + x2 + | lnu0|)u0 ∈ L1(R2),

the positive solution of (1.1) blows up in finite time for M > 8π [37,49] and exists globally in 
time for M < 8π [5,24]. If M = 8π , radial solutions exist globally in time [4] but infinite-time 
blow-up solutions with 8π mass may exist as constructed in [6,22,26]. For M > 8π , a refined 
finite time blow-up profile was obtained with the form

u(x, t) ∼ 1 
λ2(t)

U

(︃
x

λ(t)

)︃
, λ(t) ∼ √

T − te
−
√︂

| log(T −t)|
2 , (1.3)

where U(x) = 8 
(1+|x|2)2 is a steady-state solution of (1.1), see [11,15,31,49,53]. The form (1.3) is 

the unique finite time blow-up behavior for radial non-negative solutions of (1.1) [42]. An inter
esting phenomenon that two steady-state solutions are simultaneously collapsing and colliding is 
recently constructed in [16]. It is remarkable that any blow-up solutions are of type II for d = 2, 
see [45,51].

For d ≥ 3, we note that the system (1.1) is referred to as the L1-supercritical and Ld/2
critical since the scaling transformation (1.2) preserves the Ld/2−norm, i.e., ||uλ,a||

L
d
2 (Rd )

=
||u||

L
d
2 (Rd )

. Initial data with small Ld/2−norm lead to solutions that exist globally in time [20]. 

Subsequently, this result was improved in [12] by showing that if the Ld/2−norm of initial data 
is less than a sharp constant derived from the Gagliardo-Nirenberg inequality, then the solution 
exists globally. Large initial data give rise to finite-time blow-up [12,20,44]. In contrast to di
mension d = 2, the solutions of (1.1) with d ≥ 3 may blow up in finite time for an arbitrary mass 
since M(uλ,a) = λd−2M(u).

Singularity formation of blow-up solutions to system (1.1) for d ≥ 3 exhibits rich dynamical 
behavior. When the initial data are nonnegative and radially non-increasing, it was shown in [43] 
that all blow-up solutions of (1.1) are of type I for d ∈ [3,9]. A family of type I self-similar 
blow-up solutions was obtained by the shooting method in [8,30,46]. Remarkably, it was shown 
in [27] that all radial and non-negative type I blow-up solutions are asymptotically backward 
self-similar near the origin as t → T , which signifies the significance of backward self-similar 
profiles for understanding the structure of singularities. A new type I-log blow-up solution of 
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(1.1) in dimensions 3 and 4 was constructed in [47]. There are also type II blow-up solutions 
for d ≥ 3 [10,17,29,41]. The authors of [17] showed the existence and radial stability of type II 
blow-up solutions, characterized by mass concentrating near a sphere that shrinks to a point. This 
pattern, known as collapsing-ring blow-up, also emerges in the nonlinear Schrödinger equation 
[25,40]. For d ≥ 11, type II solutions concentrating at a steady-state solution are constructed in 
[41]. This paper is concerned with type I blow-up solutions.

Backward self-similar solutions of (1.1) are of the form

u(x, t) = 1 
T − t

U (y) , y = x√
T − t

, (1.4)

where U(y) is the backward self-similar profile satisfying

ΔU − y · ∇U

2 
− U − ∇ · (U∇ΦU) = 0, ΔΦU + U = 0. (1.5)

We denote r = |y|. In the radial case, for d ≥ 1, there holds

∂rΦU(r) = − 1 
rd−1

r∫︂
0 

U(s)sd−1ds.

Then the equation (1.5) can be written in the radial form

∂rrU + d − 1

r
∂rU − 1

2
r∂rU − U + U2 +

⎛⎝ 1 
rd−1

r∫︂
0 

U(s)sd−1ds

⎞⎠ ∂rU = 0. (1.6)

There are four known classes of solutions of (1.6):

• For d ≥ 1, the constant solutions

Ū0 = 0, Ū1 = 1. (1.7)

• For d ≥ 3, the solution singular at the origin

Ū2 = 2(d − 2)

r2 . (1.8)

• For d ≥ 3, the explicit smooth positive solution [8]

Ū3 = 4(d − 2)(2d + r2)

(2(d − 2) + r2)2 . (1.9)

• For d ∈ [3,9], there exists a countable family of positive smooth radially symmetric solutions 
{Ūn}n≥4 [8,30,46], where

Ūn ∼ 1 
r2 , as r → +∞. (1.10)
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With the shooting method, a family of radially symmetric solutions {Ūn}n≥4 has been con
structed in [30] for d = 3 and in [8,46] for 3 ≤ d ≤ 9. For d = 3, it was shown in [28] that Ū3 is a 
stable self-similar profile based on the semigroup approach. Very recently, the non-radial stabil
ity of Ū3 was proved in [38]. For d ≥ 3, it was proved in [19] that all the fundamental self-similar 
profiles {Ūn}n≥3 are conditionally stable (of finite co-dimension).

Backward self-similar profiles of (1.1) (i.e. the solutions of (1.5)) are still not completely 
classified, even in the radial setting. Accurately describing the self-similar profiles is a crucial 
step in classifying all possible blow-up profiles for (1.1) (at least in the radial case).

This paper aims to construct more precise backward self-similar profiles by using different 
approaches. We recall some results below in connection with our work. For d = 3, the authors of 
[30] showed that there exists a sequence of self-similar profiles (i.e. solutions of (1.6)), denoted 
by {Gn(r)}n≥1, which satisfy

Gn(r) ∼ Kn as r → 0, lim 
r→∞Gn(r) = An

r2 ,

where Kn > 0, An are constants, and lim 
n→+∞Kn = ∞. Subsequently, for 3 ≤ d ≤ 9, it was shown 

in [8] that there exists a countable number of self-similar profiles {Ḡn}n≥1 satisfying

Ḡn(r) ≲ 1 as r → 0, lim 
r→∞ Ḡn(r) = cn

r2 , for some constant cn ∈ (0,2].

The works [8,30] discovered two essential common properties for the family of self-similar pro
files for fixed n, that is they are bounded as 0 < r ≪ 1 and behave like 1 

r2 as r ≫ 1. In another 
work [46], for 3 ≤ d ≤ 9, the authors proved that there exist a countable number of self-similar 
profiles {G̃n(r)}n≥1 which are bounded near the origin for every n ≥ 1 and

lim 
n→∞ G̃n(0) = +∞, lim 

n→∞ G̃n(r) = 2(d − 2)

r2 for r > 0. (1.11)

The work [46] gave an asymptotic description of self-similar profiles as n → ∞. For fixed n ≥ 1, 
the self-similar profiles were precisely described only for r ≫ 1 in [8,30], while the precise 
descriptions of self-similar profiles for r > 0 not large are unavailable. Recently, for d ≥ 3, 
self-similar profiles of blow-up solutions to (1.1) were shown to behave like 1 

r2 for 0 < r ≪ 1
for a certain class of radially non-increasing initial data in [1] by the zero number argument, 
answering an open question in [50]. In this paper, by using a different approach, namely the 
method of matched asymptotic expansions and the Banach fixed point theorem, we obtain a 
precise description of self-similar profiles Un(r) for all r ∈ [0,∞), as described in (1.16) below.

To state our result, we first present the asymptotic behavior of steady-state solution of (1.1). 
Let Q(r) be the unique solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂rrQ + d − 1

r
∂rQ + Q2 + ∂rQ

1 
rd−1

r∫︂
0 

Q(s)sd−1ds = 0,

Q(0) = 1, Q′(0) = 0.

(1.12)

It is clear that Q(r) is a radial steady-state solution of (1.1) with r = |x|. It will be shown in 
Section 2 that the asymptotic behavior of Q is
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Q(r) = 2(d − 2)

r2 + O(r− 5
2 ), as r → +∞,

where Q = 2dQ̄ + 2r∂rQ̄ and the asymptotic profile of Q̄ as r → ∞ is given in (2.46). Our 
main results are stated as follows.

Theorem 1.1. For 3 ≤ d ≤ 9, there exist infinitely many smooth radially symmetric solutions 
Un(y) (n ∈ N) to the self-similar equation (1.5). Moreover, there exists a sufficiently small con
stant r0 > 0 independent of n such that the following results hold.

1. (Profiles near the origin.) There exists a sequence μn > 0 with lim 
n→+∞μn = 0 such that

lim 
n→+∞ sup 

r≤r0

⃓⃓⃓⃓
Un(r) − 1 

μ2
n

Q

(︃
r

μn

)︃⃓⃓⃓⃓
= 0. (1.13)

2. (Profiles away from the origin.) As r ≥ r0, Un(r) satisfies

lim 
n→+∞ sup 

r≥r0

(1 + r2)

⃓⃓⃓⃓
Un(r) − 2(d − 2)

r2

⃓⃓⃓⃓
= 0. (1.14)

For any 0 < T < +∞, the solution of (1.1) with initial data u0 = 1 
T

Un(
x√
T

) blows up at time T
with

u(x, t) = 1 
T − t

Un

(︃
x√

T − t

)︃
,

where the blow-up is of type I and B(u0) = 0. Moreover, there exists a function u∗(x) ∼ 1 
|x|2 such 

that lim 
t→T

u(x, t) = u∗(x) for all |x| > 0 and

lim 
t→T

||u(·, t) − u∗(·)||Lp(Rd ) = 0, ∀ p ∈ [1,
d

2 
). (1.15)

Remark 1.2. Based on the proof of Theorem 1.1, the profile of the solutions Un of (1.5), as 
constructed in Theorem 1.1, can be more precisely described as follows. First, we define

𝒰 = 2dũ1 + 2r∂r ũ1

where ũ1 := u1 is a known function for d = 3 (see Lemma 2.21). Then there exist

0 < r0 ≪ 1, 0 < μn < r0, 0 < ε(μn) ≪ r
1
2

0

with lim 
n→+∞μn = 0, lim 

n→+∞ ε(μn) = 0, and

1 The definitions of ũ1 for d ∈ [4,9] are obtained by the same process as in Lemma 2.2.
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𝒰̃ ∈ X̃r0, Q̃ ∈ Ỹ r0
μn

where the definitions of the spaces X̃r0 , Ỹr are given in (2.9) and (2.51) for d = 3, respectively,2

such that

Un(r) :=

⎧⎪⎨⎪⎩
(︁

Q 
μ2

n
+ μ2

nQ̃)
(︁

r
μn

)︁
for 0 ≤ r ≤ r0,

2(d−2)

r2 + ε(μn)(𝒰 + 𝒰̃)(r) for r > r0,

(1.16)

solves (1.6).

By (1.16) we obtain a precise description of self-similar profiles Un(r) for all r ∈ [0,∞). 
In particular, we show that Un(r) behaves like the rescaled steady-state solutions 1 

μ2
n
Q( r

μn
) for 

0 ≤ r ≪ 1 and Un(r) ∼ 2(d−2)

r2 for r ≫ 1. For 3 < d ≤ 9, we know from (1.16) that the profiles 
obtained in this paper are different from those in [8] since 2(d − 2) > 2, but have the same 
asymptotic properties as in (1.11) as n → ∞. Whether the self-similar profiles constructed in 
[30,46] and in Theorem 1.1 are equivalent is an interesting open question.

For d = 2, the limiting spatial profile of radial blow-up solutions to (1.1) resembles a Dirac 
mass perturbed by a L1 function, i.e.,

u(·, t) ⇀ 8πδ0 + f in C0(R
2)∗ as t → T , (1.17)

where 0 ≤ f ∈ L1(R2), see [31,32]. In contrast, for d ∈ [3,9], as seen from (1.16), our result 
shows that there exist radial solutions of (1.1) that satisfy

u(x, t) ∼ 1/|x|2, x ≠ 0, as t → T ,

which is quite different from the case d = 2 in (1.17).

Remark 1.3 (Finite codimensional radial stability). The stability of self-similar blow-up profiles 
constructed in [8,30] was established in [19,28]. Using the same ideas of [19], one can also show 
that the profiles constructed in Theorem 1.1 are stable along a set of radial initial data with finite 
Lipschitz codimension equal to the number of unstable eigenmodes. The non-radial stability of 
self-similar profiles is still an open problem as far as we know.

Organization of the paper. In Section 2, we first introduce a key transformation which con
verts (1.5) into a local elliptic equation in Rd+2. Then using the method of matched asymptotic 
expansions, we rigorously derive a sequence of smooth self-similar profiles. In Section 3, we 
give a complete proof for Theorem 1.1.

2 The definitions of the spaces X̃r0 , Ỹr for d ∈ [4,9] are similar by the same process of the proof for d = 3.
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2. Construction of self-similar profiles

We start by introducing some notations.

Notation. We write a ≲ b, if there exists c > 0 such that a ≤ cb, and a ∼ b if simultaneously 
a ≲ b and b ≲ a. If the inequality |f | ≤ C|g| holds for some constant C > 0, then we write 
f = O(g).

2.1. Key results

Our main goal is to derive the radial self-similar profile U(r) := U(|y|) which satisfies (1.6). 
To study the nonlocal equation (1.6), we introduce the following so-called reduced mass (cf. [8]),

Φ(r) = 1 
2rd

r∫︂
0 

U(s)sd−1ds, (2.1)

and transform (1.6) into a local equation for Φ(r) satisfying

∂rrΦ + d + 1

r
∂rΦ − Φ − r∂rΦ

2 
+ 2dΦ2 + 2rΦΦr = 0.

Clearly, Φ(r) is the radially symmetric solution of

ΔΦ − 1

2
ΛΦ + 2dΦ2 + y · ∇(Φ2) = 0, y ∈ Rd+2, (2.2)

with Λ being a differential operator defined by

Λu := 2u + y · ∇u.

By (1.7), for d ≥ 1, (2.2) admits constant solutions Φ̄0 = 0, Φ̄1 = 1 
2d

. By (1.8) and (1.9), for 
d ≥ 3, (2.2) admits explicit radial solutions

Φ̄2 = 1 
|y|2 , Φ̄3 = 2 

2(d − 2) + |y|2 . (2.3)

From (1.10), for d ∈ [3,9], there exists a countable family of positive smooth radially symmetric 
solutions {Φ̄n}n≥4 of (2.2) such that

Φ̄n ∼ 1 
|y|2 as |y| → +∞. (2.4)

The main result of this paper, as stated in Theorem 1.1 along with Remark 1.2, consists of the 
construction of a class of more general solutions than those given in (2.3) and (2.4), which share 
some similar properties when 0 < |y| ≪ 1 or |y| ≫ 1.

8 
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The rest of this paper is focused on the case d = 3 for the simplicity of presentation. The 
extension of the result to d ∈ [4,9]3 is straightforward since the oscillating behavior of the radial 
steady-state profile Q = 2dQ̄ + 2r∂rQ̄ for d = 3 (see (2.46) for the definition of Q̄) also exists 
for d ∈ [4,9]. As in [9,18,21], the matching of exterior solutions with interior solutions can be 
obtained by this oscillating behavior.

When d = 3, equation (2.2) is reduced to

ΔΦ − 1

2
ΛΦ + 6Φ2 + y · ∇(Φ2) = 0, y ∈R5. (2.5)

Applying the transformation (2.1), we then obtain the radially symmetric solution of (1.5) as 
follows

U = 6Φ + 2r∂rΦ.

We define

Φ∗ := Φ̄2 = 1 
r2 , Q̄(r) = 1 

2r3

r∫︂
0 

Q(s)s2ds,

where Q is given by (1.12).
The following is the key proposition of this paper, from which Theorem 1.1 directly follows.

Proposition 2.1. There exist infinitely many smooth radially symmetric solutions Φn (n ∈ N) to 
equation (2.5). Moreover, there exists a sufficiently small constant r0 > 0 which is independent 
of n such that the following results hold. 
1. (Behavior near the origin.) There exists a sequence μn > 0 with lim 

n→+∞μn = 0 such that

lim 
n→+∞ sup 

r≤r0

⃓⃓⃓⃓
Φn − 1 

μ2
n

Q̄

(︃
r

μn

)︃⃓⃓⃓⃓
= 0. (2.6)

2. (Behavior away from the origin.) As r ≥ r0, Φn(r) satisfies

lim 
n→+∞ sup 

r≥r0

(1 + r2)|Φn − Φ∗| = 0. (2.7)

The remainder of this section is devoted to proving the above proposition.

2.2. Exterior profiles

The aim of this subsection is to construct a radial solution to (2.5) on [r0,+∞), where 0 <

r0 < 1. We are initially concerned with the asymptotic behavior of the fundamental solutions 

3 This oscillating behavior exists when the differential equation x2 + (d +2)x +4(d −1) = 0 has complex roots, which 
holds in the case d ∈ [3,9].
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for the equation L(u) = 0 on (0,+∞), where L is the linearized operator of (2.5) around Φ∗, 
defined as

L = −Δ + 1

2
Λ − 2y · ∇(Φ∗·) − 12Φ∗. (2.8)

Given 0 < r0 < 1, we define Xr0 as the space of continuous functions on [r0,+∞) such that the 
following norm is finite

||w||Xr0
= sup 

r0≤r≤1
(r

5
2 |w| + r

7
2 |∂rw|) + sup

r≥1 

(︂
r4|w| + r5|∂rw|

)︂
. (2.9)

Lemma 2.2. Let L be defined in (2.8). Then the following results hold. 
1. The basis of the fundamental solutions: The equation

L(u) = 0 on (0,+∞)

has two fundamental solutions ui (i = 1,2) with the following asymptotic behavior as r → ∞:

u1(r) = r−2(1 + O(r−2)) and u2(r) = r−5e
r2
4 (1 + O(r−2)), (2.10)

and as r → 0:

u1(r) = c1 sin(
√

7
2 log(r) + c3)

r
5
2

+ O(r− 1
2 ) and u2(r) = c2 sin(

√
7

2 log(r) + c4)

r
5
2

+ O(r− 1
2 ),

(2.11)
where c1, c2 ≠ 0, c3, c4 ∈R. 
2. The continuity of the resolvent: The inverse

τ(f ) =
⎛⎝ +∞∫︂

r

f u2s
6e− s2

4 ds

⎞⎠u1 −
⎛⎝ +∞∫︂

r

f u1s
6e− s2

4 ds

⎞⎠u2 (2.12)

satisfies L(τ(f )) = f and

||τ(f )||Xr0
≲

1 ∫︂
r0

|f |s 7
2 ds + sup

r≥1 
r4|f |. (2.13)

Proof. Step 1. Basis of homogeneous solutions. We define the changing of variable

u(r) = 1 

z
γ
2 
ϕ(z), z = r2, (2.14)

where γ satisfies −γ 2 + 5γ − 8 = 0. From

∂r = 2r∂z, ∂rr = 4z∂zz + 2∂z, r∂r = 2z∂z,

10 
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one has

L(u) = (−4z∂zz − 2∂z − 8∂z + z∂z + 1 − 8Φ∗ − 4Φ∗z∂z)

(︃
1 

z
γ
2 
ϕ(z)

)︃
= 1 

z
γ
2 

{︃
− 4zϕ′′(z) + (4γ − 14 + z)ϕ′(z) +

[︃
1 − γ

2 
+ 1

z
(−γ 2 + 5γ − 8)

]︃
ϕ

}︃
= 1 

z
γ
2 

{︃
− 4zϕ′′(z) + (4γ − 14 + z)ϕ′(z) + (1 − γ

2 
)ϕ

}︃
.

Let ϕ(z) = ν(ξ) and ξ = z
4 . Then,

L(u) = − 1 

z
γ
2 

{︃
ξν′′(ξ) +

(︃
−γ + 7

2
− ξ

)︃
ν′(ξ) + (

γ

2 
− 1)ν(ξ)

}︃
.

Therefore, L(u) = 0 if and only if

ξ
d2ν 
dξ2 + (b − ξ)

dν 
dξ

− aν = 0, (2.15)

where

b = 7

2
− γ, a = 1 − γ

2 
.

The equation (2.15) is known as the well studied Kummer’s equation (see [48]). If the param
eter a is not a negative integer (which holds in particular for our case), then the fundamental 
solutions to Kummer’s equation consist of the Kummer function M(a,b, ξ) and the Tricomi 
function U(a,b, ξ). Therefore, ν(ξ) is a linear combination of the special functions M(a,b, ξ)

and U(a,b, ξ), whose asymptotic profiles at infinity are given by

M(a,b, ξ) = Γ(b) 
Γ(a)

ξa−beξ (1 +O(ξ−1)), U(a,b, ξ) = ξ−a(1 +O(ξ−1)) as ξ → +∞. (2.16)

Then by (2.14) and (2.16), one obtains (2.10).
For the behavior near the origin, we have

M(a,b, ξ) = 1 + O(ξ) as ξ → 0. (2.17)

It is easy to check that the real part of b satisfies ℛ(b) = 1 (b ≠ 1). Then it follows that

U(a,b, ξ) = Γ(b − 1)

Γ(a) 
ξ1−b + Γ(1 − b) 

Γ(a − b + 1)
+ O(ξ) as ξ → 0. (2.18)

Since the polynomial γ 2 − 5γ + 8 = 0 has complex roots γ = 5
2 ±

√
7i
2 , then combining (2.14), 

(2.17) and (2.18), one obtains (2.11). 
Step 2. Estimate on the resolvent. The Wronskian W := u′

1u2 −u′
2u1 satisfies W ′ =

(︂
r
2 − 6

r

)︂
W , 

11 
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and W = C

r6 e
r2
4 . We may assume C = 1 without loss of generality. Next, we solve L(w) = f . 

By the variation of constants, we obtain

w =
⎛⎝a1 +

+∞∫︂
r

f u2s
6e− s2

4 ds

⎞⎠u1 +
⎛⎝a2 −

+∞∫︂
r

f u1s
6e− s2

4 ds

⎞⎠u2, a1, a2 ∈R.

Then, τ(f ) satisfies L(τ(f )) = f by choosing a1 = a2 = 0 in the above.
Next, we estimate the asymptotic behavior of τ(f ). For r ≥ 1, we have

r4|τ(f )| = r4

⃓⃓⃓⃓
⃓⃓
⎛⎝ +∞∫︂

r

f u2s
6e− s2

4 ds

⎞⎠u1 −
⎛⎝ +∞∫︂

r

f u1s
6e− s2

4 ds

⎞⎠u2

⃓⃓⃓⃓
⃓⃓

≲ r2

⎛⎝ +∞∫︂
r

|f |sds

⎞⎠+ r−1e
r2
4 

⎛⎝ +∞∫︂
r

|f |s4e− s2
4 ds

⎞⎠
≲ sup

r≥1 
r4|f |

⎧⎨⎩
⎛⎝ +∞∫︂

r

ds

s3

⎞⎠ r2 + r−1e
r2
4 

⎛⎝ +∞∫︂
r

e− s2
4 ds

⎞⎠⎫⎬⎭
≲ sup

r≥1 
r4|f |,

(2.19)

and

r5|∂rτ (f )| = r5

⃓⃓⃓⃓
⃓⃓
⎛⎝ +∞∫︂

r

f u2s
6e− s2

4 ds

⎞⎠ ∂ru1 −
⎛⎝ +∞∫︂

r

f u1s
6e− s2

4 ds

⎞⎠ ∂ru2

⃓⃓⃓⃓
⃓⃓

≲ r2

⎛⎝ +∞∫︂
r

|f |sds

⎞⎠+ (r−1 + r)e
r2
4 

⎛⎝ +∞∫︂
r

|f |s4e− s2
4 ds

⎞⎠
≲ sup

r≥1 
r4|f |

⎧⎨⎩
⎛⎝ +∞∫︂

r

ds

s3

⎞⎠ r2 + (r−1 + r)e
r2
4 

⎛⎝ +∞∫︂
r

e− s2
4 ds

⎞⎠⎫⎬⎭
≲ sup

r≥1 
r4|f |.

(2.20)

For r0 ≤ r ≤ 1, by (2.11) and (2.19), we have

r
5
2 |τ(f )| ≤ r

5
2

⃓⃓⃓⃓
⃓⃓
⎛⎝ 1 ∫︂

r

f u2s
6e− s2

4 ds

⎞⎠u1 −
⎛⎝ 1 ∫︂

r

f u1s
6e− s2

4 ds

⎞⎠u2

⃓⃓⃓⃓
⃓⃓

+ r
5
2

⃓⃓⃓⃓
⃓⃓
⎛⎝ +∞∫︂

1 

f u2s
6e− s2

4 ds

⎞⎠u1 −
⎛⎝ +∞∫︂

1 

f u1s
6e− s2

4 ds

⎞⎠u2

⃓⃓⃓⃓
⃓⃓ (2.21)

12 
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≲
1 ∫︂

r0

|f |s 7
2 ds + sup

r≥1 
r4|f |.

Similarly, for r0 ≤ r ≤ 1, by (2.11), (2.20) and (2.21), we have

r
7
2 |∂rτ (f )| = r

7
2

⃓⃓⃓⃓
⃓⃓
⎛⎝ +∞∫︂

r

f u2s
6e− s2

4 ds

⎞⎠∂ru1 −
⎛⎝ +∞∫︂

r

f u1s
6e− s2

4 ds

⎞⎠ ∂ru2

⃓⃓⃓⃓
⃓⃓

≲ r
7
2

⃓⃓⃓⃓
⃓⃓
⎛⎝ 1 ∫︂

r

f u2s
6e− s2

4 ds

⎞⎠ ∂ru1 −
⎛⎝ 1 ∫︂

r

f u1s
6e− s2

4 ds

⎞⎠ ∂ru2

⃓⃓⃓⃓
⃓⃓

+ r
5
2

⃓⃓⃓⃓
⃓⃓
⎛⎝ +∞∫︂

1 

f u2s
6e− s2

4 ds

⎞⎠ ∂ru1 −
⎛⎝ +∞∫︂

1 

f u1s
6e− s2

4 ds

⎞⎠∂ru2

⃓⃓⃓⃓
⃓⃓

≲
1 ∫︂

r0

|f |s 7
2 ds + sup

r≥1 
r4|f |.

(2.22)

Then (2.13) is obtained by combining (2.19), (2.20), (2.21) and (2.22). □
We construct outer solutions of the self-similar equation in the following.

Proposition 2.3. Let 0 < r0 ≪ 1. For any 0 < ε ≪ r
1
2

0 , there exists a radial solution to

ΔΦ − 1

2
ΛΦ + 6Φ2 + y · ∇(Φ2) = 0, on [r0,+∞) (2.23)

with the form

Φ = Φ∗ + εu1 + εw,

with

||w||Xr0
≲ εr

− 1
2

0 , w|ε=0 = 0, ||∂εw||Xr0
≲ r

− 1
2

0 . (2.24)

Proof. Step 1. Fixed point argument. Let Φ = Φ∗ + εv satisfy (2.23) for r ≥ r0. Then

L(v) = ε(y · ∇(v2) + 6v2).

We set v = u1 + w. Since L(u1) = 0, then w satisfies

L(w) = ε(y · ∇(u1 + w)2 + 6(u1 + w)2), ∀ r ≥ r0.

Next, we find the solution of

13 
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w = ετ(G[u1]w), (2.25)

where τ(f ) is defined in (2.12) and

G[u1]w = r∂r (u1 + w)2 + 6(u1 + w)2.

We claim the following estimates: if ||wi||Xr0
≲ 1, i = 1,2, then

1 ∫︂
r0

|G[u1]wi |s 7
2 ds + sup

r≥1 
r4|G[u1]wi |≲ r

− 1
2

0 , i = 1,2, (2.26)

and

1 ∫︂
r0

|G[u1]w1 − G[u1]w2|s 7
2 ds + sup

r≥1 
r4|G[u1]w1 − G[u1]w2| ≲ r

− 1
2

0 ||w1 − w2||Xr0
. (2.27)

If εr
− 1

2
0 ≪ 1, and (2.26)-(2.27) hold, by the continuity estimate on the resolvent (2.13) and the 

Banach fixed theorem, there exists a unique solution to (2.25) with ||w||Xr0
≲ εr

− 1
2

0 . We know 
from (2.25) that w|ε=0 = 0 and ∂εw = τ(G[u1]w). Then by (2.13) and (2.26), we get

||∂εw|||Xr0
= ||τ(G[u1]w)||Xr0

≲ r
− 1

2
0 .

Step 2. Proof of estimates (2.26) and (2.27). By (2.11) and the definition of Xr0 in (2.9), for 
w ∈ Xr0 and r0 ≤ r ≤ 1, we have

|w(r)| + |u1(r)| + |r∂r (w + u1)| ≲ r− 5
2 , (2.28)

while for r ≥ 1,

|w(r)| + |u1(r)| + |r∂r (w + u1)| ≲ r−2. (2.29)

Next, we prove (2.26). For r0 ≤ r ≤ 1, by (2.28), we have

1 ∫︂
r0

|G[u1]w|s 7
2 ds =

1 ∫︂
r0

(︃
|s∂s(u1 + w)2| + 6(u1 + w)2

)︃
s

7
2 ds ≲

1 ∫︂
r0

s− 3
2 ds ≲ r

− 1
2

0 . (2.30)

For r ≥ 1, by (2.29), we have |G[u1]w| = r∂r (u1 + w)2 + 6(u1 + w)2 ≲ r−4, and hence

sup
r≥1 

r4|G[u1]w|≲ 1. (2.31)

We conclude the proof of (2.26) by (2.30) and (2.31).

14 
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Next, we prove (2.27). For wi ∈ Xr0 (i = 1,2), we have

G[u1]w1 − G[u1]w2 = r∂r [(2u1 + w1 + w2)(w1 − w2)] + 6(2u1 + w1 + w2)(w1 − w2).

For r ≥ 1, by (2.10) and the definition of Xr0 in (2.9), we get

|6(2u1 + w1 + w2)(w1 − w2)| ≲ |w1 − w2|, (2.32)

and

(r∂r + 1)(2u1 + w1 + w2) ≲ 1. (2.33)

By (2.33), we obtain

r∂r [(2u1 + w1 + w2)(w1 − w2)]
= [r∂r (2u1 + w1 + w2)](w1 − w2) + [r∂r (w1 − w2)](2u1 + w1 + w2)

≲ |w1 − w2| + r∂r |w1 − w2|.

Then combining (2.32), we have

|G[u1]w1 − G[u1]w2| ≤ |6(2u1 + w1 + w2)(w1 − w2)| + |r∂r [(2u1 + w1 + w2)(w1 − w2)]|
≲ r∂r |w1 − w2| + |w1 − w2|,

and hence

sup
r≥1 

r4|G[u1]w1 − G[u1]w2|≲ ||w1 − w2||Xr0
. (2.34)

For r0 ≤ r ≤ 1, we have

(r∂r + 1)|2u1 + w1 + w2|≲ r− 5
2 ,

and hence

r∂r [(2u1 + w1 + w2)(w1 − w2)]
= [r∂r (2u1 + w1 + w2)](w1 − w2) + [r∂r (w1 − w2)](2u1 + w1 + w2)

≲ r− 5
2 (|w1 − w2| + r|∂r (w1 − w2)|).

Then it follows that

15 
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1 ∫︂
r0

|G[u1]w1 − G[u1]w2|s 7
2 ds

≲
1 ∫︂

r0

{|s∂s[(2u1 + w1 + w2)(w1 − w2)]| + 6|(2u1 + w1 + w2)(w1 − w2)|} s
7
2 ds

≲
1 ∫︂

r0

{︂
s− 5

2 (s|∂s(w1 − w2)| + |w1 − w2|)
}︂

s
7
2 ds

≲ sup 
r0≤r≤1

(r
5
2 |w1 − w2| + r

7
2 |∂r (w1 − w2)|)

1 ∫︂
r0

s− 3
2 ds ≲ r

− 1
2

0 ||w1 − w2||Xr0
.

(2.35)

Combining (2.34) and (2.35), this concludes the proof of (2.27). □
2.3. Interior profiles

The purpose of this subsection is to construct a radial solution of (2.5) on [0, r0], where 
0 < r0 ≪ 1 is given in Proposition 2.3. We define

Q̄(r) = 1 
2r3

r∫︂
0 

Q(s)s2ds. (2.36)

By (1.12), Q̄ satisfies ⎧⎪⎪⎨⎪⎪⎩
∂rrQ̄ + 4

r
∂rQ̄ + 6Q̄2 + r∂r (Q̄

2) = 0,

Q̄(0) = 1

6
, Q̄′(0) = 0.

(2.37)

We define the linearized operators of (2.37) at Φ∗ and Q̄, respectively, by the following expres
sions:

H∞ := −∂rr − 4

r
∂r − 12Φ∗ − 2r∂r (Φ∗·), H := −∂rr − 4

r
∂r − 12Q̄ − 2r∂r (Q̄·). (2.38)

We define Y as the space of continuous functions on [1,+∞) such that the following norm is 
finite

||w||Y = sup
r≥1 

(r3|w| + r4|∂rw|).

Lemma 2.4. The equation

H∞(ϕ) = 0, on (0,+∞),

16 
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has two fundamental solutions

ϕ1 = sin(
√

7
2 log(r))

r
5
2

, ϕ2 = cos(
√

7
2 log(r))

r
5
2

. (2.39)

In addition, the inverse

ψ(f ) = ϕ1

+∞∫︂
r

f ϕ2
2s6

√
7
ds − ϕ2

+∞∫︂
r

f ϕ1
2s6

√
7
ds (2.40)

satisfies H∞(ψ(f )) = f and

||ψ(f )||Y ≲ sup
r≥1 

r5|f |. (2.41)

Proof. Let ϕ = rk . Then by Φ∗ = 1 
r2 , we have

H∞(ϕ) = −rk−2(k2 + 5k + 8).

Since the polynomial k2 +5k+8 = 0 has two complex roots k = −5±√
7i

2 , the equation H∞(ϕ) =
0 admits two explicit fundamental solutions

ϕ1 = sin(
√

7
2 log(r))

r
5
2

, ϕ2 = cos(
√

7
2 log(r))

r
5
2

, (2.42)

and the corresponding Wronskian is given by W(r) = ϕ′
1ϕ2 − ϕ′

2ϕ1 =
√

7
2r6 . By the variation of 

constants, the solutions of equation H∞(u) = f are given by

u =
⎛⎝a1,0 +

+∞∫︂
r

f ϕ2
2s6

√
7
ds

⎞⎠ϕ1 +
⎛⎝a2,0 −

+∞∫︂
r

f ϕ1
2s6

√
7
ds

⎞⎠ϕ2, a1,0, a2,0 ∈ R. (2.43)

Hence

ψ(f ) = ϕ1

+∞∫︂
r

f ϕ2
2s6

√
7
ds − ϕ2

+∞∫︂
r

f ϕ1
2s6

√
7
ds

satisfies H∞(ψ(f )) = f by choosing a1,0 = a2,0 = 0 in (2.43). For r ≥ 1, from (2.42), we have

r3|ψ(f )| = r3

⃓⃓⃓⃓
⃓⃓
⎛⎝ +∞∫︂

r

f ϕ2
2s6

√
7
ds

⎞⎠ϕ1 −
⎛⎝ +∞∫︂

r

f ϕ1
2s6

√
7
ds

⎞⎠ϕ2

⃓⃓⃓⃓
⃓⃓

≲ r
1
2

⎛⎝ +∞∫︂
r

|f |s 7
2 ds

⎞⎠≲

⎛⎝r
1
2

+∞∫︂
r

s− 3
2 ds

⎞⎠ sup
r≥1 

r5|f | ≲ sup
r≥1 

r5|f |,
(2.44)

17 



V.T. Nguyen, Z.-A. Wang and K. Zhang Journal of Differential Equations 458 (2026) 114033 

and

r4|∂rψ(f )| = r4

⃓⃓⃓⃓
⃓⃓
⎛⎝ +∞∫︂

r

f ϕ2
2s6

√
7
ds

⎞⎠ ∂rϕ1 −
⎛⎝ +∞∫︂

r

f ϕ1
2s6

√
7
ds

⎞⎠∂rϕ2

⃓⃓⃓⃓
⃓⃓

≲ r
1
2

⎛⎝ +∞∫︂
r

|f |s 7
2 ds

⎞⎠≲

⎛⎝r
1
2

+∞∫︂
r

s− 3
2 ds

⎞⎠ sup
r≥1 

r5|f |≲ sup
r≥1 

r5|f |.
(2.45)

We conclude the proof of (2.41) by (2.44) and (2.45). □
Lemma 2.5. The asymptotic profile of Q̄ as r → +∞ is

Q̄(r) = Φ∗ + c5 sin(
√

7
2 log(r))

r
5
2

+ O
(︂
r−3

)︂
, (2.46)

where 0 < c5 ≪ 1 is a constant.

Proof. Assume that

Q̄ = Φ∗ + εv (2.47)

solves (2.37) on [1,∞). Then v satisfies H∞(v) = ε(6v2 +r∂rv
2). Let v = ϕ1 +w, by H∞(ϕ1) =

0, we have H∞(w) = ε(6(ϕ1 + w)2 + r∂r (ϕ1 + w)2). We define

G[ϕ1](w) = 6(ϕ1 + w)2 + r∂r (ϕ1 + w)2.

Next, we look for the solution of

w = εψ(G[ϕ1](w)), (2.48)

where ψ(f ) is defined in (2.40). We claim that, if w ∈ Y , then

sup
r≥1 

r5|G[ϕ1](w)| ≲ 1, (2.49)

and for w1, w2 ∈ Y , it holds that

sup
r≥1 

r5|G[ϕ1](w1) − G[ϕ1](w2)| ≲ ||w1 − w2||Y . (2.50)

If the above claim holds, for ε > 0 small enough, by the resolvent estimate (2.41) and the Banach 
fixed point theorem, there exists a unique solution w ∈ Y to (2.48) and hence we find a v for 
(2.47). Finally we get (2.46) by (2.47).

It remains to show estimates (2.49) and (2.50). By (2.39) and the definition of the space Y , for 
r ≥ 1 and w ∈ Y , we have

18 
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r5|G[ϕ1](w)| = r5{6(ϕ1 + w)2 + r∂r (ϕ1 + w)2}
≲ r5[(ϕ1 + w + 2r∂r (ϕ1 + w))(ϕ1 + w)]
≲ r5(r−5 + r−6 + r− 11

2 ) ≲ 1.

For r ≥ 1 and wi ∈ Y (i = 1,2), by (2.39) and the definition of the space Y , we get

|w1 + w2 + 2ϕ1| ≲ r− 5
2 , |r∂r (w1 + w2 + 2ϕ1)| ≲ r− 5

2 .

Hence we have

|G[ϕ1](w1) − G[ϕ1](w2)|
= |6(w1 + w2 + 2ϕ1)(w1 − w2) + r∂r [(w1 + w2 + 2ϕ1)(w1 − w2)]|
≲ r− 5

2 |w1 − w2| + |r∂r (w1 + w2 + 2ϕ1)||w1 − w2| + |r∂r (w1 − w2)||w1 + w2 + 2ϕ1|
≲ r− 5

2 (|w1 − w2| + |r∂r (w1 − w2)|),

and

r5|G[ϕ1](w1) − G[ϕ1](w2)| ≲ r5(r− 5
2 |w1 − w2| + r− 5

2 |r∂r (w1 − w2)|)
= r− 1

2 (r3|w1 − w2| + r4|∂r (w1 − w2)|)
≤ ||w1 − w2||Y .

This completes the proof of (2.49) and (2.50). □
Let r1 ≫ 1. We define Yr1 as the space of continuous functions on [0, r1] in which the follow

ing norm is finite:

||w||Yr1
= sup 

0≤r≤r1

(1 + r)−
1
2 (|w| + |r∂rw|). (2.51)

Lemma 2.6. Let H be defined in (2.38). Then the following results hold. 
1. The basis of the fundamental solutions: There holds

H(ΛQ̄) = 0, H(ρ) = 0

with the following asymptotic behavior as r → +∞,

ΛQ̄ = c6 sin(
√

7
2 log(r))

r
5
2

+ O(r−3), ρ = c7 cos(
√

7
2 log(r))

r
5
2

+ O(r−3),

where c6 and c7 are nonzero constants. 
2. The continuity of the resolvent: The inverse
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S(f ) =
⎛⎝ r∫︂

0 

f ΛQ̄ exp

(︃∫︂
2sQ̄(s)ds

)︃
s4ds

⎞⎠ρ −
⎛⎝ r∫︂

0 

fρ exp

(︃∫︂
2sQ̄(s)ds

)︃
s4ds

⎞⎠ΛQ̄,

satisfies H(S(f )) = f and

||S(f )||Yr1
≲ sup 

0≤r≤r1

(1 + r)2|f |. (2.52)

Proof. Step 1. Fundamental solutions. Let

Q̄λ(r) = λ2Q̄(λr), λ > 0.

Then

∂rrQ̄λ + 4

r
∂rQ̄λ + 6Q̄2

λ + r∂r (Q̄
2
λ) = 0, λ > 0.

Differentiating the above equation with λ and evaluating at λ = 1 yields H(ΛQ̄) = 0. Let ρ be 
another solution to H(ρ) = 0 which is linearly independent of ΛQ̄. We claim that, all solutions 
of H(ϕ) = 0 admit an expansion

ϕ = a1,0ϕ1 + a2,0ϕ2 + O(r−3), as r → +∞, (2.53)

where a1,0, a2,0 ∈R and ϕ1, ϕ2 are defined in (2.39).
We rewrite H(ϕ) = 0 in the following form

H∞(ϕ) = −∂rrϕ − 4

r
∂rϕ − 12Φ∗ϕ − 2r∂r (Φ∗ϕ) = f, (2.54)

where

f = f (ϕ) = 12(Q̄ − Φ∗)ϕ + 2r∂r ((Q̄ − Φ∗)ϕ).

Next, we look for the solution of equation (2.54). By (2.43), we shall find a solution in a form

ϕ = a1,0ϕ1 + a2,0ϕ2 +˜︁ϕ, (2.55)

where

˜︁ϕ = F(˜︁ϕ) =
⎛⎝ +∞∫︂

r

f (ϕ)ϕ2
2s6

√
7
ds

⎞⎠ϕ1 −
⎛⎝ +∞∫︂

r

f (ϕ)ϕ1
2s6

√
7
ds

⎞⎠ϕ2 := F1(˜︁ϕ) − F2(˜︁ϕ).

It follows from (2.39) that

|r∂r (ϕ1 + ϕ2)| ≲ r− 5
2 . (2.56)

Recall from (2.46) that
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|Q̄ − Φ∗|≲ r− 5
2 , |r∂r (Q̄ − Φ∗)| ≲ r− 5

2 , for r ≥ 1. (2.57)

For r ≥ 1, by (2.56) and (2.57), we have

F1(˜︁ϕ) ≲

⎛⎝ +∞∫︂
r

12|Q̄ − Φ∗||a1,0ϕ1 + a2,0ϕ2 +˜︁ϕ|2s6|ϕ2|√
7

ds

⎞⎠ |ϕ1|

+
⎛⎝ +∞∫︂

r

2|r∂r (Q̄ − Φ∗)||a1,0ϕ1 + a2,0ϕ2 +˜︁ϕ|2s6|ϕ2|√
7

ds

⎞⎠ |ϕ1|

+
⎛⎝ +∞∫︂

r

2|Q̄ − Φ∗||r∂r (a1,0ϕ1 + a2,0ϕ2 +˜︁ϕ)|2s6|ϕ2|√
7

ds

⎞⎠ |ϕ1|

≲ r− 5
2

⎛⎝ +∞∫︂
r

s− 3
2 + s|˜︁ϕ|ds

⎞⎠+ r− 5
2

⎛⎝ +∞∫︂
r

s|r∂r
˜︁ϕ|ds

⎞⎠
≤ r−3 + r− 5

2

⎛⎝ +∞∫︂
r

s(|˜︁ϕ| + |r∂r
˜︁ϕ|)ds

⎞⎠ .

Similarly,

F2(˜︁ϕ) ≲ r−3 + r− 5
2

⎛⎝ +∞∫︂
r

s(|˜︁ϕ| + |r∂r
˜︁ϕ|)ds

⎞⎠ .

Hence

F(˜︁ϕ)≲ r−3 + r− 5
2

⎛⎝ +∞∫︂
r

s(|˜︁ϕ| + |r∂r
˜︁ϕ|)ds

⎞⎠ (2.58)

and

F(˜︁ϕ1) − F(˜︁ϕ2) ≲ r− 5
2

⎛⎝ +∞∫︂
r

s(|˜︁ϕ1 −˜︁ϕ2| + |r∂r (˜︁ϕ1 −˜︁ϕ2)|)ds

⎞⎠ . (2.59)

In the same manner, we have

r∂rF (˜︁ϕ) ≲ r−3 + r− 5
2

⎛⎝ +∞∫︂
r

s(|˜︁ϕ| + |r∂r
˜︁ϕ|)ds

⎞⎠ , (2.60)

and
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r∂r (F (˜︁ϕ1) − F(˜︁ϕ2)) ≤ r− 5
2

⎛⎝ +∞∫︂
r

s(|˜︁ϕ1 −˜︁ϕ2| + |r∂r (˜︁ϕ1 −˜︁ϕ2)|)ds

⎞⎠ . (2.61)

For R ≫ 1, we define Z as the space of continuous functions on [R,+∞) such that the 
following norm is finite

||ϕ||Z = sup 
r≥R

r3(|ϕ| + |r∂rϕ|).

By (2.58)-(2.61) and the Banach fixed point theorem, there exists a unique solution ˜︁ϕ that 
satisfies F(˜︁ϕ) =˜︁ϕ with the bound ||˜︁ϕ||Z ≲ 1, and hence we find a solution ϕ in the form (2.55)
that solves (2.54). This proves (2.53).

Since H(ΛQ̄) = H(ρ) = 0, by (2.39), (2.46) and (2.53), we have

ΛQ̄ = c6 sin(
√

5
2 log(r))

r
5
2

+ O(r−3), ρ = c7 cos(
√

5
2 log(r))

r
5
2

+ O(r−3), r → ∞, (2.62)

where c6, c7 ≠ 0.

Step 2. The estimate of the resolvent. We compute the Wronskian

W = ΛQ̄′ρ − ΛQ̄ρ′, W ′ = −
(︃

4

r
+ 2rQ̄

)︃
W, W = exp(− ∫︁ 2rQ̄dr)

r4 .

Take R0 > 0 small enough. By the definition of W , we have W

(ΛQ̄)2 = − d
dr

(︂
ρ

ΛQ̄

)︂
, then integrating 

over [r,R0] yields

ρ(r) = ΛQ̄(r)

R0∫︂
r

exp(− ∫︁ 2sQ̄ds)

s4(ΛQ̄)2
ds + ΛQ̄(r)ρ(R0)

ΛQ̄(R0) 
. (2.63)

By Q̄(0) = 1
6 and Q̄′(0) = 0, we have

|Q̄| + |r∂rQ̄| ≲ 1, r ∈ [0,1]. (2.64)

Then by (2.63), one has

|ρ(r)| ≲ 1 
r3 , |∂rρ(r)| ≲ 1 

r4 , as r → 0. (2.65)

If H(w) = f , then by the variation of constants, one obtains

w =
⎛⎝a3 +

r∫︂
0 

f ΛQ̄

W

⎞⎠ρ +
⎛⎝a4 −

r∫︂
0 

fρ

W

⎞⎠ΛQ̄, a3, a4 ∈ R. (2.66)

Hence,
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S(f ) = ρ

r∫︂
0 

f ΛQ̄

W
ds − ΛQ̄

r∫︂
0 

fρ

W
ds

satisfies H(S(f )) = f by choosing a3 = a4 = 0 in (2.66). For 0 ≤ r ≤ 1, by (2.64) and (2.65), 
we get the estimate

(1 + r)−
1
2 |S(f )|

= (1 + r)−
1
2

⃓⃓⃓⃓
⃓⃓
⎛⎝ r∫︂

0 

f ΛQ̄ exp

(︃∫︂
2sQ̄ds

)︃
s4ds

⎞⎠ρ −
⎛⎝ r∫︂

0 

fρ exp

(︃∫︂
2sQ̄ds

)︃
s4ds

⎞⎠ΛQ̄

⃓⃓⃓⃓
⃓⃓

≲

⎛⎝ 1 
r3

r∫︂
0 

s4ds +
r∫︂

0 

sds

⎞⎠ sup 
0≤r≤1

|f |≲ sup 
0≤r≤r1

(1 + r)2|f |.

(2.67)
For 1 ≤ r ≤ r1, we know from (2.46) that

|Q̄(r)| ≲ 1 
r2 , exp

(︃∫︂
2sQ̄(s)ds

)︃
≲ r2.

Then combining (2.62) and (2.67), we get

(1 + r)−
1
2 |S(f )|

≲ (1 + r)−
1
2

⃓⃓⃓⃓
⃓⃓
⎛⎝ 1 ∫︂

0 

fρ exp

(︃∫︂
2sQ̄ds

)︃
s4ds

⎞⎠ΛQ̄ −
⎛⎝ 1 ∫︂

0 

f ΛQ̄ exp

(︃∫︂
2sQ̄ds

)︃
s4ds

⎞⎠ρ

⃓⃓⃓⃓
⃓⃓

+ (1 + r)−
1
2

⃓⃓⃓⃓
⃓⃓
⎛⎝ r∫︂

1 

fρ exp

(︃∫︂
2sQ̄ds

)︃
s4ds

⎞⎠ΛQ̄ −
⎛⎝ r∫︂

1 

f ΛQ̄ exp

(︃∫︂
2sQ̄ds

)︃
s4ds

⎞⎠ρ

⃓⃓⃓⃓
⃓⃓

≲ sup 
0≤r≤r1

(1 + r)2|f | + r−3

r∫︂
1 

|f |s 7
2 ds ≲ sup 

0≤r≤r1

(1 + r)2|f |.

(2.68)
Similarly, for 0 ≤ r ≤ r1, we also have

(1 + r)−
1
2 |r∂rS(f )| ≲ sup 

0≤r≤r1

(1 + r)2|f |. (2.69)

We finally get (2.52) by (2.67), (2.68), and (2.69). □
We are now in the position to construct interior solutions for the equation (2.5).
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Proposition 2.7. Let 0 < r0 ≪ 1 and 0 < λ ≤ r0. There exists a radial solution u to

ΔΦ − 1

2
ΛΦ + 6Φ2 + y · ∇(Φ2) = 0, 0 ≤ r ≤ r0, (2.70)

with the form

Φ = 1 
λ2 (Q̄ + λ4Q1)

(︂ r

λ

)︂
with ||Q1||Y r0

λ 
≲ 1.

Proof. Step 1. Application of the Banach fixed-point theorem. We look for Φ of the form

Φ = 1 
λ2 (Q̄ + λ4Q1)

(︂ r

λ

)︂
,

so that Φ solves (2.70) on [0, r0]. Then,

H(Q1) = J [Q̄, λ]Q1, 0 ≤ r ≤ r1, (2.71)

where r1 = r0
λ ≥ 1 such that λ2r2

1 = r2
0 ≪ 1, and

J [Q̄, λ]Q1 = − 1 
2λ2 ΛQ̄ − 1

2
λ2ΛQ1 + λ4(6Q2

1 + r∂r (Q
2
1)).

For w ∈ Yr1 , we claim the following estimates:

sup 
0≤r≤r1

(1 + r)2|J [Q̄, λ]w| ≲ 1, (2.72)

and

sup 
0≤r≤r1

(1 + r)2|J [Q̄, λ]w1 − J [Q̄, λ]w2|≲ λ2r2
1 ||w1 − w2||Yr1

. (2.73)

If (2.72) and (2.73) hold, by λ2r2
1 ≪ 1, the resolvent estimate (2.52), and the Banach fixed point 

theorem, there exists a unique solution Q1 of (2.71) with ||Q1||Y r0
λ 
≲ 1.

Step 2. Proof of estimates (2.72) and (2.73). For 0 ≤ r ≤ r1 and w ∈ Yr1 , by the definition of the 
space Yr1 in (2.51), we have |Λw|≲ 1. Then, by |ΛQ̄|≲ 1, we get

(1 + r)2|J [Q̄, λ]w|≲ 1, on [0, r1],

which concludes the proof of (2.72).
For 0 ≤ r ≤ r1 and w1,w2 ∈ Yr1 , we have

|Λ(w1 − w2)| ≲ ||w1 − w2||Yr1
, |w1 + w2|≲ r∂r (w1 + w2) ≲ 1.
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Then it follows that

r∂r [(w1 + w2)(w1 − w2)] = (w1 − w2)r∂r (w1 + w2) + (w1 + w2)r∂r (w1 − w1)

≲ |w1 − w2| + |r∂r (w1 − w2)| ≤ ||w1 − w2||Yr1
.

Hence,

(1 + r)2|J [Q̄, λ]w1 − J [Q̄, λ]w2|≲ λ2(1 + r)2|Λ(w1 − w2)| + λ4(1 + r)2(w1 + w2)(w1− w2)

+ λ4(1 + r)2r∂r [(w1 + w2)(w1 − w1)]
≲ λ2(1 + r)2||w1 − w2||Yr1

≲ λ2r2
1 ||w1 − w2||Yr1

,

which concludes the proof of (2.73). □
2.4. The matching at r = r0

In this subsection, we prove Proposition 2.1 by matching the value of the exterior solution and 
interior solution at r = r0 up to the first-order derivative.

Proof of Proposition 2.1. The proof is divided into six steps.

Step 1. Initial setting. From (2.11), we have

u1 = c1 sin(
√

7
2 log(r) + c3)

r
5
2

+ O(r− 1
2 ) as r → 0, c1 ≠ 0

then

Λu1 = c1
− 1

2 sin(
√

7
2 log(r) + c3) +

√
7

2 cos(
√

7
2 log(r) + c3)

r
5
2

+ O(r− 1
2 ) as r → 0.

We choose 0 < r0 ≪ 1 such that

u1(r0) = c1

r
5
2

0

+ O(r
− 1

2
0 ), Λu1(r0) = − c1

2r
5
2

0

+ O(r
− 1

2
0 ). (2.74)

Then, we choose ε and λ satisfying

0 < ε ≪ r
1
2

0 , 0 < λ ≤ r0. (2.75)

By Proposition 2.3, there exists an radial exterior solution Φext[ε] satisfying

ΔΦext − 1

2
ΛΦext + 6Φ2

ext + y · ∇(Φ2
ext) = 0, r ≥ r0

with the form
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Φext[ε] = Φ∗ + εu1 + εw (2.76)

and

||w||Xr0
≲ εr

− 1
2

0 . (2.77)

By Proposition 2.7, there exists an radial interior solution Φint[λ] satisfying

ΔΦint − 1

2
ΛΦint + 6Φ2

int + y · ∇(Φ2
int) = 0, 0 ≤ r ≤ r0

with the form

Φint[λ](r) = 1 
λ2 (Q̄ + λ4Q1)

(︂ r

λ

)︂
, (2.78)

with

||Q1||Y r0
λ 
≲ 1. (2.79)

Next, we need to match the values of Φext with Φint, and Φ′
ext with Φ′

int respectively at r = r0, 
that is,

Φext[ε](r0) = Φint[λ](r0), Φ′
ext[ε](r0) = Φ′

int[λ](r0).

Step 2. The matching of Φext with Φint at r = r0. We introduce the map

F [r0](ε, λ) = Φext[ε](r0) − Φint[λ](r0).

We compute

∂εF [r0](ε, λ) = ∂εΦext[ε](r0) = u1(r0) + w(r0) + ε∂εw(r0).

By (2.24) and (2.74), we have

∂εF [r0](0,0) = u1(r0) ≠ 0. (2.80)

For λ → 0+, from the asymptotic behavior of Q̄ in (2.46) and the definition of the space Yr1 in 
(2.51), combining (2.79), we have⃓⃓⃓⃓

1 
λ2 (Q̄ − Φ∗ + λ4Q1)

(︂ r0

λ 

)︂⃓⃓⃓⃓
≲
⃓⃓⃓⃓

1 
λ2

(︂
r− 5

2 + λ4(1 + r)
1
2

)︂(︂ r0

λ 

)︂⃓⃓⃓⃓
= λ

1
2

[︃
r
− 5

2
0 + λ(λ + r0)

1
2

]︃
.

Hence

lim 
λ→0+

⃓⃓⃓⃓
1 
λ2 (Q̄ − Φ∗ + λ4Q1)

(︂ r0

λ 

)︂⃓⃓⃓⃓
= 0.
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Combining Φ∗(r) = 1 
λ2 Φ∗( r

λ
), we have

F [r0](0,0) = Φ∗(r0) − Φ∗(r0) = 0. (2.81)

Combining (2.80) and (2.81), by the implicit function theorem, there exists 0 < λ0 ≤ r0 and a 
continuous function ε(λ) defined on [0, λ0) such that ε(0) = 0 and

F [r0](ε(λ), λ) = 0 for λ ∈ [0, λ0), (2.82)

i.e.,

Φext[ε(λ)](r0) = Φint[λ](r0) for λ ∈ [0, λ0).

Step 3. Estimate of ε(λ). We claim that for λ ∈ [0, λ0), there holds that

ε(λ) = 1 
u1(r0)λ2 (Q̄ − Φ∗)

(︂ r0

λ 

)︂
+ O(λ(λ

1
2 r3

0 + r
− 1

2
0 )). (2.83)

In fact, since

Φext[ε(λ)](r0) = Φint[λ](r0) for λ ∈ [0, λ0),

i.e.,

ε(λ)u1(r0) + ε(λ)w(r0) = 1 
λ2 (Q̄ − Φ∗ + λ4Q1)

(︂ r0

λ 

)︂
, for λ ∈ [0, λ0).

By (2.75), we know that

|ε(λ)| ≲ λ
1
2 . (2.84)

Then by (2.11), (2.77) and (2.79), we have

ε(λ) = 1 
λ2u1(r0)

(Q̄ − Φ∗ + λ4Q1)
(︂ r0

λ 

)︂
− ε(λ)w(r0)

u1(r0) 

= 1 
λ2u1(r0)

(Q̄ − Φ∗)
(︂ r0

λ 

)︂
+ O(λ(λ

1
2 r3

0 + r
− 1

2
0 )),

which proves our claim.

Step 4. Computation of the spatial derivatives. We consider the difference of the spatial deriva
tives at r0

ℱ[r0](λ) = Φext[ε(λ)]′(r0) − Φint[λ]′(r0), λ ∈ [0, λ0).

We claim that ℱ[r0](λ) admits the following expansion

ℱ[r0](λ) = λ
1
2

{︄
c1c5

√
7

2u1(r0)r
6
0

sin

(︄
−

√
7

2 
logλ + c3

)︄
+ O

(︃
λ

1
2 r

− 1
2

0

(︃
r
− 7

2
0 + λ

3
2

)︃)︃}︄
. (2.85)
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From (2.77) and (2.84), it follows that

|ε(λ)w′(r0)| ≲ λ
1
2 |w′(r0)| ≲ λr−4

0 .

From (2.79), we get λ2|Q′
1(

r0
λ )| ≲ λ

5
2 r

− 1
2

0 . By (2.83), we have

ℱ[r0](λ) = ε(λ)u′
1(r0) − 1 

λ3 (Q̄′ − Φ′∗)
(︂ r0

λ 

)︂
+ O

(︃
λ

(︃
r−4

0 + λ
3
2 r

− 1
2

0

)︃)︃
= 1 

u1(r0)λ2 (Q̄ − Φ∗)
(︂ r0

λ 

)︂
u′

1(r0) − 1 
λ3 (Q̄′ − Φ′∗)

(︂ r0

λ 

)︂
+ O

(︃
λ

(︃
r−4

0 + λ
3
2 r

− 1
2

0

)︃)︃

= λ
1
2

u1(r0)r
5
2

0

{︃(︂ r0

λ 

)︂ 5
2
(Q̄ − Φ∗)

(︂ r0

λ 

)︂
u′

1(r0) −
(︂ r0

λ 

)︂ 7
2
(Q̄′ − Φ′∗)

(︂ r0

λ 

)︂ u1(r0)

r0

}︃

+ O

(︃
λ

(︃
r−4

0 + λ
3
2 r

− 1
2

0

)︃)︃
.

(2.86)

Recalling (2.11) and (2.46), by simple calculations, one has

u1(r) = c1 sin(
√

7
2 log(r) + c3)

r
5
2

+ O(r− 1
2 ) as r → 0,

u′
1(r) = −5c1 sin(

√
7

2 log(r) + c3)

2r
7
2

+
√

7c1 cos(
√

7
2 log(r) + c3)

2r
7
2

+ O(r− 3
2 ) as r → 0,

Q̄(r) − Φ∗(r) = c5 sin(
√

7
2 log(r))

r
5
2

+ O(r−3) as r → +∞,

Q̄′(r) − Φ′∗(r) = −5c5 sin(
√

7
2 log(r)

2r
7
2

+
√

7c5 cos(
√

7
2 log(r))

2r
7
2

+ O(r−4) as r → +∞.

Then it follows from the above results that

(︂ r0

λ 

)︂ 5
2
(Q̄ − Φ∗)

(︂ r0

λ 

)︂
u′

1(r0) −
(︂ r0

λ 

)︂ 7
2
(Q̄′ − Φ′∗)

(︂ r0

λ 

)︂ u1(r0)

r0

= c1c5

r
7
2

0

sin

(︄√
7

2 
(log r0 − logλ)

)︄
×
(︄√

7

2 
cos

(︄√
7

2 
log r0 + c3

)︄
− 5

2
sin

(︄√
7

2 
log r0 + c5

)︄)︄

− c1c5

r
7
2

0

(︄√
7

2 
cos

(︄√
7

2 
(log r0 − logλ)

)︄
− 5

2
sin

(︄√
7

2 
(log r0 − logλ)

)︄)︄

× sin

(︄√
7

2 
log(r0) + c3

)︄
+ O

(︃
λ

1
2

(︃
r−4

0 + λ
3
2 r

− 1
2

0

)︃)︃
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= c1c5
√

7

2r
7
2

0

sin

(︄
−

√
7

2 
logλ + c3

)︄
+ O

(︃
λ

1
2

(︃
r−4

0 + λ
3
2 r

− 1
2

0

)︃)︃
.

Inserting the above identity into (2.86), we obtain (2.85). This proves our claim. 
Step 5. The matching of Φ′

ext with Φ′
int at r = r0. For δ0 > 0 small enough, we define

λk,+ = exp

(︃
2(−kπ + c3 − δ0)√

7

)︃
, λk,− = exp

(︃
2(−kπ + c3 + δ0)√

7

)︃
.

Since lim 
k→+∞λk,± = 0, we know that there exists k0 > 0 such that for k ≥ k0, there holds

0 < · · · < λk,+ < λk,− < · · · < λk0,+ < λk0,− ≤ λ0.

For all k ≥ k0, we have

sin

(︄
−

√
7

2 
logλk,+ + c3

)︄
= (−1)k sin(δ0),

sin

(︄
−

√
7

2 
logλk,− + c3

)︄
= (−1)k+1 sin(δ0).

By (2.85), we obtain

ℱ[r0](λk,±) = λ
1
2
k,±

{︄
±(−1)k

c1c5
√

7

2u1(r0)r
6
0

sin(δ0) + O

(︃
λ

1
2
k,±

(︃
r−4

0 + λ
3
2
k,±r

− 1
2

0

)︃)︃}︄
.

Since lim 
k→+∞λk,± = 0, and δ0 > 0 is small enough, there exists k1 ≥ k0 such that, for any k ≥ k1, 

there holds

ℱ[r0](λk,+)ℱ[r0](λk,−) < 0.

Due to that fact that the function λ → ℱ[r0](λ) is continuous, then by the mean value theorem, 
for any k ≥ k1, there exists μ̄k such that

ℱ[r0](μ̄k) = 0, μ̄k ∈ (λk,+, λk,−).

Combining (2.82), since 0 < μ̄k < λ0, we have F [r0](ε(μ̄k),μk) = 0 and ℱ[r0](μ̄k) = 0, i.e.,

Φext[ε(μ̄k)](r0) = Φint[μ̄k](r0), Φext[ε(μ̄k)]′(r0) = Φint[μ̄k]′(r0).

We define μn := μ̄k+n. For k ≥ k1 and n ∈N , the functions

Φn(r) :=
{︄

Φint[μn](r) for 0 ≤ r ≤ r0,

Φext[ε(μn)](r) for r > r0

are smooth radial solutions of (2.5). 
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Step 6. The asymptotic behavior. Recall from (2.76) that

Φn = Φ∗ + ε(μn)u1(r) + ε(μn)w(r), r ≥ r0,

where lim 
n→+∞ ε(μn) = 0. By (2.10), (2.11), and (2.24), we have

sup 
r0≤r≤1

r
5
2 (r∂r + 1)(|u1| + |w|) + sup

r≥1 
r2(r∂r + 1)(|u1| + |w|) ≲ 1.

Combining (2.9) and (2.11), we have

sup 
r≥r0

(1 + r2)|(r∂r + 1)(Φn − Φ∗)|

≲ ε(μn)

(︄
sup 
r≥r0

(r∂r + 1)(|u1| + |w|) + sup
r≥1 

r2(r∂r + 1)(|u1| + |w|)
)︄
≲ ε(μn)r

− 5
2

0 ,

which implies

lim 
n→+∞ sup 

r≥r0

(1 + r2)|(r∂r + 1)(Φn − Φ∗)| = 0. (2.87)

Thus, we complete the proof of (2.7).
For the interior part estimate, for 0 ≤ r ≤ r0, we know from (2.78) that

Φn = 1 
μ2

n

(Q̄ + μ4
nQ1)

(︃
r

μn

)︃
,

where

sup 
0≤r≤ r0

μn

(1 + r)−
1
2 (|Q1| + |r∂rQ1|) ≲ 1.

For r ≤ r0, we have

(r∂r + 1)

⃓⃓⃓⃓
Φn − 1 

μ2
n

Q̄

(︃
r

μn

)︃⃓⃓⃓⃓
= μ2

n(r∂r + 1)

⃓⃓⃓⃓
Q1

(︃
r

μn

)︃⃓⃓⃓⃓
≲ μ2

n

(︃
1 + r

μn

)︃ 1
2 = μ

3
2
n (μn + r)

1
2 .

Then by lim 
n→+∞μn = 0, we get

lim 
n→+∞ sup 

r≤r0

(r∂r + 1)

⃓⃓⃓⃓
Φn − 1 

μ2
n

Q̄

(︃
r

μn

)︃⃓⃓⃓⃓
= 0, (2.88)

which completes the proof of (2.6). □
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3. Self-similar blow-up solutions

We now give the proof of Theorem 1.1 for d = 3. As mentioned previously, the proof for 
d ∈ [4,9] is directly extendable.

Proof of Theorem 1.1. Recall from Proposition 2.1 that Φn are smooth radially symmetric so
lutions to equation (2.5). By Φn = 1 

2r3

∫︁ r

0 Un(s)s
2ds, we have 6Φn + 2r∂rΦn = Un. It is clear 

that {Un}n≥1 are radially symmetric solutions of (1.5). By (2.87), we get

lim 
n→+∞ sup 

r≥r0

(1 + r2)

⃓⃓⃓⃓
Un − 2 

r2

⃓⃓⃓⃓
= 0.

We know from (2.88) that

lim 
n→+∞ sup 

r≤r0

⃓⃓⃓⃓
Un − 1 

μ2
n

Q

(︃
r

μn

)︃⃓⃓⃓⃓
= 0.

This completes the proof of (1.13) and (1.14).

For any 0 < T < +∞, take u0 = T −1Un

(︂
T − 1

2 x
)︂

. Since {Un}n≥1 are self-similar profiles 
solving (1.5), the corresponding solution u blows up in finite time T with

u(x, t) = 1 
T − t

Un

(︃
x√

T − t

)︃
. (3.1)

Because the functions {Un}n≥1 are bounded, the blow-up is of type I.
We know from (2.76) that

Un(y) ∼ 1 
|y|2 , as |y| → +∞. (3.2)

Assume by contradiction that B(u0) ≠ 0. But for any δ > 0 and |x| ≥ δ, we have

lim 
t→T

||u(x, t)||L∞(R3) = lim 
t→T

⃦⃦⃦⃦
1 

T − t
Un

(︃
x√

T − t

)︃⃦⃦⃦⃦
L∞(R3)

≲ 1 
|x|2 ≤ 1 

δ2 < +∞, (3.3)

which contradicts the assumption B(u0) ≠ 0. Therefore, the blow-up point of the solution u(x, t)

must be the origin, i.e., B(u0) = 0.
For any δ1 > 0, by (3.2), (3.3), parabolic regularity and the Arzelà-Ascoli theorem, there exists 

a function u∗ such that

lim 
t→T

u(x, t) → u∗, ∀ |x| ≥ δ1,

where |u∗(x)| ∼ 1 
|x|2 . For p ∈ [1, 3

2 ), we get

lim 
t→T

||u(t) − u∗||p
Lp(R3)

= lim 
t→T

δ1∫︂
0 

|u(r, t) − u∗(r)|pr2dr ≲
δ1∫︂

0 

r2−2pdr → 0, as δ1 → 0,
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and (1.15) is proved. This completes the proof of Theorem 1.1. □
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