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Abstract

Based on the method of matched asymptotic expansions and Banach fixed point theorem, we rigorously
construct infinitely many self-similar blow-up profiles for the parabolic-elliptic Keller-Segel system

ou=Au—V-uvaod,),

0= A(bu—l—u, ian,

u(-,0) =1y >0
where d € {3, ---, 9}. Our findings demonstrate that the infinitely many backward self-similar profiles ap-
proximate the rescaling radial steady-state near the origin (i.e. 0 < |x| <« 1) and % at spatial infinity

(i.e. |x| > 1). We also establish the convergence of the self-similar blow-up solutions as time tends to the
blow-up time 7" > 0. Our results can give a refined description of backward self-similar profiles for all
|x| > 0 rather than for O < |x| < 1 or |x| > 1, indicating that the blow-up point is the origin and

u(x,t) ~ x#0,ast—>T.
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1. Introduction

This paper is concerned with the parabolic-elliptic Keller-Segel system

d
0= AD, +u, in RY, (1.1)

{ ou=Au—V-uvao,),
equipped with an initial data u (-, 0) = ug, where d € {3, - - - , 9}. The system (1.1) is the so-called
minimal chemotaxis used to describe the chemotactic motion of mono-cellular organisms, where
u(x,t) represents the cell density and &, stands for the concentration of the chemoattractant
[36]. System (1.1) also models the self-gravitating matter in stellar dynamics in astrophysical
fields [54]. This system has been extensively studied due to its rich biological and physical back-
grounds and lot of interesting results have been obtained, e.g., see [6,15,19,22,33-35,39,52,55]
and references therein.

For any radial initial data ug € L% (R?), there exists a maximal time of existence 7' > 0 such
that (1.1) admits a unique smooth solution on (0, T') x R4, see [27]. One may refer to [2,3] for
other local well-posedness spaces. Due to the quadratic nature of the convective term in (1.1),
the solutions may blow up in finite time 7" < 400 in the sense that

lim sup |[u(2)|] oo Ry = +00.
t—T

If blow-up occurs, then it holds that
@l pooay = (T =)', 0<t<T,
by a comparison principle. We say that the blow-up is of type I if

limsup(T — 1) ||u(@)|| 00 ey < 00,
t—T

otherwise, the blow-up is of type II. The blow-up set B(uo) is defined by
B(ug) :=={xop € R? lu(x;, ;)| — oo for some sequence (x;, ;) — (x0, T)},

and we call xo the blow-up point. Thanks to the divergence structure of (1.1), the total mass of
the solution is conserved in the following sense:

M (ug) = / up(x)dx = / ux,Ndx, 0<t<T.
R4 R4
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Problem (1.1) admits the following scaling invariance: for all 2 € R? and A > 0, the function

1 xX—a t
M)L,a(xJ)=ﬁu <T’ﬁ> (1.2)

also solves (1.1). This scaling invariance gives rise to the notion of the mass-criticality in the
sense that

d-2
lurallpr ey = A" "llullL1(rays

by which d = 2 is referred to as the mass critical case, while d = 1 and d > 3 the mass sub-critical
and the mass super-critical cases, respectively.

The solution of (1.1) exists globally for d = 1 as proved in [13,44]. The critical mass threshold
8 acts as a sharp criterion separating the global existence from finite-time blow-up in the case
of d =2, see [5,7,13,14,23]. The 87 mass threshold implies that supposing

up >0, (14x>+|Inug))ug € L' (R?),

the positive solution of (1.1) blows up in finite time for M > 8x [37,49] and exists globally in
time for M < 8z [5,24]. If M = 8m, radial solutions exist globally in time [4] but infinite-time
blow-up solutions with 87 mass may exist as constructed in [6,22,26]. For M > 8w, a refined
finite time blow-up profile was obtained with the form

1 X _ [log(r—0)|
N~ ——-U—), M) ~~vT —t 2, 1.3
u(x,r) 20 (MU) () e (1.3)
where U (x) = ﬁ is a steady-state solution of (1.1), see [11,15,31,49,53]. The form (1.3) is

the unique finite time blow-up behavior for radial non-negative solutions of (1.1) [42]. An inter-
esting phenomenon that two steady-state solutions are simultaneously collapsing and colliding is
recently constructed in [16]. It is remarkable that any blow-up solutions are of type II for d = 2,
see [45,51].

For d > 3, we note that the system (1.1) is referred to as the Ll-supercritical and L4/2-

critical since the scaling transformation (1.2) preserves the L2 —norm, i.e., ||ux,a||L% R =

[u| |L% ®Y)' Initial data with small LZ¢/>—norm lead to solutions that exist globally in time [20].

Subsequently, this result was improved in [12] by showing that if the L%/?>—norm of initial data
is less than a sharp constant derived from the Gagliardo-Nirenberg inequality, then the solution
exists globally. Large initial data give rise to finite-time blow-up [12,20,44]. In contrast to di-
mension d = 2, the solutions of (1.1) with d > 3 may blow up in finite time for an arbitrary mass
since M (u; 4) = 242M ().

Singularity formation of blow-up solutions to system (1.1) for d > 3 exhibits rich dynamical
behavior. When the initial data are nonnegative and radially non-increasing, it was shown in [43]
that all blow-up solutions of (1.1) are of type I for d € [3,9]. A family of type I self-similar
blow-up solutions was obtained by the shooting method in [8,30,46]. Remarkably, it was shown
in [27] that all radial and non-negative type I blow-up solutions are asymptotically backward
self-similar near the origin as + — T, which signifies the significance of backward self-similar
profiles for understanding the structure of singularities. A new type I-log blow-up solution of
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(1.1) in dimensions 3 and 4 was constructed in [47]. There are also type II blow-up solutions
for d >3 [10,17,29,41]. The authors of [17] showed the existence and radial stability of type II
blow-up solutions, characterized by mass concentrating near a sphere that shrinks to a point. This
pattern, known as collapsing-ring blow-up, also emerges in the nonlinear Schrédinger equation
[25,40]. For d > 11, type II solutions concentrating at a steady-state solution are constructed in
[41]. This paper is concerned with type I blow-up solutions.

Backward self-similar solutions of (1.1) are of the form

1 X
,)=—-U , y= , 1.4
w0 =5—U ), y=—m— (1.4)
where U (y) is the backward self-similar profile satisfying
y-VU
AU — —U—-V.(UVdy)=0, Ady +U =0. (1.5)

We denote r = |y|. In the radial case, for d > 1, there holds

r

0, Dy () = ——— -1
Py (r) = o U(s)s® ds.
0

Then the equation (1.5) can be written in the radial form

r

o U + 8,U—§r8,U—U+U +| 7= | UWs ds |0,U=0. (1.6)
r r
0
There are four known classes of solutions of (1.6):
e For d > 1, the constant solutions
Up=0, U =1. (1.7)
e For d > 3, the solution singular at the origin
- 2(d —2)

r

e For d > 3, the explicit smooth positive solution [8]

- Ad—-2)2d+r?)
TR -+

(1.9)

e Ford € [3,9], there exists a countable family of positive smooth radially symmetric solutions
{Un}n>4 [8,30,46], where

1
Un~ ., as r— +o0. (1.10)
r
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With the shooting method, a family of radially symmetric solutions {U,},>4 has been con-
structed in [30] for d = 3 and in [8,46] for 3 < d < 9. For d = 3, it was shown in [28] that U3 is a
stable self-similar profile based on the semigroup approach. Very recently, the non-radial stabil-
ity of Uz was proved in [38]. For d > 3, it was proved in [19] that all the fundamental self-similar
profiles {l_],,}nzg are conditionally stable (of finite co-dimension).

Backward self-similar profiles of (1.1) (i.e. the solutions of (1.5)) are still not completely
classified, even in the radial setting. Accurately describing the self-similar profiles is a crucial
step in classifying all possible blow-up profiles for (1.1) (at least in the radial case).

This paper aims to construct more precise backward self-similar profiles by using different
approaches. We recall some results below in connection with our work. For d = 3, the authors of
[30] showed that there exists a sequence of self-similar profiles (i.e. solutions of (1.6)), denoted
by {G,(r)}n>1, which satisfy

G,(r)~K,asr—0, lim G,(r)= —;’,
r—>00 r

where K,, > 0, A,, are constants, and lirll K,, = 0o. Subsequently, for 3 <d <9, it was shown
n——+0o

in [8] that there exists a countable number of self-similar profiles {Gn}nz 1 satisfying
Ga(r) <lasr—0, lim Gu(r) = C—; for some constant ¢, € (0, 2].
r—00 r

The works [8,30] discovered two essential common properties for the family of self-similar pro-
files for fixed n, that is they are bounded as 0 < r < 1 and behave like rlz as r > 1. In another
work [46], for 3 <d <9, the authors proved that there exist a countable number of self-similar
profiles (G, (r)}n>1 which are bounded near the origin for every n > 1 and

2(d —2)

5 for r > 0. (1.11)
,

lim G,(0) =+oo, lim G,(r)=
n—o00 n—o0
The work [46] gave an asymptotic description of self-similar profiles as n — oo. For fixedn > 1,
the self-similar profiles were precisely described only for » >> 1 in [8,30], while the precise
descriptions of self-similar profiles for » > 0 not large are unavailable. Recently, for d > 3,
self-similar profiles of blow-up solutions to (1.1) were shown to behave like rLZ for0<r«1
for a certain class of radially non-increasing initial data in [1] by the zero number argument,
answering an open question in [50]. In this paper, by using a different approach, namely the
method of matched asymptotic expansions and the Banach fixed point theorem, we obtain a
precise description of self-similar profiles U, (r) for all r € [0, 00), as described in (1.16) below.
To state our result, we first present the asymptotic behavior of steady-state solution of (1.1).
Let Q(r) be the unique solution to

d—1 2 1 A d—1
0rQ+——9,0+0 +arQF/Q(S)S ds =0,
r r , (1.12)
00)=1, Q'0)=0.

It is clear that Q(r) is a radial steady-state solution of (1.1) with » = |x]|. It will be shown in
Section 2 that the asymptotic behavior of Q is
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where Q = 2dQ + 2rd, Q and the asymptotic profile of Q as r — oo is given in (2.46). Our
main results are stated as follows.

Theorem 1.1. For 3 <d <09, there exist infinitely many smooth radially symmetric solutions
U, (y) (n € N) to the self-similar equation (1.5). Moreover; there exists a sufficiently small con-

stant ro > 0 independent of n such that the following results hold.

1. (Profiles near the origin.) There exists a sequence (i, > 0 with lirf Wn =0 such that
n—+0o0

1
lim_sup |Uy(r) — — © (L> —0. (1.13)
n—>+0r<p, My Mn
2. (Profiles away from the origin.) As r > rgy, U, (r) satisfies
2(d —2
lim sup(1+7r%)|U,(r) — %' =0. (1.14)
n—>+oor2r0 r

For any 0 < T < 400, the solution of (1.1) with initial data ug = %Un(%) blows up at time T
with

1 X
u(x,t):T_tUn — )

where the blow-up is of type I and B(ug) = 0. Moreover, there exists a function u™*(x) ~ ﬁ such
that lin%u(x, t) = u*(x) for all |x| > 0 and
—
. " d
fim [ 1) = u* Ol ey =0. ¥ p € [1,5). (115)
t—>T 2

Remark 1.2. Based on the proof of Theorem 1.1, the profile of the solutions U, of (1.5), as
constructed in Theorem 1.1, can be more precisely described as follows. First, we define

U =2duy 4 2royuy
where ] := u; is a known function for d = 3 (see Lemma 2.2"). Then there exist

1
0<ro<1, 0<py<ro, 0<e(uy) Lrg

with lim wu, =0, lim &(u,)=0,and
n——+00 n——+o0o

! The definitions of i1 for d € [4, 9] are obtained by the same process as in Lemma 2.2.
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=~

Z/N{e)}i‘(p Q € o
Kn

where the definitions of the spaces X ro Y, are given in (2.9) and (2.51) for d = 3, respectively,”
such that

(Z+1 () for 0 <r <ro,
U,(r) = " (1.16)

2D 4 e(ua)U +UN(r)  for r > r,

solves (1.6).

By (1.16) we obtain a precise description of self-similar profiles U, (r) for all r € [0, 00).
In particular, we show that U, (r) behaves like the rescaled steady-state solutions ﬁ Q(t) for

0<r<«1landU,(r)~ # for r > 1. For 3 <d <9, we know from (1.16) that the profiles
obtained in this paper are different from those in [8] since 2(d — 2) > 2, but have the same
asymptotic properties as in (1.11) as n — co. Whether the self-similar profiles constructed in
[30,46] and in Theorem 1.1 are equivalent is an interesting open question.

For d = 2, the limiting spatial profile of radial blow-up solutions to (1.1) resembles a Dirac
mass perturbed by a L! function, i.e.,

u(-,1) =878y + f in Co(R>* ast — T, (1.17)

where 0 < f € LI(RZ), see [31,32]. In contrast, for d € [3, 9], as seen from (1.16), our result
shows that there exist radial solutions of (1.1) that satisfy

u(x,t)~1/|x|>, x#0, ast— T,
which is quite different from the case d =2 in (1.17).

Remark 1.3 (Finite codimensional radial stability). The stability of self-similar blow-up profiles
constructed in [8,30] was established in [19,28]. Using the same ideas of [19], one can also show
that the profiles constructed in Theorem 1.1 are stable along a set of radial initial data with finite
Lipschitz codimension equal to the number of unstable eigenmodes. The non-radial stability of
self-similar profiles is still an open problem as far as we know.

Organization of the paper. In Section 2, we first introduce a key transformation which con-
verts (1.5) into a local elliptic equation in R4*2. Then using the method of matched asymptotic
expansions, we rigorously derive a sequence of smooth self-similar profiles. In Section 3, we
give a complete proof for Theorem 1.1.

2 The definitions of the spaces )~(r0, Y, ford e [4, 9] are similar by the same process of the proof for d = 3.

7
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2. Construction of self-similar profiles
We start by introducing some notations.

Notation. We write a < b, if there exists ¢ > 0 such that a < ¢b, and a ~ b if simultaneously
a < b and b < a. If the inequality |f| < C|g| holds for some constant C > 0, then we write

f=0(.
2.1. Key results

Our main goal is to derive the radial self-similar profile U (r) := U (]y|) which satisfies (1.6).
To study the nonlocal equation (1.6), we introduce the following so-called reduced mass (cf. [8]),

r

@(r):i/U(s)sd—lds 2.1
2rd ’ ‘
0

and transform (1.6) into a local equation for ®(r) satisfying

d+1 3, ®
3y ® + La,cb —®— % +2d®% +2rdd, =0.
r

Clearly, @ (r) is the radially symmetric solution of

1
AD — 5Ac1>+2dc1>2+y-V(c1>2) =0, yeR4?, (2.2)
with A being a differential operator defined by

Au:=2u+y-Vu.

By (1.7), for d > 1, (2.2) admits constant solutions &y =0, ®; = 5. By (1.8) and (1.9), for
d > 3, (2.2) admits explicit radial solutions

- 1 - 2

Pr=—, P3=— (2.3)
IyI? 2(d -2)+ 1y

From (1.10), for d € [3, 9], there exists a countable family of positive smooth radially symmetric

solutions {®,},>4 of (2.2) such that

- 1
o, ~ W as |y| - +oo. 2.4)

The main result of this paper, as stated in Theorem 1.1 along with Remark 1.2, consists of the
construction of a class of more general solutions than those given in (2.3) and (2.4), which share
some similar properties when 0 < |y| < 1 or |y| > 1.

8
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The rest of this paper is focused on the case d = 3 for the simplicity of presentation. The
extension of the result to d € [4, 9]° is straightforward since the oscillating behavior of the radial
steady-state profile Q = 2d Q +2r9,Q for d =3 (see (2.46) for the definition of Q) also exists
for d € [4,9]. As in [9,18,21], the matching of exterior solutions with interior solutions can be
obtained by this oscillating behavior.

When d = 3, equation (2.2) is reduced to

1
A®—§Ad>+6<b2+y-V(d>2)=O, y eR3. (2.5)

Applying the transformation (2.1), we then obtain the radially symmetric solution of (1.5) as
follows

=6 +2r9, .

We define
- 1 - 1 )
D, = <D2=—27 o(r ——3 Q(s)s~ds,
r

where Q is given by (1.12).
The following is the key proposition of this paper, from which Theorem 1.1 directly follows.

Proposition 2.1. There exist infinitely many smooth radially symmetric solutions ®, (n € N) to
equation (2.5). Moreover, there exists a sufficiently small constant ro > 0 which is independent
of n such that the following results hold.

1. (Behavior near the origin.) There exists a sequence W, > 0 with ngr}rloo Un =0 such that

lim sup |®
n%+oor<r0

el

2. (Behavior away from the origin.) As r > ro, @, (r) satisfies

lim sup(1+r%)|®, — ®,|=0. 2.7

n——+o00 r>ro
The remainder of this section is devoted to proving the above proposition.
2.2. Exterior profiles

The aim of this subsection is to construct a radial solution to (2.5) on [rg, +00), where 0 <
ro < 1. We are initially concerned with the asymptotic behavior of the fundamental solutions

3 This oscillating behavior exists when the differential equation x2+(d+2)x+4(d—1)=0has complex roots, which
holds in the case d € [3, 9].
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for the equation L(x) = 0 on (0, +00), where L is the linearized operator of (2.5) around P,
defined as

1
L==At A =2y V(@) =~ 120, (2.8)

Given 0 < rg < 1, we define X, as the space of continuous functions on [rg, +00) such that the
following norm is finite

5
wllix, = sup (3wl +r[dw]) + sup (+w] +r%]3,w]) . 2.9)

ro<r<l r>1

Lemma 2.2. Let L be defined in (2.8). Then the following results hold.
1. The basis of the fundamental solutions: The equation

L(u)=0 on (0,+00)
has two fundamental solutions u; (i = 1,2) with the following asymptotic behavior as r — 00:
2
() =r2(1+00¢72) and uy(r)=r"eT(1+ 002, (2.10)
and asr — O:

c1 sin(g log(r) + ¢3) 1) sin(g log(r) + c4)
5 + 5 +

up(r)= 0 rf%) and ux(r) = 0 rf%),
r2 r2
(2.11)
where c1, ¢2 #0, ¢3, c4 € R.
2. The continuity of the resolvent: The inverse
+00 +00
VZ S2
(f) = / fussbe™Tds | uy — / fuisbe=7ds | us (2.12)
r r
satisfies L(t(f)) = f and
1
z 4
It (Ollx,, < [ 1fls2ds +supri|f]. (2.13)
r>1
ro -
Proof. Step 1. Basis of homogeneous solutions. We define the changing of variable
1 2
u(r) =—¢(2), z=r", (2.14)
z2

where y satisfies —y? + 5y — 8 = 0. From
0 =2rd;, 0y =420;; +20;, rd, =220,

10
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one has

L(u) = (—420.. — 20, — 80, + 20, + 1 — 8D, — 4d,z0.) ( ¢>(z)>

= 1{ 429" (2) + (4y — 14+z)¢’(z)+[1—Z+z(—y2+5y—8)]¢}

z2 2
1

= %{ 4z¢"(2) + (4y — 14+z)¢’(z)+(1—%)¢}.
Z

Let ¢(z) = v(§) and & = ;. Then,

1 " 7 / 14
Lw)=—— {SV &+ (—J/+§ —5)1) (§)+(E - 1)\)(5)}-

Z2

Therefore, L(u) = 0 if and only if

Sdzv + (b é)dv 0 (2.15)
JR— f— _— V= .
g2 ag VT
where
7 4
b==—y,a=1—%.
e 2

The equation (2.15) is known as the well studied Kummer’s equation (see [48]). If the param-
eter a is not a negative integer (which holds in particular for our case), then the fundamental
solutions to Kummer’s equation consist of the Kummer function M (a, b, &) and the Tricomi
function U (a, b, §). Therefore, v(§) is a linear combination of the special functions M(a, b, &)
and U (a, b, §), whose asymptotic profiles at infinity are given by

M(a,b,&) = ——£P5(1+0E™), Ula,b,§)=(1+0@E ")) as& — +o0. (2.16)

'(b)

[(a)

Then by (2.14) and (2.16), one obtains (2.10).
For the behavior near the origin, we have

M(a,b,E)=14+0() as& — 0. 2.17)
It is easy to check that the real part of b satisfies R(b) =1 (b # 1). Then it follows that

roe-1 ra-»sr
U(a,b,&) = 0 S +m+0(§) as & — 0. (2.18)

Since the polynomial y% — 5y + 8 = 0 has complex roots y = % ‘/_T then combining (2.14),
(2.17) and (2.18), one obtains (2.11).

Step 2. Estimate on the resolvent. The Wronskian W := u/us —u5u satisfies W' = (% — g) W,

11
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2
and W = r%eT. We may assume C = 1 without loss of generality. Next, we solve L(w) = f.
By the variation of constants, we obtain

“+o00 “+o00
_s2 _s2
w= a1+/fu2s6e Tds uy+ | ar — fu1s6e ids Vuy, ap, ap e R.
r r

Then, t(f) satisfies L(t(f)) = f by choosing a; = a> = 0 in the above.
Next, we estimate the asymptotic behavior of t(f). For » > 1, we have

+00 +o0
4 4 6,5 6,5
r'lt(Hl=r fuzs®e” Fds \u; — fuiste Fds | uy
r

r
+00 +00
r2 Xz
5},2 f | flsds +rleT / |f|s4e_7ds
r r

(2.19)
400 +00
4 ds\ , 2 _s?
Ssuprt|f] = | +rlen e~ Tds
r>1 N
r r
Ssuprt|fl,
r>1
and
+00 +o0
2 2
r5|3rt(f)|=r5 /fu2s6677ds oyul — /fulsﬁeffds 0yU2
r r
+00 “+o0
r2 X2
5"2 /|f|SdS + Vet f|f|s4e_Tds
r v (2.20)
400 +00
4 ds ) , —1 2 _s?
Ssuprt|f] = |+ e e Tds
r>1 N
r r
Ssuprt|f1.
r>1
Forrg <r <1,by (2.11) and (2.19), we have
1 1
5 5 52 52
r2jt(f)l<r2 /fuzs6e_7ds up — /fu1s6e_Tds uy
r r
+o0o +o00
s2 52
—|—r% /fuzsﬁe_fds up — /fu1s6e_7ds u (2.21)
1 1

12
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1
< [ 1f1s%ds + supr?| f].

r>1
ro

Similarly, for ro <r <1, by (2.11), (2.20) and (2.21), we have

+00 +00
7 7 6 —s2 6 _s2
r2|o,t(f)|=r2 fuys’e” ¥ds | 0,uy — fuis’e” ¥ds | 0run
r

r

A
i

1 1
2 2
6 —5° 6 —5°
/fuzs e 4ds | ou — /fu]s e %ds |0 uy
r

r
+00 +00 (222)
§2 2
—l—r% / fuzséeffds 0pul — / fu1s6e77ds 0y U2
1 1
1
z 4
S [ 1 fls2ds +supri|f].
r>1
0]
Then (2.13) is obtained by combining (2.19), (2.20), (2.21) and (2.22). O
We construct outer solutions of the self-similar equation in the following.
1
Proposition 2.3. Let 0 < ro K 1. For any 0 < & K rg, there exists a radial solution to
1
AP — EACD + 60> +y-V(®*) =0, on [ry, +00) (2.23)
with the form
S=>], +cu;+ew,
with
1 1
lwllx, Serg s wlemo =0, 13 wllx, Srp 2 (2.24)

Proof. Step 1. Fixed point argument. Let ® = &, + gv satisfy (2.23) for r > ro. Then
L) =e(y - V?) + 6v2).
We set v =uj + w. Since L(u;) =0, then w satisfies
L(w) = e(y - V(ur +w)? +6(u1 +w)?), Yr=r.
Next, we find the solution of

13
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w=¢et(Gluilw), (2.25)
where t(f) is defined in (2.12) and
Gluilw = rd,(uy +w)? + 6(u; + w)>.

We claim the following estimates: if ||w;|| Xro <1, i=1,2,then

1

1
/lG[ul]wils%ds + supr4|G[u1]wi| N 2 i=1,2, (2.26)
ro

r>1

and

1
7 _1
/ |Glurlwi — Gluilwals2ds + supr*|Gluylwy — Gluilwa| Srg *llwy —wallx,, . (2.27)
kS r>1
_1
If er, 2 « 1, and (2.26)-(2.27) hold, by the continuity estimate on the resolvent (2.13) and the

_1
Banach fixed theorem, there exists a unique solution to (2.25) with ||w]] Xy, Ser, 2. We know
from (2.25) that w|,—0 = 0 and d;w = t(G[u1]w). Then by (2.13) and (2.26), we get

e wlllx,, = llT(Glutlw)lx,, Sro *.

~

Step 2. Proof of estimates (2.26) and (2.27). By (2.11) and the definition of X, in (2.9), for
w € X,y and rg <r <1, we have

()] + (7] + 173, (w + )] S 2, (2.28)

while forr > 1,
lw()| + luy ()] + [rde(w +u)| 2 (2.29)
Next, we prove (2.26). For ro <r < 1, by (2.28), we have

1
1

1 1
/|G[u1]w|s%ds=/<|sas(u1+w)2|+6(u1+w)2>s%ds§/s—%ds§ro 2 (230
ro

ro o

For r > 1, by (2.29), we have |G[u]w| =710, (u1 + w)2 +6(uy + w)2 < r~* and hence

supr|Gluyw| < 1. 2.31)

r>1
We conclude the proof of (2.26) by (2.30) and (2.31).

14
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Next, we prove (2.27). For w; € X, (i =1, 2), we have

Gluilwy — Glujlwa =ro-[Quy + wi + w2) (w1 — w2)] + 6Qu; + wi + wa)(w — wa).

For r > 1, by (2.10) and the definition of X, in (2.9), we get

16Q2u1 + w1 + w2) (w1 —w2)| S lwi — wal, (2.32)

and

(rdy + DQuy +wy +wy) < 1. (2.33)

By (2.33), we obtain
ro [(2up + wi + w2)(wy — wy)]

=[rd, Quy + wy + w2)l(wy — w3) + [ro, (w1 — w2)12u; + wy +wy)

Slwy —wa| +rd-lwp — wal.
Then combining (2.32), we have
|Glui]lwy — Gluilwz| < [6Q2u1 + wi + wa)(wi — w2)| + 70, [Qut + wi + wa) (w1 — wa)]|
Sroflwy — wa| + |wy — wal,

and hence

supr*|Glur]wi — Glurlwa| < [lwy — wallx,, - (2.34)

r>1

For rg <r <1, we have

(rd, + D2uy 4+ wi +wa| Sr3,
and hence

ro[Cuy + wy + w2)(wy — w2)]
=[rd,Quy + w1 + w2) (w1 — w2) + [3, (w1 — w2)]Ruy + wi + wo)

_3
Sr2(lwr —wa| + 70y (wi — w2)).

Then it follows that

15
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1
/ |Glu]wy — G[M1]w2|s%ds
ro

1
;
S / {Is0s[Quy + wi + w2)(wy — w)]| + 6](2uy + wy + w2)(wy — wy)|}s2ds
o

1
_5 7
5/{s 3 (510, (w1 = wa)| + w1 — wal) | s3ds

o

(2.35)

1

5 7 _3 -1
< sup (r2|wy —wa| + 729, (wy —wz)l)/s 2ds Sy P llwy —w2llx,, -
ro<r<l
ro

Combining (2.34) and (2.35), this concludes the proof of (2.27). O
2.3. Interior profiles

The purpose of this subsection is to construct a radial solution of (2.5) on [0, r¢], where
0 < rg <« 11is given in Proposition 2.3. We define

_ 1 r
0 =775 f Q(s)s’ds. (2.36)
0

By (1.12), Q satisfies

0y O+ 20,0 + 602 +r8,(0) =0

~

(2.37)

00)=—, 0'(0)=0.

1
6 b
We define the linearized operators of (2.37) at @, and Q, respectively, by the following expres-
sions:

4 4 - -
Hooi= — 8y — 8y — 120, — 273, (®y-), H :=—0pr — —0y — 120 — 2r9,(Q-).  (2.38)
r r

We define Y as the space of continuous functions on [1, +00) such that the following norm is
finite

llw|ly = sup(r|w] + r*|8,w]).
r>1

Lemma 2.4. The equation
HOO(¢) = 07 on (01 +OO),

16
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has two fundamental solutions

py = SRCTIOBE) | cosClogtr)) 239)
r2 r2
In addition, the inverse
+o0 +00
250 250
= —ds — —d 2.40
V() ¢1r/f¢2ﬁS¢zr/f¢1ﬁs (2.40)
satisfies Hoo (W (f)) = f and
IIW(f)IIYSSHI]H’SIfI- (2.41)

Proof. Let ¢ = r*. Then by @, = rlz, we have
Hoo(¢) = —r*2(k* + 5k + 8).

Since the polynomial k2 + 5k +8 = 0 has two complex roots k = _SiT‘ﬁ’ the equation Hoo(¢) =
0 admits two explicit fundamental solutions

_sin(4 log(r)) e cos(YL log(r))

5 s =
r2 r2

(2.42)

and the corresponding Wronskian is given by W(r) = ¢[¢2 — ¢¢1 = £6 By the variation of
constants, the solutions of equation Hx, (1) = f are given by

250 256
u= aw-i-/fd’zﬁds o1+ | az0— / f¢1ﬁds 2, aip, mocR.  (243)
r r

Hence

6

v(H=¢ +/Oof¢ 21615—¢ +/Oof¢ 216a’s
= l, 2 7 2, 15

satisfies Hoo (W (f)) = f by choosing a0 = az,0 =0 in (2.43). For r > 1, from (2.42), we have

+00
26
Pl =r ffqﬁz—ds é1— /fqh%ds é2

- (2.44)

1 7 1 3
<rz |f|s7ds < rffs_fds supr |f|<supr [ fl,

r>1 r>1
>

17
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and

“+o00 2S6 400 2s6
r ()l =r / f¢zﬁds dp1 — / for=—ds | 8,0

V7
400 +00 (2.43)
Sr% / Ifls%ds < r2 /s_%ds supro| £ <supr| f].
r>1 r>1
r r
We conclude the proof of (2.41) by (2.44) and (2.45). O
Lemma 2.5. The asymptotic profile of Q as r — 400 is
NG
_ c5 sin(%5- log(r)) _
00 =, + I 201077, (2.46)
r2
where 0 < c5 < 1 is a constant.
Proof. Assume that
0=, +¢v (2.47)

solves (2.37) on [1, 00). Then v satisfies Hoo (v) = £(6v% +r9,v%). Let v = ¢ +w, by Hoo (¢1) =
0, we have Hoo(w) = £(6(¢1 + w)* + 78, (¢p1 + w)?). We define

Glp11(w) = 6(¢1 + w)? +rd, (¢ + w)>.

Next, we look for the solution of

w = ey (Glp11(w)), (2.48)

where v (f) is defined in (2.40). We claim that, if w € Y, then

supr’|Glp11(w)| S 1, (2.49)
r>1
and for wy, wy €Y, it holds that
supr°|Glg11(w1) — Glo11(w2)| < llwi — wolly. (2.50)

r>1

If the above claim holds, for ¢ > 0 small enough, by the resolvent estimate (2.4 1) and the Banach
fixed point theorem, there exists a unique solution w € Y to (2.48) and hence we find a v for
(2.47). Finally we get (2.46) by (2.47).

It remains to show estimates (2.49) and (2.50). By (2.39) and the definition of the space Y, for
r>1and w €Y, we have

18
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r|Glp1l(w)| =r>{6(d1 + w)* +rd,(¢1 + w)*}
SPL@B1+w + 250, (91 + W) (d1 + w)]
<P 40 ~|—r_%) <.
Forr > 1and w; € Y (i =1, 2), by (2.39) and the definition of the space Y, we get
5 5
lwi + w2 +2¢1| Sr72, |ro(wy + w2+ 20| Sr2.

Hence we have

|Glp11(w1) — Glp11(w2)]
=16(w1 + w2 + 2¢1) (w1 — w2) +ro.[(w1 + wa + 2¢1) (w; — w2)]|

Pl

Sro2wy — wal 4 [rdy (w1 + wa 4+ 2¢1) [Jlwy — wa| + |70, (w1 — w2)||wy + w2 + 20|

[N

Srz(lwr — wal| + rd- (w1 — w2)l),

and

5 5
P1Glp11(w1) — Gl 1(w2)| S~ 2wy — wal + 77 2rdr (w) — wo)l)
1
=r72(wy — wa| + Y9, (w1 — wo)])
<|lwy —w2|ly-

This completes the proof of (2.49) and (2.50). O

Let 1 > 1. We define Y, as the space of continuous functions on [0, 1] in which the follow-
ing norm is finite:

1
llwlly, = sup (I+r)"2(lw|+ |rd-wl). 2.51)

0<r=r

Lemma 2.6. Let H be defined in (2.38). Then the following results hold.
1. The basis of the fundamental solutions: There holds

H(AQ)=0, H(p)=0

with the following asymptotic behavior as r — 400,

cosin(4 log(r)) _ crcos( log(r)

AQ = +007%), p +007Y),

[N

3
2

r r

where cg and ¢7 are nonzero constants.
2. The continuity of the resolvent: The inverse

19
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S(f)= /fAQexp(/ZsQ(s)ds>s4ds p— /fpexp(/ZsQ(s)ds)s4ds AQ,
0 0

satisfies H(S(f)) = f and

ISy, S sup 1+ f]. (2.52)

0<r=<r
Proof. Step 1. Fundamental solutions. Let
0, (N =220(r), »>0.

Then
_ 4 _ _ _
0rOx+ —0r 0r + 602 +r3,(02) =0, A>0.

Differentiating the above equation with A and evaluating at A = 1 yields H (A Q) =0.Let p be
another solution to H (p) = 0 which is linearly independent of A Q. We claim that, all solutions
of H(¢) =0 admit an expansion

¢ =ai o1 +azops+ O3, as r — 4oo, (2.53)

where aj 0, a2,0 € R and ¢, ¢, are defined in (2.39).
We rewrite H (¢) = 0 in the following form

Heo(9) = =000 — §3r¢> — 1200 — 2r 9, (Pyp) = f, (2.54)
where

f=1(@)=12(0 — )¢ +2rd,((Q — D).

Next, we look for the solution of equation (2.54). By (2.43), we shall find a solution in a form

¢ = ar0p1 + az.002 + b, (2.55)

where

+00 oo
~ ~ 256 256 ~ ~
¢ =F () / f(¢>)<f>2«/7 s | / f(¢>)¢1«/7 s | ¢ 1(@) — F2(¢)
It follows from (2.39) that
5
Iroy (g1 +¢2)| Sr2. (2.56)
Recall from (2.46) that

20
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10— @, <r 2, 1. (0— @) <r 3, forr> 1.

For r > 1, by (2.56) and (2.57), we have

“+o00

6
Fi() < /12|Q—¢*|Ia1,0¢>1+az,0¢2+5|2S\/|§2|dS 1]
i 255
+ /2|ra (0 — @.)la10d1 + az.062 + B fz ds | 141
o 255|4y|

+ 21Q — @ |rd, (ar.0¢1 + azop2 + @)l

d
77 s | o1l

\\

+00

+
r7% /s 2+s|¢|ds +r2 /s|r8r$|ds

r

Nun

+00

<r 343 / s(p| + Iro, plyds

r

Similarly,
+0o0
~ 5 ~ ~
B@<r3er fs(|¢|+|rar¢|>ds
r
Hence
+o0
F@ Srd+r /s(|$|+|rar$|)ds
r
and

+00
F($) — F(g) <r 3 fs(|$1—$z|+|rar($1 — $o)ds

r
In the same manner, we have

+00

o, F(@) Sr 34 /s(|$|+|rar$|>ds :

r

and

21
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“+o00

r,(F(¢1) — F($) <r ™2 /s(|§51—¢7z|+|rar<$1—¢7z)|>ds : (2.61)

r

For R > 1, we define Z as the space of continuous functions on [R, +00) such that the
following norm is finite

llpllz = su§r3<|¢| +1rd-¢l).

By (2.58)-(2.61) and the Banach fixed point theorem, there exists a unique solution ¢~5 that
satisfies F($) = q~5 with the bound ||$| |z < 1, and hence we find a solution ¢ in the form (2.55)
that solves (2.54). This proves (2.53).

Since H (A Q) = H(p) =0, by (2.39), (2.46) and (2.53), we have

- g sin(élog(r)) n

AD = _ c7 cos(% log(r)) n

3
2

o™, 003, r—>o00, (2.62)

3
2

r r

where cg, c7 # 0.
Step 2. The estimate of the resolvent. We compute the Wronskian

3 3 4 - exp(— [2rQd
W=AQ'p—AQp, W =— (‘ +2rQ) W, w = SRS 2r0dr)
r r
Take Ro > 0 small enough. By the definition of W, we have —%— m Q)2 = —i ( Q) then integrating
over [r, Ro] yields

exp(— [25Qds) AQ(r)p(Ro)
p(r) = AQ()/ p4f ~ds Q)p(Ro) (2.63)
(AQ) AQ(Ro)
By Q(0) = § and Q’(0) =0, we have
101+ 1r8,Q1 S 1, r €0, 1]. (2.64)
Then by (2.63), one has
1 1
oM S 3 NGBS 3 AT 0. (2.65)
If H(w) = f, then by the variation of constants, one obtains
r A - r
w= a3+/f7Q o+ a;;—/% AQ, a3, aseR. (2.66)
0 0

Hence,

22
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r A_ B r
S(f):p/fTst—AQ %ds
0

0

satisfies H(S(f)) = f by choosing a3z = a4 = 0 in (2.66). For 0 <r < 1, by (2.64) and (2.65),
we get the estimate

(1+r)21S(f)]
=(1 +r)_% /fAQexp (/ZSQdS) s*ds o — /fpexp (/ 2sts> sds AQ
0 0

r r
1
< —3/s4ds+/sds sup |f| < sup A +r2fl.
,

0=r<I 0<r=<r|
0 0

(2.67)
For 1 <r <rq, we know from (2.46) that

_ 1 _
101 S . exp (/ 2SQ(S)dS> St
r
Then combining (2.62) and (2.67), we get

(A +r)721S(f)|

1 1
§(1+r)7% /f,oexp (/ZSst) stds AQ — /fAQexp </2sts) s*ds 0
0 0

+(1+r)2 /fpexp(/Zsts>s4ds AQ — /fAQexp(/Zsts>s4ds P
1 1

)

7

< sup (1+r)2|f|+r—3f|f|sfds5 sup (14 r2Lf].
1

0<r=<r; 0<r=<r

(2.68)
Similarly, for 0 <r <r, we also have

A+m720r8,S(HIS sup (1+m)2fI. (2.69)

0<r=<r;
We finally get (2.52) by (2.67), (2.68), and (2.69). O

We are now in the position to construct interior solutions for the equation (2.5).
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Proposition 2.7. Let 0 < ro < 1 and 0 < A < rqg. There exists a radial solution u to
1
A<I>—§A<I>+6d>2+y~V(<I>2)=O, 0<r<ry, (2.70)
with the form
o=0+10) (L)
gL AV
with [|Q1lly,, S 1.
A
Proof. Step 1. Application of the Banach fixed-point theorem. We look for & of the form
o= @+i0n (L)
e RAVVA
so that @ solves (2.70) on [0, ro]. Then,

H(Q1) =J[Q.A]Q1, O0=r=ry, 2.71)

where 7| = 72 > 1 such that Azrlz = rg « 1, and

JIO, 110 L ap-Lia A4 607 +ro.(Q?
s 1= 22 0 ) 01+ (Q1+r r(Ql))

For w € Y, we claim the following estimates:

sup (14r)>2J[0, Mw| <1, (2.72)
0<r=<r
and
sup (14 7)1J1Q, Mwi — J[Q, Mwa| S A r{llwi — wally, - 2.73)

0<r=<r;

If (2.72) and (2.73) hold, by k2r12 <« 1, the resolvent estimate (2.52), and the Banach fixed point
theorem, there exists a unique solution Q1 of (2.71) with [|Q1[|y,, S 1.
v

~

Step 2. Proof of estimates (2.72) and (2.73). For 0 <r=<n and w € Y,,, by the definition of the
space Y, in (2.51), we have |[Aw| S 1. Then, by [AQ| S 1, we get

(1+7)2J1Q, Alw| S 1, on [0, 1],

which concludes the proof of (2.72).
For 0 <r <ry and wy, w € Y,,, we have

A1 —w2)| S lwi —wally,» lwi + w2l S rdr(wi +w2) S 1.
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Then it follows that

rop[(wy +wo)(wy — wz)] = (wy — w)rdy(wi + wr) + (wy + wr)ro, (w; — wy)

S lwi —wal + [rdy (w1 — w2)| < [lwi — wally,, .
Hence,

(L+r)2J1Q, Mwi —J[Q, Mwa| S A1+ )2 Awi — wa)| + A1+ ) (wi + w2) (wi — wy)
+ 2%+ 7)2r 8, [(w1 4+ w2) (w1 — wy)]

SAA+r)[lwi = wally,, SA2rillwn —wally,
which concludes the proof of (2.73). O
2.4. The matching at r =rg

In this subsection, we prove Proposition 2.1 by matching the value of the exterior solution and
interior solution at r = r¢ up to the first-order derivative.

Proof of Proposition 2.1. The proof is divided into six steps.

Step 1. Initial setting. From (2.11), we have

cl sin(4 log(r) + c3)
= 5

uj +0(r7%) asr — 0, c1 #0

r2
then

—% sin(# log(r) +c¢3) + 4 008(4 log(r) + c3)

Auip=c +0(r7%) asr — 0.
r2
We choose 0 < rg < 1 such that
c ~1 c _1
1 3 1 2
ui(ro) =—5 +0(@ry %), Aui(ro)=——=5+0(r, *). (2.74)
re 2r2
0 0
Then, we choose € and A satisfying
1
0O<ekry, 0<i<ro. (2.75)

By Proposition 2.3, there exists an radial exterior solution ®¢x[£] satisfying

1
ADey — 5Aq>ext +6D2 4y -V(®2)=0, r>rp
with the form
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Dexile] = Py +cur + cw (2.76)

and

lwllx,, S er

Bl—

2.77)

By Proposition 2.7, there exists an radial interior solution ®;,[A] satisfying

1
Aip; — = APin +6®5, +y-V(®h) =0, 0<r<rg
with the form
1 - 4 r
Pinl21() = (0 +2'Q1) (3. 2.78)
with
HQilly, S1. (2.79)
A

Next, we need to match the values of ®ey with @, and @, with @  respectively at r = ro,
that is,

Dexi[e](r0) = Pin[A1(r0), Py [e1(ro) = @iy [A](r0).
Step 2. The matching of @y with iy at r = rg. We introduce the map
Flrol(e, 1) = Pext[e](r0) — Pint[A](r0).
We compute
s Flrol(e, A) = 0 Pexi[e](ro) = u1(ro) + w(ro) + £dsw(ro).
By (2.24) and (2.74), we have
3¢ F[rol(0,0) = uy (ro) # 0. (2.80)

For A — 0, from the asymptotic behavior of Q in (2.46) and the definition of the space Y, in
(2.51), combining (2.79), we have

(0 —®*+A4Q1)(%0)‘ <z (P ertaeni) (;—0)‘ =2 |:ro_% +m+ro>%].

Hence

. I - 4 ro\| _
lim |5(0 — . +5 Ql)(r)‘_o.

A—=04
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Combining ®,(r) = Al—2d>*(%), we have
F[ro](0,0) = @, (ro) — ®x(ro) =0. (2.81)

Combining (2.80) and (2.81), by the implicit function theorem, there exists 0 < Ao < rp and a
continuous function (1) defined on [0, Ag) such that £(0) =0 and

Flrol(e(A), 1) =0 for A € [0, Ag), (2.82)
ie.,
Bexe[e(M)](ro) = Pine[A](r0) for A € [0, 1o).

Step 3. Estimate of £(A). We claim that for A € [0, 1¢), there holds that

1
£() = W(Q ®,) ( ) +OGGER 40 7). (2.83)
In fact, since
Dexile(M)](ro) = Pine[A](ro) for A € [0, Ap),
i.e.,
1 - 4 )
e (r0) + e (w(ro) = = (0 = @, +24Q1) () for 2 €10.20).
By (2.75), we know that
eV < A2 (2.84)
Then by (2.11), (2.77) and (2.79), we have

e(Mw(ro)
u1(ro)

e(h) = ()(Q . +3t0n () -

1
— (0= 00 () + 066 1y .

which proves our claim.

Step 4. Computation of the spatial derivatives. We consider the difference of the spatial deriva-
tives at ro

Flrol(h) = Pex[e (M1 (r0) — Pine[A]'(r0), 4 € [0, A9).

We claim that F[rp](A) admits the following expansion

Firoim =14 |9V o[ VT i ey +0(x%ro‘%<ro‘%+x%>> s
2uy(ro)rg 2
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From (2.77) and (2.84), it follows that
1 _
leGw'(ro)| < 2.2 [w'(ro)| < Arg .

_1
From (2.79), we get )»2|Q’1(r7°)| < A%ro 2. By (2.83), we have
1 = T _ 3 -1
Flroln) = e(u (ro) — E(Q/ ) (%) +0 <)‘ (ro ! +A2r, 2))

— 1 o~ ro » s 1
=@ 0 ()i - 5@ - @ () 0 (3 (st + i )

A2 ro\ 3 3 u1(ro) (2.50)
@) e (B (2) @ e () 1)
uy(ro)ry "0
_1
+0 <x (r0‘4 +27r, 2)) .
Recalling (2.11) and (2.46), by simple calculations, one has
(Y71
unry = ST IBOH ) by g o,
r2
, —5¢; sm(‘flog(r) + c3) \/—clcos(flog(r) +C3) _3
uy(r)= 2) asr — O,
2r2 2r2
(Y11
O(r) — du(r) = cssin(y log(r) 2 0g(r)) + 03 asr — +oo,
r2
V7 Vi
_ -5 1 7 !
0'(r) — &.(r) = cs sin(5- og(r) Ves cos( 72 og(r)) LOGY asr - too.

2r 5 2rz
Then it follows from the above results that

7
2

OLIPEPSNGOW ui(ro)
(7) (Q— D) (7>u1(r0)—( ) (Q oY )( )T
= les Sin ﬁ(logro — log)\,) X ECOS ﬁ logro + c3 _ ésin ﬁ logro +C5
e 2 : 2 2 2
- les ﬁ cos ﬁ(log ro —logi) | — > sin ﬂ(log ro —logA)
g\ 2 2 2 2

7 _1
X sin (%log(ro) +C3) + 0 ()»; <r0—4 +A%r0 z))
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7 7 _1
= Clcsz\/_ sin (—élogk +C3) + 0 ()\% (ro—4 +A%ro 2>> .

2
2ry

Inserting the above identity into (2.86), we obtain (2.85). This proves our claim.
Step 5. The matching of @, with ®;  atr = rg. For 8y > 0 small enough, we define

ext

N exp (2(—kﬂ +c3— 30)) . exp (2(—k71 +c+ 50))
k,+ = y Ak — = .
i V7 NG
Since L lim Xg .+ =0, we know that there exists kg > 0 such that for k > ko, there holds
—+00

0< o <4 <Af— <+ < Agg 4+ < Agg,— < Ao.

For all k > kg, we have
7
sin (—% log Ak + + C3> = (—l)k sin(8p),

7
sin (—g log A + C3> = (= 1)** sin(s).

By (2.85), we obtain

2uy(ro)rg

1 7 1 3 _1
FlrolOus) =27 4 {i(—l)ka6 sin(8o) + O (kéi (ro‘ fa ))} :

Since . lim Ag + =0, and §y > 0 is small enough, there exists k1 > ko such that, for any k >k,
—+0o0
there holds

Flrol(re,+)Flrol(hx,-) < 0.

Due to that fact that the function A — F[rg](X) is continuous, then by the mean value theorem,
for any k > ki, there exists fi1; such that

Flrol(ur) =0, g € (hi,+, Ak, —)-
Combining (2.82), since 0 < iy < Ag, we have F[rol(e(itr), wx) = 0 and Flro]l(ux) =0, i.e.,
Dexile(2)]1(r0) = Pinc[k1(r0), Pexile ()] (r0) = Pincl ik’ (o).

We define w, := fig4n. For k > k1 and n € N, the functions

@, (r) = q)int[,uvn](r) forO<r< 0,
T @exde () forr > rg

are smooth radial solutions of (2.5).
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Step 6. The asymptotic behavior. Recall from (2.76) that

q)n - q)* + S(Mn)ul(r) + S(Mn)w(r)a r Z ro,

where 1iI_P e(un) =0.By (2.10), (2.11), and (2.24), we have
n——+0oo

5
sup 2 (rd, + D(lur| + [wl) + supr>(rd + D (|ur| + [w) S 1.

ro<r<l1 r>1

Combining (2.9) and (2.11), we have

sup (1 +r2)|(rd, + 1)(d, — D)

r=ro

_s
S e(pn) (SUP(VBr + D (lur] + [w]) + supr> (3, + D (lur | + |w|)> Selun)ry ?,

r=ro r>1
which implies

lim sup (1 +r%)|(rd, + 1)(®, — ;)| =0. (2.87)

n— OOrZrO

Thus, we complete the proof of (2.7).
For the interior part estimate, for 0 <r < rg, we know from (2.78) that

1 - 4 r
chZE(Q—i_MnQI) —,

n

where

sup (1+7)72(1Q1|+1rd, Q1) < 1.

0}
<r<l0
O=r=;-

For r < rg, we have

r r \?2 3 1
:M%(rar'i‘l)‘Ql<_>‘§Mi<l+_> ZMI%(Mn‘i‘r)z-
Mn MUn

n

1 - (r
e nfou- Lo (L)
=\

Then by 11111 wn =0, we get
n——+oo

=0, (2.88)

1 -
lim sup(rd, + 1) CD”__QQ( r )
W

n——+00 r<rg
which completes the proof of (2.6). O
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3. Self-similar blow-up solutions

We now give the proof of Theorem 1.1 for d = 3. As mentioned previously, the proof for
d €[4,9] is directly extendable.

Proof of Theorem 1.1. Recall from Proposition 2.1 that &, are smooth radially symmetric so-
lutions to equation (2.5). By &, = # for U, (s)szds, we have 6®,, + 2rd, P, = U,,. It is clear
that {U, },>1 are radially symmetric solutions of (1.5). By (2.87), we get

. 2 2
lim sup(l+47°) Un——2 =0.
r

n—>+%0r=ry

We know from (2.88) that

lim sup
n——+00 r<ro

1 r
Un_ _2Q<_)‘ :O.
Mn MUn

This completes the proof of (1.13) and (1.14).
For any 0 < T < +o0, take ug = T-1U, (T_%x). Since {Uy}n>1 are self-similar profiles
solving (1.5), the corresponding solution u blows up in finite time 7 with

(1) = ——U, (= G.1)
ulx,t) = . .
T—t "\JT —1t
Because the functions {U,},>1 are bounded, the blow-up is of type I.
We know from (2.76) that
1
U,(y)~ W, as |y| - +oo. 3.2)

Assume by contradiction that B(ug) # 0. But for any § > 0 and |x| > §, we have

1 X
li S =i U,
fmy e 0l = i |70 (7
which contradicts the assumption B(uq) # 0. Therefore, the blow-up point of the solution u(x, t)
must be the origin, i.e., B(ug) =0.
For any §; > 0, by (3.2), (3.3), parabolic regularity and the Arzela-Ascoli theorem, there exists
a function u* such that

< 400, 33
LOO(]R3) |x|2 82 ( )

lim u(x,t) — u*, VY|x| >4,
t—T

where |u*(x)| ~ # For p €[1, %), we get

81 81
lim [|u(r) —u*||?, oy = lim [ u(r, 1) —u*(r)|Pridr < | r272Pdr — 0, as §; — 0,
t—T LP(R3) t—T ~

0 0

31



V.T. Nguyen, Z.-A. Wang and K. Zhang Journal of Differential Equations 458 (2026) 114033

and (1.15) is proved. This completes the proof of Theorem 1.1. O
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