

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations 458 (2026) 114033

**Journal of
Differential
Equations**

www.elsevier.com/locate/jde

Infinitely many self-similar blow-up profiles for the Keller-Segel system in dimensions 3 to 9

Van Tien Nguyen ^a, Zhi-An Wang ^b, Kaiqiang Zhang ^{c,*}

^a Department of Mathematics, Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan

^b Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

^c School of Computer Science and Technology, Dongguan University of Technology, 523808, Dongguan, China

Received 17 August 2025; accepted 4 December 2025

Abstract

Based on the method of matched asymptotic expansions and Banach fixed point theorem, we rigorously construct infinitely many self-similar blow-up profiles for the parabolic-elliptic Keller-Segel system

$$\begin{cases} \partial_t u = \Delta u - \nabla \cdot (u \nabla \Phi_u), \\ 0 = \Delta \Phi_u + u, \\ u(\cdot, 0) = u_0 \geq 0 \end{cases} \quad \text{in } \mathbb{R}^d,$$

where $d \in \{3, \dots, 9\}$. Our findings demonstrate that the infinitely many backward self-similar profiles approximate the rescaling radial steady-state near the origin (i.e. $0 < |x| \ll 1$) and $\frac{2(d-2)}{|x|^2}$ at spatial infinity (i.e. $|x| \gg 1$). We also establish the convergence of the self-similar blow-up solutions as time tends to the blow-up time $T > 0$. Our results can give a refined description of backward self-similar profiles for all $|x| \geq 0$ rather than for $0 < |x| \ll 1$ or $|x| \gg 1$, indicating that the blow-up point is the origin and

$$u(x, t) \sim \frac{1}{|x|^2}, \quad x \neq 0, \text{ as } t \rightarrow T.$$

* Corresponding author.

E-mail addresses: vtnguyen@ntu.edu.tw (V.T. Nguyen), mawza@polyu.edu.hk (Z.-A. Wang), math.zhangkq@dgut.edu.cn (K. Zhang).

© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

MSC: 35B44; 35C06; 35K57; 35Q92

Keywords: Keller-Segel system; Type I blow-up; Blow-up profile; Matched asymptotic expansions

1. Introduction

This paper is concerned with the parabolic-elliptic Keller-Segel system

$$\begin{cases} \partial_t u = \Delta u - \nabla \cdot (u \nabla \Phi_u), & \text{in } \mathbb{R}^d, \\ 0 = \Delta \Phi_u + u, \end{cases} \quad (1.1)$$

equipped with an initial data $u(\cdot, 0) = u_0$, where $d \in \{3, \dots, 9\}$. The system (1.1) is the so-called minimal chemotaxis used to describe the chemotactic motion of mono-cellular organisms, where $u(x, t)$ represents the cell density and Φ_u stands for the concentration of the chemoattractant [36]. System (1.1) also models the self-gravitating matter in stellar dynamics in astrophysical fields [54]. This system has been extensively studied due to its rich biological and physical backgrounds and lot of interesting results have been obtained, e.g., see [6, 15, 19, 22, 33–35, 39, 52, 55] and references therein.

For any radial initial data $u_0 \in L^\infty(\mathbb{R}^d)$, there exists a maximal time of existence $T > 0$ such that (1.1) admits a unique smooth solution on $(0, T) \times \mathbb{R}^d$, see [27]. One may refer to [2, 3] for other local well-posedness spaces. Due to the quadratic nature of the convective term in (1.1), the solutions may blow up in finite time $T < +\infty$ in the sense that

$$\limsup_{t \rightarrow T} \|u(t)\|_{L^\infty(\mathbb{R}^d)} = +\infty.$$

If blow-up occurs, then it holds that

$$\|u(t)\|_{L^\infty(\mathbb{R}^d)} \geq (T - t)^{-1}, \quad 0 < t < T,$$

by a comparison principle. We say that the blow-up is of type I if

$$\limsup_{t \rightarrow T} (T - t) \|u(t)\|_{L^\infty(\mathbb{R}^d)} < \infty,$$

otherwise, the blow-up is of type II. The blow-up set $B(u_0)$ is defined by

$$B(u_0) := \{x_0 \in \mathbb{R}^d : |u(x_j, t_j)| \rightarrow \infty \text{ for some sequence } (x_j, t_j) \rightarrow (x_0, T)\},$$

and we call x_0 the blow-up point. Thanks to the divergence structure of (1.1), the total mass of the solution is conserved in the following sense:

$$M(u_0) := \int_{\mathbb{R}^d} u_0(x) dx = \int_{\mathbb{R}^d} u(x, t) dx, \quad 0 \leq t < T.$$

Problem (1.1) admits the following scaling invariance: for all $a \in \mathbb{R}^d$ and $\lambda > 0$, the function

$$u_{\lambda,a}(x, t) = \frac{1}{\lambda^2} u\left(\frac{x-a}{\lambda}, \frac{t}{\lambda^2}\right) \quad (1.2)$$

also solves (1.1). This scaling invariance gives rise to the notion of the mass-criticality in the sense that

$$\|u_{\lambda,a}\|_{L^1(\mathbb{R}^d)} = \lambda^{d-2} \|u\|_{L^1(\mathbb{R}^d)},$$

by which $d = 2$ is referred to as the mass critical case, while $d = 1$ and $d \geq 3$ the mass sub-critical and the mass super-critical cases, respectively.

The solution of (1.1) exists globally for $d = 1$ as proved in [13,44]. The critical mass threshold 8π acts as a sharp criterion separating the global existence from finite-time blow-up in the case of $d = 2$, see [5,7,13,14,23]. The 8π mass threshold implies that supposing

$$u_0 \geq 0, \quad (1 + x^2 + |\ln u_0|)u_0 \in L^1(\mathbb{R}^2),$$

the positive solution of (1.1) blows up in finite time for $M > 8\pi$ [37,49] and exists globally in time for $M < 8\pi$ [5,24]. If $M = 8\pi$, radial solutions exist globally in time [4] but infinite-time blow-up solutions with 8π mass may exist as constructed in [6,22,26]. For $M > 8\pi$, a refined finite time blow-up profile was obtained with the form

$$u(x, t) \sim \frac{1}{\lambda^2(t)} U\left(\frac{x}{\lambda(t)}\right), \quad \lambda(t) \sim \sqrt{T-t} e^{-\sqrt{\frac{|\log(T-t)|}{2}}}, \quad (1.3)$$

where $U(x) = \frac{8}{(1+|x|^2)^2}$ is a steady-state solution of (1.1), see [11,15,31,49,53]. The form (1.3) is the unique finite time blow-up behavior for radial non-negative solutions of (1.1) [42]. An interesting phenomenon that two steady-state solutions are simultaneously collapsing and colliding is recently constructed in [16]. It is remarkable that any blow-up solutions are of type II for $d = 2$, see [45,51].

For $d \geq 3$, we note that the system (1.1) is referred to as the L^1 -supercritical and $L^{d/2}$ -critical since the scaling transformation (1.2) preserves the $L^{d/2}$ -norm, i.e., $\|u_{\lambda,a}\|_{L^{d/2}(\mathbb{R}^d)} = \|u\|_{L^{d/2}(\mathbb{R}^d)}$. Initial data with small $L^{d/2}$ -norm lead to solutions that exist globally in time [20]. Subsequently, this result was improved in [12] by showing that if the $L^{d/2}$ -norm of initial data is less than a sharp constant derived from the Gagliardo-Nirenberg inequality, then the solution exists globally. Large initial data give rise to finite-time blow-up [12,20,44]. In contrast to dimension $d = 2$, the solutions of (1.1) with $d \geq 3$ may blow up in finite time for an arbitrary mass since $M(u_{\lambda,a}) = \lambda^{d-2} M(u)$.

Singularity formation of blow-up solutions to system (1.1) for $d \geq 3$ exhibits rich dynamical behavior. When the initial data are nonnegative and radially non-increasing, it was shown in [43] that all blow-up solutions of (1.1) are of type I for $d \in [3, 9]$. A family of type I self-similar blow-up solutions was obtained by the shooting method in [8,30,46]. Remarkably, it was shown in [27] that all radial and non-negative type I blow-up solutions are asymptotically backward self-similar near the origin as $t \rightarrow T$, which signifies the significance of backward self-similar profiles for understanding the structure of singularities. A new type I-log blow-up solution of

(1.1) in dimensions 3 and 4 was constructed in [47]. There are also type II blow-up solutions for $d \geq 3$ [10,17,29,41]. The authors of [17] showed the existence and radial stability of type II blow-up solutions, characterized by mass concentrating near a sphere that shrinks to a point. This pattern, known as collapsing-ring blow-up, also emerges in the nonlinear Schrödinger equation [25,40]. For $d \geq 11$, type II solutions concentrating at a steady-state solution are constructed in [41]. This paper is concerned with type I blow-up solutions.

Backward self-similar solutions of (1.1) are of the form

$$u(x, t) = \frac{1}{T-t} U(y), \quad y = \frac{x}{\sqrt{T-t}}, \quad (1.4)$$

where $U(y)$ is the backward self-similar profile satisfying

$$\Delta U - \frac{y \cdot \nabla U}{2} - U - \nabla \cdot (U \nabla \Phi_U) = 0, \quad \Delta \Phi_U + U = 0. \quad (1.5)$$

We denote $r = |y|$. In the radial case, for $d \geq 1$, there holds

$$\partial_r \Phi_U(r) = -\frac{1}{r^{d-1}} \int_0^r U(s) s^{d-1} ds.$$

Then the equation (1.5) can be written in the radial form

$$\partial_{rr} U + \frac{d-1}{r} \partial_r U - \frac{1}{2} r \partial_r U - U + U^2 + \left(\frac{1}{r^{d-1}} \int_0^r U(s) s^{d-1} ds \right) \partial_r U = 0. \quad (1.6)$$

There are four known classes of solutions of (1.6):

- For $d \geq 1$, the constant solutions

$$\bar{U}_0 = 0, \quad \bar{U}_1 = 1. \quad (1.7)$$

- For $d \geq 3$, the solution singular at the origin

$$\bar{U}_2 = \frac{2(d-2)}{r^2}. \quad (1.8)$$

- For $d \geq 3$, the explicit smooth positive solution [8]

$$\bar{U}_3 = \frac{4(d-2)(2d+r^2)}{(2(d-2)+r^2)^2}. \quad (1.9)$$

- For $d \in [3, 9]$, there exists a countable family of positive smooth radially symmetric solutions $\{\bar{U}_n\}_{n \geq 4}$ [8,30,46], where

$$\bar{U}_n \sim \frac{1}{r^2}, \quad \text{as } r \rightarrow +\infty. \quad (1.10)$$

With the shooting method, a family of radially symmetric solutions $\{\bar{U}_n\}_{n \geq 4}$ has been constructed in [30] for $d = 3$ and in [8,46] for $3 \leq d \leq 9$. For $d = 3$, it was shown in [28] that \bar{U}_3 is a stable self-similar profile based on the semigroup approach. Very recently, the non-radial stability of \bar{U}_3 was proved in [38]. For $d \geq 3$, it was proved in [19] that all the fundamental self-similar profiles $\{\bar{U}_n\}_{n \geq 3}$ are conditionally stable (of finite co-dimension).

Backward self-similar profiles of (1.1) (i.e. the solutions of (1.5)) are still not completely classified, even in the radial setting. Accurately describing the self-similar profiles is a crucial step in classifying all possible blow-up profiles for (1.1) (at least in the radial case).

This paper aims to construct more precise backward self-similar profiles by using different approaches. We recall some results below in connection with our work. For $d = 3$, the authors of [30] showed that there exists a sequence of self-similar profiles (i.e. solutions of (1.6)), denoted by $\{G_n(r)\}_{n \geq 1}$, which satisfy

$$G_n(r) \sim K_n \text{ as } r \rightarrow 0, \quad \lim_{r \rightarrow \infty} G_n(r) = \frac{A_n}{r^2},$$

where $K_n > 0$, A_n are constants, and $\lim_{n \rightarrow +\infty} K_n = \infty$. Subsequently, for $3 \leq d \leq 9$, it was shown in [8] that there exists a countable number of self-similar profiles $\{\tilde{G}_n\}_{n \geq 1}$ satisfying

$$\tilde{G}_n(r) \lesssim 1 \text{ as } r \rightarrow 0, \quad \lim_{r \rightarrow \infty} \tilde{G}_n(r) = \frac{c_n}{r^2}, \text{ for some constant } c_n \in (0, 2].$$

The works [8,30] discovered two essential common properties for the family of self-similar profiles for fixed n , that is they are bounded as $0 < r \ll 1$ and behave like $\frac{1}{r^2}$ as $r \gg 1$. In another work [46], for $3 \leq d \leq 9$, the authors proved that there exist a countable number of self-similar profiles $\{\tilde{G}_n(r)\}_{n \geq 1}$ which are bounded near the origin for every $n \geq 1$ and

$$\lim_{n \rightarrow \infty} \tilde{G}_n(0) = +\infty, \quad \lim_{n \rightarrow \infty} \tilde{G}_n(r) = \frac{2(d-2)}{r^2} \text{ for } r > 0. \quad (1.11)$$

The work [46] gave an asymptotic description of self-similar profiles as $n \rightarrow \infty$. For fixed $n \geq 1$, the self-similar profiles were precisely described only for $r \gg 1$ in [8,30], while the precise descriptions of self-similar profiles for $r > 0$ not large are unavailable. Recently, for $d \geq 3$, self-similar profiles of blow-up solutions to (1.1) were shown to behave like $\frac{1}{r^2}$ for $0 < r \ll 1$ for a certain class of radially non-increasing initial data in [1] by the zero number argument, answering an open question in [50]. In this paper, by using a different approach, namely the method of matched asymptotic expansions and the Banach fixed point theorem, we obtain a precise description of self-similar profiles $U_n(r)$ for all $r \in [0, \infty)$, as described in (1.16) below.

To state our result, we first present the asymptotic behavior of steady-state solution of (1.1). Let $Q(r)$ be the unique solution to

$$\begin{cases} \partial_{rr} Q + \frac{d-1}{r} \partial_r Q + Q^2 + \partial_r Q \frac{1}{r^{d-1}} \int_0^r Q(s) s^{d-1} ds = 0, \\ Q(0) = 1, \quad Q'(0) = 0. \end{cases} \quad (1.12)$$

It is clear that $Q(r)$ is a radial steady-state solution of (1.1) with $r = |x|$. It will be shown in Section 2 that the asymptotic behavior of Q is

$$Q(r) = \frac{2(d-2)}{r^2} + O(r^{-\frac{5}{2}}), \quad \text{as } r \rightarrow +\infty,$$

where $Q = 2d\bar{Q} + 2r\partial_r\bar{Q}$ and the asymptotic profile of \bar{Q} as $r \rightarrow \infty$ is given in (2.46). Our main results are stated as follows.

Theorem 1.1. *For $3 \leq d \leq 9$, there exist infinitely many smooth radially symmetric solutions $U_n(y)$ ($n \in \mathbb{N}$) to the self-similar equation (1.5). Moreover, there exists a sufficiently small constant $r_0 > 0$ independent of n such that the following results hold.*

1. (Profiles near the origin.) *There exists a sequence $\mu_n > 0$ with $\lim_{n \rightarrow +\infty} \mu_n = 0$ such that*

$$\lim_{n \rightarrow +\infty} \sup_{r \leq r_0} \left| U_n(r) - \frac{1}{\mu_n^2} Q\left(\frac{r}{\mu_n}\right) \right| = 0. \quad (1.13)$$

2. (Profiles away from the origin.) *As $r \geq r_0$, $U_n(r)$ satisfies*

$$\lim_{n \rightarrow +\infty} \sup_{r \geq r_0} (1+r^2) \left| U_n(r) - \frac{2(d-2)}{r^2} \right| = 0. \quad (1.14)$$

For any $0 < T < +\infty$, the solution of (1.1) with initial data $u_0 = \frac{1}{T} U_n(\frac{x}{\sqrt{T}})$ blows up at time T with

$$u(x, t) = \frac{1}{T-t} U_n\left(\frac{x}{\sqrt{T-t}}\right),$$

where the blow-up is of type I and $B(u_0) = 0$. Moreover, there exists a function $u^(x) \sim \frac{1}{|x|^2}$ such that $\lim_{t \rightarrow T} u(x, t) = u^*(x)$ for all $|x| > 0$ and*

$$\lim_{t \rightarrow T} \|u(\cdot, t) - u^*(\cdot)\|_{L^p(\mathbb{R}^d)} = 0, \quad \forall p \in [1, \frac{d}{2}]. \quad (1.15)$$

Remark 1.2. Based on the proof of Theorem 1.1, the profile of the solutions U_n of (1.5), as constructed in Theorem 1.1, can be more precisely described as follows. First, we define

$$\mathcal{U} = 2d\tilde{u}_1 + 2r\partial_r\tilde{u}_1$$

where $\tilde{u}_1 := u_1$ is a known function for $d = 3$ (see Lemma 2.2¹). Then there exist

$$0 < r_0 \ll 1, \quad 0 < \mu_n < r_0, \quad 0 < \varepsilon(\mu_n) \ll r_0^{\frac{1}{2}}$$

with $\lim_{n \rightarrow +\infty} \mu_n = 0$, $\lim_{n \rightarrow +\infty} \varepsilon(\mu_n) = 0$, and

¹ The definitions of \tilde{u}_1 for $d \in [4, 9]$ are obtained by the same process as in Lemma 2.2.

$$\tilde{\mathcal{U}} \in \tilde{X}_{r_0}, \quad \tilde{Q} \in \tilde{Y}_{\frac{r_0}{\mu_n}}$$

where the definitions of the spaces \tilde{X}_{r_0} , \tilde{Y}_r are given in (2.9) and (2.51) for $d = 3$, respectively,² such that

$$U_n(r) := \begin{cases} \left(\frac{Q}{\mu_n^2} + \mu_n^2 \tilde{Q}\right)\left(\frac{r}{\mu_n}\right) & \text{for } 0 \leq r \leq r_0, \\ \frac{2(d-2)}{r^2} + \varepsilon(\mu_n)(\mathcal{U} + \tilde{\mathcal{U}})(r) & \text{for } r > r_0, \end{cases} \quad (1.16)$$

solves (1.6).

By (1.16) we obtain a precise description of self-similar profiles $U_n(r)$ for all $r \in [0, \infty)$. In particular, we show that $U_n(r)$ behaves like the rescaled steady-state solutions $\frac{1}{\mu_n^2} Q\left(\frac{r}{\mu_n}\right)$ for $0 \leq r \ll 1$ and $U_n(r) \sim \frac{2(d-2)}{r^2}$ for $r \gg 1$. For $3 < d \leq 9$, we know from (1.16) that the profiles obtained in this paper are different from those in [8] since $2(d-2) > 2$, but have the same asymptotic properties as in (1.11) as $n \rightarrow \infty$. Whether the self-similar profiles constructed in [30,46] and in Theorem 1.1 are equivalent is an interesting open question.

For $d = 2$, the limiting spatial profile of radial blow-up solutions to (1.1) resembles a Dirac mass perturbed by a L^1 function, i.e.,

$$u(\cdot, t) \rightharpoonup 8\pi\delta_0 + f \text{ in } C_0(\mathbb{R}^2)^* \text{ as } t \rightarrow T, \quad (1.17)$$

where $0 \leq f \in L^1(\mathbb{R}^2)$, see [31,32]. In contrast, for $d \in [3, 9]$, as seen from (1.16), our result shows that there exist radial solutions of (1.1) that satisfy

$$u(x, t) \sim 1/|x|^2, \quad x \neq 0, \text{ as } t \rightarrow T,$$

which is quite different from the case $d = 2$ in (1.17).

Remark 1.3 (Finite codimensional radial stability). The stability of self-similar blow-up profiles constructed in [8,30] was established in [19,28]. Using the same ideas of [19], one can also show that the profiles constructed in Theorem 1.1 are stable along a set of radial initial data with finite Lipschitz codimension equal to the number of unstable eigenmodes. The non-radial stability of self-similar profiles is still an open problem as far as we know.

Organization of the paper. In Section 2, we first introduce a key transformation which converts (1.5) into a local elliptic equation in \mathbb{R}^{d+2} . Then using the method of matched asymptotic expansions, we rigorously derive a sequence of smooth self-similar profiles. In Section 3, we give a complete proof for Theorem 1.1.

² The definitions of the spaces \tilde{X}_{r_0} , \tilde{Y}_r for $d \in [4, 9]$ are similar by the same process of the proof for $d = 3$.

2. Construction of self-similar profiles

We start by introducing some notations.

Notation. We write $a \lesssim b$, if there exists $c > 0$ such that $a \leq cb$, and $a \sim b$ if simultaneously $a \lesssim b$ and $b \lesssim a$. If the inequality $|f| \leq C|g|$ holds for some constant $C > 0$, then we write $f = O(g)$.

2.1. Key results

Our main goal is to derive the radial self-similar profile $U(r) := U(|y|)$ which satisfies (1.6). To study the nonlocal equation (1.6), we introduce the following so-called reduced mass (cf. [8]),

$$\Phi(r) = \frac{1}{2r^d} \int_0^r U(s)s^{d-1}ds, \quad (2.1)$$

and transform (1.6) into a local equation for $\Phi(r)$ satisfying

$$\partial_{rr}\Phi + \frac{d+1}{r}\partial_r\Phi - \Phi - \frac{r\partial_r\Phi}{2} + 2d\Phi^2 + 2r\Phi\Phi_r = 0.$$

Clearly, $\Phi(r)$ is the radially symmetric solution of

$$\Delta\Phi - \frac{1}{2}\Lambda\Phi + 2d\Phi^2 + y \cdot \nabla(\Phi^2) = 0, \quad y \in \mathbb{R}^{d+2}, \quad (2.2)$$

with Λ being a differential operator defined by

$$\Lambda u := 2u + y \cdot \nabla u.$$

By (1.7), for $d \geq 1$, (2.2) admits constant solutions $\bar{\Phi}_0 = 0$, $\bar{\Phi}_1 = \frac{1}{2d}$. By (1.8) and (1.9), for $d \geq 3$, (2.2) admits explicit radial solutions

$$\bar{\Phi}_2 = \frac{1}{|y|^2}, \quad \bar{\Phi}_3 = \frac{2}{2(d-2) + |y|^2}. \quad (2.3)$$

From (1.10), for $d \in [3, 9]$, there exists a countable family of positive smooth radially symmetric solutions $\{\bar{\Phi}_n\}_{n \geq 4}$ of (2.2) such that

$$\bar{\Phi}_n \sim \frac{1}{|y|^2} \text{ as } |y| \rightarrow +\infty. \quad (2.4)$$

The main result of this paper, as stated in Theorem 1.1 along with Remark 1.2, consists of the construction of a class of more general solutions than those given in (2.3) and (2.4), which share some similar properties when $0 < |y| \ll 1$ or $|y| \gg 1$.

The rest of this paper is focused on the case $d = 3$ for the simplicity of presentation. The extension of the result to $d \in [4, 9]$ ³ is straightforward since the oscillating behavior of the radial steady-state profile $Q = 2d\bar{Q} + 2r\partial_r\bar{Q}$ for $d = 3$ (see (2.46) for the definition of \bar{Q}) also exists for $d \in [4, 9]$. As in [9, 18, 21], the matching of exterior solutions with interior solutions can be obtained by this oscillating behavior.

When $d = 3$, equation (2.2) is reduced to

$$\Delta\Phi - \frac{1}{2}\Lambda\Phi + 6\Phi^2 + y \cdot \nabla(\Phi^2) = 0, \quad y \in \mathbb{R}^5. \quad (2.5)$$

Applying the transformation (2.1), we then obtain the radially symmetric solution of (1.5) as follows

$$U = 6\Phi + 2r\partial_r\Phi.$$

We define

$$\Phi_* := \bar{\Phi}_2 = \frac{1}{r^2}, \quad \bar{Q}(r) = \frac{1}{2r^3} \int_0^r Q(s)s^2 ds,$$

where Q is given by (1.12).

The following is the key proposition of this paper, from which Theorem 1.1 directly follows.

Proposition 2.1. *There exist infinitely many smooth radially symmetric solutions Φ_n ($n \in \mathbb{N}$) to equation (2.5). Moreover, there exists a sufficiently small constant $r_0 > 0$ which is independent of n such that the following results hold.*

1. (Behavior near the origin.) *There exists a sequence $\mu_n > 0$ with $\lim_{n \rightarrow +\infty} \mu_n = 0$ such that*

$$\lim_{n \rightarrow +\infty} \sup_{r \leq r_0} \left| \Phi_n - \frac{1}{\mu_n^2} \bar{Q} \left(\frac{r}{\mu_n} \right) \right| = 0. \quad (2.6)$$

2. (Behavior away from the origin.) *As $r \geq r_0$, $\Phi_n(r)$ satisfies*

$$\lim_{n \rightarrow +\infty} \sup_{r \geq r_0} (1 + r^2) |\Phi_n - \Phi_*| = 0. \quad (2.7)$$

The remainder of this section is devoted to proving the above proposition.

2.2. Exterior profiles

The aim of this subsection is to construct a radial solution to (2.5) on $[r_0, +\infty)$, where $0 < r_0 < 1$. We are initially concerned with the asymptotic behavior of the fundamental solutions

³ This oscillating behavior exists when the differential equation $x^2 + (d+2)x + 4(d-1) = 0$ has complex roots, which holds in the case $d \in [3, 9]$.

for the equation $L(u) = 0$ on $(0, +\infty)$, where L is the linearized operator of (2.5) around Φ_* , defined as

$$L = -\Delta + \frac{1}{2}\Lambda - 2y \cdot \nabla(\Phi_*) - 12\Phi_*. \quad (2.8)$$

Given $0 < r_0 < 1$, we define X_{r_0} as the space of continuous functions on $[r_0, +\infty)$ such that the following norm is finite

$$\|w\|_{X_{r_0}} = \sup_{r_0 \leq r \leq 1} (r^{\frac{5}{2}}|w| + r^{\frac{7}{2}}|\partial_r w|) + \sup_{r \geq 1} (r^4|w| + r^5|\partial_r w|). \quad (2.9)$$

Lemma 2.2. *Let L be defined in (2.8). Then the following results hold.*

1. *The basis of the fundamental solutions: The equation*

$$L(u) = 0 \text{ on } (0, +\infty)$$

has two fundamental solutions u_i ($i = 1, 2$) with the following asymptotic behavior as $r \rightarrow \infty$:

$$u_1(r) = r^{-2}(1 + O(r^{-2})) \quad \text{and} \quad u_2(r) = r^{-5}e^{\frac{r^2}{4}}(1 + O(r^{-2})), \quad (2.10)$$

and as $r \rightarrow 0$:

$$u_1(r) = \frac{c_1 \sin(\frac{\sqrt{7}}{2} \log(r) + c_3)}{r^{\frac{5}{2}}} + O(r^{-\frac{1}{2}}) \quad \text{and} \quad u_2(r) = \frac{c_2 \sin(\frac{\sqrt{7}}{2} \log(r) + c_4)}{r^{\frac{5}{2}}} + O(r^{-\frac{1}{2}}), \quad (2.11)$$

where $c_1, c_2 \neq 0, c_3, c_4 \in \mathbb{R}$.

2. *The continuity of the resolvent: The inverse*

$$\tau(f) = \left(\int_r^{+\infty} f u_2 s^6 e^{-\frac{s^2}{4}} ds \right) u_1 - \left(\int_r^{+\infty} f u_1 s^6 e^{-\frac{s^2}{4}} ds \right) u_2 \quad (2.12)$$

satisfies $L(\tau(f)) = f$ and

$$\|\tau(f)\|_{X_{r_0}} \lesssim \int_{r_0}^1 |f| s^{\frac{7}{2}} ds + \sup_{r \geq 1} r^4 |f|. \quad (2.13)$$

Proof. Step 1. Basis of homogeneous solutions. We define the changing of variable

$$u(r) = \frac{1}{z^{\frac{\gamma}{2}}} \phi(z), \quad z = r^2, \quad (2.14)$$

where γ satisfies $-\gamma^2 + 5\gamma - 8 = 0$. From

$$\partial_r = 2r\partial_z, \quad \partial_{rr} = 4z\partial_{zz} + 2\partial_z, \quad r\partial_r = 2z\partial_z,$$

one has

$$\begin{aligned}
 L(u) &= (-4z\partial_{zz} - 2\partial_z - 8\partial_z + z\partial_z + 1 - 8\Phi_* - 4\Phi_*z\partial_z) \left(\frac{1}{z^{\frac{\gamma}{2}}} \phi(z) \right) \\
 &= \frac{1}{z^{\frac{\gamma}{2}}} \left\{ -4z\phi''(z) + (4\gamma - 14 + z)\phi'(z) + \left[1 - \frac{\gamma}{2} + \frac{1}{z}(-\gamma^2 + 5\gamma - 8) \right] \phi \right\} \\
 &= \frac{1}{z^{\frac{\gamma}{2}}} \left\{ -4z\phi''(z) + (4\gamma - 14 + z)\phi'(z) + (1 - \frac{\gamma}{2})\phi \right\}.
 \end{aligned}$$

Let $\phi(z) = v(\xi)$ and $\xi = \frac{z}{4}$. Then,

$$L(u) = -\frac{1}{z^{\frac{\gamma}{2}}} \left\{ \xi v''(\xi) + \left(-\gamma + \frac{7}{2} - \xi \right) v'(\xi) + \left(\frac{\gamma}{2} - 1 \right) v(\xi) \right\}.$$

Therefore, $L(u) = 0$ if and only if

$$\xi \frac{d^2 v}{d\xi^2} + (b - \xi) \frac{dv}{d\xi} - av = 0, \quad (2.15)$$

where

$$b = \frac{7}{2} - \gamma, \quad a = 1 - \frac{\gamma}{2}.$$

The equation (2.15) is known as the well studied Kummer's equation (see [48]). If the parameter a is not a negative integer (which holds in particular for our case), then the fundamental solutions to Kummer's equation consist of the Kummer function $M(a, b, \xi)$ and the Tricomi function $U(a, b, \xi)$. Therefore, $v(\xi)$ is a linear combination of the special functions $M(a, b, \xi)$ and $U(a, b, \xi)$, whose asymptotic profiles at infinity are given by

$$M(a, b, \xi) = \frac{\Gamma(b)}{\Gamma(a)} \xi^{a-b} e^\xi (1 + O(\xi^{-1})), \quad U(a, b, \xi) = \xi^{-a} (1 + O(\xi^{-1})) \text{ as } \xi \rightarrow +\infty. \quad (2.16)$$

Then by (2.14) and (2.16), one obtains (2.10).

For the behavior near the origin, we have

$$M(a, b, \xi) = 1 + O(\xi) \text{ as } \xi \rightarrow 0. \quad (2.17)$$

It is easy to check that the real part of b satisfies $\mathcal{R}(b) = 1$ ($b \neq 1$). Then it follows that

$$U(a, b, \xi) = \frac{\Gamma(b-1)}{\Gamma(a)} \xi^{1-b} + \frac{\Gamma(1-b)}{\Gamma(a-b+1)} + O(\xi) \text{ as } \xi \rightarrow 0. \quad (2.18)$$

Since the polynomial $\gamma^2 - 5\gamma + 8 = 0$ has complex roots $\gamma = \frac{5}{2} \pm \frac{\sqrt{7}i}{2}$, then combining (2.14), (2.17) and (2.18), one obtains (2.11).

Step 2. Estimate on the resolvent. The Wronskian $W := u'_1 u_2 - u'_2 u_1$ satisfies $W' = \left(\frac{r}{2} - \frac{6}{r} \right) W$,

and $W = \frac{C}{r^6} e^{\frac{r^2}{4}}$. We may assume $C = 1$ without loss of generality. Next, we solve $L(w) = f$. By the variation of constants, we obtain

$$w = \left(a_1 + \int_r^{+\infty} f u_2 s^6 e^{-\frac{s^2}{4}} ds \right) u_1 + \left(a_2 - \int_r^{+\infty} f u_1 s^6 e^{-\frac{s^2}{4}} ds \right) u_2, \quad a_1, a_2 \in \mathbb{R}.$$

Then, $\tau(f)$ satisfies $L(\tau(f)) = f$ by choosing $a_1 = a_2 = 0$ in the above.

Next, we estimate the asymptotic behavior of $\tau(f)$. For $r \geq 1$, we have

$$\begin{aligned} r^4 |\tau(f)| &= r^4 \left| \left(\int_r^{+\infty} f u_2 s^6 e^{-\frac{s^2}{4}} ds \right) u_1 - \left(\int_r^{+\infty} f u_1 s^6 e^{-\frac{s^2}{4}} ds \right) u_2 \right| \\ &\lesssim r^2 \left(\int_r^{+\infty} |f| s ds \right) + r^{-1} e^{\frac{r^2}{4}} \left(\int_r^{+\infty} |f| s^4 e^{-\frac{s^2}{4}} ds \right) \\ &\lesssim \sup_{r \geq 1} r^4 |f| \left\{ \left(\int_r^{+\infty} \frac{ds}{s^3} \right) r^2 + r^{-1} e^{\frac{r^2}{4}} \left(\int_r^{+\infty} e^{-\frac{s^2}{4}} ds \right) \right\} \\ &\lesssim \sup_{r \geq 1} r^4 |f|, \end{aligned} \tag{2.19}$$

and

$$\begin{aligned} r^5 |\partial_r \tau(f)| &= r^5 \left| \left(\int_r^{+\infty} f u_2 s^6 e^{-\frac{s^2}{4}} ds \right) \partial_r u_1 - \left(\int_r^{+\infty} f u_1 s^6 e^{-\frac{s^2}{4}} ds \right) \partial_r u_2 \right| \\ &\lesssim r^2 \left(\int_r^{+\infty} |f| s ds \right) + (r^{-1} + r) e^{\frac{r^2}{4}} \left(\int_r^{+\infty} |f| s^4 e^{-\frac{s^2}{4}} ds \right) \\ &\lesssim \sup_{r \geq 1} r^4 |f| \left\{ \left(\int_r^{+\infty} \frac{ds}{s^3} \right) r^2 + (r^{-1} + r) e^{\frac{r^2}{4}} \left(\int_r^{+\infty} e^{-\frac{s^2}{4}} ds \right) \right\} \\ &\lesssim \sup_{r \geq 1} r^4 |f|. \end{aligned} \tag{2.20}$$

For $r_0 \leq r \leq 1$, by (2.11) and (2.19), we have

$$\begin{aligned} r^{\frac{5}{2}} |\tau(f)| &\leq r^{\frac{5}{2}} \left| \left(\int_r^1 f u_2 s^6 e^{-\frac{s^2}{4}} ds \right) u_1 - \left(\int_r^1 f u_1 s^6 e^{-\frac{s^2}{4}} ds \right) u_2 \right| \\ &\quad + r^{\frac{5}{2}} \left| \left(\int_1^{+\infty} f u_2 s^6 e^{-\frac{s^2}{4}} ds \right) u_1 - \left(\int_1^{+\infty} f u_1 s^6 e^{-\frac{s^2}{4}} ds \right) u_2 \right| \end{aligned} \tag{2.21}$$

$$\lesssim \int_{r_0}^1 |f| s^{\frac{7}{2}} ds + \sup_{r \geq 1} r^4 |f|.$$

Similarly, for $r_0 \leq r \leq 1$, by (2.11), (2.20) and (2.21), we have

$$\begin{aligned}
r^{\frac{7}{2}} |\partial_r \tau(f)| &= r^{\frac{7}{2}} \left| \left(\int_r^{+\infty} f u_2 s^6 e^{-\frac{s^2}{4}} ds \right) \partial_r u_1 - \left(\int_r^{+\infty} f u_1 s^6 e^{-\frac{s^2}{4}} ds \right) \partial_r u_2 \right| \\
&\lesssim r^{\frac{7}{2}} \left| \left(\int_r^1 f u_2 s^6 e^{-\frac{s^2}{4}} ds \right) \partial_r u_1 - \left(\int_r^1 f u_1 s^6 e^{-\frac{s^2}{4}} ds \right) \partial_r u_2 \right| \\
&\quad + r^{\frac{5}{2}} \left| \left(\int_1^{+\infty} f u_2 s^6 e^{-\frac{s^2}{4}} ds \right) \partial_r u_1 - \left(\int_1^{+\infty} f u_1 s^6 e^{-\frac{s^2}{4}} ds \right) \partial_r u_2 \right| \\
&\lesssim \int_{r_0}^1 |f| s^{\frac{7}{2}} ds + \sup_{r \geq 1} r^4 |f|.
\end{aligned} \tag{2.22}$$

Then (2.13) is obtained by combining (2.19), (2.20), (2.21) and (2.22). \square

We construct outer solutions of the self-similar equation in the following.

Proposition 2.3. *Let $0 < r_0 \ll 1$. For any $0 < \varepsilon \ll r_0^{\frac{1}{2}}$, there exists a radial solution to*

$$\Delta \Phi - \frac{1}{2} \Lambda \Phi + 6\Phi^2 + y \cdot \nabla(\Phi^2) = 0, \quad \text{on } [r_0, +\infty) \tag{2.23}$$

with the form

$$\Phi = \Phi_* + \varepsilon u_1 + \varepsilon w,$$

with

$$\|w\|_{X_{r_0}} \lesssim \varepsilon r_0^{-\frac{1}{2}}, \quad w|_{\varepsilon=0} = 0, \quad \|\partial_\varepsilon w\|_{X_{r_0}} \lesssim r_0^{-\frac{1}{2}}. \tag{2.24}$$

Proof. Step 1. Fixed point argument. Let $\Phi = \Phi_* + \varepsilon v$ satisfy (2.23) for $r \geq r_0$. Then

$$L(v) = \varepsilon(y \cdot \nabla(v^2) + 6v^2).$$

We set $v = u_1 + w$. Since $L(u_1) = 0$, then w satisfies

$$L(w) = \varepsilon(y \cdot \nabla(u_1 + w)^2 + 6(u_1 + w)^2), \quad \forall r \geq r_0.$$

Next, we find the solution of

$$w = \varepsilon \tau(G[u_1]w), \quad (2.25)$$

where $\tau(f)$ is defined in (2.12) and

$$G[u_1]w = r\partial_r(u_1 + w)^2 + 6(u_1 + w)^2.$$

We claim the following estimates: if $\|w_i\|_{X_{r_0}} \lesssim 1$, $i = 1, 2$, then

$$\int_{r_0}^1 |G[u_1]w_i| s^{\frac{7}{2}} ds + \sup_{r \geq 1} r^4 |G[u_1]w_i| \lesssim r_0^{-\frac{1}{2}}, \quad i = 1, 2, \quad (2.26)$$

and

$$\int_{r_0}^1 |G[u_1]w_1 - G[u_1]w_2| s^{\frac{7}{2}} ds + \sup_{r \geq 1} r^4 |G[u_1]w_1 - G[u_1]w_2| \lesssim r_0^{-\frac{1}{2}} \|w_1 - w_2\|_{X_{r_0}}. \quad (2.27)$$

If $\varepsilon r_0^{-\frac{1}{2}} \ll 1$, and (2.26)-(2.27) hold, by the continuity estimate on the resolvent (2.13) and the Banach fixed theorem, there exists a unique solution to (2.25) with $\|w\|_{X_{r_0}} \lesssim \varepsilon r_0^{-\frac{1}{2}}$. We know from (2.25) that $w|_{\varepsilon=0} = 0$ and $\partial_\varepsilon w = \tau(G[u_1]w)$. Then by (2.13) and (2.26), we get

$$\|\partial_\varepsilon w\|_{X_{r_0}} = \|\tau(G[u_1]w)\|_{X_{r_0}} \lesssim r_0^{-\frac{1}{2}}.$$

Step 2. Proof of estimates (2.26) and (2.27). By (2.11) and the definition of X_{r_0} in (2.9), for $w \in X_{r_0}$ and $r_0 \leq r \leq 1$, we have

$$|w(r)| + |u_1(r)| + |r\partial_r(w + u_1)| \lesssim r^{-\frac{5}{2}}, \quad (2.28)$$

while for $r \geq 1$,

$$|w(r)| + |u_1(r)| + |r\partial_r(w + u_1)| \lesssim r^{-2}. \quad (2.29)$$

Next, we prove (2.26). For $r_0 \leq r \leq 1$, by (2.28), we have

$$\int_{r_0}^1 |G[u_1]w| s^{\frac{7}{2}} ds = \int_{r_0}^1 \left(|s\partial_s(u_1 + w)^2| + 6(u_1 + w)^2 \right) s^{\frac{7}{2}} ds \lesssim \int_{r_0}^1 s^{-\frac{3}{2}} ds \lesssim r_0^{-\frac{1}{2}}. \quad (2.30)$$

For $r \geq 1$, by (2.29), we have $|G[u_1]w| = r\partial_r(u_1 + w)^2 + 6(u_1 + w)^2 \lesssim r^{-4}$, and hence

$$\sup_{r \geq 1} r^4 |G[u_1]w| \lesssim 1. \quad (2.31)$$

We conclude the proof of (2.26) by (2.30) and (2.31).

Next, we prove (2.27). For $w_i \in X_{r_0}$ ($i = 1, 2$), we have

$$G[u_1]w_1 - G[u_1]w_2 = r\partial_r[(2u_1 + w_1 + w_2)(w_1 - w_2)] + 6(2u_1 + w_1 + w_2)(w_1 - w_2).$$

For $r \geq 1$, by (2.10) and the definition of X_{r_0} in (2.9), we get

$$|6(2u_1 + w_1 + w_2)(w_1 - w_2)| \lesssim |w_1 - w_2|, \quad (2.32)$$

and

$$(r\partial_r + 1)(2u_1 + w_1 + w_2) \lesssim 1. \quad (2.33)$$

By (2.33), we obtain

$$\begin{aligned} & r\partial_r[(2u_1 + w_1 + w_2)(w_1 - w_2)] \\ &= [r\partial_r(2u_1 + w_1 + w_2)](w_1 - w_2) + [r\partial_r(w_1 - w_2)](2u_1 + w_1 + w_2) \\ &\lesssim |w_1 - w_2| + r\partial_r|w_1 - w_2|. \end{aligned}$$

Then combining (2.32), we have

$$\begin{aligned} |G[u_1]w_1 - G[u_1]w_2| &\leq |6(2u_1 + w_1 + w_2)(w_1 - w_2)| + |r\partial_r[(2u_1 + w_1 + w_2)(w_1 - w_2)]| \\ &\lesssim r\partial_r|w_1 - w_2| + |w_1 - w_2|, \end{aligned}$$

and hence

$$\sup_{r \geq 1} r^4 |G[u_1]w_1 - G[u_1]w_2| \lesssim \|w_1 - w_2\|_{X_{r_0}}. \quad (2.34)$$

For $r_0 \leq r \leq 1$, we have

$$(r\partial_r + 1)|2u_1 + w_1 + w_2| \lesssim r^{-\frac{5}{2}},$$

and hence

$$\begin{aligned} & r\partial_r[(2u_1 + w_1 + w_2)(w_1 - w_2)] \\ &= [r\partial_r(2u_1 + w_1 + w_2)](w_1 - w_2) + [r\partial_r(w_1 - w_2)](2u_1 + w_1 + w_2) \\ &\lesssim r^{-\frac{5}{2}}(|w_1 - w_2| + r|\partial_r(w_1 - w_2)|). \end{aligned}$$

Then it follows that

$$\begin{aligned}
& \int_{r_0}^1 |G[u_1]w_1 - G[u_1]w_2| s^{\frac{7}{2}} ds \\
& \lesssim \int_{r_0}^1 \{ |s \partial_s[(2u_1 + w_1 + w_2)(w_1 - w_2)]| + 6|(2u_1 + w_1 + w_2)(w_1 - w_2)| \} s^{\frac{7}{2}} ds \\
& \lesssim \int_{r_0}^1 \left\{ s^{-\frac{5}{2}} (s |\partial_s(w_1 - w_2)| + |w_1 - w_2|) \right\} s^{\frac{7}{2}} ds \\
& \lesssim \sup_{r_0 \leq r \leq 1} (r^{\frac{5}{2}} |w_1 - w_2| + r^{\frac{7}{2}} |\partial_r(w_1 - w_2)|) \int_{r_0}^1 s^{-\frac{3}{2}} ds \lesssim r_0^{-\frac{1}{2}} \|w_1 - w_2\|_{X_{r_0}}.
\end{aligned} \tag{2.35}$$

Combining (2.34) and (2.35), this concludes the proof of (2.27). \square

2.3. Interior profiles

The purpose of this subsection is to construct a radial solution of (2.5) on $[0, r_0]$, where $0 < r_0 \ll 1$ is given in Proposition 2.3. We define

$$\bar{Q}(r) = \frac{1}{2r^3} \int_0^r Q(s) s^2 ds. \tag{2.36}$$

By (1.12), \bar{Q} satisfies

$$\begin{cases} \partial_{rr} \bar{Q} + \frac{4}{r} \partial_r \bar{Q} + 6\bar{Q}^2 + r \partial_r(\bar{Q}^2) = 0, \\ \bar{Q}(0) = \frac{1}{6}, \quad \bar{Q}'(0) = 0. \end{cases} \tag{2.37}$$

We define the linearized operators of (2.37) at Φ_* and \bar{Q} , respectively, by the following expressions:

$$H_\infty := -\partial_{rr} - \frac{4}{r} \partial_r - 12\Phi_* - 2r \partial_r(\Phi_* \cdot), \quad H := -\partial_{rr} - \frac{4}{r} \partial_r - 12\bar{Q} - 2r \partial_r(\bar{Q} \cdot). \tag{2.38}$$

We define Y as the space of continuous functions on $[1, +\infty)$ such that the following norm is finite

$$\|w\|_Y = \sup_{r \geq 1} (r^3 |w| + r^4 |\partial_r w|).$$

Lemma 2.4. *The equation*

$$H_\infty(\phi) = 0, \quad \text{on } (0, +\infty),$$

has two fundamental solutions

$$\phi_1 = \frac{\sin(\frac{\sqrt{7}}{2} \log(r))}{r^{\frac{5}{2}}}, \quad \phi_2 = \frac{\cos(\frac{\sqrt{7}}{2} \log(r))}{r^{\frac{5}{2}}}. \quad (2.39)$$

In addition, the inverse

$$\psi(f) = \phi_1 \int_r^{+\infty} f \phi_2 \frac{2s^6}{\sqrt{7}} ds - \phi_2 \int_r^{+\infty} f \phi_1 \frac{2s^6}{\sqrt{7}} ds \quad (2.40)$$

satisfies $H_\infty(\psi(f)) = f$ and

$$\|\psi(f)\|_Y \lesssim \sup_{r \geq 1} r^5 |f|. \quad (2.41)$$

Proof. Let $\phi = r^k$. Then by $\Phi_* = \frac{1}{r^2}$, we have

$$H_\infty(\phi) = -r^{k-2}(k^2 + 5k + 8).$$

Since the polynomial $k^2 + 5k + 8 = 0$ has two complex roots $k = \frac{-5 \pm \sqrt{7}i}{2}$, the equation $H_\infty(\phi) = 0$ admits two explicit fundamental solutions

$$\phi_1 = \frac{\sin(\frac{\sqrt{7}}{2} \log(r))}{r^{\frac{5}{2}}}, \quad \phi_2 = \frac{\cos(\frac{\sqrt{7}}{2} \log(r))}{r^{\frac{5}{2}}}, \quad (2.42)$$

and the corresponding Wronskian is given by $W(r) = \phi'_1 \phi_2 - \phi'_2 \phi_1 = \frac{\sqrt{7}}{2r^6}$. By the variation of constants, the solutions of equation $H_\infty(u) = f$ are given by

$$u = \left(a_{1,0} + \int_r^{+\infty} f \phi_2 \frac{2s^6}{\sqrt{7}} ds \right) \phi_1 + \left(a_{2,0} - \int_r^{+\infty} f \phi_1 \frac{2s^6}{\sqrt{7}} ds \right) \phi_2, \quad a_{1,0}, a_{2,0} \in \mathbb{R}. \quad (2.43)$$

Hence

$$\psi(f) = \phi_1 \int_r^{+\infty} f \phi_2 \frac{2s^6}{\sqrt{7}} ds - \phi_2 \int_r^{+\infty} f \phi_1 \frac{2s^6}{\sqrt{7}} ds$$

satisfies $H_\infty(\psi(f)) = f$ by choosing $a_{1,0} = a_{2,0} = 0$ in (2.43). For $r \geq 1$, from (2.42), we have

$$\begin{aligned} r^3 |\psi(f)| &= r^3 \left| \left(\int_r^{+\infty} f \phi_2 \frac{2s^6}{\sqrt{7}} ds \right) \phi_1 - \left(\int_r^{+\infty} f \phi_1 \frac{2s^6}{\sqrt{7}} ds \right) \phi_2 \right| \\ &\lesssim r^{\frac{1}{2}} \left(\int_r^{+\infty} |f| s^{\frac{7}{2}} ds \right) \lesssim \left(r^{\frac{1}{2}} \int_r^{+\infty} s^{-\frac{3}{2}} ds \right) \sup_{r \geq 1} r^5 |f| \lesssim \sup_{r \geq 1} r^5 |f|, \end{aligned} \quad (2.44)$$

and

$$\begin{aligned} r^4 |\partial_r \psi(f)| &= r^4 \left| \left(\int_r^{+\infty} f \phi_2 \frac{2s^6}{\sqrt{7}} ds \right) \partial_r \phi_1 - \left(\int_r^{+\infty} f \phi_1 \frac{2s^6}{\sqrt{7}} ds \right) \partial_r \phi_2 \right| \\ &\lesssim r^{\frac{1}{2}} \left(\int_r^{+\infty} |f| s^{\frac{7}{2}} ds \right) \lesssim \left(r^{\frac{1}{2}} \int_r^{+\infty} s^{-\frac{3}{2}} ds \right) \sup_{r \geq 1} r^5 |f| \lesssim \sup_{r \geq 1} r^5 |f|. \end{aligned} \quad (2.45)$$

We conclude the proof of (2.41) by (2.44) and (2.45). \square

Lemma 2.5. *The asymptotic profile of \bar{Q} as $r \rightarrow +\infty$ is*

$$\bar{Q}(r) = \Phi_* + \frac{c_5 \sin(\frac{\sqrt{7}}{2} \log(r))}{r^{\frac{5}{2}}} + O(r^{-3}), \quad (2.46)$$

where $0 < c_5 \ll 1$ is a constant.

Proof. Assume that

$$\bar{Q} = \Phi_* + \varepsilon v \quad (2.47)$$

solves (2.37) on $[1, \infty)$. Then v satisfies $H_\infty(v) = \varepsilon(6v^2 + r\partial_r v^2)$. Let $v = \phi_1 + w$, by $H_\infty(\phi_1) = 0$, we have $H_\infty(w) = \varepsilon(6(\phi_1 + w)^2 + r\partial_r(\phi_1 + w)^2)$. We define

$$G[\phi_1](w) = 6(\phi_1 + w)^2 + r\partial_r(\phi_1 + w)^2.$$

Next, we look for the solution of

$$w = \varepsilon \psi(G[\phi_1](w)), \quad (2.48)$$

where $\psi(f)$ is defined in (2.40). We claim that, if $w \in Y$, then

$$\sup_{r \geq 1} r^5 |G[\phi_1](w)| \lesssim 1, \quad (2.49)$$

and for $w_1, w_2 \in Y$, it holds that

$$\sup_{r \geq 1} r^5 |G[\phi_1](w_1) - G[\phi_1](w_2)| \lesssim \|w_1 - w_2\|_Y. \quad (2.50)$$

If the above claim holds, for $\varepsilon > 0$ small enough, by the resolvent estimate (2.41) and the Banach fixed point theorem, there exists a unique solution $w \in Y$ to (2.48) and hence we find a v for (2.47). Finally we get (2.46) by (2.47).

It remains to show estimates (2.49) and (2.50). By (2.39) and the definition of the space Y , for $r \geq 1$ and $w \in Y$, we have

$$\begin{aligned}
r^5 |G[\phi_1](w)| &= r^5 \{6(\phi_1 + w)^2 + r \partial_r(\phi_1 + w)^2\} \\
&\lesssim r^5 [(\phi_1 + w + 2r \partial_r(\phi_1 + w))(\phi_1 + w)] \\
&\lesssim r^5 (r^{-5} + r^{-6} + r^{-\frac{11}{2}}) \lesssim 1.
\end{aligned}$$

For $r \geq 1$ and $w_i \in Y$ ($i = 1, 2$), by (2.39) and the definition of the space Y , we get

$$|w_1 + w_2 + 2\phi_1| \lesssim r^{-\frac{5}{2}}, \quad |r \partial_r(w_1 + w_2 + 2\phi_1)| \lesssim r^{-\frac{5}{2}}.$$

Hence we have

$$\begin{aligned}
&|G[\phi_1](w_1) - G[\phi_1](w_2)| \\
&= |6(w_1 + w_2 + 2\phi_1)(w_1 - w_2) + r \partial_r[(w_1 + w_2 + 2\phi_1)(w_1 - w_2)]| \\
&\lesssim r^{-\frac{5}{2}} |w_1 - w_2| + |r \partial_r(w_1 + w_2 + 2\phi_1)| |w_1 - w_2| + |r \partial_r(w_1 - w_2)| |w_1 + w_2 + 2\phi_1| \\
&\lesssim r^{-\frac{5}{2}} (|w_1 - w_2| + |r \partial_r(w_1 - w_2)|),
\end{aligned}$$

and

$$\begin{aligned}
r^5 |G[\phi_1](w_1) - G[\phi_1](w_2)| &\lesssim r^5 (r^{-\frac{5}{2}} |w_1 - w_2| + r^{-\frac{5}{2}} |r \partial_r(w_1 - w_2)|) \\
&= r^{-\frac{1}{2}} (r^3 |w_1 - w_2| + r^4 |\partial_r(w_1 - w_2)|) \\
&\leq \|w_1 - w_2\|_Y.
\end{aligned}$$

This completes the proof of (2.49) and (2.50). \square

Let $r_1 \gg 1$. We define Y_{r_1} as the space of continuous functions on $[0, r_1]$ in which the following norm is finite:

$$\|w\|_{Y_{r_1}} = \sup_{0 \leq r \leq r_1} (1+r)^{-\frac{1}{2}} (|w| + |r \partial_r w|). \quad (2.51)$$

Lemma 2.6. *Let H be defined in (2.38). Then the following results hold.*

1. *The basis of the fundamental solutions: There holds*

$$H(\Lambda \bar{Q}) = 0, \quad H(\rho) = 0$$

with the following asymptotic behavior as $r \rightarrow +\infty$,

$$\Lambda \bar{Q} = \frac{c_6 \sin(\frac{\sqrt{7}}{2} \log(r))}{r^{\frac{5}{2}}} + O(r^{-3}), \quad \rho = \frac{c_7 \cos(\frac{\sqrt{7}}{2} \log(r))}{r^{\frac{5}{2}}} + O(r^{-3}),$$

where c_6 and c_7 are nonzero constants.

2. *The continuity of the resolvent: The inverse*

$$S(f) = \left(\int_0^r f \Lambda \bar{Q} \exp \left(\int 2s \bar{Q}(s) ds \right) s^4 ds \right) \rho - \left(\int_0^r f \rho \exp \left(\int 2s \bar{Q}(s) ds \right) s^4 ds \right) \Lambda \bar{Q},$$

satisfies $H(S(f)) = f$ and

$$\|S(f)\|_{Y_{r_1}} \lesssim \sup_{0 \leq r \leq r_1} (1+r)^2 |f|. \quad (2.52)$$

Proof. Step 1. Fundamental solutions. Let

$$\bar{Q}_\lambda(r) = \lambda^2 \bar{Q}(\lambda r), \quad \lambda > 0.$$

Then

$$\partial_{rr} \bar{Q}_\lambda + \frac{4}{r} \partial_r \bar{Q}_\lambda + 6 \bar{Q}_\lambda^2 + r \partial_r (\bar{Q}_\lambda^2) = 0, \quad \lambda > 0.$$

Differentiating the above equation with λ and evaluating at $\lambda = 1$ yields $H(\Lambda \bar{Q}) = 0$. Let ρ be another solution to $H(\rho) = 0$ which is linearly independent of $\Lambda \bar{Q}$. We claim that, all solutions of $H(\phi) = 0$ admit an expansion

$$\phi = a_{1,0} \phi_1 + a_{2,0} \phi_2 + O(r^{-3}), \quad \text{as } r \rightarrow +\infty, \quad (2.53)$$

where $a_{1,0}, a_{2,0} \in \mathbb{R}$ and ϕ_1, ϕ_2 are defined in (2.39).

We rewrite $H(\phi) = 0$ in the following form

$$H_\infty(\phi) = -\partial_{rr} \phi - \frac{4}{r} \partial_r \phi - 12 \Phi_* \phi - 2r \partial_r (\Phi_* \phi) = f, \quad (2.54)$$

where

$$f = f(\phi) = 12(\bar{Q} - \Phi_*)\phi + 2r \partial_r((\bar{Q} - \Phi_*)\phi).$$

Next, we look for the solution of equation (2.54). By (2.43), we shall find a solution in a form

$$\phi = a_{1,0} \phi_1 + a_{2,0} \phi_2 + \tilde{\phi}, \quad (2.55)$$

where

$$\tilde{\phi} = F(\tilde{\phi}) = \left(\int_r^{+\infty} f(\phi) \phi_2 \frac{2s^6}{\sqrt{7}} ds \right) \phi_1 - \left(\int_r^{+\infty} f(\phi) \phi_1 \frac{2s^6}{\sqrt{7}} ds \right) \phi_2 := F_1(\tilde{\phi}) - F_2(\tilde{\phi}).$$

It follows from (2.39) that

$$|r \partial_r(\phi_1 + \phi_2)| \lesssim r^{-\frac{5}{2}}. \quad (2.56)$$

Recall from (2.46) that

$$|\bar{Q} - \Phi_*| \lesssim r^{-\frac{5}{2}}, \quad |r\partial_r(\bar{Q} - \Phi_*)| \lesssim r^{-\frac{5}{2}}, \quad \text{for } r \geq 1. \quad (2.57)$$

For $r \geq 1$, by (2.56) and (2.57), we have

$$\begin{aligned} F_1(\tilde{\phi}) &\lesssim \left(\int_r^{+\infty} 12|\bar{Q} - \Phi_*| |a_{1,0}\phi_1 + a_{2,0}\phi_2 + \tilde{\phi}| \frac{2s^6|\phi_2|}{\sqrt{7}} ds \right) |\phi_1| \\ &\quad + \left(\int_r^{+\infty} 2|r\partial_r(\bar{Q} - \Phi_*)| |a_{1,0}\phi_1 + a_{2,0}\phi_2 + \tilde{\phi}| \frac{2s^6|\phi_2|}{\sqrt{7}} ds \right) |\phi_1| \\ &\quad + \left(\int_r^{+\infty} 2|\bar{Q} - \Phi_*| |r\partial_r(a_{1,0}\phi_1 + a_{2,0}\phi_2 + \tilde{\phi})| \frac{2s^6|\phi_2|}{\sqrt{7}} ds \right) |\phi_1| \\ &\lesssim r^{-\frac{5}{2}} \left(\int_r^{+\infty} s^{-\frac{3}{2}} + s|\tilde{\phi}| ds \right) + r^{-\frac{5}{2}} \left(\int_r^{+\infty} s|r\partial_r\tilde{\phi}| ds \right) \\ &\leq r^{-3} + r^{-\frac{5}{2}} \left(\int_r^{+\infty} s(|\tilde{\phi}| + |r\partial_r\tilde{\phi}|) ds \right). \end{aligned}$$

Similarly,

$$F_2(\tilde{\phi}) \lesssim r^{-3} + r^{-\frac{5}{2}} \left(\int_r^{+\infty} s(|\tilde{\phi}| + |r\partial_r\tilde{\phi}|) ds \right).$$

Hence

$$F(\tilde{\phi}) \lesssim r^{-3} + r^{-\frac{5}{2}} \left(\int_r^{+\infty} s(|\tilde{\phi}| + |r\partial_r\tilde{\phi}|) ds \right) \quad (2.58)$$

and

$$F(\tilde{\phi}_1) - F(\tilde{\phi}_2) \lesssim r^{-\frac{5}{2}} \left(\int_r^{+\infty} s(|\tilde{\phi}_1 - \tilde{\phi}_2| + |r\partial_r(\tilde{\phi}_1 - \tilde{\phi}_2)|) ds \right). \quad (2.59)$$

In the same manner, we have

$$r\partial_r F(\tilde{\phi}) \lesssim r^{-3} + r^{-\frac{5}{2}} \left(\int_r^{+\infty} s(|\tilde{\phi}| + |r\partial_r\tilde{\phi}|) ds \right), \quad (2.60)$$

and

$$r \partial_r (F(\tilde{\phi}_1) - F(\tilde{\phi}_2)) \leq r^{-\frac{5}{2}} \left(\int_r^{+\infty} s (|\tilde{\phi}_1 - \tilde{\phi}_2| + |r \partial_r (\tilde{\phi}_1 - \tilde{\phi}_2)|) ds \right). \quad (2.61)$$

For $R \gg 1$, we define Z as the space of continuous functions on $[R, +\infty)$ such that the following norm is finite

$$\|\phi\|_Z = \sup_{r \geq R} r^3 (|\phi| + |r \partial_r \phi|).$$

By (2.58)-(2.61) and the Banach fixed point theorem, there exists a unique solution $\tilde{\phi}$ that satisfies $F(\tilde{\phi}) = \tilde{\phi}$ with the bound $\|\tilde{\phi}\|_Z \lesssim 1$, and hence we find a solution ϕ in the form (2.55) that solves (2.54). This proves (2.53).

Since $H(\Lambda \bar{Q}) = H(\rho) = 0$, by (2.39), (2.46) and (2.53), we have

$$\Lambda \bar{Q} = \frac{c_6 \sin(\frac{\sqrt{5}}{2} \log(r))}{r^{\frac{5}{2}}} + O(r^{-3}), \quad \rho = \frac{c_7 \cos(\frac{\sqrt{5}}{2} \log(r))}{r^{\frac{5}{2}}} + O(r^{-3}), \quad r \rightarrow \infty, \quad (2.62)$$

where $c_6, c_7 \neq 0$.

Step 2. The estimate of the resolvent. We compute the Wronskian

$$W = \Lambda \bar{Q}' \rho - \Lambda \bar{Q} \rho', \quad W' = -\left(\frac{4}{r} + 2r \bar{Q}\right) W, \quad W = \frac{\exp(-\int 2r \bar{Q} dr)}{r^4}.$$

Take $R_0 > 0$ small enough. By the definition of W , we have $\frac{W}{(\Lambda \bar{Q})^2} = -\frac{d}{dr} \left(\frac{\rho}{\Lambda \bar{Q}} \right)$, then integrating over $[r, R_0]$ yields

$$\rho(r) = \Lambda \bar{Q}(r) \int_r^{R_0} \frac{\exp(-\int 2s \bar{Q} ds)}{s^4 (\Lambda \bar{Q})^2} ds + \frac{\Lambda \bar{Q}(r) \rho(R_0)}{\Lambda \bar{Q}(R_0)}. \quad (2.63)$$

By $\bar{Q}(0) = \frac{1}{6}$ and $\bar{Q}'(0) = 0$, we have

$$|\bar{Q}| + |r \partial_r \bar{Q}| \lesssim 1, \quad r \in [0, 1]. \quad (2.64)$$

Then by (2.63), one has

$$|\rho(r)| \lesssim \frac{1}{r^3}, \quad |\partial_r \rho(r)| \lesssim \frac{1}{r^4}, \quad \text{as } r \rightarrow 0. \quad (2.65)$$

If $H(w) = f$, then by the variation of constants, one obtains

$$w = \left(a_3 + \int_0^r \frac{f \Lambda \bar{Q}}{W} \right) \rho + \left(a_4 - \int_0^r \frac{f \rho}{W} \right) \Lambda \bar{Q}, \quad a_3, a_4 \in \mathbb{R}. \quad (2.66)$$

Hence,

$$S(f) = \rho \int_0^r \frac{f \Lambda \bar{Q}}{W} ds - \Lambda \bar{Q} \int_0^r \frac{f \rho}{W} ds$$

satisfies $H(S(f)) = f$ by choosing $a_3 = a_4 = 0$ in (2.66). For $0 \leq r \leq 1$, by (2.64) and (2.65), we get the estimate

$$\begin{aligned} & (1+r)^{-\frac{1}{2}} |S(f)| \\ &= (1+r)^{-\frac{1}{2}} \left| \left(\int_0^r f \Lambda \bar{Q} \exp \left(\int 2s \bar{Q} ds \right) s^4 ds \right) \rho - \left(\int_0^r f \rho \exp \left(\int 2s \bar{Q} ds \right) s^4 ds \right) \Lambda \bar{Q} \right| \\ &\lesssim \left(\frac{1}{r^3} \int_0^r s^4 ds + \int_0^r s ds \right) \sup_{0 \leq r \leq 1} |f| \lesssim \sup_{0 \leq r \leq r_1} (1+r)^2 |f|. \end{aligned} \tag{2.67}$$

For $1 \leq r \leq r_1$, we know from (2.46) that

$$|\bar{Q}(r)| \lesssim \frac{1}{r^2}, \quad \exp \left(\int 2s \bar{Q}(s) ds \right) \lesssim r^2.$$

Then combining (2.62) and (2.67), we get

$$\begin{aligned} & (1+r)^{-\frac{1}{2}} |S(f)| \\ &\lesssim (1+r)^{-\frac{1}{2}} \left| \left(\int_0^1 f \rho \exp \left(\int 2s \bar{Q} ds \right) s^4 ds \right) \Lambda \bar{Q} - \left(\int_0^1 f \Lambda \bar{Q} \exp \left(\int 2s \bar{Q} ds \right) s^4 ds \right) \rho \right| \\ &\quad + (1+r)^{-\frac{1}{2}} \left| \left(\int_1^r f \rho \exp \left(\int 2s \bar{Q} ds \right) s^4 ds \right) \Lambda \bar{Q} - \left(\int_1^r f \Lambda \bar{Q} \exp \left(\int 2s \bar{Q} ds \right) s^4 ds \right) \rho \right| \\ &\lesssim \sup_{0 \leq r \leq r_1} (1+r)^2 |f| + r^{-3} \int_1^r |f| s^{\frac{7}{2}} ds \lesssim \sup_{0 \leq r \leq r_1} (1+r)^2 |f|. \end{aligned} \tag{2.68}$$

Similarly, for $0 \leq r \leq r_1$, we also have

$$(1+r)^{-\frac{1}{2}} |r \partial_r S(f)| \lesssim \sup_{0 \leq r \leq r_1} (1+r)^2 |f|. \tag{2.69}$$

We finally get (2.52) by (2.67), (2.68), and (2.69). \square

We are now in the position to construct interior solutions for the equation (2.5).

Proposition 2.7. *Let $0 < r_0 \ll 1$ and $0 < \lambda \leq r_0$. There exists a radial solution u to*

$$\Delta\Phi - \frac{1}{2}\Lambda\Phi + 6\Phi^2 + y \cdot \nabla(\Phi^2) = 0, \quad 0 \leq r \leq r_0, \quad (2.70)$$

with the form

$$\Phi = \frac{1}{\lambda^2}(\bar{Q} + \lambda^4 Q_1)\left(\frac{r}{\lambda}\right)$$

with $\|Q_1\|_{Y_{\frac{r_0}{\lambda}}} \lesssim 1$.

Proof. Step 1. Application of the Banach fixed-point theorem. We look for Φ of the form

$$\Phi = \frac{1}{\lambda^2}(\bar{Q} + \lambda^4 Q_1)\left(\frac{r}{\lambda}\right),$$

so that Φ solves (2.70) on $[0, r_0]$. Then,

$$H(Q_1) = J[\bar{Q}, \lambda]Q_1, \quad 0 \leq r \leq r_1, \quad (2.71)$$

where $r_1 = \frac{r_0}{\lambda} \geq 1$ such that $\lambda^2 r_1^2 = r_0^2 \ll 1$, and

$$J[\bar{Q}, \lambda]Q_1 = -\frac{1}{2\lambda^2}\Lambda\bar{Q} - \frac{1}{2}\lambda^2\Lambda Q_1 + \lambda^4(6Q_1^2 + r\partial_r(Q_1^2)).$$

For $w \in Y_{r_1}$, we claim the following estimates:

$$\sup_{0 \leq r \leq r_1} (1+r)^2|J[\bar{Q}, \lambda]w| \lesssim 1, \quad (2.72)$$

and

$$\sup_{0 \leq r \leq r_1} (1+r)^2|J[\bar{Q}, \lambda]w_1 - J[\bar{Q}, \lambda]w_2| \lesssim \lambda^2 r_1^2 \|w_1 - w_2\|_{Y_{r_1}}. \quad (2.73)$$

If (2.72) and (2.73) hold, by $\lambda^2 r_1^2 \ll 1$, the resolvent estimate (2.52), and the Banach fixed point theorem, there exists a unique solution Q_1 of (2.71) with $\|Q_1\|_{Y_{\frac{r_0}{\lambda}}} \lesssim 1$.

Step 2. Proof of estimates (2.72) and (2.73). For $0 \leq r \leq r_1$ and $w \in Y_{r_1}$, by the definition of the space Y_{r_1} in (2.51), we have $|\Lambda w| \lesssim 1$. Then, by $|\Lambda \bar{Q}| \lesssim 1$, we get

$$(1+r)^2|J[\bar{Q}, \lambda]w| \lesssim 1, \quad \text{on } [0, r_1],$$

which concludes the proof of (2.72).

For $0 \leq r \leq r_1$ and $w_1, w_2 \in Y_{r_1}$, we have

$$|\Lambda(w_1 - w_2)| \lesssim \|w_1 - w_2\|_{Y_{r_1}}, \quad |w_1 + w_2| \lesssim r\partial_r(w_1 + w_2) \lesssim 1.$$

Then it follows that

$$\begin{aligned} r\partial_r[(w_1 + w_2)(w_1 - w_2)] &= (w_1 - w_2)r\partial_r(w_1 + w_2) + (w_1 + w_2)r\partial_r(w_1 - w_1) \\ &\lesssim |w_1 - w_2| + |r\partial_r(w_1 - w_2)| \leq ||w_1 - w_2||_{Y_{r_1}}. \end{aligned}$$

Hence,

$$\begin{aligned} (1+r)^2|J[\bar{Q}, \lambda]w_1 - J[\bar{Q}, \lambda]w_2| &\lesssim \lambda^2(1+r)^2|\Lambda(w_1 - w_2)| + \lambda^4(1+r)^2(w_1 + w_2)(w_1 - w_2) \\ &\quad + \lambda^4(1+r)^2r\partial_r[(w_1 + w_2)(w_1 - w_1)] \\ &\lesssim \lambda^2(1+r)^2||w_1 - w_2||_{Y_{r_1}} \lesssim \lambda^2r_1^2||w_1 - w_2||_{Y_{r_1}}, \end{aligned}$$

which concludes the proof of (2.73). \square

2.4. The matching at $r = r_0$

In this subsection, we prove Proposition 2.1 by matching the value of the exterior solution and interior solution at $r = r_0$ up to the first-order derivative.

Proof of Proposition 2.1. The proof is divided into six steps.

Step 1. Initial setting. From (2.11), we have

$$u_1 = \frac{c_1 \sin(\frac{\sqrt{7}}{2} \log(r) + c_3)}{r^{\frac{5}{2}}} + O(r^{-\frac{1}{2}}) \text{ as } r \rightarrow 0, \quad c_1 \neq 0$$

then

$$\Lambda u_1 = c_1 \frac{-\frac{1}{2} \sin(\frac{\sqrt{7}}{2} \log(r) + c_3) + \frac{\sqrt{7}}{2} \cos(\frac{\sqrt{7}}{2} \log(r) + c_3)}{r^{\frac{5}{2}}} + O(r^{-\frac{1}{2}}) \text{ as } r \rightarrow 0.$$

We choose $0 < r_0 \ll 1$ such that

$$u_1(r_0) = \frac{c_1}{r_0^{\frac{5}{2}}} + O(r_0^{-\frac{1}{2}}), \quad \Lambda u_1(r_0) = -\frac{c_1}{2r_0^{\frac{5}{2}}} + O(r_0^{-\frac{1}{2}}). \quad (2.74)$$

Then, we choose ε and λ satisfying

$$0 < \varepsilon \ll r_0^{\frac{1}{2}}, \quad 0 < \lambda \leq r_0. \quad (2.75)$$

By Proposition 2.3, there exists an radial exterior solution $\Phi_{\text{ext}}[\varepsilon]$ satisfying

$$\Delta \Phi_{\text{ext}} - \frac{1}{2} \Lambda \Phi_{\text{ext}} + 6\Phi_{\text{ext}}^2 + y \cdot \nabla(\Phi_{\text{ext}}^2) = 0, \quad r \geq r_0$$

with the form

$$\Phi_{\text{ext}}[\varepsilon] = \Phi_* + \varepsilon u_1 + \varepsilon w \quad (2.76)$$

and

$$\|w\|_{X_{r_0}} \lesssim \varepsilon r_0^{-\frac{1}{2}}. \quad (2.77)$$

By Proposition 2.7, there exists an radial interior solution $\Phi_{\text{int}}[\lambda]$ satisfying

$$\Delta \Phi_{\text{int}} - \frac{1}{2} \Lambda \Phi_{\text{int}} + 6\Phi_{\text{int}}^2 + y \cdot \nabla(\Phi_{\text{int}}^2) = 0, \quad 0 \leq r \leq r_0$$

with the form

$$\Phi_{\text{int}}[\lambda](r) = \frac{1}{\lambda^2} (\bar{Q} + \lambda^4 Q_1) \left(\frac{r}{\lambda} \right), \quad (2.78)$$

with

$$\|Q_1\|_{Y_{\frac{r_0}{\lambda}}} \lesssim 1. \quad (2.79)$$

Next, we need to match the values of Φ_{ext} with Φ_{int} , and Φ'_{ext} with Φ'_{int} respectively at $r = r_0$, that is,

$$\Phi_{\text{ext}}[\varepsilon](r_0) = \Phi_{\text{int}}[\lambda](r_0), \quad \Phi'_{\text{ext}}[\varepsilon](r_0) = \Phi'_{\text{int}}[\lambda](r_0).$$

Step 2. The matching of Φ_{ext} with Φ_{int} at $r = r_0$. We introduce the map

$$F[r_0](\varepsilon, \lambda) = \Phi_{\text{ext}}[\varepsilon](r_0) - \Phi_{\text{int}}[\lambda](r_0).$$

We compute

$$\partial_\varepsilon F[r_0](\varepsilon, \lambda) = \partial_\varepsilon \Phi_{\text{ext}}[\varepsilon](r_0) = u_1(r_0) + w(r_0) + \varepsilon \partial_\varepsilon w(r_0).$$

By (2.24) and (2.74), we have

$$\partial_\varepsilon F[r_0](0, 0) = u_1(r_0) \neq 0. \quad (2.80)$$

For $\lambda \rightarrow 0_+$, from the asymptotic behavior of \bar{Q} in (2.46) and the definition of the space Y_{r_1} in (2.51), combining (2.79), we have

$$\left| \frac{1}{\lambda^2} (\bar{Q} - \Phi_* + \lambda^4 Q_1) \left(\frac{r_0}{\lambda} \right) \right| \lesssim \left| \frac{1}{\lambda^2} \left(r^{-\frac{5}{2}} + \lambda^4 (1+r)^{\frac{1}{2}} \right) \left(\frac{r_0}{\lambda} \right) \right| = \lambda^{\frac{1}{2}} \left[r_0^{-\frac{5}{2}} + \lambda(\lambda + r_0)^{\frac{1}{2}} \right].$$

Hence

$$\lim_{\lambda \rightarrow 0_+} \left| \frac{1}{\lambda^2} (\bar{Q} - \Phi_* + \lambda^4 Q_1) \left(\frac{r_0}{\lambda} \right) \right| = 0.$$

Combining $\Phi_*(r) = \frac{1}{\lambda^2} \Phi_*(\frac{r}{\lambda})$, we have

$$F[r_0](0, 0) = \Phi_*(r_0) - \Phi_*(r_0) = 0. \quad (2.81)$$

Combining (2.80) and (2.81), by the implicit function theorem, there exists $0 < \lambda_0 \leq r_0$ and a continuous function $\varepsilon(\lambda)$ defined on $[0, \lambda_0]$ such that $\varepsilon(0) = 0$ and

$$F[r_0](\varepsilon(\lambda), \lambda) = 0 \text{ for } \lambda \in [0, \lambda_0], \quad (2.82)$$

i.e.,

$$\Phi_{\text{ext}}[\varepsilon(\lambda)](r_0) = \Phi_{\text{int}}[\lambda](r_0) \text{ for } \lambda \in [0, \lambda_0].$$

Step 3. Estimate of $\varepsilon(\lambda)$. We claim that for $\lambda \in [0, \lambda_0]$, there holds that

$$\varepsilon(\lambda) = \frac{1}{u_1(r_0)\lambda^2} (\bar{Q} - \Phi_*) \left(\frac{r_0}{\lambda} \right) + O(\lambda(\lambda^{\frac{1}{2}}r_0^3 + r_0^{-\frac{1}{2}})). \quad (2.83)$$

In fact, since

$$\Phi_{\text{ext}}[\varepsilon(\lambda)](r_0) = \Phi_{\text{int}}[\lambda](r_0) \text{ for } \lambda \in [0, \lambda_0],$$

i.e.,

$$\varepsilon(\lambda)u_1(r_0) + \varepsilon(\lambda)w(r_0) = \frac{1}{\lambda^2} (\bar{Q} - \Phi_* + \lambda^4 Q_1) \left(\frac{r_0}{\lambda} \right), \text{ for } \lambda \in [0, \lambda_0].$$

By (2.75), we know that

$$|\varepsilon(\lambda)| \lesssim \lambda^{\frac{1}{2}}. \quad (2.84)$$

Then by (2.11), (2.77) and (2.79), we have

$$\begin{aligned} \varepsilon(\lambda) &= \frac{1}{\lambda^2 u_1(r_0)} (\bar{Q} - \Phi_* + \lambda^4 Q_1) \left(\frac{r_0}{\lambda} \right) - \frac{\varepsilon(\lambda)w(r_0)}{u_1(r_0)} \\ &= \frac{1}{\lambda^2 u_1(r_0)} (\bar{Q} - \Phi_*) \left(\frac{r_0}{\lambda} \right) + O(\lambda(\lambda^{\frac{1}{2}}r_0^3 + r_0^{-\frac{1}{2}})), \end{aligned}$$

which proves our claim.

Step 4. Computation of the spatial derivatives. We consider the difference of the spatial derivatives at r_0

$$\mathcal{F}[r_0](\lambda) = \Phi_{\text{ext}}[\varepsilon(\lambda)]'(r_0) - \Phi_{\text{int}}[\lambda]'(r_0), \quad \lambda \in [0, \lambda_0].$$

We claim that $\mathcal{F}[r_0](\lambda)$ admits the following expansion

$$\mathcal{F}[r_0](\lambda) = \lambda^{\frac{1}{2}} \left\{ \frac{c_1 c_5 \sqrt{7}}{2u_1(r_0)r_0^6} \sin \left(-\frac{\sqrt{7}}{2} \log \lambda + c_3 \right) + O \left(\lambda^{\frac{1}{2}} r_0^{-\frac{1}{2}} \left(r_0^{-\frac{7}{2}} + \lambda^{\frac{3}{2}} \right) \right) \right\}. \quad (2.85)$$

From (2.77) and (2.84), it follows that

$$|\varepsilon(\lambda)w'(r_0)| \lesssim \lambda^{\frac{1}{2}}|w'(r_0)| \lesssim \lambda r_0^{-4}.$$

From (2.79), we get $\lambda^2|Q'_1(\frac{r_0}{\lambda})| \lesssim \lambda^{\frac{5}{2}}r_0^{-\frac{1}{2}}$. By (2.83), we have

$$\begin{aligned} \mathcal{F}[r_0](\lambda) &= \varepsilon(\lambda)u'_1(r_0) - \frac{1}{\lambda^3}(\bar{Q}' - \Phi'_*)(\frac{r_0}{\lambda}) + O\left(\lambda\left(r_0^{-4} + \lambda^{\frac{3}{2}}r_0^{-\frac{1}{2}}\right)\right) \\ &= \frac{1}{u_1(r_0)\lambda^2}(\bar{Q} - \Phi_*)(\frac{r_0}{\lambda})u'_1(r_0) - \frac{1}{\lambda^3}(\bar{Q}' - \Phi'_*)(\frac{r_0}{\lambda}) + O\left(\lambda\left(r_0^{-4} + \lambda^{\frac{3}{2}}r_0^{-\frac{1}{2}}\right)\right) \\ &= \frac{\lambda^{\frac{1}{2}}}{u_1(r_0)r_0^{\frac{5}{2}}}\left\{\left(\frac{r_0}{\lambda}\right)^{\frac{5}{2}}(\bar{Q} - \Phi_*)(\frac{r_0}{\lambda})u'_1(r_0) - \left(\frac{r_0}{\lambda}\right)^{\frac{7}{2}}(\bar{Q}' - \Phi'_*)(\frac{r_0}{\lambda})\frac{u_1(r_0)}{r_0}\right\} \\ &\quad + O\left(\lambda\left(r_0^{-4} + \lambda^{\frac{3}{2}}r_0^{-\frac{1}{2}}\right)\right). \end{aligned} \tag{2.86}$$

Recalling (2.11) and (2.46), by simple calculations, one has

$$\begin{aligned} u_1(r) &= \frac{c_1 \sin(\frac{\sqrt{7}}{2} \log(r) + c_3)}{r^{\frac{5}{2}}} + O(r^{-\frac{1}{2}}) \text{ as } r \rightarrow 0, \\ u'_1(r) &= \frac{-5c_1 \sin(\frac{\sqrt{7}}{2} \log(r) + c_3)}{2r^{\frac{7}{2}}} + \frac{\sqrt{7}c_1 \cos(\frac{\sqrt{7}}{2} \log(r) + c_3)}{2r^{\frac{7}{2}}} + O(r^{-\frac{3}{2}}) \text{ as } r \rightarrow 0, \\ \bar{Q}(r) - \Phi_*(r) &= \frac{c_5 \sin(\frac{\sqrt{7}}{2} \log(r))}{r^{\frac{5}{2}}} + O(r^{-3}) \text{ as } r \rightarrow +\infty, \\ \bar{Q}'(r) - \Phi'_*(r) &= \frac{-5c_5 \sin(\frac{\sqrt{7}}{2} \log(r))}{2r^{\frac{7}{2}}} + \frac{\sqrt{7}c_5 \cos(\frac{\sqrt{7}}{2} \log(r))}{2r^{\frac{7}{2}}} + O(r^{-4}) \text{ as } r \rightarrow +\infty. \end{aligned}$$

Then it follows from the above results that

$$\begin{aligned} &\left(\frac{r_0}{\lambda}\right)^{\frac{5}{2}}(\bar{Q} - \Phi_*)(\frac{r_0}{\lambda})u'_1(r_0) - \left(\frac{r_0}{\lambda}\right)^{\frac{7}{2}}(\bar{Q}' - \Phi'_*)(\frac{r_0}{\lambda})\frac{u_1(r_0)}{r_0} \\ &= \frac{c_1 c_5}{r_0^{\frac{7}{2}}} \sin\left(\frac{\sqrt{7}}{2}(\log r_0 - \log \lambda)\right) \times \left(\frac{\sqrt{7}}{2} \cos\left(\frac{\sqrt{7}}{2} \log r_0 + c_3\right) - \frac{5}{2} \sin\left(\frac{\sqrt{7}}{2} \log r_0 + c_5\right)\right) \\ &\quad - \frac{c_1 c_5}{r_0^{\frac{7}{2}}} \left(\frac{\sqrt{7}}{2} \cos\left(\frac{\sqrt{7}}{2}(\log r_0 - \log \lambda)\right) - \frac{5}{2} \sin\left(\frac{\sqrt{7}}{2}(\log r_0 - \log \lambda)\right)\right) \\ &\quad \times \sin\left(\frac{\sqrt{7}}{2} \log(r_0) + c_3\right) + O\left(\lambda^{\frac{1}{2}}\left(r_0^{-4} + \lambda^{\frac{3}{2}}r_0^{-\frac{1}{2}}\right)\right) \end{aligned}$$

$$= \frac{c_1 c_5 \sqrt{7}}{2r_0^{\frac{7}{2}}} \sin \left(-\frac{\sqrt{7}}{2} \log \lambda + c_3 \right) + O \left(\lambda^{\frac{1}{2}} \left(r_0^{-4} + \lambda^{\frac{3}{2}} r_0^{-\frac{1}{2}} \right) \right).$$

Inserting the above identity into (2.86), we obtain (2.85). This proves our claim.

Step 5. The matching of Φ'_{ext} with Φ'_{int} at $r = r_0$. For $\delta_0 > 0$ small enough, we define

$$\lambda_{k,+} = \exp \left(\frac{2(-k\pi + c_3 - \delta_0)}{\sqrt{7}} \right), \quad \lambda_{k,-} = \exp \left(\frac{2(-k\pi + c_3 + \delta_0)}{\sqrt{7}} \right).$$

Since $\lim_{k \rightarrow +\infty} \lambda_{k,\pm} = 0$, we know that there exists $k_0 > 0$ such that for $k \geq k_0$, there holds

$$0 < \dots < \lambda_{k,+} < \lambda_{k,-} < \dots < \lambda_{k_0,+} < \lambda_{k_0,-} \leq \lambda_0.$$

For all $k \geq k_0$, we have

$$\begin{aligned} \sin \left(-\frac{\sqrt{7}}{2} \log \lambda_{k,+} + c_3 \right) &= (-1)^k \sin(\delta_0), \\ \sin \left(-\frac{\sqrt{7}}{2} \log \lambda_{k,-} + c_3 \right) &= (-1)^{k+1} \sin(\delta_0). \end{aligned}$$

By (2.85), we obtain

$$\mathcal{F}[r_0](\lambda_{k,\pm}) = \lambda_{k,\pm}^{\frac{1}{2}} \left\{ \pm (-1)^k \frac{c_1 c_5 \sqrt{7}}{2u_1(r_0) r_0^6} \sin(\delta_0) + O \left(\lambda_{k,\pm}^{\frac{1}{2}} \left(r_0^{-4} + \lambda_{k,\pm}^{\frac{3}{2}} r_0^{-\frac{1}{2}} \right) \right) \right\}.$$

Since $\lim_{k \rightarrow +\infty} \lambda_{k,\pm} = 0$, and $\delta_0 > 0$ is small enough, there exists $k_1 \geq k_0$ such that, for any $k \geq k_1$, there holds

$$\mathcal{F}[r_0](\lambda_{k,+}) \mathcal{F}[r_0](\lambda_{k,-}) < 0.$$

Due to that fact that the function $\lambda \rightarrow \mathcal{F}[r_0](\lambda)$ is continuous, then by the mean value theorem, for any $k \geq k_1$, there exists $\bar{\mu}_k$ such that

$$\mathcal{F}[r_0](\bar{\mu}_k) = 0, \quad \bar{\mu}_k \in (\lambda_{k,+}, \lambda_{k,-}).$$

Combining (2.82), since $0 < \bar{\mu}_k < \lambda_0$, we have $F[r_0](\varepsilon(\bar{\mu}_k), \mu_k) = 0$ and $\mathcal{F}[r_0](\bar{\mu}_k) = 0$, i.e.,

$$\Phi_{\text{ext}}[\varepsilon(\bar{\mu}_k)](r_0) = \Phi_{\text{int}}[\bar{\mu}_k](r_0), \quad \Phi_{\text{ext}}[\varepsilon(\bar{\mu}_k)]'(r_0) = \Phi_{\text{int}}[\bar{\mu}_k]'(r_0).$$

We define $\mu_n := \bar{\mu}_{k+n}$. For $k \geq k_1$ and $n \in \mathbb{N}$, the functions

$$\Phi_n(r) := \begin{cases} \Phi_{\text{int}}[\mu_n](r) & \text{for } 0 \leq r \leq r_0, \\ \Phi_{\text{ext}}[\varepsilon(\mu_n)](r) & \text{for } r > r_0 \end{cases}$$

are smooth radial solutions of (2.5).

Step 6. The asymptotic behavior. Recall from (2.76) that

$$\Phi_n = \Phi_* + \varepsilon(\mu_n)u_1(r) + \varepsilon(\mu_n)w(r), \quad r \geq r_0,$$

where $\lim_{n \rightarrow +\infty} \varepsilon(\mu_n) = 0$. By (2.10), (2.11), and (2.24), we have

$$\sup_{r_0 \leq r \leq 1} r^{\frac{5}{2}}(r\partial_r + 1)(|u_1| + |w|) + \sup_{r \geq 1} r^2(r\partial_r + 1)(|u_1| + |w|) \lesssim 1.$$

Combining (2.9) and (2.11), we have

$$\begin{aligned} & \sup_{r \geq r_0} (1 + r^2) |(r\partial_r + 1)(\Phi_n - \Phi_*)| \\ & \lesssim \varepsilon(\mu_n) \left(\sup_{r \geq r_0} (r\partial_r + 1)(|u_1| + |w|) + \sup_{r \geq 1} r^2(r\partial_r + 1)(|u_1| + |w|) \right) \lesssim \varepsilon(\mu_n) r_0^{-\frac{5}{2}}, \end{aligned}$$

which implies

$$\lim_{n \rightarrow +\infty} \sup_{r \geq r_0} (1 + r^2) |(r\partial_r + 1)(\Phi_n - \Phi_*)| = 0. \quad (2.87)$$

Thus, we complete the proof of (2.7).

For the interior part estimate, for $0 \leq r \leq r_0$, we know from (2.78) that

$$\Phi_n = \frac{1}{\mu_n^2} (\bar{Q} + \mu_n^4 Q_1) \left(\frac{r}{\mu_n} \right),$$

where

$$\sup_{0 \leq r \leq \frac{r_0}{\mu_n}} (1 + r)^{-\frac{1}{2}} (|Q_1| + |r\partial_r Q_1|) \lesssim 1.$$

For $r \leq r_0$, we have

$$(r\partial_r + 1) \left| \Phi_n - \frac{1}{\mu_n^2} \bar{Q} \left(\frac{r}{\mu_n} \right) \right| = \mu_n^2 (r\partial_r + 1) \left| Q_1 \left(\frac{r}{\mu_n} \right) \right| \lesssim \mu_n^2 \left(1 + \frac{r}{\mu_n} \right)^{\frac{1}{2}} = \mu_n^{\frac{3}{2}} (\mu_n + r)^{\frac{1}{2}}.$$

Then by $\lim_{n \rightarrow +\infty} \mu_n = 0$, we get

$$\lim_{n \rightarrow +\infty} \sup_{r \leq r_0} (r\partial_r + 1) \left| \Phi_n - \frac{1}{\mu_n^2} \bar{Q} \left(\frac{r}{\mu_n} \right) \right| = 0, \quad (2.88)$$

which completes the proof of (2.6). \square

3. Self-similar blow-up solutions

We now give the proof of Theorem 1.1 for $d = 3$. As mentioned previously, the proof for $d \in [4, 9]$ is directly extendable.

Proof of Theorem 1.1. Recall from Proposition 2.1 that Φ_n are smooth radially symmetric solutions to equation (2.5). By $\Phi_n = \frac{1}{2r^3} \int_0^r U_n(s)s^2 ds$, we have $6\Phi_n + 2r\partial_r \Phi_n = U_n$. It is clear that $\{U_n\}_{n \geq 1}$ are radially symmetric solutions of (1.5). By (2.87), we get

$$\lim_{n \rightarrow +\infty} \sup_{r \geq r_0} (1 + r^2) \left| U_n - \frac{2}{r^2} \right| = 0.$$

We know from (2.88) that

$$\lim_{n \rightarrow +\infty} \sup_{r \leq r_0} \left| U_n - \frac{1}{\mu_n^2} Q\left(\frac{r}{\mu_n}\right) \right| = 0.$$

This completes the proof of (1.13) and (1.14).

For any $0 < T < +\infty$, take $u_0 = T^{-1}U_n\left(T^{-\frac{1}{2}}x\right)$. Since $\{U_n\}_{n \geq 1}$ are self-similar profiles solving (1.5), the corresponding solution u blows up in finite time T with

$$u(x, t) = \frac{1}{T-t} U_n\left(\frac{x}{\sqrt{T-t}}\right). \quad (3.1)$$

Because the functions $\{U_n\}_{n \geq 1}$ are bounded, the blow-up is of type I.

We know from (2.76) that

$$U_n(y) \sim \frac{1}{|y|^2}, \quad \text{as } |y| \rightarrow +\infty. \quad (3.2)$$

Assume by contradiction that $B(u_0) \neq 0$. But for any $\delta > 0$ and $|x| \geq \delta$, we have

$$\lim_{t \rightarrow T} \|u(x, t)\|_{L^\infty(\mathbb{R}^3)} = \lim_{t \rightarrow T} \left\| \frac{1}{T-t} U_n\left(\frac{x}{\sqrt{T-t}}\right) \right\|_{L^\infty(\mathbb{R}^3)} \lesssim \frac{1}{|x|^2} \leq \frac{1}{\delta^2} < +\infty, \quad (3.3)$$

which contradicts the assumption $B(u_0) \neq 0$. Therefore, the blow-up point of the solution $u(x, t)$ must be the origin, i.e., $B(u_0) = 0$.

For any $\delta_1 > 0$, by (3.2), (3.3), parabolic regularity and the Arzelà-Ascoli theorem, there exists a function u^* such that

$$\lim_{t \rightarrow T} u(x, t) \rightarrow u^*, \quad \forall |x| \geq \delta_1,$$

where $|u^*(x)| \sim \frac{1}{|x|^2}$. For $p \in [1, \frac{3}{2})$, we get

$$\lim_{t \rightarrow T} \|u(t) - u^*\|_{L^p(\mathbb{R}^3)}^p = \lim_{t \rightarrow T} \int_0^{\delta_1} |u(r, t) - u^*(r)|^p r^2 dr \lesssim \int_0^{\delta_1} r^{2-2p} dr \rightarrow 0, \quad \text{as } \delta_1 \rightarrow 0,$$

and (1.15) is proved. This completes the proof of Theorem 1.1. \square

Acknowledgment

The research of Z.A. Wang is partially supported by NSFC/RGC Joint Research Scheme (No. N_PolyU509/22). The research of V.T. Nguyen is supported by the National Science and Technology Council of Taiwan.

Data availability

No data was used for the research described in the article.

References

- [1] X. Bai, M. Zhou, On the blow-up profile of Keller–Segel–Patlak system, *Math. Ann.* 392 (2025) 313–337.
- [2] J. Bedrossian, N. Masmoudi, Existence, uniqueness and Lipschitz dependence for Patlak–Keller–Segel and Navier–Stokes in \mathbb{R}^2 with measure-valued initial data, *Arch. Ration. Mech. Anal.* 214 (3) (2014) 717–801.
- [3] P. Biler, Singularities of Solutions to Chemotaxis Systems, *De Gruyter Series in Mathematics and Life Sciences*, vol. 6, De Gruyter, Berlin, 2020.
- [4] P. Biler, G. Karch, P. Laurençot, T. Nadzieja, The 8π problem for radially symmetric solutions of a chemotaxis model in the plane, *Math. Methods Appl. Sci.* 29 (13) (2006) 1563–1583.
- [5] A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, *Electron. J. Differ. Equ.* 44 (2006) 1–32.
- [6] A. Blanchet, J.A. Carrillo, N. Masmoudi, Infinite time aggregation for the critical Patlak–Keller–Segel model in \mathbb{R}^2 , *Commun. Pure Appl. Math.* 61 (10) (2008) 1449–1481.
- [7] A. Blanchet, J.A. Carrillo, P. Laurençot, Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions, *Calc. Var. Partial Differ. Equ.* 35 (2) (2009) 133–168.
- [8] M.P. Brenner, P. Constantin, L.P. Kadanoff, A. Schenkel, S.C. Venkataramani, Diffusion, attraction and collapse, *Nonlinearity* 12 (4) (1999) 1071–1098.
- [9] C. Budd, J. Norbury, Semilinear elliptic equations and supercritical growth, *J. Differ. Equ.* 68 (2) (1987) 169–197.
- [10] F. Buseghin, J. Davila, M. del Pino, M. Musso, Finite-time blow-up for the three dimensional axially symmetric Keller–Segel system, *arXiv:2508.08103*, 2025.
- [11] F. Buseghin, J. Davila, M. del Pino, M. Musso, Existence of finite time blow-up in Keller–Segel system, *arXiv: 2312.01475*, 2023.
- [12] V. Calvez, L. Corrias, M.A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller–Segel model in high dimension, *Commun. Partial Differ. Equ.* 37 (4) (2012) 561–584.
- [13] S. Childress, J.K. Percus, Nonlinear aspects of chemotaxis, *Math. Biosci.* 56 (3–4) (1981) 217–237.
- [14] S. Childress, Chemotactic collapse in two dimensions, modelling of patterns, in: *Space and Time*, Heidelberg, 1983, in: *Lecture Notes in Biomath*, vol. 55, 1984, pp. 61–66.
- [15] C. Collot, T. Ghoul, N. Masmoudi, V.-T. Nguyen, Refined description and stability for singular solutions of the 2d Keller–Segel system, *Commun. Pure Appl. Math.* 75 (7) (2022) 1419–1516.
- [16] C. Collot, T. Ghoul, N. Masmoudi, V.-T. Nguyen, Singularity formed by the collision of two collapsing solitons in interaction for the 2D Keller–Segel system, *arXiv:2409.05363*, 2024.
- [17] C. Collot, T. Ghoul, N. Masmoudi, V.-T. Nguyen, Collapsing-ring blowup solutions for the Keller–Segel system in three dimensions and higher, *J. Funct. Anal.* 285 (7) (2023) 110065.
- [18] C. Collot, P. Raphaël, J. Szeftel, On the Stability of Type I Blow up for the Energy Super Critical Heat Equation, *Mem. Amer. Math. Soc.*, vol. 260, 2019, 1255, v+97.
- [19] C. Collot, K. Zhang, On the stability of Type I self-similar blowups for the Keller–Segel system in three dimensions and higher, *arXiv:2406.11358*, 2024.
- [20] L. Corrias, B. Perthame, H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, *Milan J. Math.* 72 (2004) 1–28.
- [21] E.N. Dancer, Z. Guo, J. Wei, Non-radial singular solutions of the Lane–Emden equation in \mathbb{R}^N , *Indiana Univ. Math. J.* 61 (5) (2012) 1971–1996.

- [22] J. Davila, M. del Pino, J. Dolbeault, M. Musso, J. Wei, Infinite time blow-up in the Patlak-Keller-Segel system: existence and stability, *Arch. Ration. Mech. Anal.* 248 (4) (2024) 61.
- [23] J.I. Diaz, T. Nagai, J.-M. Rakotoson, Symmetrization techniques on unbounded domains: application to a chemotaxis system on \mathbb{R}^N , *J. Differ. Equ.* 145 (1) (1998) 156–183.
- [24] J. Dolbeault, B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in \mathbb{R}^2 , *C. R. Math. Acad. Sci. Paris* 339 (9) (2004) 611–616.
- [25] G. Fibich, N. Gavish, X.-P. Wang, Singular ring solutions of critical and supercritical nonlinear Schrödinger equations, *Phys. D* 231 (1) (2007) 55–86.
- [26] T. Ghoul, N. Masmoudi, Minimal mass blowup solutions for the Patlak-Keller-Segel equation, *Commun. Pure Appl. Math.* 71 (10) (2018) 1957–2015.
- [27] Y. Giga, N. Mizoguchi, T. Senba, Asymptotic behavior of type I blowup solutions to a parabolic-elliptic system of drift-diffusion type, *Arch. Ration. Mech. Anal.* 201 (2) (2011) 549–573.
- [28] I. Glogić, B. Schörkhuber, Stable singularity formation for the Keller-Segel system in three dimensions, *Arch. Ration. Mech. Anal.* 248 (1) (2024) 4.
- [29] M.A. Herrero, E. Medina, J.J.L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, *Nonlinearity* 10 (6) (1997) 1739–1754.
- [30] M.A. Herrero, E. Medina, J.J.L. Velázquez, Self-similar blow-up for a reaction-diffusion system, *J. Comput. Appl. Math.* 97 (1–2) (1998) 99–119.
- [31] M.A. Herrero, J.J.L. Velázquez, Singularity patterns in a chemotaxis model, *Math. Ann.* 306 (3) (1996) 583–623.
- [32] M.A. Herrero, J.J.L. Velázquez, A blow-up mechanism for a chemotaxis model, *Ann. Sc. Norm. Super. Pisa, Cl. Sci.* 24 (4) (1997) 633–683.
- [33] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, *Jahresber. Dtsch. Math.-Ver.* 105 (3) (2003) 103–165.
- [34] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, *Jahresber. Dtsch. Math.-Ver.* 106 (2) (2004) 51–69.
- [35] Q. Hou, C. Liu, Y. Wang, Z.-A. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one-dimensional case, *SIAM J. Math. Anal.* 50 (3) (2018) 3058–3091.
- [36] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, *J. Theor. Biol.* 26 (3) (1970) 399–415.
- [37] M. Kurokiba, T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, *Differ. Integral Equ.* 16 (4) (2003) 427–452.
- [38] Z. Li, T. Zhou, Nonradial stability of self-similar blowup to Keller-Segel equation in three dimensions, arXiv: 2501.07073, 2025.
- [39] A. Mellet, Hele-Shaw flow as a singular limit of a Keller-Segel system with nonlinear diffusion, *Calc. Var. Partial Differ. Equ.* 63 (8) (2024) 214.
- [40] F. Merle, P. Raphaël, J. Szeftel, On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation, *Duke Math. J.* 163 (2) (2014) 369–431.
- [41] N. Mizoguchi, T. Senba, Type II blowup solutions to a parabolic-elliptic system, *Adv. Math. Sci. Appl.* 17 (2) (2007) 505–545.
- [42] N. Mizoguchi, Refined asymptotic behavior of blowup solutions to a simplified chemotaxis system, *Commun. Pure Appl. Math.* 75 (8) (2022) 1870–1886.
- [43] N. Mizoguchi, T. Senba, A sufficient condition for type I blowup in a parabolic-elliptic system, *J. Differ. Equ.* 250 (1) (2011) 182–203.
- [44] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, *Adv. Math. Sci. Appl.* 5 (2) (1995) 581–601.
- [45] Y. Naito, T. Suzuki, Self-similarity in chemotaxis systems, *Colloq. Math.* 111 (1) (2008) 11–34.
- [46] Y. Naito, T. Senba, Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains, *Discrete Contin. Dyn. Syst.* 32 (10) (2012) 3691–3713.
- [47] V.-T. Nguyen, N. Nouaili, H. Zaag, Construction of type I-Log blowup for the Keller-Segel system in dimensions 3 and 4, *Ann. PDE.* 12 (11) (2025).
- [48] F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, *NIST Handbook of Mathematical Functions*, Cambridge University Press, 2010.
- [49] P. Raphael, R. Schwetzer, On the stability of critical chemotactic aggregation, *Math. Ann.* 359 (1–2) (2014) 267–377.
- [50] P. Souplet, M. Winkler, Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions $n \geq 3$, *Commun. Math. Phys.* 367 (2) (2019) 665–681.
- [51] T. Suzuki, T. Senba, *Applied Analysis*, second edition, Imp. Coll. Press, London, 2011, World Sci. Publ., Hackensack, NJ, 2011.

- [52] Y. Tao, Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, *Math. Models Methods Appl. Sci.* 23 (1) (2013) 1–36.
- [53] J.J.L. Velázquez, Stability of some mechanisms of chemotactic aggregation, *SIAM J. Appl. Math.* 62 (5) (2002) 1581–1633.
- [54] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, *Arch. Ration. Mech. Anal.* 119 (4) (1992) 355–391.
- [55] M. Winkler, How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases, *Math. Ann.* 373 (2019) 1237–1282.