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Abstract
Predator-mediated apparent competition is an indirect negative interaction between
two prey species mediated by a shared predator, which can lead to changes in popula-
tion dynamics, competition outcomes and community structures. This paper is devoted
to investigating the effects and biological consequences of the predator-mediated
apparent competition based on a two prey species (one is native and the other is
invasive) and one predator model with Holling type I and II functional responses.
Through the analytical results and case studies alongside numerical simulations, we
find that the initial mass of the invasive prey species, capture rates of prey species, and
the predator mortality rate are all important factors determining the success/failure of
invasions and the species coexistence/extinction. The global dynamics can be com-
pletely classified for the Holling type I functional response, but can only be partially
determined for the Holling type II functional response. For the Holling type I func-
tional response, we find that whether the invasive prey species can successfully invade
to induce the predator-mediated apparent competition is entirely determined by the
capture rates of prey species. For the Holling type II functional response, the dynamics
are more complicated. First, if two prey species have the same ecological characteris-
tics, then the initial mass of the invasive prey species is the key factor determining the
success/failure of the invasion and hence the effect of the predator-mediated apparent
competition.Whereas if two prey species have different ecological characteristics, say
different capture rates, then the success of the invasion no longer depends on the initial
mass of the invasive prey species, but on the capture rates. In all cases, if the invasion
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succeeds, then the predator-mediated apparent competition’s effectiveness essentially
depends on the predator mortality rate. Precisely we show that the native prey species
will die out (resp. persist) if the predator has a low (resp. moderate) mortality rate,
while the predator will go extinct if it has a large mortality rate. Our study reveals that
predator-mediated apparent competition is a complicated ecological process, and its
effects and biological consequences depend upon many possible factors.

Keywords Apparent competition · Invasion · Functional response · Global stability ·
Coexistence and extinction

Mathematics Subject Classification 34D05 · 34D23 · 92-10 · 92D25

1 Introduction

Predation is a primary determinant of the structure and function of ecological systems
for maintaining biological diversity and balance (cf. Holt and Polis 1997; Schmitz
2007). This sounds like a paradoxical statement, as predators kill and consume prey,
therefore seeming to cause death, not life. Indeed by doing so, predatorsmay keep other
species (like damaging pests) in check and ensure that a multitude of species occupy-
ing a variety of environmental niches can survive and thrive. For instance, without the
regulation of predators, prey populations may reproduce beyond the carrying capac-
ity of their environments, decimating the populations of smaller animals, plants, and
coral reefs. As these species decline, additional organisms that rely on their presence
will also decline, resulting in a domino effect that can ultimately push populations and
habitats beyond the threshold of recovery. Predators can impact the ecosystem in enor-
mously different ways, and hence gaining a comprehensive understanding of the role
of predators in ecosystems is a daunting task. Nevertheless, theoretical models along-
side analysis can play an important part in interpreting observed patterns/phenomena
and making qualitative predictions, and in particular could pinpoint which processes,
interactions, or parameter values are responsible for observed behaviors. Competition
occurs at the same trophic level, while predation happens between different trophic lev-
els. Though competition and predation can be intertwined directly or indirectly, these
two ecological processes are often investigated separately in the existing research.

For the modeling of direct interspecific competition, the population growth rate of
each species is described by a first-order differential equation

d Ni

dt
= Fi (N1, N2, . . . , Ni , . . .) .

The species i and j are competing if ∂ Fi
∂ N j

,
∂ Fj
∂ Ni

< 0 at equilibrium (cf.May 2001). Indi-
rect interactions between two organisms are mediated or transmitted by a third one. In
particular, there is a special indirect negative interaction, called “apparent competition”
(cf. Holt 1977; Holt and Bonsall 2017), that happens between victim species mediated
through the action of one or more species of shared natural enemies (e.g., predators,
herbivores, omnivores, parasitoids, and pathogens). The apparent competition is usu-
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Fig. 1 Apparent competition between krill and copepods mediated by capelin in the Barents sea. The arrow
width is approximately proportional to the strength of the effect size. Bottom-up effects are shown in red,
and top-down in blue. (cf. (Stige et al. 2018, Fig. 1))

ally denoted by (−,−), which means a reciprocal negative interaction between each
pair of victim species in the presence of a shared natural enemy. Moreover, there are
also other types of enemy-mediated indirect interactions, including apparent mutual-
ism (+,+), apparent predation (+,−), apparent commensalism (+, 0) and apparent
amensalism (−, 0) (cf. Chailleux et al. 2014; Chaneton and Bonsall 2000; Holt and
Bonsall 2017 and references therein).

In the predator-prey system with one predator and one prey, the specialist predator
cannot generally take the prey to extinction as the predators usually starve to death
before they can find the last prey. However, if fueled by a secondary prey species, the
predator may take the native prey species to a lower level. This process is called the
predator-mediated apparent competition introduced by Holt (1977) where a species
indirectly and negatively affects another species that shares the same predator by
influencing predator abundance of biomass. Hereafter, we shall refer this secondary
prey species as an invasive prey species for convenience. It has long been recognized
as a widespread phenomenon observed inmany ecological communities (cf. Chaneton
and Bonsall 2000; DeCesare et al. 2010). In the experiment of Karban et al. (1994),
releases ofWillamettemites alone, or releases of predatorymites alone, failed to reduce
populations of the damaging Pacific spider mite. However, when both herbivorous
Willamette mites and predatory mites were released together, populations of Pacific
mites were reduced. In Stige et al. (2018), apparent competition between krill and
copepods mediated by capelin in the Barents Sea (see a schematic representation in
Fig. 1) was employed to advocate that a krill invasion could affect copepod biomass
negatively and result in the decrease of copepod biomass. This process involves both
bottom-up and top-down effects, where the bottom-up effect influences communities
from lower to higher trophic levels of the food web, and the top-down effect is vice
versa. However, apparent competition may be difficult to detect or measure due to
its indirect nature and the potential for concurrent exploitative competition or other
community effects Stige et al. (2018).

It was pointed out in Holt and Bonsall (2017) that the idea that species can engage
in apparent competition by sharing a predator has a venerable history in ecology (cf.
Williamson 1957 and (Lotka 1925, pp. 94-95)). The mathematical model describing
predator-mediated apparent competition was first introduced by Holt Holt (1977), and
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can be written as the following general form for a single predator species feeding on
multiple prey (see also Holt and Bonsall 2017):

{
dui
dt = Fi (�u, w) = ui

[
gi (ui ) − fi (�u)w

]
,

dw
dt = G(�u, w) = wF(�u),

(1.1)

where w and ui are densities of the predator and prey species i , the arrow over u
denotes a vector of prey abundances, Fi is the total growth rate of prey species i and G
is the growth rate of the predator. In the first equation of (1.1), gi (ui ) is the inherent per
capita growth rate of the prey i in the absence of the predator, fi (�u) is the functional
response of the predator to prey species i and the quantity fi (�u)w is the per capita
rate of mortality from predation experienced by prey species i . The right-hand side of
the second equation of (1.1) states that the per capita growth rate F(�u) of the predator
depends on prey availability. Focusing on the predator-mediated apparent competition
(i.e., indirect interaction), it is assumed in (1.1) that direct interspecific competition
among prey species is negligible.

Though the importance of the predator-mediated apparent competition has been
extensively discussed in the biological literature (see Chaneton and Bonsall 2000;
Stige et al. 2018; Karban et al. 1994; DeCesare et al. 2010 and references therein),
mathematical studies on this topic are much less numerous than those for the classi-
cal predator-prey or direct competition systems (e.g. see Robert 2003; Cosner 2014;
Kang and Wedekin 2013; Murdoch et al. 2013; Ni 2011; Ryan and Cantrell 2015;
Sapoukhina et al. 2003; Wang et al. 2016 and references therein). Existing litera-
ture on two competing prey - one predator temporal (ODE) models has explored
various scenarios. Numerical investigations in Caswell (1978) and Abrams (1999)
revealed cyclic or chaotic dynamics under frequency-dependent and saturated func-
tional responseswith prey interactions, respectively. The periodic patternwas shown to
exist in a two prey-one predator fast-slow dynamical system with switches of feeding
between two prey species by the geometric singular perturbation method in Piltz et al.
(2017). Elementary analyses in Vance (1978) gave the conditions for the existence
of equilibria for frequency-dependent and Holling type I functional responses and
numerically show that the predator’s presence makes competitive coexistence possi-
ble. For the Holling type I functional response, Hsu (1981) characterized equilibrium
stability, while Mimura and Kan-on (1986) analytically studied spatial segregation
patterns by adding random diffusions to the ODE system. We note all prior works
incorporated direct competition between two prey species and relied predominantly
on numerical exploration, except for the limited analytical treatments in Hsu (1981),
Mimura and Kan-on (1986), Piltz et al. (2017). This paper shifts focus to the indirect
competition between two prey species mediated by a shared predator. To emphasize
the predation-driven indirect interactions between two prey species while enhancing
analytical tractability, we exclude direct prey-prey competition to streamline model
complexity. Building on equation (1.1), we thus formulate the following predator-
mediated apparent competition model featuring two prey species and one shared
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predator: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = u (1 − u/K1) − w f1(u), t > 0,

vt = v (1 − v/K2) − w f2(v), t > 0,

wt = w (β1 f1(u) + β2 f2(v) − θ) , t > 0,

(u, v, w)(0) = (u0, v0, w0),

(1.2)

where u(t), v(t) andw(t) represent the densities of the native prey species, the invasive
prey species, and the shared predator species at time t , respectively. The initial data
u0, v0, w0 are assumed to be positive. The function fi (i = 1, 2) and parameters have
the following biological interpretations:

• fi , i = 1, 2, - functional responses;
• Ki , i = 1, 2, - carrying capacities for the prey species;
• βi , i = 1, 2, - trophic efficiency (conversion rates);
• θ - mortality rate of the predator.

All the parameters shown above are positive. For definiteness, we consider two
types of functional responses:

fi (s) = αi s, i = 1, 2, (Holling type I), (1.3)

fi (s) = γi s

1 + γi hi s
, i = 1, 2, (Holling type II), (1.4)

where αi and γi , i = 1, 2, denote the capture rates (i.e., the rates at which prey species
are captured), and hi > 0, i = 1, 2, represents the handling time.

Using rigorous analyses and quantitative computations, we investigate how sys-
tem parameters and initial conditions influence the effectiveness of predator-mediated
apparent competition. Since the predator-mediated apparent competition involves an
introduction (or invasion) of the secondary prey species which is also a food supply to
the shared predator, the invasionmay not be successful and consequently, the predator-
mediated apparent competition will not take effect in the long run. Therefore the first
aim of this paper is to investigate

A1. Under what conditions, the invasive prey species can successfully invade to
promote the predator-mediated apparent competition?

If the invasive prey species invades successfully and supplies additional food to the
predator, then the native prey species will be under more intensive predation pressure,
possibly resulting in a population decrease or even extinction. Hence the second aim
of this paper is to address

A2. Whether the predator-mediated apparent competition could reduce the biomass
of the native prey species or even cause the native species to go extinct? If so,
what conditions are required, and which processes are the main determinants?

In this paper, we shall apply rigorous analysis along with numerical simulations to
explore the above two questions. First we can fully characterize the global dynamics of
(1.2) with the Holling type I functional response, proving that no non-constant patterns
can emerge (see Theorem 2.1). In contrast, the Holling type II functional response can
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induce complex dynamics and emergent patterns. To the best of our knowledge, both
our analytical andnumerical findings are new, as theHolling type II functional response
has not been analyzed in the literature for two prey - one predator systems. This work
not only serves as a meaningful extension of existing results but also uncovers a rich
landscape of dynamics such as periodic oscillations or bistability phenomenon, which
are absent in theHolling type I functional response. These insights highlight the critical
role of functional response forms in shaping ecological system behavior, offering new
perspectives for theoretical ecology and mathematical modeling. More critically, we
perform detailed qualitative and quantitative analyses to pinpoint that capture rates of
prey species, the predatormortality rate and the initialmass of the invasive prey species
are all possible key factors governing the effects and outcomes of predator-mediated
apparent competition in regulating native prey abundance, depending on the functional
responses and ecological traits of prey species as summarized in Section 4. Our results
provide mechanistic insights into how predator functional responses and ecological
traits of species collectively determine the success of invasive prey introduction as a
tool for native prey control.

The rest of this paper is organized as follows. In Sec. 2, we state our main math-
ematical results on the global stability of the system (1.2) with (1.3) and (1.4), and
the relevant proofs are given in Appendix A. In Sec. 3, we focus on the case of the
Holling type II functional response and conduct case studies to pinpoint the main
factors determining the effects and biological consequences of the predator-mediated
apparent competition. In Sec. 4, we summarize our main findings and discuss several
open questions.

2 Global stability results

This section outlines our primary mathematical findings. We first introduce some
notation used throughout the paper and then proceed to state the main results. Let

Li := βi fi (Ki ), λi := 1
γi hi

, i = 1, 2,

L := L1 + L2, θ0 := max
{
(1 − α1

α2
)L1, (1 − α2

α1
)L2

}
.

Wedenote the equilibriumof (1.2) by Es = (us, vs, ws), which includes the extinction
equilibrium, predator-free equilibrium, semi-coexistence equilibrium and coexistence
equilibrium listed in Table 1, where the coexistence equilibrium E∗ = (u∗, v∗, w∗) is
obtained by solving (1.2) for u, v, w > 0. To differentiate coexistence equilibria for
different functional responses, we utilize the notation

E∗ =
{

P∗, if (1.3) holds,

Q∗, if (1.4) holds.
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Moreover, in the case of the Holling type I functional response (1.3), the coexistence
equilibrium P∗ is uniquely given by

P∗ =
(

K1 [(α2 − α1)L2 + α1θ ]

α1L1 + α2L2
,

K2 [(α1 − α2)L1 + α2θ ]

α1L1 + α2L2
,

L − θ

α1L1 + α2L2

)
,

while in the case of the Holling type II functional response (1.4), the coexistence
equilibrium Q∗ may not exist, may exist and be unique, or may exist but not be unique
(see Remark 2.1).

Remark 2.1 For the system (1.2) with the Holling type II functional response (1.4),
it is difficult to find the necessary and sufficient conditions for the existence of Q∗
for general system parameters. Note that 0 < θ < L is a necessary but not sufficient
condition for the existence of Q∗. Indeed, the necessity is apparent since it is easy to
see that u∗ < K1, v∗ < K2, and thus

θ = β1 f1(u∗) + β2 f2(v∗) < β1 f1(K1) + β2 f2(K2) = L,

where we have used the fact that fi (s), i = 1, 2, strictly increases with respect to
s > 0. However, if

θ = 3

5
, K1 = 2, K2 = 3, and βi = γi = hi = 1, i = 1, 2,

then the system (1.2) with (1.4) has no coexistence equilibria though 0 <θ < L = 17
12 .

Clearly we have L1, L2, L > 0, 0 ≤ θ0 < L and θ0 = 0 if and only if α1 = α2. For
the global stability of equilibria of systems (1.2), it is easy to find that the equilibria
E0, Eu , Ev are saddles for θ > 0, and Euv is also a saddle for θ ∈ (0, L) (see Lemma
3.1). Therefore, we will focus on analyzing the global stability of the equilibrium Euv

for θ ≥ L , and the semi-coexistence/coexistence equilibria for θ < L . Now we can
state our main results.

Theorem 2.1 (Global stability for Holling type I). Let f1(u) and f2(v) be given by
(1.3). Then the following global stability results hold for (1.2).

(i) If α1 < α2 (resp. α1 > α2) and θ ∈ (0, θ0], then the semi-coexistence equilib-
rium P1 (resp. P2) is globally asymptotically stable.

(ii) If θ ∈ (θ0, L), then the unique coexistence equilibrium P∗ = (u∗, v∗, w∗) of
(1.2) is globally asymptotically stable.

(iii) If θ ≥ L, then the equilibrium Euv is globally asymptotically stable.

Theorem 2.2 (Global stability for Holling type II). Let f1(u) and f2(v) be given by
(1.4). Then the following global stability results hold for (1.2).

(i) Let θ ∈ (0, L1). Then the semi-coexistence equilibrium Q1 is globally asymp-
totically stable if

(K1, K2) ∈ �1 :=
{
(K1, K2)

∣∣∣∣ K1 ≤ λ1 + uQ1 ,
K2

f2(K2)
≤ wQ1

}
, (2.1)
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Table 2 Global stability of
equilibria of the system (1.2)
with (1.3)

θ ∈ (0, θ0] θ ∈ (θ0, L) θ ∈ [L,∞)

α1 > α2 P2 is GAS P∗ is GAS Euv is GAS

α1 < α2 P1 is GAS P∗ is GAS Euv is GAS

α1 = α2 (⇐⇒ θ0 = 0) P∗ is GAS Euv is GAS

Note: Here the notations “GAS” and “⇐⇒” denote “globally asymp-
totically stable” and “if and only if”, respectively

Table 3 Global stability of equilibria of the system (1.2) with (1.4)

i ∈ {1, 2} θ ∈ (0, Li ) θ ∈ [Li , L) θ ∈ [L,∞)

(K1, K2) ∈ �i Qi is GAS Unclear Euv is GAS

(K1, K2) ∈ �∗ Q∗ is GAS Q∗ is GAS Euv is GAS

(K1, K2) /∈ �1 ∪ �2 ∪ �∗ Unclear Unclear Euv is GAS

Note: Here the notation “GAS” has the same interpretation as in Table 2

where “=” in K2
f2(K2)

≤ wQ1 holds only in the case of v0 ≤ K2.
(ii) Let θ ∈ (0, L2). Then the semi-coexistence equilibrium Q2 is globally asymp-

totically stable if

(K1, K2) ∈ �2 :=
{
(K1, K2)

∣∣∣∣ K2 ≤ λ2 + vQ2 ,
K1

f1(K1)
≤ wQ2

}
, (2.2)

where “=” in K1
f1(K1)

≤ wQ2 holds only in the case of u0 ≤ K1.
(iii) Let θ ∈ (0, L) and coexistence equilibrium Q∗ = (u∗, v∗, w∗) exist. Then Q∗

is globally asymptotically stable if

(K1, K2) ∈ �∗ :=
{
(K1, K2)

∣∣∣∣ K1 ≤ λ1 + u∗, K2 ≤ λ2 + v∗
}

. (2.3)

(iv) Let θ ≥ L. Then the equilibrium Euv is globally asymptotically stable.

Remark 2.2 We note that the sets �1, �2 and �∗ given in (2.1)-(2.3) are mutually
disjoint. See Appendix B for the detailed proof.

Remark 2.3 In view of Theorem 2.1, the global stability of the system (1.2) with
Holling type I functional response (1.3) can be completely classified, as summarized
in Table 2. However, for the Holling type II functional response (1.4), there are some
gaps (see Table 3) left in the global stability for 0 < θ < L .

Theorem 2.1 and Theorem 2.2 will be proved by the Lyapunov function method
along with LaSalle’s invariant principle. The proofs are given in Appendix A.
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3 Numerical simulations and biological implications

From Table 2, we see that the global stability of solutions to (1.2) with (1.3) has been
completely classified and there are no gaps left for the global stability of solutions. In
contrast, there are some parameter gaps in which the global dynamics of (1.2) with
(1.4) remain unknown (see Table 3). In the following, we shall numerically explore the
global dynamics of (1.2) with (1.4) in these gaps. It is well known that one predator
and one prey models with Holling type II functional response may have stable time-
periodic solutions (cf. Cheng 1981). Therefore we anticipate that periodic solutions
may arise from the system (1.2) with the Holling type II functional response. We
shall also investigate the effect of the predator-mediated apparent competition on the
population dynamics.

The associated Jacobian matrix of the system (1.2) at an equilibrium Es =
(us, vs, ws) is

J (Es) =
⎛
⎜⎝1 − 2us

K1
− ws f ′

1(us) 0 − f1(us)

0 1 − 2vs
K2

− ws f ′
2(vs) − f2(vs)

β1ws f ′
1(us) β2ws f ′

2(vs) β1 f1(us) + β2 f2(vs) − θ

⎞
⎟⎠

=:
⎛
⎝ J11 0 J13

0 J22 J23
J31 J32 J33

⎞
⎠ .

We denote the three eigenvalues of J (Es) by ρ1, ρ− and ρ+, which are the roots of

ρ3 + a2ρ
2 + a1ρ + a0 = 0, (3.1)

where ai = ai (Es), i = 0, 1, 2, are given by

⎧⎨
⎩

a0 := J11 J22 J33 − J11 J23 J32 − J13 J22 J31,
a1 := J11 J22 + J11 J33 + J22 J33 − J13 J31 − J23 J32,
a2 := −(J11 + J22 + J33).

It follows from the Routh-Hurwitz criterion (cf. (Murray 2002, Appendix B)) that all
roots of (3.1) have negative real parts if and only if

a0, a1, a2 > 0 and a1a2 − a0 > 0.

Next, we use the above results to study the stability of all equilibria. First from
Theorem 2.2 (iv) it follows that Euv is globally asymptotically stable for θ ≥ L . The
following results can also be easily obtained.

Lemma 3.1 The equilibria E0, Eu, Ev are saddles for any θ > 0. The equilibrium
Euv is a saddle for θ ∈ (0, L), while Euv is globally asymptotically stable for θ ≥ L.
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Proof With simple calculations, one can easily find that the eigenvalues of J at the
four equilibria E0, Eu, Ev, Euv are⎧⎪⎪⎨

⎪⎪⎩
ρ1 = −θ, ρ± = 1, if Es = E0,

ρ1 = L1 − θ, ρ± = ±1, if Es = Eu,

ρ1 = L2 − θ, ρ± = ±1, if Es = Ev,

ρ1 = L − θ, ρ± = −1, if Es = Euv,

which completes the proof. �

We next investigate the stability of the semi-coexistence equilibria Q1, Q2, and

coexistence equilibrium Q∗. It turns out that the stability analysis for these equilibria
of (1.2) with Holling type II functional response (1.4) is too complicated for explicit
stability/instability conditions. For clarity and definiteness, we assume that the han-
dling time for the two prey species is the same by simply letting h1 = h2 = 1. By
(1.4), it holds that

fi (s) = s
1
γi

+ s
=: s

λi + s
, s ≥ 0, i = 1, 2. (3.2)

In what follows, we shall use (3.2) instead of (1.4) as the Holling type II functional
response to undertake case studies along with numerical simulations. As illustrated
in (Holt and Bonsall 2017, Figure 1), predator-mediated apparent competition among
two prey species may be symmetric or asymmetric. Hence we shall distinguish these
two scenarios in our subsequent analysis.

• Symmetric apparent competition: The two prey species have the same ecological
characteristics, namely they are different phenotypes of the same species. In this
case, we will consider

Ki = K , βi = β, γi = γ, hi = h, i = 1, 2,

where K , β, γ and h are positive constants.
• Asymmetric apparent competition: The prey species have different ecological
characteristics. Such prey species may be dissimilar in many ways, such as the
carrying capacity, trophic efficiency, the rate of being captured by the predator (i.e.,
capture rate), and so on. In this case, we may assume that the two prey species
have different values for one parameter and the same values for other parameters.

3.1 Symmetric apparent competition

For definiteness and simplicity of computations, without loss of generality, we take

K1 = K2 = 3 and β1 = β2 = λ1 = λ2 = 1. (3.3)

We deduce from (3.3) that L1 = L2 = 3
4 and L = 3

2 . In addition to the equilibria E0,
Eu , Ev and Euv of (1.2) which exist for any θ > 0, there are two semi-coexistence
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equilibria

⎧⎨
⎩

Q1 =
(

θ
1−θ

, 0, 3−4θ
3(1−θ)2

)
,

Q2 =
(
0, θ

1−θ
, 3−4θ
3(1−θ)2

)
,

if θ ∈
(
0,

3

4

)
. (3.4)

With tedious but elementary calculations, one can find that there is no coexistence
equilibrium if θ ≥ 3

2 , a unique coexistence equilibrium Q0∗ exists if θ ∈ (0, 2
3 ]∪[1, 3

2 )

and three coexistence equilibria Qi∗ (i = 0, 1, 2) exist if θ ∈ ( 23 , 1), where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q0∗ :=
(

θ
2−θ

, θ
2−θ

,
4(3−2θ)

3(2−θ)2

)
,

Q1∗ :=
(
1 + 2

√
1−θ
2−θ

, 1 − 2
√

1−θ
2−θ

, 4
3(2−θ)

)
,

Q2∗ :=
(
1 − 2

√
1−θ
2−θ

, 1 + 2
√

1−θ
2−θ

, 4
3(2−θ)

)
.

(3.5)

Remark 3.1 In addition to the global stability result for Euv stated in Lemma 3.1, we
can also apply Theorem 2.2 (iii) to see that Q0∗ is globally asymptotically stable for
θ ∈ [ 43 , 3

2 ) since u∗ = v∗ = θ
2−θ

≥ 2 = Ki − λi (i = 1, 2).

In view of Lemma 3.1 and Remark 3.1, it remains to consider the stabilities of
semi-coexistence and coexistence equilibria for θ ∈ (0, 3

2 ). We begin with the local
stability of the semi-coexistence equilibria Q1 and Q2 for θ ∈ (0, 3

4 ).

Lemma 3.2 Let (3.3) hold and θ ∈ (0, 3
4 ). Then Qi (i = 1, 2) has the following

properties.

• If θ ∈ { 12 , 2
3 }, then Qi (i = 1, 2) is marginally stable, where ρ1 = − 1

3 , ρ± = ± i√
6

if θ = 1
2 , and ρ1 = 0, ρ± = −2±√

2i
9 if θ = 2

3 .
• If θ ∈ (0, 1

2 ), then Qi is a saddle-focus, where ρ1 < 0, and ρ± are a pair of
complex-conjugate eigenvalues with Re(ρ±) > 0 and Im(ρ±) �= 0.

• If θ ∈ ( 12 ,
2
3 ), then Qi is a stable focus-node, where ρ1 < 0, and ρ± are a pair of

complex-conjugate eigenvalues with Re(ρ±) < 0 and Im(ρ±) �= 0.
• If θ ∈ ( 23 , θ1), then Qi is a saddle-focus, where ρ1 > 0, and ρ± are a pair of

complex-conjugate eigenvalues with Re(ρ±) < 0 and Im(ρ±) �= 0.
• If θ ∈ [θ1, 3

4 ), then Qi is a saddle with ρ1 > 0 and ρ± < 0.

Here, θ1 ≈ 0.6793 is the unique real root of the equation 16θ3 − 37θ2 + 31θ − 9 = 0
for θ ∈ (0, 3

4 ).

Proof We omit the proofs for brevity as they are elementary. �

We next give the local stability of the coexistence equilibria.

Lemma 3.3 Let (3.3) hold and θ ∈ (0, 3
2 ). Then Q0∗ has the following properties.

• If θ = 1, then Q0∗ is marginally stable with ρ1 = 0 and ρ± = ± i√
3
.
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• If θ ∈ (0, 1), then ρ1 > 0, and ρ± are a pair of complex-conjugate eigenvalues
with Re(ρ±) > 0 and Im(ρ±) �= 0. Therefore, Q0∗ is an unstable focus-node.

• If θ ∈ (1, 3
4 ), then ρ1 < 0, and ρ± are a pair of complex-conjugate eigenvalues

with Re(ρ±) < 0 and Im(ρ±) �= 0. As a result, Q0∗ is a stable focus-node.
• If θ ∈ [ 34 , 2

3 ), then Q0∗ is globally asymptotically stable.

Proof The proofs of the first two conclusions are omitted for brevity since they are
standard and elementary. The third conclusion is a direct consequence of Theorem 2.2
(iii), see Remark 3.1. �


With some tedious calculations, we also obtain the following result.

Lemma 3.4 Let (3.3) hold and θ ∈ ( 23 , 1). Then ρ1 < 0, and ρ± are a pair of complex-
conjugate eigenvalues withRe(ρ±) < 0 and Im(ρ±) �= 0. Hence Q1∗ and Q2∗ are stable
focus-nodes.

With the stability results given in Lemmas 3.1-3.4, we summarize the stabil-
ity/instability properties of all equilibria in Table 4. The bifurcation diagrams of these
equilibria are shown in Fig. 2. The results in Table 4 imply that if the predator mortality
rate θ is sufficiently large (θ ≥ 3

2 ), then the predator will die out and the two prey
species coexist (i.e., Euv is globally asymptotically stable). If θ is suitably large (i.e.,
θ ∈ [ 43 , 3

2 )), then the predatorwill coexist with the two prey species (i.e., Q0∗ is globally
asymptotically stable). However, if θ is not large (i.e., 0 < θ < 4

3 ), the global dynamics
largely remain unknown and different outcomes are expected from the local dynamics
shown in Table 4. We shall use numerical simulations to foresee the possible global
dynamics for 0 < θ < 4

3 and quantify the population size in the next subsection,
and discuss the underlying biological implications. Our numerical simulations and
biological discussion will focus on the questionsA1 andA2 given in the Introduction.
Therefore, we consider two classes of initial data. The first class of initial data is set
as a perturbation of the invasive species free equilibrium Q1 = (uQ1 , 0, wQ1) while
keeping uQ1 and wQ1 unchanged, namely (u0, v0, w0) = (uQ1 , R, wQ1) with R > 0
being a constant. The numerical results for such initial data can address the effect of
the invasion of the invasive prey species on the dynamics of the native prey species,
and further investigate under what conditions the native prey species is reduced in its
population size or annihilated. The second class of initial data is set as a perturbation
of the coexistence equilibrium Q∗, for which the numerical results can address the
robustness of coexistence in the predator-mediated apparent competition.

Numerical simulations and implications. The numerical simulations for θ ∈ (0, 4
3 )

will be divided into three parts: θ ∈ (0, 1
2 ), θ ∈ [ 12 , 3

4 ) and θ ∈ [ 34 , 4
3 ), and in each

part we take an arbitrary value of θ to conduct the numerical simulations.
Part 1: θ ∈ (0, 1

2 ). We take θ = 1
4 ∈ (0, 1

2 ) and focus on the semi-coexistence
equilibrium Q1 = ( 13 , 0,

32
27 ) given by (3.4) which is unstable (see Table 4). The initial

value is set as (u0, v0, w0) = ( 13 , R, 32
27 ) with R > 0 denoting the initial mass of

invasive prey species v. The numerical results for different values of R are plotted
in Fig. 3, where we find three different typical outcomes showing that whether the
invasion is successful depends on the initial biomass of invasive prey species v if the

123



   47 Page 14 of 37 Y. Lou et al.

Ta
bl
e
4

T
he

st
ab
ili
ty

of
eq
ui
lib

ri
a
of

sy
st
em

(1
.2
)
w
ith

(3
.3
)

E
qu

ili
br
ia

θ (0
,
1 2
)

1 2
(
1 2
,
2 3
)

2 3
(
2 3
,
θ 1

)
[θ 1

,
3 4
)

[3 4
,
1)

1
(1

,
4 3
)

[4 3
,
3 2
)

[3 2
,
∞

)

E
0
,

E
u
,

E
v

Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le

E
u
v

Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
Sa
dd

le
G
A
S

Q
1
,

Q
2

SF
M
S

S-
FN

M
S

SF
Sa
dd
le

/
/

/
/

/

Q
0 ∗

U
-F
N

U
-F
N

U
-F
N

U
-F
N

U
-F
N

U
-F
N

U
-F
N

M
S

S-
FN

G
A
S

/

Q
1 ∗,

Q
2 ∗

/
/

/
/

S-
FN

S-
FN

S-
FN

/
/

/
/

N
ot
e:
T
he

ab
br
ev
ia
tio

ns
“M

S”
,“
SF

”,
“S
-F
N
”,
an
d
“U

-F
N
”
st
an
d
fo
r
“m

ar
gi
na
lly

st
ab
le
”,
“s
ad
dl
e-
fo
cu
s”
,“
st
ab
le
fo
cu
s
no
de
”,
an
d
“u
ns
ta
bl
e
fo
cu
s
no
de
”,
re
sp
ec
tiv

el
y.
T
he

no
ta
tio

n
“G

A
S”

ha
s
th
e
sa
m
e
in
te
rp
re
ta
tio

n
as

in
Ta
bl
e
2.

T
he

no
ta
tio

n
“/
”
de
no

te
s
“e
qu

ili
br
ia
do

no
te
xi
st
”
an
d

θ 1
≈

0.
67

93
is
gi
ve
n
in

L
em

m
a
3.
1

123



Effects and biological consequences … Page 15 of 37    47 

Fig. 2 Bifurcation diagrams of system (1.2) with (3.3) versus θ . The solid curves denote linearly stable
equilibria, and other types of curves represent unstable equilibria

mortality rate of the predator is suitably small. Specifically, we have the following
observations.

(i) If the initial mass v0 of the invasive prey species is small (e.g. v0 = R = 0.1),
then the invasive prey species fails to invade and dies out while the native prey
species coexists with the predator periodically (i.e., the solution asymptotically
develops into a periodic solution (u∗

1(t), 0, w
∗
1(t)) with period T1 = 23.8942);

see Fig. 3(a).
(ii) If the initial mass v0 of the invasive prey species is medial (e.g. v0 = R = 0.5),

the invasive species v invades successfully and finally coexists with the native
prey species u and the predator w periodically (i.e., the solution asymptoti-
cally develops into a periodic solution (u∗

2(t), v
∗
2(t), w

∗
2(t)) with period T2 =

33.3879), but the biomass of the native prey species u is reduced due to the
increase of the predator’s biomass, where

{
1
T1

∫ T1
0 u∗

1(t)dt = ū = 0.5098 > 0.3225 = 1
T2

∫ T2
0 u∗

2(t)dt,
1
T1

∫ T1
0 w∗

1(t)dt = w̄ = 1.3625 < 2.1233 = 1
T2

∫ T2
0 w∗

2(t)dt,

as shown in Fig. 3(b).
(iii) If the initial mass v0 of the invasive prey species is large (e.g. v0 = R = 1), the

invasive species v not only invades successfully but also wipes out the native
prey species via the predator-mediated apparent competition (i.e., the solution
asymptotically develops into a periodic solution (0, v∗

3(t), w
∗
3(t)) with period

T3 = 23.8933); see Fig. 3(c).

The above observations indicate that whether the invasive prey species can invade
successfully to trigger the predator-mediated apparent competition essentially depends
on the size of the initial biomass of the invasive prey species. Small initial biomass
will lead to failed invasions and does not change the existing population dynamics.
However, if the invasive prey species has a suitably large initial biomass, then the
invasion will be successful and the predator-mediated apparent competition will take
effect, resulting in the decrease or even extinction of the native prey species. To reduce
the biomass of a certain species (like pests), it is suitable to employ the strategy of
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Fig. 3 Asymptotic dynamics of the system (1.2) with (1.4) under the parameter setting (3.3) and θ = 1
4 .

The initial data are taken as : (a) ( 13 , 0.1, 32
27 ); (b) ( 13 , 0.5, 32

27 ); (c) ( 13 , 1, 32
27 )
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Fig. 4 Long-time dynamics of the system (1.2) with (1.4), (3.3), and different values of θ ∈
{
1
2 , 3

5 , 2
3

}
.

The initial data are taken as (u0, v0, w0) = Q1 + (0, R, 0), where Q1 = (1, 0, 4
3 ) in (a), Q1 = ( 32 , 0, 5

4 )

in (b), and Q1 = (2, 0, 1) in (c); R = 0.5 in the first row, R = 5 in the second row, and R = 10 in the third
row

predator-mediated apparent competition by introducing a new (invasive) species with
appropriate initial biomass.

Part 2: θ ∈ [ 12 , 3
4 ). In this case, we first consider the following three values for θ :

θ ∈
{
1

2
,
3

5
,
2

3

}
,

and corresponding numerical simulations are plotted in Fig. 4. We observe similar
behaviors to those for θ ∈ (0, 1

2 ) shown in Fig. 3, where the invasive species v will fail
to invade if its initial mass is small as illustrated in the first row of Fig. 4. However,
with a large initial mass, the invasive prey species can invade successfully as shown in
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Fig. 5 Long-time dynamics of the system (1.2) with (1.4) and parameters given in (3.3) for θ = 7
10 . The

initial data are taken as (u0, v0, w0) = Q1 + (0, R, 0), where Q1 = ( 73 , 0, 20
27 ), R = 0.5 for (a) and

R = 10 for (b)

the second row of Fig. 4, but cannot annihilate the native prey species via the predator-
mediated apparent competition. This is perhaps because the predator mortality rate θ

is too large to annihilate the native species even if the invasive species can boost the
food supply of the predator. This result alongside the numerical simulations shown
in Fig. 3 implies that whether the native prey species will be driven to extinction via
the predator-mediated apparent competition depends not only on the initial mass of
the invasive species but also on the mortality rate of the predator. Further increasing
the value of θ to be θ = 7

10 ∈ (θ1,
3
4 ), at which Q1 = ( 73 , 0,

20
27 ), we find from the

numerical simulations shown in Fig. 5(a) that the invasion is successful albeit small
initial population abundance of the invasive species (in comparison with those in
the first row of Fig. 4). Mathematically this is because Q1 is a saddle and any small
perturbation of Q1 will result in instability. With a large predator mortality rate, the
invasive species (even with a large initial mass) cannot drive the native species to
extinction (see Fig. 5(b)), similar to other large values of θ shown in the second and
third rows of Fig. 4. This implies that if the predator has a large mortality rate, it can
not drive the native prey species to extinction even if its food supply is boosted by the
invasive prey species.

Concerning the questions raised in A1, the above numerical results pinpointed two
key factors determining successful invasion of the invasive prey species: the initial
invasive mass v0 and mortality rate θ of the predator. Specifically, for a fixed mortality
rate θ not large, increasing the initial invasivemass v0 can lead to a successful invasion.
If themortality rate θ is large, then the predatorwill go extinct and themass of the native
prey species will not be affected though the invasion is successful. Conversely, for a
fixed initial invasive mass that is not too small, the larger mortality rate of the predator
will be beneficial to the success of the invasion.Moreover, the population abundance of
the native prey species will be reduced by the predator-mediated apparent competition
as shown in Fig. 3. Another interesting finding in our numerical simulations is that
the asymptotic profiles of the native and invasive prey species coincide as long as the
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Table 5 Quantitative properties
of (u∗

R , v∗
R , w∗

R)(t) for
R = 0.5, 5, 10

R 0.5 5 10

Period TR / 15.3714 15.3714

ū = 1
TR

∫ TR
0 u∗

R(t)dt 3
2 0.6277 0.6275

v̄ = 1
TR

∫ TR
0 v∗

R(t)dt 0 0.6277 0.6275

w̄ = 1
TR

∫ TR
0 w∗

R(t)dt 5
4 1.5866 1.5844

Remark: Here the notation “/” means “this is not a non-constant peri-
odic case”

non-trivial periodic coexistence state appears (see Fig. 3 to Fig. 5). This result is not
yet understood and deserves further investigation.

Next, we explore how the population abundance of native prey species changes
with respect to the initial invasive mass. To this end, we take the numerical results
shown in Fig. 4(b) as an example. Denote the three solutions shown in Fig. 4(b) by
(u∗

R, v∗
R, w∗

R)(t) for θ = 3
5 and R = 0.5, 5, 10. Then (u∗

R, v∗
R, w∗

R)(t) |R=0.5≡ Q1 =
( 32 , 0,

5
4 ) for all t > 0, and (u∗

R, v∗
R, w∗

R)(t) are periodic solutions with period TR for
R = 5, 10. Quantitative estimates of the total population in a period for R = 0.5, 5, 10
are summarized in Table 5. We see from these results that the total mass of the native
prey species decreases with respect to the initial mass of the invasive prey species, as
expected.

We proceed to examine whether the constant coexistence/positive solution is stable.
To this end, we shall investigate the stability/instability of Q∗

0 which exists if θ < 3
2 .

The results ofTheorem2.2 show that Q∗
0 is globally asymptotically stable if θ ∈ [ 43 , 3

2 ).
This indicates that if the mortality rate of the predator is appropriately large, then
coexistence will persist as long as the invasion is successful. However, this is no
longer the case if the mortality rate of the predator is suitably small, as shown in Fig. 6
where we see that any small negative (resp. positive) perturbation of one prey species
density may lead to the extinction or abundance decrease of this species (resp. the
other one). This indicates that the constant coexistence solution is not robust against
(small) perturbations.

Part 3: θ ∈ [ 34 , 4
3 ). In view of Table 4, both coexistence equilibria Q1∗ and Q2∗ are

stable for θ ∈ [ 34 , 1), that is the system (1.2) generates bistable dynamics as illustrated
in Fig. 7 for θ = 0.8, where

Q1∗ =
(
1 +

√
2

3
, 1 −

√
2

3
,
10

9

)
, Q2∗ =

(
1 −

√
2

3
, 1 +

√
2

3
,
10

9

)
.

With an initial value (u0, v0, w0) which is“closer” to Q1∗ than Q2∗, the corresponding
numerical results shown in Fig. 7(a) demonstrate that the solution converges to Q1∗,
while Fig. 7(b) illustrates the convergence of solutions to Q2∗ when the initial value is
closer to Q2∗. We wonder if a non-constant solution may develop if the initial value
is not close to either of these two stable equilibria. Hence, we choose an initial value
(u0, v0, w0) = (1.2, 0.5, 1) neither close to Q1∗ nor to Q2∗; the corresponding numeri-
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Fig. 6 Long-time dynamics of the system (1.2) with (1.4) and parameters given in (3.3) for θ ∈
{
1
2 , 3

5 , 7
10

}
.

The initial data are taken as (u0, v0, w0) = Q0∗+(0, R, 0), where R = −0.01 for the first row and R = 0.01
for the second row, and Q0∗ is given by (3.5): (a) ( 13 , 1

3 , 32
27 ); (b) ( 37 , 3

7 , 60
49 ); (c) ( 7

13 , 7
13 , 640

507 )

Fig. 7 Long-time dynamics of the system (1.2) with (1.4) under the parameter setting (3.3) and θ = 0.8.
The initial data are taken as (u0, v0, w0): (a) (2, 0.5, 1); (b) (0.3, 1.6, 1); (c) (1.2, 0.8, 1)

cal result shown in Fig. 7(c) demonstrates that the periodic solution will develop. But
how to rigorously prove the existence of periodic solutions remains an interesting open
question.

In applications, the invasive prey species may be used as a biological control agent
to regulate the population size of the native prey species if they are harmful (like
pests). The ideal situation is that a small number of invasive prey species can achieve
this goal. The above linear stability analysis alongside numerical simulations indicates
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that this is unfeasible if two prey species are ecologically identical (i.e., the symmetric
case). However, this is achievable when two prey species are ecologically different
(i.e., asymmetric case) as to be shown in the next subsection.

3.2 Asymmetric apparent competition

For simplicity, we first rescale the system (1.2) with (1.4). To this end, we set

ũ = u

K1
, ṽ = v

K2
, w̃ = w, (γ̃i , h̃i , β̃i ) = (γi , hi Ki , βi Ki ), i = 1, 2. (3.6)

Substituting the above rescalings into (1.2) with (1.4) and dropping the tildes for
brevity, we obtain the following rescaled system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = u (1 − u) − w
γ1u

1+γ1h1u , t > 0,

vt = v (1 − v) − w
γ2v

1+γ2h2v
, t > 0,

wt = w
(
β1

γ1u
1+γ1h1u + β2

γ2v
1+γ2h2v

− θ
)

, t > 0,

(u, v, w)(0) = (u0, v0, w0).

(3.7)

The rescaled system (3.7), which can be viewed as a special case of (3.6) with
K1 = K2 = 1, has three types of parameters: capture rates γi , handling times hi

and conversion rates βi , where i = 1, 2, In the following, we shall focus on the case
where the two prey species have different capture rates (i.e., γ1 �= γ2), and by assuming
h1 = h2, β1 = β2, we can study the effects of predator-mediated apparent competition
with different capture rates. For definiteness, we set without loss of generality

hi = 1, βi = b > 0 and 0 < γ2 < γ1 = 1. (3.8)

The biological meaning of parameter values set in (3.8) is that the two prey species
u and v have the same handling times and conversion rates but vary in capture rates,
while the predator prefers to hunt the native prey species u (γ1 > γ2). Clearly the
rescaled system (3.7) with (3.8) has four predator-free equilibria

E0 = (0, 0, 0), Eu = (1, 0, 0), Ev = (0, 1, 0), Euv = (1, 1, 0), if θ > 0,

two semi-coexistence equilibria⎧⎪⎨
⎪⎩

Q1 = (
uQ1 , 0, wQ1

) =
(

θ
b−θ

, 0, b(b−2θ)

(b−θ)2

)
, if θ ∈ (0, L1) ,

Q2 = (
0, vQ2 , wQ2

) =
(
0, θ

γ2(b−θ)
,

b(bγ2−(1+γ2)θ)

γ 2
2 (b−θ)2

)
, if θ ∈ (0, L2) ,

and a unique coexistence equilibrium (see Lemma C.3 in Appendix C for detailed
reasons)

Q∗ = (u∗, v∗, w∗), if θ ∈ (
1, L), (3.9)
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where⎧⎨
⎩

L1 = b
2 > L2 = bγ2

1+γ2
, L = L1 + L2 < b,


1 = ϕ1(γ2)b ∈ (0, L2), ϕ1(γ2) :=
√

(1−γ2)(3γ2+1)−(1−γ2)(2γ2+1)
2γ 2

2
.

(3.10)

For b > 0 and γ2 ∈ (0, 1), it holds that⎧⎨
⎩

ϕ′′
1 (γ2) < 0, ϕ′

1(
2
3 ) = 0, lim

γ2→0
ϕ1(γ2) = lim

γ2→1
ϕ1(γ2) = 0,

0 < 
1 ≤ bϕ1(
2
3 ) = b

4 , and 
1 attains its maximum b
4 if and only if γ2 = 2

3 .

This implies that 
1 is non-monotone in γ2, i.e., it is a convex function maximized at
γ2 = 2

3 .

Remark 3.2 Applying Theorem 2.2 (iii)-(iv) with K1 = K2 = 1 to system (3.7)-
(3.8), we can easily find that Q∗ is globally asymptotically stable for θ ∈ (
1, L),
and Euv = (1, 1, 0) is globally asymptotically stable for θ ≥ L . Since 1+γ1h1

γ1
=

2 > lim
θ→
1

wQ2 = 1 for b > 0 and γ2 ∈ (0, 1), the results in Theorem 2.2(ii) with

K1 = K2 = 1 are inapplicable to assert the global stability of Q2 for θ ∈ (0,
1].
However, this can be shown in the following lemma.

Lemma 3.5 The semi-coexistence equilibrium Q2 of the rescaled system (3.7) with
(3.8) is globally asymptotically stable if θ ∈ (0,
1].
Proof Let θ ∈ (0,
1]. Then (3.10) implies 0 < θ <

bγ2
1+γ2

< b
2 . For t > 0, let

E(t; Q2) = bu + (b − θ)

(
v − vQ2 − vQ2 ln

v

vQ2

)
+
(

w − wQ2 − wQ2 ln
w

wQ2

)
.

Then by similar arguments as in the proofs of Lemma A.2 and Lemma A.5, we have
E(t; Q2) > 0 for all (u, v, w) �= Q2, and

E ′(t; Q2) = b

(
1 − u − w

1 + u

)
u + (b − θ)

(
1 − v − γ2w

1 + γ2v

)
(v − vQ2 )

+
(

bγ2v

γ2v + 1
+ bu

u + 1
− θ

)
(w − wQ2 )

= −(b − θ)
(1 − γ2 + γ2(v + vQ2 ))

γ2v + 1
(v − vQ2 )

2 − bu3

u + 1
+ buϕ2(θ)

γ 2
2 (u + 1)(b − θ)2

< −(b − θ)
γ2(v + vQ2 )

γ2v + 1
(v − vQ2 )

2 − bu3

u + 1
,

where we have used γ2 ∈ (0, 1) and the fact that the quadratic function

ϕ2(θ) := γ 2
2 θ2 + b

(
−2γ 2

2 + γ2 + 1
)

θ + b2(γ2 − 1)γ2

= γ 2
2

[
θ + 
1 + b

(
1 + γ2

γ 2
2

− 2

)]
(θ − 
1) (3.11)
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Table 6 Global stability of (3.7)
with (3.8)

θ (0, 
1] (
1, L) [L,∞)

Global stability Q2 is GAS Q∗ is GAS Euv is GAS

Note: The notation “GAS” has the same interpretation as in Table 2.
The parameter 
1 is given in (3.10)

is nonpositive for θ ∈ (0,
1] in the last inequality. Finally, similar arguments based
on the Lyapunov function method and LaSalle’s invariant principle as in the proof of
Lemma A.2 complete the proof. �


With Remark 3.2 and Lemma 3.5, we summarize the global stability results in Table
6 for the rescaled system (3.7) with (3.8).

Under the parameter setting (3.8), the capture rate of the invasive prey species v

is smaller than the native prey species u, namely 0 < γ2 < γ1 = 1. According to
the results shown in Table 6 for any θ > 0, we can derive the following biological
implications.

(i) If θ ∈ (0,
1] (i.e., the predator has a low mortality rate), the global stability of
Q2 implies that the invasive prey species can invade successfully regardless of
its initial population size and wipe out the native prey species via the predator-
mediated apparent competition.

(ii) If θ ∈ (
1, L) (i.e., the predator has a moderate mortality rate), then the global
stability of Q∗ indicates that moderate predator mortality allows the native prey
species to survive and to coexist with the invasive prey species and the predator.

(iii) If θ ≥ L , the global stability of Euv entails that the poor physical condition
of the predator (i.e., the predator has a large mortality rate) will result in the
extinction of the predator even though the invasive prey species can boost the
food supply to the predator.

The above results indicate that if the predator has a hunting preference for the
native species (i.e., larger capture rate of the native prey species), then the invasive
prey species can always invade successfully regardless of its initial population size.
Furthermore, whether or not the native prey species can be eradicated through the
predator-mediated apparent competition essentially depends upon the mortality rate
of the predator (i.e., low predator mortality rate will result in the extinction of the
native prey species while a moderate or large mortality rate will allow the native prey
species to persist). In the general parameter set in which 0 < γ2 < γ1, the case
0 < γ2 < γ1 = 1 is only a special situation where we can completely classify the
global stability of solutions as given in Table 6. For other parameter regimes con-
tained in the set 0 < γ2 < γ1, we can perform the linear stability analysis to obtain
local stability results and employ the Lyapunov function method alongside LaSalle’s
invariant principle to obtain the global stability results in partial parameter regimes,
but a complete classification of global stability can not be established. Indeed, in some
parameter regimes, periodic solutions may exist (see Fig. 8), and hence the global
stability in the whole parameter domain is impossible. Nevertheless, the biological
phenomena observed from our numerical simulations (not shown here for brevity)
are essentially similar to the case 0 < γ2 < γ1 = 1: the invasive prey species will
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Fig. 8 Long-time dynamics of the rescaled system (3.7) with hi = βi = 1 (i = 1, 2), (γ1, γ2) = (4, 2) and
θ = 0.2, 0.4, 1, 1.2. The initial data are taken as (u0, v0, w0) = Q1+(0, 0.01, 0) in (a)-(b), (u0, v0, w0) =
Q∗ + (0, 0.01, 0) in (c), and (u0, v0, w0) = (u∗, 0.01, w∗) in (d)

always invade successfully regardless of its initial population abundance and can even
wipe out the native prey species through the predator-mediated apparent competition
if the mortality rate of the predator is low, while the native prey species can persist
and coexist with the predator and invasive prey species if the mortality rate of the
predator is moderate, where the difference from the case 0 < γ2 < γ1 = 1 is that the
coexistence state may be periodic or constant as shown in Fig. 8.

If we assume 0 < γ1 < γ2 = 1 (i.e., the capture rate of the native prey species
is smaller than that of the invasive prey species), then the results in Table 6 hold by
swapping Q1 with Q2. This means that if the predator has a hunting preference for
the invasive prey species, then a successful invasion depends heavily on the predator
mortality rate (precisely, the invasion will fail for θ ∈ (0,
1] while succeeding for
θ > 
1). Even if the invasion is successful, the invasive prey species is unable to wipe
out the native prey species through predator-mediated apparent competition, regardless
of its initial population abundance. These interesting results have significant value in
applications. For instance, if we were to control the population abundance of some
harmful species (like pests) by their natural enemies, we can introduce a small amount
of secondary (invasive) prey species that are less preferred by their natural enemies
based on the principle of predator-mediated apparent competition.

4 Summary and discussion

Predator-mediated apparent competition is an indirect and negative interaction
between two prey species mediated by a shared predator. As stressed in Stige et al.
(2018), quantifying such indirect effects is methodologically challenging but impor-
tant for understanding ecosystem function. To study the effects of predator-mediated
apparent competition on population dynamics, in this paper, we propose to consider
system (1.2) by viewing u as a native prey species and v as an invasive prey species,
both of which share one predator w. We find conditions for the local and global sta-
bility of the equilibria of system (1.2) with Holling type I and II functional responses
in Section 2, and employ numerical simulations to demonstrate the possible popu-
lation dynamics and biological consequences due to the predator-mediated apparent
competition in Section 3.
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In summary, we find that if two prey species employ the Holling type I functional
responses, whether the invasion is successful and hence promotes the predator-
mediated apparent competition is entirely determined by their capture rates (i.e., the
rates being captured by the predator). In contrast, the dynamics with the Holling type
II functional responses are more complicated. First, if two prey species have the same
ecological characteristics, then the initial mass of the invasive prey species is the key
factor determining the success of the invasion and hence the promotion of the predator-
mediated apparent competition. Whereas if two prey species have different ecological
characteristics, say different capture rates without loss of generality, then the success
of the invasion (i.e., the promotion of the predator-mediated apparent competition) no
longer depends on the initial mass of the invasive prey species, but on the capture rates.
In all cases, if the invasion succeeds, whether the native prey species can be annihi-
lated via predator-mediated apparent competition essentially depends on the predator
mortality rate (i.e., the low predator mortality rate will result in the extinction of the
native prey species). These intriguing findings not only fully address the questions
posed inA1 andA2 of Section 1 but also offer actionable insights for decision-makers
when introducing alien species into ecological systems to maintain ecological balance
and biodiversity.

Our present work not only pinpoints key factors promoting predator-mediated
apparent competition but also shows the significant effects of predator-mediated appar-
ent competition on the structure and stability of ecological systems. Therefore, a
comprehensive understanding of the mechanism underlying dynamics of this indirect
interaction is imperative. This paper only takes a (first) step forward in this direction
and many interesting questions remain open.

• We consider the same functional response for both prey species, either Holling
type I or Holling type II. In reality, the functional response for two prey species
may be different, such as Holling type I for the native prey species and Holling
type II for the invasive one, or vice versa. Then we anticipate that the dynamics
might be different from those obtained in this paper. This deserves to be clarified
in a future work.

• The model considered in this paper does not include spatial structure, such as
random diffusion and/or directed movement (e.g. prey-taxis cf. Kareiva and Odell
1987), which are indispensable factors to make the model more realistic. This
raises a natural question: what are the dynamics of the predator-mediated apparent
competition with spatial structure and whether the spatial movement of species
will bring significantly different effects? These interesting questions can serve as a
roadmap to study spatial effects on the population dynamics of predator-mediated
apparent competition and hence provide insights into the understanding of complex
dynamics of ecological systems. We shall explore this question in the future.

• In the model, the direct (i.e., interference) competition of two prey species is not
considered. If we include the direct competition in the model, the complexity of
both qualitative and quantitative analysis will be considerably increased. How-
ever, it is still very interesting to explore how the direct competition and indirect
interaction (i.e., predator-mediated apparent competition) between the two prey
species jointly affect the population dynamics.
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Appendix A. Proof of the global stability

In this appendix, we aim to prove the global stability of the equilibria of the system
(1.2). As mentioned earlier, we will primarily focus on proving the global stability
of the equilibrium Euv for θ ≥ L and semi-coexistence/coexistence equilibria for
0 < θ < L . Before proceeding with the stability analysis, we first establish the global
well-posedness of the system (1.2) by proving the following result.

Lemma A.1 Let (u0, v0, w0) ∈ R
3+, and let f1(u) and f2(v) be given by (1.3) or (1.4).

Then the system (1.2) admits a unique nonnegative solution, which is bounded for
t>0. Moreover, the solution satisfies

sup
t�0

u(t) ≤ M1, sup
t�0

v(t) ≤ M2, sup
t�0

w(t) ≤ M3, (A1)

and

lim sup
t→∞

u(t) ≤ K1, lim sup
t→∞

v(t) ≤ K2, lim sup
t→∞

w(t) ≤ (1 + θ)2

4θ
(β1K1 + β2K2) , (A2)

where the constants Mi , i = 1, 2, 3, are given by

{
M1 := max {u0, K1} , M2 := max {v0, K2} ,

M3 := max
{
β1u0 + β2v0 + w0,

(1+θ)2

4θ (β1K1 + β2K2)
}

.

Proof Since the vector field, defined by the terms on the right-hand side of the system
(1.2), is smooth in R

3+, the existence theory of ordinary differential equations (cf.
(Logemann and Ryan 2014, Theorem 4.18)) guarantees that the system (1.2) admits
a unique maximal solution with a maximal time Tmax ∈ (0,∞]. By the first equation
of (1.2), we have

u(t) = u0e
∫ t
0 (1− u(s)

K1
− w(s) f1(s)

u(s) )
ds ≥ 0 for all t ∈ (0, Tmax ).

We can similarly obtain v(t), w(t) ≥ 0 for all t ∈ (0, Tmax ). Then the first equation
of (1.2) shows that ut ≤ u(1 − u/K1), which along with the comparison principle
gives u(t) ≤ max {u0, K1} = M1 for all t ∈ (0, Tmax ). Similarly, it holds that
v(t) ≤ max {v0, K2} = M2 for all t ∈ (0, Tmax ). Let z(t) := β1u(t)+β2v(t)+w(t),
then we have from (1.2) and Young’s inequality that

zt = β1u

(
1 − u

K1

)
+ β2v

(
1 − v

K2

)
− θ (z − β1u − β2v)

= −θ z + β1

(
(1 + θ) u − u2

K1

)
+ β2

(
(1 + θ) v − v2

K2

)

≤ −θ z + (1 + θ)2

4
(β1K1 + β2K2) for all t ∈ (0, Tmax ).
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By the comparison principle, we get w(t) ≤ z(t) ≤ M3 = max{β1u0 + β2v0 +
w0,

(1+θ)2

4θ (β1K1 + β2K2)} for all t ∈ (0, Tmax ). Therefore the solution is bounded
and hence Tmax = ∞. Given the above analysis, (A1) and (A2) follow immediately.
The proof is completed. �


Now we consider the global stability of the equilibria of the system (1.2). Before
proceeding, for t > 0 and a given equilibrium Es = (us, vs, ws), we let

E(t; Es ) := �1

(
u − us − us ln

u

us

)
+ �2

(
v − vs − vs ln

v

vs

)
+
(

w − ws − ws ln
w

ws

)
, (A3)

where the constants �1 and �2 are given by

�i :=
{

βi fi (us )
αi us

= βi , if (1.3) holds,
βi fi (us )

γi us
= βi

1+γi hi us
, if (1.4) holds,

i = 1, 2. (A4)

Then we prove the global stability of the equilibria.

A.1. Global stability for� ≥ L

The first result asserts that the equilibrium Euv is globally asymptotically stable if
θ ≥ L .

Lemma A.2 Let θ ≥ L, and let f1(u) and f2(v) be given by (1.3) or (1.4). Then the
equilibrium Euv is globally asymptotically stable.

Proof We first recall that u, v, w ≥ 0 for all t ≥ 0. Let Es = Euv = (K1, K2, 0) in
(A3) and (A4). Then

E(t; Euv) = �1

(
u − K1 − K1 ln

u

K1

)
+ �2

(
v − K2 − K2 ln

v

K2

)
+ w,

and

E ′(t; Euv) = �1

(
1 − u

K1
− w f1(u)

u

)
(u − K1) + �2

(
1 − v

K2
− w f2(v)

v

)
(v − K2)

+ w (β1 f1(u) + β2 f2(v) − θ) . (A5)

We claim that

{E(t; Euv) > 0 for all (u, v, w) �= Euv,

E ′(t; Euv) ≤ 0, where “ =′′ holds if and only if (u, v, w) = Euv.
(A6)

Indeed, for any given c0 > 0, the function φ1(s) := s − c0 − c0 ln s
c0

for s > 0
satisfies φ′

1(s) = 1− c0
s and φ′′

1 (s) = c0
s2

> 0, which implies that φ1(s) ≥ φ1(c0) = 0
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and φ1(s) = 0 if and only if s = c0. Therefore, the first conclusion in (A6) fol-
lows. Moreover, if (1.3) holds, then (A4) gives �1 = β1 and β1 ( f1(u) − f1(K1)) =
�1

f1(u)
u (u − K1). If (1.4) holds, then (A4) gives �1 = β1

1+γ1h1K1
and

β1 ( f1(u) − f1(K1)) = γ1β1(u − K1)

(1 + γ1h1K1)(1 + γ1h1u)
= �1

f1(u)

u
(u − K1) . (A7)

Similarly, we have

β2 ( f2(v) − f2(K2)) = �2
f2(v)

v
(v − K2) . (A8)

Using (1.3), (1.4), (A3), (A7), (A8) and θ ≥ L , we have

w (β1 f1(u) + β2 f2(v) − θ) ≤ β1w ( f1(u) − f1(K1)) + β2w ( f2(v) − f2(K2))

= �1
w f1(u)

u
(u − K1) + �2

w f2(v)

v
(v − K2),

which along with (A5) yields

E ′(t; Euv) ≤ − �1

K1
(u − K1)

2 − �2

K2
(v − K2)

2.

The above inequality indicates that E ′(t; Euv) ≤ 0, where “=” holds in the case of
(u, v) = (K1, K2). Note that if (u, v) = (K1, K2), the first equation of (1.2) becomes
0 = w f1(K1), which implies w = 0 due to f1(K1) > 0. Therefore, E ′(t; Euv) <

0 if (u, v, w) �= Euv . Clearly, (A5) implies E ′(t; Euv) = 0 for (u, v, w) = Euv .
Hence (A6) is proved. With (A6) and LaSalle’s invariant principle (cf. (LaSalle 1960,
Theorem 3)), the proof is completed. �


In what follows we assume θ ∈ (0, L) and consider two types of functional
responses separately.

A.2. Global stability for� ∈ (0, L) and Holling type I (1.3)

We next show that the unique coexistence equilibrium P∗ is globally asymptotically
stable as long as it exists.

Lemma A.3 (Global stability of P∗). Let (1.3) hold and θ ∈ (θ0, L). Then the unique
coexistence equilibrium P∗ = (u∗, v∗, w∗) of (1.2) is globally asymptotically stable.

Proof Let Es = P∗ = (u∗, v∗, w∗) in (A3) and (A4). Then (A4) implies �i = βi ,
i = 1, 2. Using (1.2), (1.3), (A3), (A4) and the fact that

θ = β1 f1(u∗) + β2 f2(v∗) = α1β1u∗ + α2β2v∗, 1 = u∗
K1

+ α1w∗ = v∗
K2

+ α2w∗,
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we have

E ′(t; P∗) = β1

(
1 − u

K1
− α1w

)
(u − u∗) + β2

(
1 − v

K2
− α2w

)
(v − v∗)

+ (α1β1u + α2β2v − θ)(w − w∗)

= β1

(
1 − u

K1
− α1w∗

)
(u − u∗) + β2

(
1 − v

K2
− α2w∗

)
(v − v∗)

= − β1

K1
(u − u∗)2 − β2

K2
(v − v∗)2 .

Hence E ′(t; P∗) ≤ 0, where “=” possibly holds in the case of (u, v) = (u∗, v∗).
Note that if (u, v) = (u∗, v∗), then w = w∗ since the system (1.2) admits the unique
coexistence equilibrium P∗ for θ ∈ (θ0, L). Therefore, E ′(t; P∗) < 0 if (u, v, w) �=
Euv . If (u, v, w) = P∗, then (A3) obviously shows that E(t; P∗) = 0 for all t > 0,
which implies that E ′(t; P∗) = 0 for all t > 0. We obtain

E ′(t; Euv) ≤ 0, where “=” holds if and only if (u, v, w) = Euv.

Moreover, the same arguments as in the proof of Lemma A.2 yield that E(t; P∗) > 0
for (u, v, w) �= P∗. Then the proof is completedby an applicationofLaSalle’s invariant
principle. �


Note that θ0 = 0 if and only if α1 = α2. If α1 = α2, then Lemma A.2 and Lemma
A.3 imply that for any θ > 0, either Euv or P∗ is globally asymptotically stable.Wenext
consider the case α1 �= α2, which implies θ0 > 0. Then in view of Table 1, the semi-
coexistence equilibria P1 and P2 exist for θ ∈ (0, θ0] since 0 < θ0 < min {L1, L2}.
The following result gives the global stability of P1 and P2.

Lemma A.4 (Global stability of P1 and P2). Let (1.3) hold, α2 > α1 (resp. α1 > α2)
and θ ∈ (0, θ0]. Then the semi-coexistence equilibrium P1 (resp. P2) of (1.2) is
globally asymptotically stable.

Proof Without loss of generality, we only prove the global stability for P1 =(
u P1 , 0, wP1

) = ( θ
α1β1

, 0, L1−θ
α1L1

) in the case of α2 > α1, and the proof for P2 in
the case of α1 > α2 is similar. Let Es = P1 in (A3) and (A4), then (A4) implies
�i = βi , i = 1, 2. Clearly, 0 < θ0 = (1 − α1

α2
)L1 < L1, and hence

α2wP1 = α2

α1

(
1 − θ

L1

)
≥ α2

α1

(
1 − θ0

L1

)
= 1,
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which alongside (1.2), (1.3), θ = α1β1u P1 and α1wP1 = 1 − u P1
K1

implies that

E ′(t; P1) = β1

(
1 − u

K1
− α1w

) (
u − u P1

)+ β2

(
1 − v

K2
− α2w

)
v

+ (β1 f1(u) + β2 f2(v) − θ)
(
w − wP1

)
= β1

(
1 − u

K1
− α1wP1

) (
u − u P1

)+ β2

(
1 − v

K2
− α2wP1

)
v

≤ − β1

K1

(
u − u P1

)2 − β2

K2
v2.

The rest of the proof is similar to that of Lemma A.2, and we omit it for brevity. �


A.3. Global stability for� ∈ (0, L) and Holling type II (1.4)

We now consider the case of Holling type II (1.4). We first give the global stability of
semi-coexistence equilibria Q1 and Q2.

Lemma A.5 (Global stability of Q1 and Q2). Let (1.4) hold and θ ∈ (0, L1) (resp.
θ ∈ (0, L2)). Then the semi-coexistence equilibrium Q1 (resp. Q2) of (1.2) is globally
asymptotically stable if (2.1) (resp. (2.2)) holds.

Proof Without loss of generality, we only prove the global stability for Q1 =(
uQ1 , 0, wQ1

)
, and the case for Q2 can be proved similarly. Let Es = Q1 =(

uQ1 , 0, wQ1

)
in (A3) and (A4). Then (A4) implies

�1 = β1

1 + γ1h1uQ1

and �2 = β2 (A9)

If v0 ≤ K2, then (A1) implies v(t) ≤ K2 for all t ≥ 0. This along with (2.1) and the

fact f2(s)
s decreases for s ≥ 0 indicates that

wQ1 f2(v)

v
≥ wQ1 f2(K2)

K2
≥ 1 for all t ≥ 0.

Similarly, if v0 > K2, then (2.1) implies K2
f2(K2)

< wQ1 . Hence (A2) yields T1 > 0

such that
wQ1 f2(v)

v
> 1 for all t ≥ T1. Therefore, for v0 ≥ 0, it holds that

wQ1 f2(v)

v
≥ 1 for all t ≥ T1. (A10)

Using θ = β1 f1(uQ1), (1.4), (A9) and (A10), we have

β1 f1(u) − θ = β1
(

f1(u) − f1(uQ1 )
) = β1

γ1
(
u − uQ1

)
(1 + γ1h1u)

(
1 + γ1h1uQ1

) = �1
f1(u)

u

(
u − uQ1

)
.
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Consequently,

E ′(t; Q1) = �1

(
1 − u

K1
− w f1(u)

u

) (
u − uQ1

)+ β2

(
1 − v

K2
− w f2(v)

v

)
v

+ (β1 f1(u) + β2 f2(v) − θ)
(
w − wQ1

)
= �1

(
1 − u

K1
− wQ1 f1(u)

u

) (
u − uQ1

)+ β2

(
1 − v

K2
− wQ1 f2(v)

v

)
v

= −�1h1γ1(λ1 + uQ1 − K1 + u)

K1(1 + h1γ1u)
(u − uQ1 )

2 − β2

K2
v2 + β2

(
1 − wQ1 f2(v)

v

)
v

≤ −�1h1
K1

f1(u)(u − uQ1 )
2 − β2

K2
v2 for all t ≥ T1.

Then the global stability of Q1 follows from the Lyapunov function method and
LaSalle’s invariant principle, similar as in the proof of Lemma A.2. �


We next prove the global stability of the coexistence equilibrium Q∗.
Lemma 4.1 (Global stability of Q∗).Let (1.4)hold, θ ∈ (0, L)and Q∗ be a coexistence
equilibrium of (1.2). Then Q∗ is globally asymptotically stable if (2.3) holds.

Proof Let Es = Q∗ = (u∗, v∗, w∗) in (A3) and (A4). Then (A4) gives

�1 = β1

1 + γ1h1u∗
, �2 = β2

1 + γ2h2v∗
.

Using (1.2), (1.3) and θ = β1 f1(u∗) + β2 f2(v∗), we obtain

E ′(t; Q∗) = �1

(
1 − u

K1
− w f1(u)

u

)
(u − u∗) + �2

(
1 − v

K2
− w f2(v)

v

)
(v − v∗)

+ β1 ( f1(u) − f1(u∗)) (w − w∗) + β2 ( f2(v) − f2(v∗)) (w − w∗) . (A11)

Similar as in driving (A7) and (A8), we have

β1 ( f1(u) − f1(u∗)) = �1
f1(u)

u
(u − u∗) and β2 ( f2(v) − f2(v∗)) = �2

f2(v)

v
(v − v∗). (A12)

Substituting (A12) into (A11) and usingw∗ = u∗
f1(u∗) (1− u∗

K1
) = v∗

f2(v∗) (1− v∗
K2

) yields

E ′(t; Q∗) = �1

(
1 − u

K1
− w∗ f1(u)

u

)
(u − u∗) + �2

(
1 − v

K2
− w∗ f2(v)

v

)
(v − v∗)

= −�1h1γ1(λ1 + u∗ − K1 + u)

K1(1 + h1γ1u)
(u − u∗)2 − �2h2γ2(λ2 + v∗ − K2 + v)

K2(1 + h2γ2v)
(v − v∗)2

≤ −�1h1
K1

f1(u)(u − u∗)2 − �2h2
K2

f2(v)(v − v∗)2.

Similar arguments with the Lyapunov function method alongside LaSalle’s invariant
principle as above complete the proof. �

Proof of Theorem 2.1. In view of Lemmas A.2, A.3 and A.4, Theorem 2.1 is proved. �

Proof of Theorem 2.2. With the results from Lemmas A.2, A.5 and 4.1, Theorem 2.2
is obtained. �
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Appendix B. Proof for Remark 2.2

This appendix is dedicated to proving the conclusion stated in Remark 2.2.

Proof for Remark 2.2 We first prove

�1 ∩ �2 = ∅. (B1)

Note that wQ1 strictly increases with respect to K1 > 0 since

dwQ1

d K1
= u2

Q1

f1(uQ1)K 2
1

= β1u2
Q1

θ K 2
1

> 0.

Let (K1, K2) ∈ �1. If γ1 ≥ γ2, then the first condition in �1 implies that

wQ1 ≤ wQ1

∣∣
K1=λ1+uQ1

= 1

γ1
≤ 1

γ2
<

1 + γ2h2K2

γ2
= K2

f2(K2)
,

which contradicts (K1, K2) ∈ �1. Therefore,�1 = ∅ in the case of γ1 ≥ γ2. Similarly
one can show that �2 = ∅ in the case of γ1 ≤ γ2. The claim (B1) is proved.

Without loss of generality, we next assume γ1 ≥ γ2, then �1 = ∅. It remains to
prove that

�2 ∩ �∗ = ∅. (B2)

Assuming that there exists a pair (K1, K2) ∈ �2∩�∗, we shall derive a contradiction.
Using

θ = β2 f2(vQ2) = β1 f1(u∗) + β2 f2(v∗)

and the fact that fi (s) and s
fi (s)

(i = 1, 2) strictly increase with respect to s ≥ 0, we
have

v∗ < vQ2 < K2 and w∗ = u∗
f1(u∗)

(
1 − u∗

K1

)
<

u∗
f1(u∗)

<
K1

f1(K1)
. (B3)

By the second condition in �2 and (B3), we have w∗ < wQ2 , which means that

w∗ = ϕ0(v∗) < ϕ0(vQ2) = wQ2 , (B4)

where

ϕ0(s) := s

f2(s)

(
1 − s

K2

)
= (K2 − s)(1 + h2γ2s)

K2γ2

= − h2

K2

(
s − K2 − λ2

2

)2

+ h2(K2 − λ2)
2

4K2
+ 1

γ2
, s ∈ [0, K2]. (B5)
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The combination of the first equation of (B3), (B4) and (B5) implies that

v∗ <
K2 − λ2

2
and v∗ + vQ2 < K2 − λ2. (B6)

Starting from the first condition in �2, the second condition in �∗, and the second
inequality in (B6), we obtain 2K2 < 2λ2 + v∗ + vQ2 < 2λ2 + K2 − λ2, which sim-
plifies to K2 ≤ λ2. Therefore, the first inequality in (B6) indicates v∗ ≤ 0 which
is absurd. This proves (B2) and hence proves that �1, �2 and �∗ are mutually
disjoint. �


Appendix C.

This appendix is devoted to proving that the rescaled system (3.7)with (3.8) has atmost
one coexistence equilibrium Q∗ = (u∗, v∗, w∗) (see (3.9)), which exists if and only if
θ ∈ (
1, L), where 
1 and L are given by (3.10). Remark 2.1 implies θ ∈ (0, L) is a
necessary condition for the existence of Q∗. Therefore, we shall consider θ ∈ (0, L)

below. Within this appendix, we shall use the notations defined in (3.10). For clarity,
we also introduce the following notations.

• For γ2 ∈ (0, 1), b > 0 and θ ∈ (0, L), let

vM := θ

γ2(b − θ)
(C1)

be a positive constant (note that (3.10) implies θ < b), then vM strictly increases
in θ ∈ (0, L) and

vM

{
< 1, if θ ∈ (0, L2),

≥ 1, if θ ∈ [L2, L).
(C2)

• It is straightforward to check that either of the equations

{
8s3 + 7s2 − 8s + 1 = 0,

24s3 − 13s2 − 6s + 3 = 0,
s ∈ R,

has two positive (real) roots and one negative (real) root. Denote the two positive
roots of the first equation by η1 and η3 with η1 < η3, and the largest root of the

second equation by η4. Let η2 = 4
√
7−7
9 . Then

(η1, η2, η3, η4) ≈ (0.1471, 0.3981, 0.5429, 0.6195).
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• For b > 0, define the functions

ξ1(γ2) :=b
(
4γ 2

2 − 5γ2 + 1
)

1 − 3γ2
, γ2 ∈ (η1,

1

4
) ∪ (η3, 1),

ξ2(γ2) :=b

3
(4 − γ2 −

√
γ 2
2 + γ2 + 1), γ2 ∈ (η2, 1).

It holds that ξ1(γ2) strictly decreases in each connected domain with ξ1(γ2) ∈
(0, L),

lim
γ2→η1

ξ1(γ2) = lim
γ2→η3

ξ1(γ2) = L and lim
γ2→ 1

4

ξ1(γ2) = lim
γ2→1

ξ1(γ2) = 0.

The function ξ2(γ2) strictly decreases in (η2, 1) with ξ2(γ2) ∈ (mb, L),

lim
γ2→η2

ξ2(γ2) = L and lim
γ2→1

ξ2(γ2) = mb,

where mb := (1 − 1√
3
)b. Moreover, for γ2 ∈ (η3, 1),

⎧⎪⎨
⎪⎩

ξ1(γ2) > ξ2(γ2), if γ2 ∈ (η3, η4),

ξ1(η4) = ξ2(η4) ≈ 0.6550,

ξ1(γ2) < ξ2(γ2), if γ2 ∈ (η4, 1).

The graphs of three functions ξ1(γ2)
b , ξ2(γ2)

b and L
b = 1+3γ2

2(1+γ2)
are shown in Fig. 9(a)

• For b > 0, γ2 ∈ (0, 1) and 0 < θ < L , let

G(s) :=
4∑

k=0

Dksk, s ≥ 0, (C3)

where the coefficients are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D4 = γ 3
2 (2b − θ)2,

D3 = γ 2
2 (2b − θ)(2b(2 − γ2) − θ(3 − γ2)),

D2 = (γ2 − 1)γ2
(
b2(3γ2 − 5) − 2bθ(γ2 − 4) − 3θ2

)
,

D1 = b2
(
4γ 2

2 − 5γ2 + 1
)− 2bθ

(
2γ 2

2 − 4γ2 + 1
)+ θ2(1 − 3γ2),

D0 = b2(γ2 − 1) − 2bθ(γ2 − 1) − θ2.

(C4)

By elementary analysis (omitted for brevity), we have the following result concern-
ing the signs of the coefficients given in (C4).
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Fig. 9 The graphs of three functions ξ1(γ2)
b , ξ2(γ2)

b and L
b versus γ2 ∈ (0, 1) are shown in (a). The signs

of D1 and D2 in the γ2-θ/b plane within (γ2, θ) ∈ (0, 1) × (0, L) are shown in (b) and (c), respectively

Proposition C.1 Let b > 0, γ2 ∈ (0, 1) and θ ∈ (0, L). Then D4, D3 > 0, D0 < 0,
and

D1

⎧⎪⎨
⎪⎩

< 0, if (γ2, θ) ∈ ∑−
1 := (η1,

1
4 ] × (ξ1, L) ∪ ( 14 , η3] × (0, L) ∪ (η3, 1) × (0, ξ1),

= 0, if (γ2, θ) ∈ ∑0
1 := (η1,

1
4 ) × {ξ1(γ2)} ∪ (η3, 1) × {ξ1(γ2)},

> 0, if (γ2, θ) ∈ ∑+
1 := (0, η1] × (0, L) ∪ (η1,

1
4 ) × (0, ξ1) ∪ (η3, 1) × (ξ1, L),

and

D2

⎧⎪⎨
⎪⎩

< 0, if (γ2, θ) ∈ ∑−
2 := (η2, 1) × (ξ2, L),

= 0, if (γ2, θ) ∈ ∑0
2 := (η2, 1) × {ξ2(γ2)},

> 0, if (γ2, θ) ∈ ∑+
2 := (0, η2] × (0, L) ∪ (η2, 1) × (0, ξ2).

Proposition C.1 provides a geometric illustration for the signs of D1 and D2 in
the γ2-θ/b plane within (γ2, θ) ∈ (0, 1) × (0, L), as shown in Fig. 9(b)-(c). Based on
Proposition C.1, we get the following results with tedious but elementary calculations.

Proposition C.2 Let b > 0, γ2 ∈ (0, 1) and θ ∈ (0, L). Then the function G(s) defined
by (C3) has exactly one real root in (0,+∞).

We can now prove the main result of this appendix.

Lemma C.3 The rescaled system (3.7) with (3.8) has a unique coexistence equilibrium
Q∗ = (u∗, v∗, w∗) if and only if θ ∈ (
1, L). Moreover,

u∗ = γ2v∗(b − θ)(vM − v∗)
γ2v∗(2b − θ) + b − θ

, w∗ = (1 − v∗)
(

v∗ + 1

γ 2

)
,

and v∗ ∈ (0,min {1, vM }) satisfies G(v∗) = 0, where the positive constant vM and
the function G are given by (C1) and (C3), respectively.

Proof Clearly, it follows from (C3) and Proposition C.1 that G(0) = D0 < 0, which
alongside PropositionC.2 implies that the rescaled system (3.7)with (3.8) has a unique
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coexistence equilibrium Q∗ = (u∗, v∗, w∗) if and only if G(min {1, vM }) > 0. If
θ ∈ [L2, L), then (C2) implies G(min {1, vM }) = G(1) = 2bγ2(γ2+1)2(L −θ) > 0.
If θ ∈ (0, L2), then

G(min {1, vM }) = G(vM ) = b4ϕ2(θ)

γ2(b − θ)4
,

where ϕ2(θ) is given by (3.11), and ϕ2(θ) > 0 if and only if θ > 
1. The proof is
completed. �


Acknowledgements The authors are grateful to the anonymous reviewer for the careful reading, insightful
comments and grammatical corrections, which greatly helped us improve the precision and exposition
of this article. The research of Y. Lou is partially supported by the NSF of China (No. 12261160366
and No. 12250710674). The research of W. Tao is partially supported by PolyU Postdoc Matching Fund
Scheme Project ID P0030816/B-Q75G, 1-W15F and 1-YXBT, and the NSF of China (No. 12201082). The
research of Z.-A. Wang was partially supported by the NSFC/RGC Joint Research Scheme sponsored by
the Research Grants Council of Hong Kong and the National Natural Science Foundation of China (Project
No. N−PolyU509/22), and PolyU Postdoc Matching Fund Scheme Project ID P0034904 (Primary Work
Programme W15F).

Funding Open access funding provided by The Hong Kong Polytechnic University

Data Availability The authors declare that the manuscript has no associated data.

Declaration

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abrams PA (1999) Is predator-mediated coexistence possible inunstable systems? Ecology 80(2):608–621
Robert S (2003) Cantrell and Chris Cosner. Spatial ecology via reaction-diffusion equations. John Wiley &

Sons Ltd, Chichester
Caswell H (1978) Predator-mediated coexistence: a nonequilibrium model. Amer Nat 112(983):127–154
Chailleux A, Mohl EK, Alves MT, Messelink GJ, Desneux N (2014) Natural enemy-mediated indirect

interactions among prey species: potential for enhancing biocontrol services in agroecosystems. Pest
Manag Sci 70(12):1769–1779

Chaneton EJ, Bonsall MB (2000) Enemy-mediated apparent competition: empirical patterns and the evi-
dence. Oikos 88(2):380–394

ChengK-S (1981)Uniqueness of a limit cycle for a predator-prey system. SIAMJMathAnal 12(4):541–548
Cosner C (2014) Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete

Contin Dyn Syst 34(5):1701–1745

123

http://creativecommons.org/licenses/by/4.0/


Effects and biological consequences … Page 37 of 37    47 

DeCesareNJ,HebblewhiteM,RobinsonHS,MusianiM (2010)Endangered, apparently: the role of apparent
competition in endangered species conservation. Anim Conser 13(4):353–362

Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol
12(2):197–229

Holt RD, Bonsall MB (2017) Apparent competition. Annu Rev Ecol Evol Syst 48(1):447–471
Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Amer Nat 149(4):745–764
Hsu S-B (1981) Predator-mediated coexistence and extinction. Math Biosci 54(3):231–248
Kang Y, Wedekin L (2013) Dynamics of a intraguild predation model with generalist or specialist predator.

J Math Biol 67(5):1227–1259
Karban R, Hougen-Eitzmann D, English-Loeb G (1994) Predator-mediated apparent competition between

two herbivores that feed on grapevines. Oecologia 97(4):508–511
Kareiva P, Odell G (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted

search. Amer Natur 130(2):233–270
LaSalle JP (1960) Some extensions of Liapunov’s second method. IRE Trans CT–7:520–527
Logemann H, Ryan EP (2014) Ordinary differential equations: Analysis, qualitative theory and control.

Springer, London
Lotka AJ (1925) Elements of physical biology. Williams & Wilkins, Baltimore
May RM (2001) Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton,

second edition
Mimura M, Kan-on Y (1986) Predation-mediated coexistence and segregation structures. in studies in

mathematics and its applications. Elsevier 18:129–155
Murdoch WW, Briggs CJ, Nisbet RM (2013) Consumer-Resource Dynamics (MPB-36). Princeton Univer-

sity Press, Princeton
Murray JD (2002) Mathematical Biology I: An introduction, volume 17 of Interdisciplinary Applied Math-

ematics. Springer-Verlag, New York, third edition, (2002)
Ni W-M (2011) The mathematics of diffusion. SIAM, (2011)
Piltz SH, Veerman F, Maini PK, Porter MA (2017) A predator-2 prey fast-slow dynamical system for rapid

predator evolution. SIAM J Appl Dyn Syst 16(1):54–90
Ryan D, Cantrell RS (2015) Avoidance behavior in intraguild predation communities: a cross-diffusion

model. Discrete Contin Dyn Syst 35(4):1641
Sapoukhina N, TyutyunovY, Arditi R (2003) The role of prey taxis in biological control: a spatial theoretical

model. Amer Nat 162(1):61–76
Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88(10):2415–2426
Stige LC, Kvile KØ, Bogstad B, LangangenØ (2018) Predator-prey interactions cause apparent competition

between marine zooplankton groups. Ecology 99(3):632–641
Vance RR (1978) Predation and resource partitioning in one predator - two prey model communities. Amer

Nat 112(987):797–813
Wang X, Zanette L, Zou X (2016) Modelling the fear effect in predator-prey interactions. J Math Biol

73(5):1179–1204
Williamson MH (1957) An elementary theory of interspecific competition. Nature 180(4583):422–425

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Effects and biological consequences of the predator-mediated apparent competition I: ODE models
	Abstract
	1 Introduction
	2 Global stability results
	3 Numerical simulations and biological implications
	3.1 Symmetric apparent competition
	3.2 Asymmetric apparent competition

	4 Summary and discussion
	Appendix A. Proof of the global stability
	A.1. Global stability for θL 
	A.2. Global stability for θin(0,L) and Holling type I (1.3)
	A.3. Global stability for θin(0,L ) and Holling type II (1.4)

	Appendix B. Proof for Remark 2.2
	Appendix C.
	Acknowledgements
	References


