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EXISTENCE OF POSITIVE STEADY-STATE SOLUTIONS TO THE
SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION*
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Abstract. This paper is concerned with the following stationary Shigesada—Kawasaki—Teramoto

dAu~+u(r —u—bv)=0 in 2,
competition system with cross-diffusion ¢ uA[(1+ ku)v] +v(r—v—cu)=0 inQ, where u and v
g—u =% _q on 012,

represent the densities of two competing speGies, (2 is a bounded domain in R™ (n>1), and v denotes
the outer unit normal to 9. All coefficients d, u, b, ¢, r, k are assumed to be positive constants.
The existence and stability /instability of nonconstant positive solutions of the above system have
been widely studied in the literature but confined to large k > 0 and small d > 0 (or d > 0 close to
some particular number) with p € (0,00]. In this paper, we establish the existence/nonexistence of
nonconstant positive solutions for any k,d > 0 and large p > 0, which fills some gaps left out in the
existing results. First, we show there are no positive solutions in the case of b < 1 < ¢ for large u > 0.
Then by studying the shadow system of the above system as p — oo, we establish the existence of
positive solutions for large p > 0 in various ranges of b,c¢ > 0 including all possible competitions:
weak, strong-weak, and strong. In particular, we find some conditions under which multiple positive
solutions exist. Finally we show the existence of positive solutions for some p > 0 in the case of weak
competition 0 < b,c < 1.

Key words. competition model, cross-diffusion, shadow system, monotone positive solutions,
global bifurcation
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1. Introduction. A variety of mathematical models have been employed to in-
vestigate the effect of dispersal on population dynamics [39, 51], as well as how the
species interaction affects the selection and evolution of dispersal strategies [9, 18, 30].
However, much of the theoretical studies are devoted to the case of random (uncon-
ditional) dispersal where the movement of species is modeled as a random diffusion
process [33, 36]. In comparison, mathematical studies of models incorporating condi-
tional dispersal strategies, which take into account factors such as avoidance effect,
population pressure, crowding effect, and competition of species, to name a few, have
received relatively less attention and there are many open questions related to condi-
tional dispersal strategies [2]. Among them, cross-diffusion (the process by which the
density gradient of one species induces an advective flux of another species) has often
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been used to interpret many observed patterns and evolutionary processes in living
organisms, such as chemotaxis [14], preytaxis [13], pattern formation [23], biofilm [38],
Turing pattern [7], spatial segregation [43], and so on. These reaction—cross-diffusion
systems have attracted enormous attention because their rich mathematical structures
enable the modeling of many important physical/biological phenomena.

In this paper, we are concerned with the following simplified STK cross-diffusion
model proposed by Shigesada—Kawasaki—Teramoto [43]

uy = dAu + u(r —u — bv), zeO,t>0,
(1.1) ve = pA[(1+ ku)v] +ov(r —v—-cu), z€Qt>0,

du Ov

5—%—0, xE@Q,t>0,

where u(x,t) and v(z,t) represent the densities of two competing species at the lo-
cation x and time ¢, Q is a bounded domain in R™(n > 1), and v denotes the outer
unit normal to 9. All coefficients d, u, b, ¢, r, k are assumed to be positive con-
stants throughout this paper, where, in particular, the parameter r > 0 is referred
to as the (spatially homogeneous) resource available in the environment. The term
A[(1 + ku)v] says that the rate of departure of species v from location x is propor-
tional to 1+ ku(z,t), which is an increasing function of the density w(z,t) of the
first species. The coefficient k is called the cross-diffusion coefficient and measures
the biased movement of species v in response to the population pressure from the
species u.

If £ =0, then the dispersal strategy of v is unconditional upon the density of wu,
and the competition model (1.1) becomes the classical diffusive Lotka—Volterra com-
petition model under zero Neumann boundary conditions. In this case, the system
admits a comparison principle and the theory of monotone dynamical systems can be
applied to classify the long-time dynamics of the system [10, 44]. A result by Kishi-
moto and Weinberger [15] asserts that (1.1) has no stable nontrivial positive steady
state on a convex domain. It is well known that in the case of weak-strong competition
(e, b<l<corb>1>c¢), system (1.1) has no positive steady state (cf. [25, 32]),
i.e., coexistence is impossible. However, if the resource is spatially heterogeneous,
namely r = r(z) is not constant, then the global dynamics are much more compli-
cated and the species may coexist in the case of weak-strong competition, depending
on the size of dispersal rates d and p (see [10]). Therefore, an interesting question
is whether two competing species can coexist in the case of weak-strong competition
if one adopts density-dependent dispersal [2] given that the resource is spatially ho-
mogeneous. The quasilinear cross-diffusion system (1.1) with & > 0 is a prominent
mathematical model highly pertinent to this question and has attracted tremendous
attention in the past few decades. The existence of global-in-time solutions has been
established in [1, 19]. For the steady states, the first analytical work was due to
[31] which showed that (1.1) admits positive transition-layer steady states when
and k are sufficiently large but d > 0 is sufficiently small in some strong competition
case b,c > 1. Later the stability/instability of such steady states was investigated in
[12]. The existence/nonexistence of positive steady states in some larger parameter
regimes were obtained in [25]. In a celebrated work [26], Lou and Ni established the
uniform boundedness of nontrivial steady states, and derived three types of limiting
shadow systems determining all the possible asymptotic behavior of steady states as
the cross-diffusion parameter &k in (1.1) tends to infinity (see [26, Theorem 1.4 and
Theorem 4.1]).
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THEOREM 1.1 (see [26, Theorem 4.1]). Let Q C R"(1 < n < 3) be a bounded
domain with smooth boundary. Suppose b # 1, ¢ # 1, and r/p # A; for all j € N,
where \; denotes the eigenvalues of —A subject to homogeneous Neumann boundary
condition. Let (u;,v;) be positive nonconstant steady states of (1.1) with (u,k) =
(i, ki) and pik; — oo. Then the following conclusions hold:

(a) If k; — 0o and p; — € (0,00), then either (i) or (i) occurs.
(b) If k; — oo and p; — 0o, then either (i*) or (i) occurs.

(¢) If k; —» k €[0,00), then k>0 and (iii) occurs; where

(1) (kjui,v;) = (w,v) uniformly, where (w,v) is a positive solution of

dAw+w(r —bv)=0 in €,
(1.2) pA(1+w)v] +v(r—v)=0 in Q,
ow Ov

(1i*) (kiug,v;) = (w,&/(1 + w)) uniformly, where € >0 and w is a positive solution of

dAw+w(r—b/(14+w))=0 in
r 1
(1.3) /Quwdx—ffﬂi(uw)z 4,
ow
E_O on OS.

(ii) (wi,vi) = (u,&/u) uniformly, where € >0 and u is a positive solution of

dAu~+u(r—u)=0b¢ in Q,
1
(14) 50—/ da=o,
%:O on 0f).
v

(iil) (ws,v5) = (u,&/(1 4 ku)) uniformly, where £ >0 and u is a positive solution of

dAu+u|r—u— b =0 mn £,
1+ ku
1 1
) — dr = ——d
(1.5) /Ql—kku (r—cu)ds S/Q(l—kku)Q x,
ou

The classification given in Theorem 1.1 provides a framework to study the steady-
state solutions of the quasilinear system (1.1) and has stimulated lots of studies on
the existence and/or stability /instability of limiting systems (1.2), (1.3), and (1.4)
in various ranges of parameters (cf. [17, 20, 21, 25, 27, 28, 33, 34, 46, 49, 50] in
one dimension and [16, 29] in multidimensions). But all these works have essentially
assumed that d > 0 is either small or close to some particular number (or lies in certain
range), and k > 0 is sufficiently large. We refer to a recent work [21] and references
therein for a brief review of the above-mentioned works. See also [22] for more recent
developments.

As we know, the limiting shadow system (1.5) has never been investigated in
the literature. Indeed the limiting system (1.5) results from the cases p — oo and
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0 < k < oo, which clearly varies from limiting systems (1.2), (1.3), and (1.4), all of
which require k& — oco. Hence the study of the existence/nonexistence of solutions
to (1.5) is of interest in its own right. The main goal of this paper is to study the
existence or nonexistence of nonconstant steady state solutions of (1.1) satisfying

dAu+u(r —u—bv)=0 in Q,
(1.6) pA[(1+ku)v]+v(r—v—cu)=0 in€Q,

ou Ov

o on 94

in some parameter regimes not covered by the existing studies mentioned above.
Our first result is concerned with the nonexistence of positive solutions to (1.5) and
(1.6). Specifically, we will show that system (1.5) does not admit nonconstant positive
solutions for b < 1 <¢, while if b < 1 < ¢, then system (1.6) has no nonconstant positive
solutions for large p.

THEOREM 1.2. Let d,k,b,c>0. Then the following results hold:

(1) If b <1 <e, then system (1.5) does not admit nonconstant positive solutions
for any >0

(2) If b < 1 < ¢, then there exists p > 0 such that (1.6) has no non-constant
positive solutions for any p> p. N

Under the assumption b < 1 < ¢, it is well known [32] that in the absence of
cross-diffusion (i.e., k = 0), the weak competitor v does not persist for any d, ;> 0.
Theorem 1.2 (2) implies that the weak competitor will not persist either even if it
adopts the dispersal strategy to avoid the stronger competition u (i.e., k > 0) when
its diffusion rate p is sufficiently large for given b, ¢,d, k > 0.

A natural question, then, is whether (1.6) has positive solutions outside the pa-
rameter regime given in Theorem 1.2. It turns out this is a very challenging question.
In this paper, we address this question in one dimension, relying on the crucial ob-
servation (see Proposition 1.1 below) that the existence of solutions of the limiting
shadow system (1.5) implies the existence of solutions to (1.6) for x> 1 under some
non-degeneracy conditions. Therefore, we shall restrict our attention in the one-
dimensional case in what follows. Without loss of generality, we assume Q = (0, L)
with L >0 and rewrite system (1.5) as

b .
um—|-u<r—u—1+§ku>—0 in (0,L),
L L
(1.7) / 1 / 1
—cu) dx = —d
0 1+ku (T CU) t 5 0 (1+ku)2 T
U, =0, z=0,L
and (1.6) as
Ugy +u(r—u—bv)=0 in (0, L),
(1.8) p[(1+ ku)v]pw + v(r—v—cu)=0 in(0,L),
Uy = Vg =0, z=0,L,

where we set d =1 for the simplicity of notation and k > 0 is fixed for the rest of this
paper.

To study the existence of nonconstant solutions of the limiting system (1.7) and
the corresponding original system (1.8), we define a weak form of nondegeneracy as
follows.
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DEFINITION 1.1. We say that a nonconstant solution (u*,&*) of (1.7) is nonde-
generate if the linear operator T : {¢p € W22([0,L]) : ¢.(0) = ¢.(L) =0} — L*([0, L])
given by

_ " b™
T(¢)_¢wz+¢<r_2u - (lJrku*)Q)’
is invertible.

PROPOSITION 1.1. Suppose (1.7) has a nonconstant solution (u*,&*). If it is
nondegenerate and satisfies

(T (F8) B¢k — (b + 0)(1 + ku) .
(1.9) /O (1+ ku*)3 - 1+ kut)? dx #£0,

where T~ is the inverse of operator T given in Definition 1.1, then system (1.8)
admits a nonconstant positive solution (ut,v*) for p>>1. Moreover,

*

(ut, o) — (u* ) as p— +00.

"1+

Remark 1.1. Condition (1.9) is to ensure that system (1.7) when linearized at the
solution (u*,&*) does not admit a zero eigenvalue. We believe it is a generic condition
that is satisfied except for a small subset of parameter values. However, it is not easy
to check its validity analytically since the explicit form of (u*,£*) is unknown.

Thanks to Proposition 1.1, it remains to explore the existence and structure of
nonconstant solutions of the limiting shadow system (1.7). To this end, we classify
the monotone increasing solution of (1.7) since every nonconstant solution of the
shadow system (1.7) can be constructed from monotone solutions by reflection (see
Lemma 3.1). For the shadow system (1.7), we have the following conclusions on the
existence and nonexistence of the monotone increasing solutions.

THEOREM 1.3. Suppose that
Vkr
Vrk 43— 2/20+ kr)

Then there exists by € (ﬁ’ 1) and ¢* € (1,00) such that the following results hold:

(i) If b< by (resp., c>c*) , then system (1.7) has no strictly increasing positive
solutions for any ¢ >0 (resp., for any b>0).

(ii) If b> b, then there is a single bounded interval Iy such that system (1.7) has
a strictly increasing positive solution u* for some € =&* if and only if c € I,.
Consequently, for any b > b, and ¢ € I,, system (1.8) with p > 1 admits a
nonconstant positive solution if (u*,&*) satisfies (1.9).

(iii) If ¢ < c*, then there is a single interval I. such that system (1.7) has a
strictly increasing positive solution u* for some & = &* if and only if b € I..
Therefore, for any ¢ > ¢* and b € I., system (1.8) with pu > 1 admits a
nonconstant positive solution if (u*,&*) satisfies (1.9).

(1.10) rk>1 and L>L,:=

Theorem 1.3 gives the existence of increasing positive solutions of (1.7) and hence
(1.8). However, given b € (b,,00) (resp., ¢ € (0,c*)), the size of I; (resp., I..) is obscure
and cannot be explicitly identified. Below we present a more decisive result.
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THEOREM 1.4. Let the conditions in (1.10) hold. Define

75 =(rk—1—kn*/L* £ \/(kn?/L? — vk + 1) — 8kn? /L?) /4k.

Then there exists a small constant e = e(k,r, L) > 0 such that the following results hold:

(i) If be (1,14¢€) and c € (1 —€,1), then (1.7) admits at least two increasing
positive solutions.

(ii)) Assumebe (1 —¢,1) and c€ (1 —€1). If Yoo o = then (1.7) at least

l1—c r—z"

admits two increasing positive solutions, which are nondegenerate; if 1{b__cl €
(%, %), then (1.7) admits at least one increasing positive solution.

(iii) Assumebe (1,1+¢€) and c€ (1,1+¢€). If 16__1{b Tf; , then (1.7) at least
admits two increasing positive solutions, which are nondegenerate; if 1{17_;1 €
(22—, f—++), then (1.7) admits at least one increasing positive solution.

r—=z r—z

Under the same conditions, if the solution of (1.7) satisfies (1.9), then system
(1.8) admits the same number of nonconstant positive solutions as (1.7).

While Theorem 1.2 asserts that system (1.8) does not have any nonconstant posi-
tive solution if b < 1 < ¢, Theorem 1.4 (i) says that there are some b,¢ >0 withe <1 <b
such that (1.8) with p>> 1 admits some nonconstant positive solutions. Theorem 1.4
(ii) implies that there are some b,c¢ > 0 with b,¢ <1 or b,c¢ > 1 such that (1.8) with
1> 1 admits some nonconstant positive solutions. In the following theorem, proved
using the global bifurcation theorem, we show that (1.8) may admit at least one
nonconstant positive solution for any 0 < b,c <1 (weak competition) and some p > 0.

THEOREM 1.5. Let 0 < bye < 1 and A = T i = 0,1,2,.... Define py, =
1-bc)ut ot 1-b 1—

(bkmw£(1+2);‘+)12Ai+u+))Ai, where uT = % > 0 and vt = % > 0. Suppose

that j is a positive integer such that W € (Aj,Aj1]. If there exists

i€{1,2,...,7} such that

Hex; #/’I’)\m fOT’ anyme{]-,Qv"~7j} andm#iv

then (1.8) admits at least one nonconstant positive solution whenever

B> ey, andug{u)\n:u)\z?“'hu)\j}'

This paper is organized as follows. In section 2, we prove the nonexistence of
positive solutions to (1.7) and (1.8). In section 3, we classify the monotone increasing
solutions of (1.7), which form the building blocks of all nonconstant solutions (see
Propositions 3.2 and 3.3). This enables us to conclude the existence of nonconstant
solutions of system (1.8) with large > 0 as claimed in Theorem 1.3. In section 4, the
existence results in the case of weak competition for some g > 0 (i.e., Theorem 1.5)
are proved via the global bifurcation theory [3, 42].

2. Nonexistence of positive solution of system (1.6). This section is de-
voted to proving Theorem 1.2. We first prove the following result for system (1.5).

ProrosITION 2.1. If b <1 < ¢, then system (1.5) has no nonconstant positive
solutions.

Proof. If not, assume that (1.5) has a nonconstant positive solution u. Multiplying
the first equation of (1.5) by m and integrating the resulting equation over €,
one obtains
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1 b Au |Vul?(1 4 2ku)
—u— do=—d | —2% _qe—— [ DUCTM,
/Ql—|—ku (T “ 1—|—k‘u) v /Qu(l—i—ku) o q u2(1+ku)? z<0,

which along with the condition b <1 < ¢ implies that

1 b

This contradicts the second identity of (1.5), and hence completes the proof. d

To prove that system (1.6) does not admit any positive solution for large u, we
first establish several preparatory lemmas.

LEMMA 2.1. Let (u,v) be a positive solution of (1.6). Suppose there is a constant
A >0 such that

sup(1 + ku)v < Ainf(1 + ku)v,  [|ul|pe (o) < A,
a Q

then there exists a constant C4 such that

supv < C4infv.
o Q

Here C4a=A(1+ kA) depends on A only.
Proof. Indeed, it is obvious that

supv < su
Qp - Qpl—i—ku

sup(1 + ku)v < Ainf(1 + ku)v < Asup(l + ku) infv < Cyinfo.
Q Q Q Q Q

This completes the proof. 0

LEMMA 2.2. Let b,c,r k>0 be given. For any po > 0, there is 69 = do(po) > 0
such that any positive solution (u,v) of (1.8) with u > o satisfies that infgu + infg v
> dp.

Proof. Suppose to the contrary that there is a sequence of steady states (u;, u;, v;)
of (1.6) such that

(2.1) infuj +infv; -0, as j— oo.
Q Q
First, by the weak maximum principle, we observe that
sup |u;| <.
Q
For any j, let o € Q be such that (1 + ku;(zo))v;(zo) = max, q(1 + ku;(z))v;(z).
Then
A(1+ ku(zo)v(zo)) <0 and r— cu(xzg) — v(zg) >0,
which suggests that v(xg) <r and hence

sup (1 + kuy)vj| < (1+ kuj(zo))vj(wo) < 7(1+ k1),
Q

namely, u; and (14 ku;)v; are bounded in C([0, L]) uniformly in j. Thus there is a
constant Cy independent of j so that

(2.2) sup(lu;| + [(1 + ku;)v;]) < Co.
Q
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It follows that both u; and w; := (14 ku;)v; satisfy the Harnack inequality uniformly
in j, as both satisfy homogeneous linear elliptic equations with L*° coeflicients under
(2.2) alongside the condition u > g,

— C’LLj

4 p_ Wi
(2.3) Auj+ (r —u;—b o ) u; =0 and Aw;+ Ltk w; =0,

1+k’u]‘ uj(l—l—kuj)
and the homogeneous Neumann boundary condition. By Lemma 2.1 and (2.1), we
deduce that u; — 0 and v; — 0 uniformly in Q. Now, if we divide the first equation
of (1.8) by u;, and integrate the result by parts, we get

[ VP

0= Jo ()

Sending j — oo, we deduce fQ rdz < 0, which is a contradiction. Therefore, (2.1) is
false and there is a constant dg > 0 such that infgu + infg v > §p for all u € [ug, o).
Particularly, this dg > 0 can be chosen to depend only on pg but independent of
€ [1o,00), since the L> bound of the coefficients of the elliptic equations (2.3) only
depends on pg. The proof is thus completed. 0

dx—l—/ (r —u; —bvj)da.
Q

LEMMA 2.3. Consider the problem
6’(1)]‘
v

where juj — 00 as j — oo. If {F;} is uniformly bounded in L?, then p; [, |Vw;[*dz —0
as j — 0.

—pwiAw; =F; inQ, and =0 on 09,

Proof. First, one observes that fQ F;dz = 0 by integrating the equation along
with the boundary condition. Multiplying the equation by wj;, integrating the result,
and using Holder’s inequality, we get

(2.4) Mj/ﬂ|ij|2d$=/ﬂijjd$=/Q(wj—@j)Fjdxé wj — w22 || Fjll 22,

where w; = %fﬂ w;dz. Then applying the Poincaré inequality: |w; — @;||z2 <
c||[Vw;||z2 for some constant ¢ > 0 into (2.4), one finds a constant C > 0 depend-
ing on ¢ and the L?-norm of F; such that

|w; —wj]lpz < —.
J J Mj

Now sending j — oo in (2.4), we obtain the desired conclusion. |
With the help of the above lemmas, we now prove Theorem 1.2.

Proof of Theorem 1.2. The result of Theorem 1.2 (1) directly follows from Propo-
sition 2.1. We proceed to prove Theorem 1.2 (2). Suppose to the contrary that there
is a sequence of positive solutions (u;,u;,v;) of (1.6) with p; — oo as j — oo and
b <1< ec Now, we claim that infgv; 4 0. Indeed, u; and w; := (1 + ku;)v; satisfy
the Harnack inequality with constant independent of j (as explained in Lemma 2.2).
It then follows that v; also has the Harnack inequality (Lemma 2.1). If infgv; — 0,
then v; — 0 uniformly by the Harnack inequality. It then follows from the equation
of u; that w; — r or 0 uniformly and hence r — v; — cu; — (1 — ¢)r or r uniformly.
Since ¢ > 1, this means r — v; — cu; does not change sign for j sufficiently large. This
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is impossible since [, v;(r — v; — cuj)dz = 0. Hence, infqv; > &, for some §; > 0
independent of j.

Next, we divide the equation of u; by wu;(1 + ku;) and integrate the result by
parts to obtain

1 12 (1 + 2ku;
/ (= —buj) = — ‘V%L S %)d 0,
o 1+ ku; o (u)2(1+ kuy)

(2.5)

where the strict inequality results from that (1.6) has no constant positive solution
for b <1 < c. Dividing the equation of v; by w; := (1 + ku;)v;, we have

|V, [* / 1
2.6 ; d —v; —cu;)dr =0.
(2.6) /’LJ/Q (w;)?2 z+ 01+ kuy (r—v; —cuy)dz

Combining (2.5) and (2.6), we get

,Uj/ |ij|2d:1c:/ cuj+vj—7°dx>/ <C_1)uj+(1_b)vjdx.

Using Lemma 2.2, we obtain

|ij|2 / do
2. i de>(1-0 dx
@7 ]/Q (w;)? > ) o l+kCy

J

where Cj is the uniform bound for u; obtained in (2.2). However, Lemma 2.3 and
the fact that infg v; > 0, implies that w; > d1, and hence

[V, |? 1 / 5
0< ‘/7daﬁ§—- i | |Vw;|*dz — 0.
MJ O (wj)Q 5% /’LJ | J|

Then sending j — oo in (2.7), we obtain

do
0>(1—b da.
= )/Q1+k00 *

This is a contradiction and hence the proof of Theorem 1.2 is complete. 0

3. Existence and multiplicity of positive solutions of system (1.7) and
(1.8). In this section, we establish the existence and multiplicity of positive solutions
of system (1.8) when g is large. First, inspired by Proposition 1.1, we consider the
shadow system (1.7).

The following lemma says that every nonconstant solution of the shadow system
can be constructed from monotone solutions by reflection.

LEMMA 3.1. Let (u,&) € C%([0,L])x[0,00) be a nonnegative solution of the shadow
system (1.7). If u is nonconstant, then there exists m € N such that (u|[0 I m],f) is
a strictly monotone solution of (1.7) with the domain (0,L) replaced by 0,L/m).
Furthermore,

u(x —jL/m) when x € [jL/m,(j + 1)L/m], j even,
w((j+1)L/m—2x) whenxze[jL/m,(j+1)L/m], j odd.

(3.1) u(z) = {

In particular, if u is nonconstant and increasing in [0, L], then ' >0 in (0, L).
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Proof. Since v/ (L) =0, the following is well defined:
z* =inf{z € (0,L]: u'(x) =0}.

First, we claim that z* > 0. Suppose, not, then there exists a sequence x; “\, 0 such
that «/(z;) = 0 for all j. By Rolle’s theorem, there exists y; € (z;41,x;) such that
y; — 0 and u”(y;) = 0 for all j. Sending j — oo, we deduce that u”(0) = 0. By
uniqueness of ODE, it follows that u(z) = «(0) for all , which is impossible as w is
nonconstant. Hence, z* > 0.

By construction, u is strictly monotone in [0,2*], as ' does not change sign
in (0,z*). By uniqueness of ODE again, we easily see that u(z) = u(z* — z) for
x € [z*,22*]. Repeating the argument, we have

u(z — jx*) when z € [jz*, (j 4+ 1)x*], j is even,
u(x) =
uw((j+ Daz* —2) when € [jz*, (j + 1)z*], jis odd.

It follows that L =maxz* for some m € N.
Finally, if m =1, then 2* = L, so the definition of * implies v’ > 0 in (0, L). This
completes the proof. O

To find a positive solution of (1.7), we first investigate the regular boundary value
problem

b¢
14 ku

uwm—&—u(r—u— >=0 in (0, L),

U:fc<0) :um(L) =0

(3.2)

for given positive parameters &, b, r, k. Motivated by Lemma 3.1 (see also [11, 47]),
it is equivalent to consider the existence/nonexistence of increasing solutions of (3.2)
for arbitrary L > 0. To simplify notations, we define for u > 0,

hu)=(r—u)(1+ k), g(u)= % i ljfm
(3.3) Fw)=ug(u), and F(u)= /0 " pr)dr

With the maximum principle, we can obtain the following result.
PROPOSITION 3.1. Let u be a positive solution of (3.2). Then 0 <wu <t on [0, L].

Next, we establish the necessary condition for (3.2) admitting a strictly increasing
positive solution.

LEMMA 3.2. For any L > 0, let u be a nonnegative, nonconstant, and increasing
solution of (3.2). Thenrk>1 and b€ € (h(0), h(™5L)), where h(0) =r and h(i2L) =
(rk+1)2

ak
, Proof. Denote the boundary values of a :=u(0) and 8 := u(L), and let E(z) =
% + F(u(z)). Then E,(x) =0. Since uz(0) = u, (L) =0, we have

%|um(a:)|2 + F(u(z))=F(a) and F(a)=F(B8)=DBo.
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Combining u, > 0 in (0,L) (see Lemma 3.1) and E(z) = F(a) = F(f), one observes
that

F(u(z)) < F(a) for any z € (0, L).

So, there exists some z € (o, 8) C (0,7) at which F(-) takes a minimum value. This
along with (3.3) and the fact that f(u) has at most three isolated zeros implies that
there exists some small € > 0 such that f(z) =0 and

f(s)<0in(z—¢€,2) and f(s)>0in (2,2 +€).
Since f(-) and g(-) have the same sign in (0,7) by (3.3), we have g(z) =0 and
(3.4) g(s) <0in (z —¢€,2) and g(s) >0in (2,2 +¢).

Obviously, g(z) =0 if and only if b¢ = h(z).

Claim. rk>1.

Indeed, if rk <1, then h(-) is strictly decreasing in (0,r), which, combined with
g(s) = )b indicates that (3.4) cannot hold. Thus, we have rk > 1.

1+ks
It is trivial to show that

(3.5)
rk—1
>O, x e (O,2k>, . 1 ( . 1)2
k-1 TK — K+
h, — _r2 d W) =h(d — ,
@) =0 = % and  max h(u) < 2k) %
rk —
<0, xe( o7 ,7“),

From (3.4), (3.5), and g(s) = 225 it follows that b¢ = h(z) € (h(0),A(*57L)). O

From now on, we assume that rk > 1 and b¢ € (h(0),h(™5:2)). Given b¢ €

(h(O),h(”;;l)), by (3.5), one has that there exits 0 < z_ < T’;? < z4 <r such that

<0, we(0,z-)U(zy,r),
(3.6) bé=h(z_)=h(zy) and f(u)q>0, uwe(z—,24),
=0, u=0,z2_, 24,

where

(3.7) L, k=10 IR

DEFINITION 3.1. Define ag € [0,2-) as follows:
o If F(0) < F(z4), then take ag=0.
o If F(0) > F(zy), then we define ag to be the unique number in (0,z_) such
that F(ag) = F(z4).

LEMMA 3.3. Given b¢ € (h(0),h(™52L)), for any a € (ag,2—), (3.2) admits a
strictly increasing solution for some Lo, > 0 with u(0) = a and u(Ly) = B, where

Be (o 24) and F(a) = F(B).
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Proof. Based on the definition of ag, (3.3), and (3.6), we have F(a) < F(z4),
which, combined with (3.6), implies that there exits unique 8 € (2_,24) such that

Fla) = F(B).
Since the proofs are similar, we only consider the case F'(0) < F'(z4). Then ag = 0.
Denote the unique solution to the initial value problem

(3.8) Uge + f(u) =0, w(0)=a€ (ag,2-), uy(0)=0

by u(z; «). By (3.6), one has uwgw((); a) = —f(«a) >0 and, therefore, u(z;«) is initially
increasing. Let FE(z)= W + F(u(z;@)). Then we have that

(3.9) E,(x)=0 and FE(x)=F(a).

Claim. There exists some finite Lo, > 0 such that ug(z;) > 0 in (0,L,) and
g (Lo ) =0. If not, we assume that

(3.10) Uz (z;0) >0 in (0, 00).
This together with (3.9) gives that
F(u(z;a)) < F(a) for any = >0,
which together with (3.3), (3.6), and the definition of § yields that
(3.11) u(z;a) < B for any x > 0.

Let too = limy oo u(z;0). Then a < uoe < . Moreover, from (3.10) and (3.11), it
follows that lim,_, s Uz (2; ) =0, which combined with (3.8) yields that f(u)=0.
Recall that z_ is the only zero of f in («a, ] and one obtains that u., = z—. This
further implies that u,,(z;«) >0 in (0,00), which contradicts (3.11). Therefore, the
claim holds. Moreover, by (3.9) and the definition of 5, one has that u(Ly;a) = .
Thus, (3.2) admits a strictly increasing solution u(x;a) with L = L, u(0;a) = o, and
u(Lqy; ) = B. This completes the proof. 0

To obtain more precise information for the existence, we shall study the function
L, a € (ag,z-). Multiplying (3.8) by u,(z;«) and integrating the resulting equation
over (0,z), we have

Uy (x;0) = \/2(F(a) — F(u(z;0))), x € (0,Ly).

Dividing both sides by \/2(F(a) — F(u(x;))) and integrating the resulting equation
over (0, L), it follows that

B du
(3.12) La:/a 2(F (o) — Fu))

which is a singular integral. Next, inspired by the approaches in [11, 40, 41], we shall
apply several change of variables to transform the singular integral into a regular one.

Next, define py = \/2(F(ag) — F(2—), where aq is as in Definition 3.1 and z_
satisfies (3.7). Define the mapping v : [—po,po] = [, 24] by

82
(313)  FO() - F)=", signs=sign(y(s) ~ =) =sign(/(+(s)),
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Since 7' > 0 and it is clear that [« 3] is contained in the image of 7, then s =y~ 1(u) is
well defined and is strictly increasing in («a, 8) due to the facts that 0 < a < z_ < B <r,
(3.6) and the definition of F'(u).

Similarly, for each « € (ap,2-), associate p > 0 by

p2

(3.14) B =F(a)~ F(=)>0.
Note that

dp
3.15 — <0
(3.15) To
and « € (ag,z_) iff p € (0,pg). Then, one obtains L fp 7 (5) d52 Let s = —pcost,

p —s
0 <t <m, and we have
(3.16) Lo, :/ v (—pcost)dt.
0

For later use, we first express v/(s), v”(s), and 7"/ (s) as functions of u € (a, 3),
following the calculation similar to that in [40, pp. 4-6]. Differentiating the identity
(3.13) with respect to s, one obtains

Fy () =s.
Let
F(u)=F(u) — F(z_).

This together with (3.13) yields that 7'(s) = V‘f(u()‘) >0, as long as s #0 or u # z_.

For s =0, by the L’Hopital’s rule, one arrives at

Y= T = ey

which further implies that
™

(317) a1i>197 La = W = LO.

Differentiating the identity f(u)y'(s) =s with respect to s further gives
F@l ()] + flu)y"(s) =1

and

F @) ()] +3f (W' ()7 (s) + f(u)y" (s) = 0.
This further suggests that

" _]0272.}(./}?1 " _ fN
Y (5)—T(U)7 Y (0)——W(2—)7
and
" _ 7/(8) n _ [5(f”)2 _ Sf’f”’](z_)
(3.18) 7(5) =~ ), 2"0) = P e,
where f'(z_)=2_¢'(2—) >0 and
(3.19) H(u) =2 (w)f" () F(w) + 3f(u) [ (w) — 2f' (u) F (u)].

The following calculus lemma will be useful later.
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LEMMA 3.4. H(z_)=0 and H(u) <0 for ue (0,2_)U (2_, z4). In particular,
(3.20) 7" (s)>0  for s€Dom(y), and s#0.

Proof. Clearly, H(z_) =0 derived from the facts that f(z_) =0 and F(z_) =0.
Direct computations show that

(3.21)
2hbe
(1+ ku)3’

f’(u):r—Qu—ib§ f'(u)=-2+

—6k2be
FEER <0

and f"'(u) = A3 k)t

In particular, observe that u+— f”(u) changes sign exactly once, and that f changes
sign exactly three times at u =0, z_, 24 (see (3.6)). It follows that f’ changes sign
exactly twice at some c_ and c; such that 0 <c_ < z_ <cy <24 and moreover

(3.22)

<0 forue (0,c_)U(ct,24),
f">0in[0,c_], f"<0in[cy,24+], and f'(u){ =0 foru=c_,cy,

>0 foru€(c_,cy).

If ue (0,c_], by (3.6) and (3.22), one sees that
f(u) <0, f"(u)>0, F(u) >0, and f'(u) <0,

which suggests that H <0 in (0,c_].
If u € ey, 24 ), from (3.6) and (3.22), it follows that

f(u)>0, f"(u) <0, F(u) >0, and f'(u)<O0.

This further gives that H <0 in [c4,24).
We now consider the case u € (c_,z_)U(z_,cy). First, differentiating (3.19) with
respect to u yields

(3.23) H'(u) = 2f (u) f"" (u)F(w) + 5" (w)[(u) = 2" (w) F (u)].

Multiplying (3.19) and (3.23) by 5f” and 3f’, respectively, subtracting the resulting
identities, one gets

(3.24) 55" (w)H (u) = 3" (u) H' (u) = 2 FG (),
where
G(u) =5[f" (w)]* = 3f'(u) f" (u) > 0.

Next, we make a claim.
Claim. There exists 6 >0 such that H(u) <0 for u € (z_ —0,2_) U (2_,2_ +9).
Indeed, by (3.18), one has

G(z)
12(f/(z0))772

and so y"'(s) > 0 for s close to zero. This together with (3.18) and (3.22) implies that
H(u) <0 for all u close to z_ but not equal to z_. This proves the claim.

7"(0) = >0,
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We proceed by the argument of contradiction. Assume that there exists some
X € (z_,cy) such that

H<0in(z_,x) and H(x)=0.
Then, using also (3.22), we have
H'(X) 20, f'(x) >0, f(x)>0, F(x)>0, and G(x)>0,

which contradicts (3.24). Hence, H < 0 in (z_,cy). Similarly, if there exists some
X1 € (c—, z_) such that

H(x1)=0 and H <O0in(x1,2-),
then, by (3.22), we have
H'(x1) <0, f'(x1)>0, f(x1)<0, F(x1)>0, and G(x1)>0,

which also contradicts (3.24). Thus, H <0 in (c_, z_).
Finally, (3.20) follows by combining the above with 4/(s) > 0 and (3.18). This

completes the proof. ]
LEMMA 3.5. Let o € (g, 2—). Then e <.
Proof. Since 3—5 < 0 (thanks to (3.15)), it is enough to prove the an equivalent
inequality % > 0. By (3.16), we have
dLa /7r " dQLDt " 241
— == costy”' (—pcost)dt and = cos“ty" (—pcost)dt.
dp 0 ( ) dp? 0 ( )

Using (3.20), we obtain

d’L,

Akl

Combining with ddL—p“(O) = —7"(0) [, costdt = 0, implies that ddL—p“ > 0 for all p > 0.
This completes the proof. 0

Now we provide the necessary and sufficient condition for (3.2) admitting a strictly
increasing positive solution.

LEMMA 3.6. The scalar equation (3.2) admits a strictly increasing positive solu-
tion if and only if

(rk +1)?

(3.25) rk>1, bée (7’, yP

>, and L>L0:L.

f'(z-)
Furthermore, if b, &, v, k, and L are given numbers such that (3.25) holds, then the
scalar equation (3.2) has exactly one strictly increasing solution u, and u must be

nondegenerate. Let u(0) = o and w(L) = 8. Then « € (ag,2-), B € (2—,24), and
g—% <0 and g—i > 0.
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Proof. Given b€ € (r, (Tkizl)z ), the mapping a — L, is decreasing by Lemma 3.5,
with the domain (ag, z_) and the range (Lg, c0).

We claim that lim,_,q, Lo = 00. Actually, if F'(0) > F(z1), then o > 0 and
F(ap) = F(z4), in which case u(x;ap) is defined for x € [0,00), uy(x;a0) > 0 for all
x > 0, and lim,_, o u(z;00) = 24. If F(0) < F(z4), then ag = 0 and u(z;0) = 0,
for which one still has L, — oo as a — g by the continuous dependence on initial
conditions.

Hence, a — L, is a strictly decreasing homeomorphism with domain (cg,z_)
and range (Lg,00). This combined with Lemma 3.3 implies that the existence and
uniqueness results as stated. Furthermore, in view of Lemmas 3.3 and 3.5, we obtain
the properties for o and f.

It remains to show that u must be nondegenerate. Differentiating the relation
Uy (La; o) =0 with respect to «, one obtains

L dL, B . Ou(z;a)
UII(LO"O[)E Fwi(La,@) =0, w(la;a) = © da @=Ly

which gives that w,(La;a) = f(ﬂ)ddL—a“ < 0. Differentiating (3.8) with respect to «,
one obtains

(3.26) {wm +f(ww=0,  z€(0,La)

w(0;a) =1, wy(0;0) =0, wy(La; ) <O0.

Claim. The only solution to the linear problem

(3.27) {% +f(we=0, z€(0,La),

d)a:(x) = ¢I(La) =0

is the trivial solution. Indeed, multiplying (3.26) and (3.27) by ¢ and w, respectively,
subtracting the resulting equations, and integrating it over (0, L, ), we have

Wz (Laja)p(La) =0,

which further implies that ¢(L,) =0. By the uniqueness of the solution of ODEs, one
has that ¢ = 0, which shows that the claim holds. Thus, u is nondegenerate, which
completes the proof. O

In the following, we denote the quantity b€ by 7 for simplicity. In the following,
we will treat the first zero z_ of f(u) on (0,r) as a function of 7. Recalling (3.7), we
see that

kr—1— /(L —kr)2 —4k(r — 1)

3.28 =z (1) =
(3.29) =2 (r) -
is a well defined function for 7 € (r, %) Also, z_(7) is a strictly increasing
function, with
k—1
limz_(7)=r and lim =z (r)= ! .
T (rk+1)2 2k
‘f'—)i‘“c

With the one-to-one correspondence between 7 and z_, we can define d% = g1 %.
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Next, we try to understand the existence of solutions to (3.2) when the interval
2
length L is fixed. Given 7€ (r, “5410) e have f/(2_) =r — 22_ + 2=—", where we

4k 1+kz_

have used f(z_)=0. Then, one has

af'(z-) 1+ kr
3.29 =24+  —F0.
(3:29) 0z_ + (14 kz_)?
Let

V20 + kr) —2
3.30 =
(3.30) z ok
which is characterized by %‘Z,:z* =0. It is trivial to show that
(3.31)
*— E+3—-22(1+k
max fl(Zf):f/(Zf)‘zfzz*:7"—2Z*+ z T :7' —+ ( + 7").
z_e(0,571) 1+ k2> k

Let L., s . We have the following result.

CVTG = frkrs—2/2004kn)
LEMMA 3.7. The following results on (3.2) hold.

(i) If L < L., then (3.2) does not admit strictly increasing solution for any T > 0.
(ii)) If L > L. and vk > 1, then there exist two numbers 7_ < T4 such that
(r—,74) C (r, (Tkigcl){z), and (3.2) admits a strictly increasing solution if and
only if T € (1—,74), Furthermore, for each T € (1_,74), (3.2) admits exactly
one strictly increasing solution w, and u is nondegenerate. Here Tr+ are
defined in (3.32) and (3.33).

Proof. For assertion (i). Suppose (3.2) has a strictly increasing solution for some
7> 0, then

—~1/2
/ —1/2 _ . Z_—T I
L>n[f'(z)] m (7“ 22_ + = k:z_) or some z_.

It then follows from (3.31) and the definition of L, that L > L,.

Next, we prove assertion (ii). By (3.29) and (3.31), one concludes that f/(z_) is
increasing in (0,2z*) and it is decreasing in (z*, ”;21), and, in particular, that f/(z_)
has a unique maximum value at z_ = z*. Given L > L,, there exists two numbers
2z~ <zt such that 2* € (z7,27) C (0,%52), and f/(z-)], —.- = f/(2-)]. o+ = 2—2
One can verify that

(3.32) 25 = (rk—1—kr?/L* £ /(kr2/L2 — 1k + 1)2 — 8kn2/L?) /4k.
Let
(333) T_=h(z7)=(r—2")1+kz") and 7y=h(z")=(—2z")(1+kz).

So, for 7 € (17—, 74), it holds that f'(z_) = f'(z—(7)) > 2—2, i.e., L > Lg. By Lemma 3.6,
there must be a unique, increasing, and nondegenerate solution to (3.2). The proof is
completed. O

Clearly, as L — L., the set (7—,7) shrinks to an empty set; whereas as L — oo,

(7—,7+) expands to the interval (r, %)
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Next, we consider the existence of positive solutions to system (1.7). Given L >

L., Lemma 3.7 says that (3.2) admits exactly one strictly increasing solution w., for
7€ (7-,74+), and admits no strictly increasing solutions for 7 & (7_,74). Define

- L 1 T d
C(T)—/O T, <T_Cu7_b(1+ku7)> x, TE(T-,T4).

Let
L T
L_»r Jo aede
(3 34) Cr = M and b _ L(r—# for S (0707)7
. T fL udex T,C fO TFku, dJC
0 1+kur +00 for ¢ € [c,” Oo)

One sees that ¢, > 1 due to the fact that u, <r.

LEMMA 3.8. The following results on (1.7) hold:
(i) If L< Ly orrk <1, then (1.7) does not admit any increasing solution.
(ii) If L> L, and vk > 1, the following statements hold:

(ii.1) Fiz all the parameters except & (§ = 7). If 0 € (minyer_ ) ((7),
max,e(r_ ) ¢(7)), then (1.7) admits a strictly increasing positive so-
lution. If 0 & (minye(r_ 7,y ¢(7), max,e(r_ ) ((7)), then (1.7) does not
have any strictly increasing positive solution.

(ii.2) Given T € (1_,74), if ¢ > ¢,, then (1.7) does not have any strictly
increasing positive solution. If ¢ < c,, (1.7) admits a strictly increasing
positive solution if and only if b="0,. and § = ﬁ Especially, we have

+

(3.35) e = —  and bro———

—  asT—Ty.
2+ r—czt

Here 2%, 71, ¢;, and b, . are defined in (3.32), (3.33), and (3.34).

Proof. Assertion (i) follows directly from assertion (i) of Lemma 3.7.

By the nondegeneracy of u,, one sees that ((7) is a smooth function of 7 €
(r—,74+). From statement (ii) of Lemma 3.7, it follows that statement (ii.1) and the
first part of statement (ii.2) hold.

Finally, (3.35) follows from the above analysis. |

Fix 7k >1 and L > L,. Statement (ii.2) of Lemma 3.8 indicates that (1.7) has a
strictly increasing positive solution if and only if

(r,e,0) €y :={(1,¢,b)|T € (7—,74),c€(0,¢;),b=br .}

Next, we study the shape of I'; 1.

LEMMA 3.9. Fizing vk > 1 and L > L., for any 7 € (1_,74), by is strictly
increasing in c € (0,¢;) and ¢; > 1. Moreover, we have

foL ka4 1
(3.36) lirr(l) bre="—7 . z Tk and lim b, .= oc0.
c— fo T de + Kr c—er
Proof. The proposition follows directly from 7_ >r, u, <r, and (3.34). ]

Remark 3.1. Given 7 € (7_,74), let

Lk ={(c,b)|ce(0,¢c,), b=0br.}.
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Lemma 3.9 shows that I'; ;. 1, . is an increasing curve. Moreover, if there exist distinct
1,72y, Tn € (7=, 74) such that (;_, Iy, ;. k.1 # 0, then for any (b,¢) € (i—; T rk.Ls
system (1.7) admits at least n increasing positive solutions.

ProprosITION 3.2. Given r,k,L satisfying rk > 1 and L > L., we have the
following results:
(i) There exists b, € (ﬁ, 1) such that the following results hold:

(i.1) If b < bs, then (1.7) does not admit any strictly increasing positive
solution for any ¢ and 7.

(i.2) If b> b, then there is a single bounded interval I, such that the system
(1.7) has a strictly increasing positive solution (for one or more values
of 7) if and only if ¢ € I,. Moreover, if b € (bs,1), then for any c € I,
we have ¢ < 1.

(ii) There exists ¢* € (1,00) such that the following results hold.

(ii.1) If ¢ > c¢*, then (1.7) does not admit any strictly increasing positive
solution for any b and 7.

(ii.2) If ¢ < c*, then there is a single interval I. such that the system (1.7)
has a strictly increasing positive solution (for one or more values of )
if and only if b € I.. Moreover, if ¢ € [1,¢*), then for any b € I., we
have b> 1.

Proof. For statement (i), define

b.,= inf b,g.
TE(T—,T4) -0
From (3.35), (3.36), and u, <, it follows that b, € (H%k, 1). If b < b, from statement
(ii.2) of Lemma 3.8, it follows that (1.7) does not admit any strictly increasing positive
solution for any ¢ and 7. Given b > b,, based on the definition of b,, there exists
7o € (7, 74) such that

b-,—o,o < b,

which combined with statement (i) and Lemma 3.8 yields that (1.7) admits a strictly
increasing positive solution with 7 =7y and appropriate ¢ € (0,¢r,).

Next, fix b > b, and define I, to be the set of ¢ such that the shadow system has
a solution, i.e.,

Iy={c>0: (1,¢,b) €T, ;. for some 7}.

The boundedness of I, follows from statement (ii.2) of Lemma 3.8 and (3.34). Fur-
thermore, if b € (b, 1), then for any c € I;,, by Proposition 2.1, we have ¢ < 1.

It remains to show the connectedness of I,. We first claim the following: If (1.7)
admits a strictly increasing positive solution with some (71,¢1) and (72,¢3) (without
loss of generality, assume ¢; < ¢2), then for any ¢ € [c1,¢2], (1.7) admits a strictly
increasing positive solution with some appropriate 7.

If not, assume that there exists co € (¢1,¢2) such that b # b, ., for any 7 € (7, 74).
Define

Apeo={T7€(=,71) : brey <b} and By, ={7€(7—,74): br ¢, > b},
where b, . is given in (3.34). Then, we have

(3.37)  Ape, and By, are open subsets of (7—,74+) and Ap ¢, U Bp oy = (T—, T4 ).
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Combining the facts that b =b,, ¢, = b, ,c,, €1 <c < cg, and Lemma 3.9, one obtains
from the monotone increasing property of ¢+ b, . that

brico>b and by, ., <b,

which means that both Ay ., and By ., are nonempty. This contradicts the connect-
edness of (7—,74). So, the claim holds, which suggests that there is a single interval
Ij, such that the system (1.7) has a strictly increasing positive solution (for one or
more values of 7) if and only if ¢ € I;,. This proves assertion (i).

Finally, similar to the arguments proving the statement (i), letting

*

"= sup ¢,
TE(T_,T4)
one can show that the statement (ii) holds. 0

Proposition 3.2 gives the existence/nonexistence of the increasing positive solu-
tion of (1.7). However, given b € (b, 00) (resp., ¢ € (0,c¢*)), the size of I (resp., I.)
cannot be explicitly characterized. Below we give some more decisive information for
I, and 1.

PROPOSITION 3.3. Given L > L, and vk > 1, let z* be defined in (3.32) which
indicates z= < zt and Z > % Then there exists some ¢ = e(k,r,L) > 0 such
that the following results hold:
(i) If be (1,14¢€) and c € (1 —€,1), then (1.7) at least admits two increasing
positive solutions.

(ii) Assume b€ (1 —¢,1) and c€ (1 —¢,1). If 34 1/b ! ——, then (1.7) at least
1/b 1
€

admits two increasing positive solutions, whzch are nondegenemte if =

(Tf;, , Ti+ ), then (1.7) admits at least one mcreasmg positive Solutzon.

(ili) Assume b€ (1,1+4+¢) and c € (1,14 ¢€). If — 171/1) = Z+, then (1.7) at least

admits two increasing positive solutions, whzch are nondegenerate; if = /b Le
(==, %), then (1.7) admits at least one increasing positive solutzon.

Proof. Given L > L,, by Lemma 3.7, there exist two numbers 7_ < 7 such that
(r—,74) C (h(0), h(ur)), and (3.2) admits increasing solution if and only if 7 € (7—, 74 ).
Given 7 € (7,74 ), then (3.2) admits an increasing solution denoted by wu..

Claim. fOL ﬁ(r —Ur — 175, )dz <0. Indeed, recall that u, satisfies

.
1+ ku,

Ur,, + Ur (r—uT— ):0 in (0,L),

ur, (0) =u,, (L) =0.

(3.38)

Dividing the first equation of (3.38) by w, and integrating it over (0, L), one finds that

r T L(“T)
. - dz = — Wre) gy
(3.39) /0 (r u 1+ku7) x /0 2 <0,

due to the fact that u, is a strictly increasing solution of (3.38).
Recall that f(y) satisfies

<0, y
fly)4=0, y=z_(1),
>0, y
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which combined with the fact that u, is a strictly increasing solution on (0, L) yields
a unique zg € (0, L) such that u,(x¢) = z_(7) and

<0, z€(0,z9),
(3.40) flur(2)) ¢ =0, z=ux,
>0, xE(JU(),L).

From (3.39) and (3.40), it follows that

/L 1 T \q
r—u-— x
o 1+ ku, YT Tk,
o] T | T
- —u——T )4 - d
/o 1+ kur <T " 1+ku7> $+/IO 14 ku, (T “ 1—|—kuT) .
</ 1 T V4 +/L 1 T V4
o 1+kz(r) o 1+ ku, v vy 1+ k2(T) o 1+ ku, v

1 L T
‘W/o (’”‘“‘Hm)d““

Therefore, the claim holds. Recall that h(z*) € (7_,74) (2* = 7W is defined
in (3.30)), then it is trivial to show that there exists € =¢(r, k, L) > 0 such that

(3.41) C(h(z*))<0forbe(l1—€14+¢€) and ce (1 —¢€,1+¢€).
On the other hand, as 7 — 7_ (resp., 74 ), then z_(7) — 2z~ (resp., z*) and
ur — 2z~ (resp., z7) in (0,L). By Lemma 3.7, one sees that
rk—1 T
2k 2
For statement (i), that is b > 1> ¢, then we have

L r—z- L
1' = — e — T = — =
Tigl, <(7) 1+kz— (T CZ b ) > 1+ kz— (T “ (r—z )) 0

0<z <zT <u,=

and

L -zt L
lim ((7) (r—cz‘L—T bZ >>1+kz+ (r—zt—(r—2z%))=0.

Ty T 1t ket

Since ¢(7) is a continuous function of 7 € (7_, 74 ), one can conclude that there exists
two numbers 7 < 79 such that 7 < 73 < 7 < 74 and {(11) = {(m2)=0. So, by
Lemma 3.8, we have that (1.7) at least admits two increasing positive solutions.

For statement (ii), if 1{17:61 < Tf;,7 one can show that
I -
Am ¢(7) =77 (’"_ - )
> L (r—cz”+(c—1)z" +2" —7r)=0.
1+ k2~
If 2271 < =1 then
L r—zt
: _ +
Hm ¢ =15+ ( T )
L
_— P o — 1zt + _ —0.
>1+kz+(r czt+(c—1)2zt+2t—r)=0
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Similar to the arguments as that in proving statement (i), one can prove statement (ii).
Finally, following the approach same as that in proving statements (i) and (ii),
one can prove the statement (iii). This completes the proof.

Remark 3.2. We have some comments related to Proposition 3.3.
e For statements (ii) and (iii), we will show that all the cases may occur. For
example, let

b=1—p1¢ and c=1— oz,

where g1, 02 € (0,1). Omne can choose appropriate g; and g such that
/o1 o Z; or =1 € (£ Al ) holds.

p— - p—

—c r— — r—z=r—z*t

. Gliven b e (1,1 —1—1 €), statement (i) of Proposition 3.3 and statement (i)
of Proposition 3.2 yield that (1 —¢,1) C I,. Moreover, statement (iii) of
Proposition 3.3 and statement (i) of Proposition 3.2 suggest that (1, min{1+
%’:Zﬂ, 1+ €}) CI,. These facts combined with statement (ii) of Propo-
sition 3.2 further imply that

(1—e,min{1+(b_1)(r_z+),1+e}> cT.

bzt

e Symmetrically, given ¢ € (1 —¢, 1), statement (i) of Proposition 3.3 and state-
ment (i) of Proposition 3.2 yield that (1,1 + €) C I.. Moreover, statement
(ii) of Proposition 3.3 and statement (ii) of Proposition 3.2 suggest that
(max{ =2-,1 — €},1) C I.. These facts combined with statement (ii) of

Proposition 3.2 further imply that

(max{ T_Z_,l—e},l—i-e) cl.
r—cz

Now we are in a position to prove Theorems 1.3 and 1.4. Before embarking on
this, we prove Proposition 1.1.

Proof of Proposition 1.1. Define £ : H (0, L) x Rx Hg (0, L) x [0,+00) — L*(0, L) x
R x L?(0, L) by

oo 150)
L
- E+¢ (_ _ E+¢
L(u,&,¢v)= o l4+ku o 1+ku)dx 7
[uc ( §+<> 1/L §+¢ ( £+<) }
Caax +V L T roeu dz
1+ ku 1+ ku LJy 14+ku 1+ ku

where HZ(0,L) = {u € H?(0,L)|u,(0) = u, (L) =0}, H3(0,L) = {u € HZ(0,L)| fOL udzx
=0}, and L%(0,L) = {u € L?(0,L)| fOL udz = 0}. Then, we have

D(u,e,0)Ll(u,6.¢,0)=(ux £%,0,0) (6,9, 1)
be* } bt tn)

d’”“b{r_%* T Ut ke2] T 1tk
= /L {§*¢(3§*k—(kr+c)(1+ku*))+ n ( et — &* )_ f*(¢+n)]dx
0 (1 + kux)3 1+ ku* 1+ ku* (14 ku*)?
Nxx
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Next, we claim the following;: D(u,g,g)£|(u,g,g,u):(u*,g*,o,o) is nondegenerate. To prove
this claim, it suffices to show that the following problem

(3.42)
* be™ bu"(+m) .
¢mm+¢|:r_2u - 11 ku")2 R =0 in (0, L),
P LR CERTIEN o) N Ny SR i B oJUZLR po
o (14 ku*)3 1+ ku* 1+ ku* (14 ku*)? -
Neaz =0 in (0, L)

only admits the trivial solution in HZ(0,L) x R x H2(0,L). The third equation of
(3.42) and the definition of HZ(f2) suggest that =0. Hence, we have

. be* bt ,
gbm+¢[r—2u _(1+ku*)2}_1+ku*_0 in (0,L),
[ [kt k) €Yy,

; TETRE TETTaE i

(3.43)

From Lemma 3.1, it follows that there exists some m € N such that u* satisfies (3.1).
If m =1, combining Lemmas 3.1 and 3.6, one has that operator T is invertible.
By the first equation of (3.43), one obtains

I bu*
o=9T <1+ku*>'

Hence, (1.9) suggests that (3.43) only admits the trivial solution (0,0).
If m > 2, for any ¢ € R, consider the following truncated problem:

be* bu*
¢:m+¢* 7’—2’[1,* - (1 —|—§€U*)2:| = . w in (OvL/m)v

1+ kur
¢3(0) =3 (L/m)=0.

By Lemma 3.6, we have ¢* = 1/1T(_0’1L/m)(%), where

T(07L/m) (¢) = Gpe + @ (T —2u* — )2)

for ¢ € C%(0,L/m) N CL([0,L/m)]) satisfying ¢,(0) = ¢(L/m) = 0. Then by the
symmetry, one has

o) = ¢ (x —jL/m) when z € [jL/m, (j + 1)L/m], jis even,
¢*((j+1)L/m—=x) when x € [jL/m,(j+1)L/m], jis odd.

Thus, T’l(lfffl*) is well-defined. Moreover, (1.9) also yields that (3.43) only admits
the trivial solution (0,0).

Finally, based on the implicit function theorem, there exists small 6* > 0 such
that for any v € (0,6*), there exists (u,,&,,(,) near (u*,£*,0) such that L(u,,&,,
Cv,v) = 0, which implies that for any v € (0,*), the steady-state problem (1.8)
admits a nonconstant positive solution (u,,&, + ¢,). This completes the proof. d

Proof of Theorems 1.3 and 1.4. Combining the results in Proposition 3.2 with
Proposition 1.1, one obtains Theorem 1.3 directly. Theorem 1.4 is a consequence of
Proposition 3.3 alongside Proposition 1.1. ]
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4. Weak competition 0 < b,c < 1. Though we have proved the existence of
nonconstant positive solutions to system (1.8) in Theorem 1.3 by studying the shadow
system (1.7), the admissible parameter regime is somewhat narrow (see also Theo-
rem 1.4), where p is particulary required to be large. In this section, we shall employ
the global bifurcation theory to show that system (1.8) may admit nonconstant pos-
itive solutions for any 0 < b,c < 1, and g > 0 which largely expands the admissible
parameter regimes given in Theorem 1.3 (see also Theorem 1.4) for the case of weak
competition.

A nonlinear problem can be formulated as an abstract equation F(p,u) =0, where
F:Rx X :—Y is a nonlinear differentiable mapping, and X,Y are Banach spaces.
We introduce a celebrated global bifurcation Theorem [42, Theorem 4.3]. For more
results about the bifurcation theory, we refrer to references [3, 4, 6, 24, 37]. Recall
that a Fredholm operator is a bounded linear mapping F' from a Banach space B to
another Banach space Bs such that the mapping has a finite-dimensional null space
Ker(F'), and has a closed range Ran(F') with a finite co-dimension. We say the index
of F'is zero if the dimension of Ker(F') is equal to the co-dimension of Ran(F).

THEOREM 4.1 (see [42, Theorem 4.3]). Let V be an open connected subset of
R x X and (po,up) € V, and let F be a continuously differentiable mapping from V
into Y. Suppose the following:

(i) F(p,uo)=0 for (p,up) €V.

(ii) The partial derivative D, F(p,u) exists and is continuous in (p,u) near

(Po;uo)-
(iii) Dy F(po,uo) s a Fredholm operator and dimKer(F,(po,uo)) = codimRan
(Fulpo,in)) = 1.

(iv) Dp,ul'(po,uo)do & Ran(Fu(po,uo)) where ¢ € X= span {Ker(Fu(po,u0))}-

Let Z be any complement of span{¢o} in X. Then there exist an open interval
I, = (—€,€) and continuous functions p: I = R, ¢ : Iy — Z, such that p(0) = po,
¥(0) =0, and if u(s) =ug + sog + s¥(s) for s € I, then F(p(s),u(s))=0. Moreover,
F=1({0}) near (po,uo) consists precisely of u =g and the curves T = {(p(s),u(s)):
s € I1}. If, in addition, D, F(p,u) is a Fredholm operator for all (p,u) € V, then
the curve I' is contained in C, which is a connected component of closure of S where
S={(p,u) eV :F(p,u)=0,u#up}; and either C is not compact in V, or C contains
a point (p*,ug) with p* # po.

4.1. Applying abstract bifurcation theory to (1.8). In this subsection, we
will apply abstract bifurcation Theorem 4.1 to obtain the existence of nonconstant
positive solutions of (1.8), where d(u) = 1+ ku. We shall fix all the parameters except
i and treat p as a bifurcation parameter. The positive solutions will be the ones
bifurcating from the constant steady states (u™,v™), where

u+_(1—b)r (1—o)r

= 0 and vT =
1—-bc - Jand v 1—-bc

>0,

due to 0 < b,c < 1.
We recall a well-known result. The eigenvalue problem

7¢$:C = )\d)a T e (Oa L)7
has a sequence of simple eigenvalues \g < A\; <:-- < A, ..., where
w252 .
)\i:?, ZZO,].,Q,...,
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with normalized eigenfunctions given by

1
G 7/:07
oila) = VE

o 2
1/ I cos(mixz /L), i>0.

The set of eigenfunctions forms an orthonormal basis in L?(0, L).
Let Y =L?(0,L) x L*(0,L) be the Hilbert space with the inner product

(U1, U2)y = (u1,u2)r2(0,1) + (v1,v2) 12(0,1)
for Uy = (u1,v1),Us = (u2,v2), and X = {(u,v)| u,v € H%(0,L)}. Here
H%(0,L) = {u € H*(0,L)| u,(0) = u,(L) =0}.

We regard X as a Banach space with usual H2 norm. Define the map F : (0,00) x X —
Y by

- Ugg + u(r —u— bv)
F(p,u,v) = (M((l + ku)v)pr +0(r —v — cu)) '

Then the solutions of the boundary value problem (1.8) are exactly zeros of this map.
For any p >0, we have that

F(p,u® vh)=0.
For any fixed (u,v) € X, the Frechet derivative is given by

(4.1)
_ Gza + (b(?" —2u— b’U) - buw
D,y F (s, 0) (6 90) = (,uk(vqﬁ)m + u((1+kw)) gy +(r —2v — cu) — CU¢> ‘

By Remark 2.5 of case 3 in [42], Dy ) F (i, u,v)(¢,v) is elliptic and satisfies Agmon’s
condition. Therefore, by [42, Theorem 3.3 and Remark 3.4], one obtains that

(4.2) D) F(pt,u,v) : X =Y is a Fredholm operator with zero index.

The necessary condition for bifurcation to occur at the constant steady state (p, u™,v™)
is that the null space

ker (D (o) F(p,ut,vh)) # {0}

We study the eigenvalues of the operator Dy, ) F(p, u™,v"). The eigenvalue 7 with
corresponding eigenfunction (¢, ) of operator D(, ,)F(u,u’t,v™) satisfy

(bww —U+¢—bu+¢=7'¢, JJE(O,L),
(4.3) w1+ ku™) e + pkvT dpe —v ) —cvTp=71, x€(0,L),
Let
(4.4) qb:thcosjﬂ-Tx and ’(/J:ZSJ‘COSJ-%.
=0 =0
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Substituting (4.4) into (4.3), we get

(4.5) {(—Aj —ut —7)tj —bus; =0,

(—pkvtN; —cot)t; + (—p(l+ ku™)A; —ovt —7)s; =0.
Then (4.3) has nonzero solutions if and only if
(N +ut +7) (14 kut)N + ot +7) —buT ot (ukA; + ¢) = 0for some j > 0.
Define
Aj(r) =7+ (N +ut + p(l +kuT)N + o)+ By(7),
where

Bj=(\; +u")(u(1+kuT)\; + o) —buTot (ukA; +¢)
=Nu[ +ut) A+ ku) —bkuToT] 4+ (1 = be)uto™.

For each j € N, A;(7) =0 admits two roots 7;1 and 7; 2, which satisfy
Til1+Tj2= —()\j + ut + /L(l + kqu))\j + ’U+) <0 and Tj1Tj,2 = Bj.

It is well-known that if any eigenvalue 7 of the operator D(uyv)F(u,u"’,v‘*‘) satisfies
Rer < 0, then (u™,v") is linearly stable. If the operator D, . F (i, u™,v") has an
eigenvalue 7 with Rer > 0, then (u™,v™) is linearly unstable. Therefore, if there
exits j € N such that B; < 0, then (u™,v") is linearly unstable; while (u™,v™") is
linearly stable if B; > 0 for all j € N. Hence, if PR SWHhuTut oy pen for

each j € N, we have B; > 0 and (u",v") is linearly stable for any p > 0; while if
(bkvt —(14+ku™))ut

Trhut > )1, then we have

(1 —bc)uto™

(bkutvt — (1 4+ kut)( A +ut))Ay’
(1 —be)uto™

(bkutvt — (1 4+ kut)( A +ut))Ay’
(1 —bc)uto™

(bkutvt — (14 kut)( A +ut))A

>0 for p<

B1=<=0 for u=

<0 for pu>

Moreover, if W € (Aj, Aj41] for some j > 1, then operator Dy, ) F(p,u™,

vT) has zero eigenvalue only when

(1 —bc)uto™

(4.6) H= x>0 i = T T A k) On )N

i=1,2,...,7,

and

stable for p<min{px,, x5, }s

(u,v™) is linearly )
unstable for g >min{pux,, px,, ... px; }-

To obtain the existence of nonconstant positive solutions of (1.8), we first establish
several lemmas.

LEMMA 4.1. Let (u,v) be a positive solution of (1.8). Then we have

0<u<r and 0 <v<r(l+kr) on[0,L].
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Proof. The result follows directly from the strong maximum principle and we
omit the details. O

LEMMA 4.2. Given all the parameters except p, if be < 1, then there exits some
small p* > 0 such that (1.8) only admits the constant positive solution (u*,v™) for
any p € (0,u*), where

. Anut 14kr and _4—2bc
oot k2r2 1= o
Proof. We will show that (u*,vT) is globally asymptotically stable for (1.1) when
po< pt
Let
L u L v
]:(t):n/o (u—u+ —u*lnu—+> dx—l—/o (v—v+ _U+IHF) dz
and

2

g +12 +)2 up v
G(t):/o {(u—u )+ (v—ov") +u2—|—v2]dm,

where (u,v) is the unique positive solution of (1.1).
Claim 1. For alle > 0, there exits some T, > 0 (depending on ug) such that
u< (14 ¢e)r fort>T.. Consider the ODE:

2z =z(r — z),
{2(0) = [luo|| -
It is trivial to show that z(t) — r exponentially as ¢ — co. Moreover, by comparison
principle, one has
u(z,t) <z(t) forxze(0,L),t>0.
Therefore, Claim 1 holds. Given pu < u*, one can choose small € such that

dnut 1+ k(1+e)r
vt k2(1+€)2r2

Claim 2. There ezists 6 >0, such that %gt) < —0G(t) fort >T.. Indeed, one can
compute that

dF(t) /L [n(u—u"')um+M(U—”+)((1+k“)v)zz]dx
0

dt_ u v

L
+/ u—u™)(r—u—bv)+@w—ovH)(r—ov—cu))dz
0
B N e
- ( v) pukvt + Y dz
0 Er— p(1 4 ku)v v
L nb+c +
n  TE\ (u—u
_/0 (u—ut U_U+)(?7l72+c i ><v—v+>dx'

e f§

From be <1, =222 and pu < 4ZT . %, it follows that
b 2 kot)2
n> @ and pun(1+ ku)uvt > (ko) fort >T..
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Then, one obtains Claim 2. Next, one can argue using LaSalle’s invariance principle

(see, e.g. [48, Lemma 3.2]), to show that (u',v") is globally asymptotically stable

for (1.1). Therefore, (1.8) only admits the constant positive solution (u™,v") for any

€ (0,p1%). 0
Now we are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. We will prove the theorem in two steps.

Step 1. Local bifurcation. Recall that X = {(u,v)|u,v € H%(0,L)},Y = L*(0,L) x
L2(0,L), and F(u,u™,v+) =0 for any u>0. Let V =(0,00) x X. By (4.6), one finds
that

KerD(u’v)F(u,\“UJraUﬂ =5 (bu-ﬁ-7 -+ u+)) cos %7 seR
and
dim(KerD () F(p, , utot)) =1

Direct computations show that

0
Dy u) F (s u,0)(h,0) = (k(vqb)m +((1+ ku)z/})m> '

By (4.2), to apply Theorem 4.1, it remains to check the transversality condition

Du,(u,v)F(,u'Amu+av+)(¢i>wi) ¢Ra'n(D(u,v)F(:u)\lau+av+))a

where ¢; = bu™ cos 2T and v); = —(\; + uT) cos = If this condition fails, then there
exits (,n such that
Cow—utC—butn=0 in(0,L),
(4.7) fix kot Cog 4 pux, (L+ ku )y —vin—cvt(=x; in(0,L),
Cz(o) = gx(L) = %(0) = nz(L) =0,
where
1T

Xi = kv (0))gw + (L + ku™) (Y1) gw = [()\i +ut) (14 ku™) — bk:u+v+] A\ COS <

Let
>, 1T > . LT
(4.8) C:;tiCOST, nzgsicosT.

Substituting (4.8) into (4.7), we have

)\11?1 + u*t} + bu*él = O,
Etidipx, v + (14 kut)s iy, +v15 + cott;
= [bkutvt — (A +ut) (1 + ku™)] N > 0.
From the definition of uy,, one obtains that this linear system has no solutions.
Therefore, by Theorem 4.1, we have that there exist an open interval I; = (—¢,€) and

continuous functions p: I = R, o : I} = Z, such that p(0) = py,, 0(0) =0, and
if (u(s),v(s)) = (ut,v") + s(¢s,1;) + sa(s) for s € Iy, then F(u(s),u(s),v(s)) = 0.
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Here, Z be any complement of span{(¢;,%;)} in X. Moreover, F~1({0}) near the
bifurcation point (uy,,u™,v") consists precisely of (u,v) = (u™,v") and the curves
P = {(u(s),u(s),0(s)) - s € I},

Step 2: Global bifurcation. By (4.2) and Theorem 4.1, we obtain that the curve
I' is contained in C, which is a connected component of closure of S with

S={(p,u,v) €V : Fu,u,v) =0, (u,v) # (ut,v")},

and either C is not compact in V, or C contains a point (u*,u™,v") with p* # uy,. We
now show that the first alternative must occur by using the approach in [11, 35, 45].
Indeed, if C is bounded, by Lemma 4.2, one obtains that it is compact, and C meets
some other bifurcation points. Let 1 <¢* < j be such that C meets (py,.,u™,v"), but
not (py,,,u™,v") for any A\, > \;«, where m < j. Consider an auxiliary problem

Uy +u(r —u —bv) =0 in (0, L),
(4.9) u[(1+ ku)v]ee +o(r—v—cu)=0  in(0,£),
uz (0) = uw(L) =v,(0) = Uw(%*) =0.

i*

We note here that if (4.9) admits a positive solution (u*,v*), then one can construct
a solution (u,v) to (1.8) by a reflective and periodic extension. Let z, = 2£, n =

0,1,...,7*, and define

(u,0)(z) =

(u*,v*)(z — z2n) if won <z <wopy1,
(u*,v*)(@ont2 —x) if Zopi1 <@ < Topia.

It is easy to verify that (py,.,ut,v") is also a bifurcation point of problem (4.9).
Let A;+ denote the bifurcation branch of this new problem that meets (puy,.,ut,v%),
then using the same argument above it is clear that it either meets infinity or meets
(g, .., ut,vT) for some A+ > X\« If the second case occurs, then by the above
extension one sees that C meets (uy, .,u",v"), which violates the definition of iy, ;
hence A;+ meets infinity, and then by the extension again C meets infinity too. To
show that the projection of C on the p interval must be unbounded, we first establish
some results.

Claim 1. For all (u,u,v) € C, we have u >0 and v >0 on [0,L]. From step 1,
it follows that w,v > 0 on [0, L] for (u,u,v) € C and (p,u,v) close to (uy,,ut,v").
By Lemma 4.2, the projection of C on the p has positive lower bound. Assume
the claim is false. That is, there exits (p;,u;,v;) € C with u;,v; > 0 on [0, L] and
(i, wi,v;) = (f1,4,0) as i — oo, where (fi,4,0) € C with

(4.10) min{ min 4, min 1}}:0.
z€[0,L] z€[0,L]

If min,¢[o,z) @ = 0, by maximum principle, one obtains that @ =0. Recall that o
satisfies

{ﬂd(o)ﬁw +o(r—9)=0 in(0,L),

Hence, we have

(4.11) =0 or V=
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Let i; = == Applying the elliptic regularity (cf. [8]) and the Sobolev imbedding

i
[uillLoo

theorem, without loss of generality, we assume that 4; — 4> in C*([0,L]) as i — oo
and 4°° satisfies

42°(0) = a2°(L) =0.

{a;g +a%®(r —bd)=0 in(0,L),

This together with (4.11) and 4°° > 0 implies that 4> = 0, which contradicts
||t°°||p~ = 1. Hence, & > 0 on [0,L]. This combined with (4.10) suggests that
min,ep,z) 0 =0. Let w; = (1 + ku;)v; and w = (1 + k@)0. Then W satisfies

n W
AAI:E PEEIN _A_iA :O i 03L7
H +1+ku(r “ 1+ku) in (0, L)

W, (0) = 1, (L) = 0.

So, we have w = 0. Let w; = W Similarly, one attains that w; — @ in

C([0,L]) as i — oo and W™ satisfies
i+~ (r—a)=0 in(0,L)
Hlze T T ke — W7 &)
W (0) =we*(L) =0.

xT xT

This further yields that ©> =0 due to Lemma 4.1, which contradicts ||| = 1.
Therefore, Claim 1 holds.

Claim 2. For all (u,u,v) € C, one has u and v are bounded in H*(0,L). Recall
Lemma 4.2 and it is standard to show that the claim holds.

Combining Claims 1 and 2 and the fact that C meets infinity, one concludes that
the projection of C on the p interval must be unbounded. This completes the proof. O

Remark 4.1. We have the following remarks.

o Let Ty = {(1u(s),u(s),v(s)) : s € (0,¢)} and T— = {(u(s),u(s),v(s)) : s €
(—€,0)}. Denote C* (resp., C™) be the component of C\I'_ which contains
I, (resp., the component of C\I'y which contains I'_). Similarly, one can
show that the C* (resp., C™) meets infinity. We note here that we don’t
exclude the possibillity that C* and C~ meet at some point.

If W% € (A1, A2], then we have

stable for p < py,,

(u™,v")is linearly {
unstable for u> py,.

Moreover, applying the well-known index theory [5], one can show that (1.8)
admits at least two nonconstant positive solutions for 1 > uy, because the
indices of (0,0), (r,0), (0,r) are all equal to 0, the index of (u*,vT) is —1,
and the sum of index of all the nonnegative solutions of (1.8) is 1.

If (bk”+;$,jukf+))u+ € (A2, A3], we assume py, # uy,. Without loss of gener-
ality, we assume that py, < pa,. For the case u € (ua,,n,), by the index
theory, one can show that (1.8) admits at least two nonconstant positive so-
lutions. For the case u > py,, if the positive solution bifurcating from gy, is
nondegenerate, then (1.8) admits at least two nonconstant positive solutions
due to the facts that the indices of (0,0), (r,0), (0,7) are equal to 0, the index
of (u*,vT) is 1, the index of the nonconstant positive solution is 1 or —1;
and the sum of index of all the nonnegative solution of (1.8) is 1.
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5. Summary and discussion. In this paper, we consider the existence and
nonexistence of nonconstant positive solutions to the one-dimensional stationary SK'T
system (1.8). Indeed, the existence/nonexistence and stability of positive solutions to
system (1.8) have been widely studied in the literature, but the results are confined to
the case of strong cross-diffusion (i.e., £ > 1). In this paper, we make a step forward by
considering a fixed £ >0 and > 1 at the first time. Our main results consist of two
parts. The first part includes some nonexistence and existence of positive solutions as
p>1. We first establish the nonexistence of positive solutions for (1.8) with g > 1 in
the case of b < 1< ¢ (see Theorem 1.2). This implies that the cross-diffusion strategy
of avoiding the strong competitor cannot help the weak competitor to survive. Then
by studying the existence of monotonic solutions to the shadow system of (1.8) as
u — oo for fixed k£ > 0, we obtain the existence of positive nonconstant solutions
of (1.8) under generic conditions (see Theorem 1.3) via the nondegeneracy condition
(1.9) (see Proposition 1.1). More explicit existence conditions are further given in
Theorem 1.4. The second part of our main results is the existence of nonconstant
positive solutions in the case of weak competition 0 < b,¢ < 1 for any g > 0 given in
Theorem 1.5 which is proved by the global bifurcation theory.

Various interesting open questions arise from our present study. For example, the
stability (or instability) of nonconstant positive solutions is yet to be studied. The
existence result given in Theorem 1.4-(i) requires that b and ¢ are sufficiently close
to 1. Then one may ask whether system (1.1) admits nonconstant positive solutions
if 0 <ec<1<bbutbor cis not close to 1. The more interesting yet challenging
question is to find threshold values of b and ¢ so that the existence or nonexistence of
nonconstant positive solutions can be determined.

Acknowledgments. The authors are grateful to the anonymous reviewers for
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