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EXISTENCE OF POSITIVE STEADY-STATE SOLUTIONS TO THE
SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION\ast 

KING-YEUNG LAM\dagger , TANG DE\ddagger , AND ZHI-AN WANG\S 

Abstract. This paper is concerned with the following stationary Shigesada--Kawasaki--Teramoto

competition system with cross-diffusion

\left\{     
d\Delta u+ u(r - u - bv) = 0 in \Omega ,

\mu \Delta [(1 + ku)v] + v(r - v - cu) = 0 in \Omega ,
\partial u
\partial \nu 

= \partial v
\partial \nu 

= 0 on \partial \Omega ,

where u and v

represent the densities of two competing species, \Omega is a bounded domain in \BbbR n(n\geq 1), and \nu denotes
the outer unit normal to \partial \Omega . All coefficients d,\mu , b, c, r, k are assumed to be positive constants.
The existence and stability/instability of nonconstant positive solutions of the above system have
been widely studied in the literature but confined to large k > 0 and small d > 0 (or d > 0 close to
some particular number) with \mu \in (0,\infty ]. In this paper, we establish the existence/nonexistence of
nonconstant positive solutions for any k, d > 0 and large \mu > 0, which fills some gaps left out in the
existing results. First, we show there are no positive solutions in the case of b < 1< c for large \mu > 0.
Then by studying the shadow system of the above system as \mu \rightarrow \infty , we establish the existence of
positive solutions for large \mu > 0 in various ranges of b, c > 0 including all possible competitions:
weak, strong-weak, and strong. In particular, we find some conditions under which multiple positive
solutions exist. Finally we show the existence of positive solutions for some \mu > 0 in the case of weak
competition 0< b, c < 1.

Key words. competition model, cross-diffusion, shadow system, monotone positive solutions,
global bifurcation
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1. Introduction. A variety of mathematical models have been employed to in-
vestigate the effect of dispersal on population dynamics [39, 51], as well as how the
species interaction affects the selection and evolution of dispersal strategies [9, 18, 30].
However, much of the theoretical studies are devoted to the case of random (uncon-
ditional) dispersal where the movement of species is modeled as a random diffusion
process [33, 36]. In comparison, mathematical studies of models incorporating condi-
tional dispersal strategies, which take into account factors such as avoidance effect,
population pressure, crowding effect, and competition of species, to name a few, have
received relatively less attention and there are many open questions related to condi-
tional dispersal strategies [2]. Among them, cross-diffusion (the process by which the
density gradient of one species induces an advective flux of another species) has often
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6040 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

been used to interpret many observed patterns and evolutionary processes in living
organisms, such as chemotaxis [14], preytaxis [13], pattern formation [23], biofilm [38],
Turing pattern [7], spatial segregation [43], and so on. These reaction--cross-diffusion
systems have attracted enormous attention because their rich mathematical structures
enable the modeling of many important physical/biological phenomena.

In this paper, we are concerned with the following simplified STK cross-diffusion
model proposed by Shigesada--Kawasaki--Teramoto [43]\left\{         

ut = d\Delta u+ u(r - u - bv), x\in \Omega , t > 0,

vt = \mu \Delta [(1 + ku)v] + v(r - v - cu), x\in \Omega , t > 0,

\partial u

\partial \nu 
=
\partial v

\partial \nu 
= 0, x\in \partial \Omega , t > 0,

(1.1)

where u(x, t) and v(x, t) represent the densities of two competing species at the lo-
cation x and time t, \Omega is a bounded domain in \BbbR n(n \geq 1), and \nu denotes the outer
unit normal to \partial \Omega . All coefficients d,\mu , b, c, r, k are assumed to be positive con-
stants throughout this paper, where, in particular, the parameter r > 0 is referred
to as the (spatially homogeneous) resource available in the environment. The term
\Delta [(1 + ku)v] says that the rate of departure of species v from location x is propor-
tional to 1 + ku(x, t), which is an increasing function of the density u(x, t) of the
first species. The coefficient k is called the cross-diffusion coefficient and measures
the biased movement of species v in response to the population pressure from the
species u.

If k = 0, then the dispersal strategy of v is unconditional upon the density of u,
and the competition model (1.1) becomes the classical diffusive Lotka--Volterra com-
petition model under zero Neumann boundary conditions. In this case, the system
admits a comparison principle and the theory of monotone dynamical systems can be
applied to classify the long-time dynamics of the system [10, 44]. A result by Kishi-
moto and Weinberger [15] asserts that (1.1) has no stable nontrivial positive steady
state on a convex domain. It is well known that in the case of weak-strong competition
(i.e., b < 1 < c or b > 1 > c), system (1.1) has no positive steady state (cf. [25, 32]),
i.e., coexistence is impossible. However, if the resource is spatially heterogeneous,
namely r = r(x) is not constant, then the global dynamics are much more compli-
cated and the species may coexist in the case of weak-strong competition, depending
on the size of dispersal rates d and \mu (see [10]). Therefore, an interesting question
is whether two competing species can coexist in the case of weak-strong competition
if one adopts density-dependent dispersal [2] given that the resource is spatially ho-
mogeneous. The quasilinear cross-diffusion system (1.1) with k > 0 is a prominent
mathematical model highly pertinent to this question and has attracted tremendous
attention in the past few decades. The existence of global-in-time solutions has been
established in [1, 19]. For the steady states, the first analytical work was due to
[31] which showed that (1.1) admits positive transition-layer steady states when \mu 
and k are sufficiently large but d > 0 is sufficiently small in some strong competition
case b, c > 1. Later the stability/instability of such steady states was investigated in
[12]. The existence/nonexistence of positive steady states in some larger parameter
regimes were obtained in [25]. In a celebrated work [26], Lou and Ni established the
uniform boundedness of nontrivial steady states, and derived three types of limiting
shadow systems determining all the possible asymptotic behavior of steady states as
the cross-diffusion parameter k in (1.1) tends to infinity (see [26, Theorem 1.4 and
Theorem 4.1]).
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6041

Theorem 1.1 (see [26, Theorem 4.1]). Let \Omega \subset \BbbR n(1 \leq n \leq 3) be a bounded
domain with smooth boundary. Suppose b \not = 1, c \not = 1, and r/\mu \not = \lambda j for all j \in \BbbN ,
where \lambda j denotes the eigenvalues of  - \Delta subject to homogeneous Neumann boundary
condition. Let (ui, vi) be positive nonconstant steady states of (1.1) with (\mu ,k) =
(\mu i, ki) and \mu iki\rightarrow \infty . Then the following conclusions hold:

(a) If ki\rightarrow \infty and \mu i\rightarrow \mu \in (0,\infty ), then either (i) or (ii) occurs.
(b) If ki\rightarrow \infty and \mu i\rightarrow \infty , then either (i\ast ) or (ii) occurs.
(c) If ki\rightarrow k \in [0,\infty ), then k > 0 and (iii) occurs; where

(i) (kiui, vi)\rightarrow (w,v) uniformly, where (w,v) is a positive solution of\left\{       
d\Delta w+w(r - bv) = 0 in \Omega ,

\mu \Delta [(1 +w)v] + v(r - v) = 0 in \Omega ,
\partial w

\partial \nu 
=
\partial v

\partial \nu 
= 0 on \partial \Omega .

(1.2)

(i\ast ) (kiui, vi)\rightarrow (w,\xi /(1 +w)) uniformly, where \xi > 0 and w is a positive solution of\left\{           
d\Delta w+w (r - b\xi /(1 +w)) = 0 in \Omega ,\int 
\Omega 

r

1 +w
dx= \xi 

\int 
\Omega 

1

(1 +w)2
dx,

\partial w

\partial \nu 
= 0 on \partial \Omega .

(1.3)

(ii) (ui, vi)\rightarrow (u, \xi /u) uniformly, where \xi > 0 and u is a positive solution of\left\{           
d\Delta u+ u (r - u) = b\xi in \Omega ,\int 
\Omega 

1

u
(r - \xi /u - cu) dx= 0,

\partial u

\partial \nu 
= 0 on \partial \Omega .

(1.4)

(iii) (ui, vi)\rightarrow (u, \xi /(1 + ku)) uniformly, where \xi > 0 and u is a positive solution of\left\{               

d\Delta u+ u

\biggl( 
r - u - b\xi 

1 + ku

\biggr) 
= 0 in \Omega ,\int 

\Omega 

1

1 + ku
(r - cu) dx= \xi 

\int 
\Omega 

1

(1 + ku)2
dx,

\partial u

\partial \nu 
= 0 on \partial \Omega .

(1.5)

The classification given in Theorem 1.1 provides a framework to study the steady-
state solutions of the quasilinear system (1.1) and has stimulated lots of studies on
the existence and/or stability/instability of limiting systems (1.2), (1.3), and (1.4)
in various ranges of parameters (cf. [17, 20, 21, 25, 27, 28, 33, 34, 46, 49, 50] in
one dimension and [16, 29] in multidimensions). But all these works have essentially
assumed that d> 0 is either small or close to some particular number (or lies in certain
range), and k > 0 is sufficiently large. We refer to a recent work [21] and references
therein for a brief review of the above-mentioned works. See also [22] for more recent
developments.

As we know, the limiting shadow system (1.5) has never been investigated in
the literature. Indeed the limiting system (1.5) results from the cases \mu \rightarrow \infty and
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6042 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

0 < k < \infty , which clearly varies from limiting systems (1.2), (1.3), and (1.4), all of
which require k \rightarrow \infty . Hence the study of the existence/nonexistence of solutions
to (1.5) is of interest in its own right. The main goal of this paper is to study the
existence or nonexistence of nonconstant steady state solutions of (1.1) satisfying\left\{       

d\Delta u+ u(r - u - bv) = 0 in \Omega ,

\mu \Delta [(1 + ku)v] + v(r - v - cu) = 0 in \Omega ,
\partial u

\partial \nu 
=
\partial v

\partial \nu 
= 0 on \partial \Omega 

(1.6)

in some parameter regimes not covered by the existing studies mentioned above.
Our first result is concerned with the nonexistence of positive solutions to (1.5) and
(1.6). Specifically, we will show that system (1.5) does not admit nonconstant positive
solutions for b\leq 1\leq c, while if b < 1< c, then system (1.6) has no nonconstant positive
solutions for large \mu .

Theorem 1.2. Let d, k, b, c > 0. Then the following results hold:
(1) If b\leq 1\leq c, then system (1.5) does not admit nonconstant positive solutions

for any \mu > 0
(2) If b < 1 < c, then there exists \mu > 0 such that (1.6) has no non-constant

positive solutions for any \mu > \mu .

Under the assumption b < 1 < c, it is well known [32] that in the absence of
cross-diffusion (i.e., k = 0), the weak competitor v does not persist for any d,\mu > 0.
Theorem 1.2 (2) implies that the weak competitor will not persist either even if it
adopts the dispersal strategy to avoid the stronger competition u (i.e., k > 0) when
its diffusion rate \mu is sufficiently large for given b, c, d, k > 0.

A natural question, then, is whether (1.6) has positive solutions outside the pa-
rameter regime given in Theorem 1.2. It turns out this is a very challenging question.
In this paper, we address this question in one dimension, relying on the crucial ob-
servation (see Proposition 1.1 below) that the existence of solutions of the limiting
shadow system (1.5) implies the existence of solutions to (1.6) for \mu \gg 1 under some
non-degeneracy conditions. Therefore, we shall restrict our attention in the one-
dimensional case in what follows. Without loss of generality, we assume \Omega = (0,L)
with L> 0 and rewrite system (1.5) as\left\{           

uxx + u

\biggl( 
r - u - b\xi 

1 + ku

\biggr) 
= 0 in (0,L),\int L

0

1

1 + ku
(r - cu) dx= \xi 

\int L

0

1

(1 + ku)2
dx,

ux = 0, x= 0,L

(1.7)

and (1.6) as \left\{     
uxx + u(r - u - bv) = 0 in (0,L),

\mu [(1 + ku)v]xx + v(r - v - cu) = 0 in (0,L),

ux = vx = 0, x= 0,L,

(1.8)

where we set d= 1 for the simplicity of notation and k > 0 is fixed for the rest of this
paper.

To study the existence of nonconstant solutions of the limiting system (1.7) and
the corresponding original system (1.8), we define a weak form of nondegeneracy as
follows.
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6043

Definition 1.1. We say that a nonconstant solution (u\ast , \xi \ast ) of (1.7) is nonde-
generate if the linear operator T : \{ \phi \in W 2,2([0,L]) : \phi x(0) = \phi x(L) = 0\} \rightarrow L2([0,L])
given by

T (\phi ) = \phi xx + \phi 

\biggl( 
r - 2u\ast  - b\xi \ast 

(1 + ku\ast )2

\biggr) 
,

is invertible.

Proposition 1.1. Suppose (1.7) has a nonconstant solution (u\ast , \xi \ast ). If it is
nondegenerate and satisfies

\int L

0

\left(  T - 1
\Bigl( 

bu\ast 

1+ku\ast 

\Bigr) 
(3\xi \ast k - (kr+ c)(1 + ku\ast ))

(1 + ku\ast )3
 - 1

(1 + ku\ast )2

\right)  dx \not = 0,(1.9)

where T - 1 is the inverse of operator T given in Definition 1.1, then system (1.8)
admits a nonconstant positive solution (u\mu , v\mu ) for \mu \gg 1. Moreover,

(u\mu , v\mu )\rightarrow 
\biggl( 
u\ast ,

\xi \ast 

1 + u\ast 

\biggr) 
as \mu \rightarrow +\infty .

Remark 1.1. Condition (1.9) is to ensure that system (1.7) when linearized at the
solution (u\ast , \xi \ast ) does not admit a zero eigenvalue. We believe it is a generic condition
that is satisfied except for a small subset of parameter values. However, it is not easy
to check its validity analytically since the explicit form of (u\ast , \xi \ast ) is unknown.

Thanks to Proposition 1.1, it remains to explore the existence and structure of
nonconstant solutions of the limiting shadow system (1.7). To this end, we classify
the monotone increasing solution of (1.7) since every nonconstant solution of the
shadow system (1.7) can be constructed from monotone solutions by reflection (see
Lemma 3.1). For the shadow system (1.7), we have the following conclusions on the
existence and nonexistence of the monotone increasing solutions.

Theorem 1.3. Suppose that

rk > 1 and L>L\ast :=

\surd 
k\pi \sqrt{} 

rk+ 3 - 2
\sqrt{} 
2(1 + kr)

.(1.10)

Then there exists b\ast \in 
\bigl( 

1
1+rk ,1

\bigr) 
and c\ast \in (1,\infty ) such that the following results hold:

(i) If b < b\ast (resp., c > c\ast ) , then system (1.7) has no strictly increasing positive
solutions for any c > 0 (resp., for any b > 0).

(ii) If b > b\ast , then there is a single bounded interval Ib such that system (1.7) has
a strictly increasing positive solution u\ast for some \xi = \xi \ast if and only if c\in Ib.
Consequently, for any b > b\ast and c \in Ib, system (1.8) with \mu \gg 1 admits a
nonconstant positive solution if (u\ast , \xi \ast ) satisfies (1.9).

(iii) If c < c\ast , then there is a single interval Ic such that system (1.7) has a
strictly increasing positive solution u\ast for some \xi = \xi \ast if and only if b \in Ic.
Therefore, for any c > c\ast and b \in Ic, system (1.8) with \mu \gg 1 admits a
nonconstant positive solution if (u\ast , \xi \ast ) satisfies (1.9).

Theorem 1.3 gives the existence of increasing positive solutions of (1.7) and hence
(1.8). However, given b\in (b\ast ,\infty ) (resp., c\in (0, c\ast )), the size of Ib (resp., Ic) is obscure
and cannot be explicitly identified. Below we present a more decisive result.
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6044 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

Theorem 1.4. Let the conditions in (1.10) hold. Define

z\pm = (rk - 1 - k\pi 2/L2 \pm 
\sqrt{} 
(k\pi 2/L2  - rk+ 1)2  - 8k\pi 2/L2)/4k.

Then there exists a small constant \epsilon = \epsilon (k, r,L)> 0 such that the following results hold:
(i) If b \in (1,1 + \epsilon ) and c \in (1  - \epsilon ,1), then (1.7) admits at least two increasing

positive solutions.
(ii) Assume b \in (1 - \epsilon ,1) and c \in (1 - \epsilon ,1). If 1/b - 1

1 - c < z - 

r - z - , then (1.7) at least

admits two increasing positive solutions, which are nondegenerate; if 1/b - 1
1 - c \in 

( z - 

r - z - ,
z+

r - z+ ), then (1.7) admits at least one increasing positive solution.

(iii) Assume b \in (1,1 + \epsilon ) and c \in (1,1 + \epsilon ). If 1 - 1/b
c - 1 > z+

r - z+ , then (1.7) at least

admits two increasing positive solutions, which are nondegenerate; if 1/b - 1
1 - c \in 

( z - 

r - z - ,
z+

r - z+ ), then (1.7) admits at least one increasing positive solution.
Under the same conditions, if the solution of (1.7) satisfies (1.9), then system

(1.8) admits the same number of nonconstant positive solutions as (1.7).

While Theorem 1.2 asserts that system (1.8) does not have any nonconstant posi-
tive solution if b < 1< c, Theorem 1.4 (i) says that there are some b, c > 0 with c < 1< b
such that (1.8) with \mu \gg 1 admits some nonconstant positive solutions. Theorem 1.4
(ii) implies that there are some b, c > 0 with b, c < 1 or b, c > 1 such that (1.8) with
\mu \gg 1 admits some nonconstant positive solutions. In the following theorem, proved
using the global bifurcation theorem, we show that (1.8) may admit at least one
nonconstant positive solution for any 0< b, c < 1 (weak competition) and some \mu > 0.

Theorem 1.5. Let 0 < b, c < 1 and \lambda i = \pi 2i2

L2 , i = 0,1,2, . . .. Define \mu \lambda i
=

(1 - bc)u+v+

(bku+v+ - (1+ku+)(\lambda i+u+))\lambda i
, where u+ = (1 - b)r

1 - bc > 0 and v+ = (1 - c)r
1 - bc > 0. Suppose

that j is a positive integer such that (bkv+ - (1+ku+))u+

1+ku+ \in (\lambda j , \lambda j+1]. If there exists
i\in \{ 1,2, . . . , j\} such that

\mu \lambda i \not = \mu \lambda m for any m\in \{ 1,2, . . . , j\} and m \not = i,

then (1.8) admits at least one nonconstant positive solution whenever

\mu > \mu \lambda i and \mu \not \in \{ \mu \lambda 1 , \mu \lambda 2 , . . . , \mu \lambda j\} .

This paper is organized as follows. In section 2, we prove the nonexistence of
positive solutions to (1.7) and (1.8). In section 3, we classify the monotone increasing
solutions of (1.7), which form the building blocks of all nonconstant solutions (see
Propositions 3.2 and 3.3). This enables us to conclude the existence of nonconstant
solutions of system (1.8) with large \mu > 0 as claimed in Theorem 1.3. In section 4, the
existence results in the case of weak competition for some \mu > 0 (i.e., Theorem 1.5)
are proved via the global bifurcation theory [3, 42].

2. Nonexistence of positive solution of system (1.6). This section is de-
voted to proving Theorem 1.2. We first prove the following result for system (1.5).

Proposition 2.1. If b \leq 1 \leq c, then system (1.5) has no nonconstant positive
solutions.

Proof. If not, assume that (1.5) has a nonconstant positive solution u. Multiplying
the first equation of (1.5) by 1

u(1+ku) and integrating the resulting equation over \Omega ,
one obtains
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6045\int 
\Omega 

1

1 + ku

\biggl( 
r - u - b\xi 

1 + ku

\biggr) 
dx= - d

\int 
\Omega 

\Delta u

u(1 + ku)
dx= - 

\int 
\Omega 

| \nabla u| 2(1 + 2ku)

u2(1 + ku)2
dx< 0,

which along with the condition b\leq 1\leq c implies that\int 
\Omega 

1

1 + ku

\biggl( 
r - cu - b\xi 

b(1 + ku)

\biggr) 
dx< 0.

This contradicts the second identity of (1.5), and hence completes the proof.

To prove that system (1.6) does not admit any positive solution for large \mu , we
first establish several preparatory lemmas.

Lemma 2.1. Let (u, v) be a positive solution of (1.6). Suppose there is a constant
A> 0 such that

sup
\=\Omega 

(1 + ku)v\leq A inf
\=\Omega 
(1 + ku)v, \| u\| L\infty (\Omega ) \leq A,

then there exists a constant CA such that

sup
\=\Omega 

v\leq CA inf
\=\Omega 
v.

Here CA =A(1 + kA) depends on A only.

Proof. Indeed, it is obvious that

sup
\=\Omega 

v\leq sup
\=\Omega 

1

1 + ku
sup
\=\Omega 

(1 + ku)v\leq A inf
\=\Omega 
(1 + ku)v\leq A sup

\=\Omega 

(1 + ku) inf
\=\Omega 
v\leq CA inf

\=\Omega 
v.

This completes the proof.

Lemma 2.2. Let b, c, r, k > 0 be given. For any \mu 0 > 0, there is \delta 0 = \delta 0(\mu 0) > 0
such that any positive solution (u, v) of (1.8) with \mu \geq \mu 0 satisfies that inf \=\Omega u + inf \=\Omega v
\geq \delta 0.

Proof. Suppose to the contrary that there is a sequence of steady states (\mu j , uj , vj)
of (1.6) such that

inf
\=\Omega 
uj + inf

\=\Omega 
vj \rightarrow 0, as j\rightarrow \infty .(2.1)

First, by the weak maximum principle, we observe that

sup
\=\Omega 

| uj | \leq r.

For any j, let x0 \in \Omega be such that (1 + kuj(x0))vj(x0) = maxx\in \Omega (1 + kuj(x))vj(x).
Then

\Delta (1+ ku(x0)v(x0))\leq 0 and r - cu(x0) - v(x0)\geq 0,

which suggests that v(x0)\leq r and hence

sup
\=\Omega 

| (1 + kuj)vj | \leq (1 + kuj(x0))vj(x0)\leq r(1 + kr),

namely, uj and (1 + kuj)vj are bounded in C([0,L]) uniformly in j. Thus there is a
constant C0 independent of j so that

sup
\=\Omega 

(| uj | + | (1 + kuj)vj | )\leq C0.(2.2)
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6046 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

It follows that both uj and wj := (1+kuj)vj satisfy the Harnack inequality uniformly
in j, as both satisfy homogeneous linear elliptic equations with L\infty coefficients under
(2.2) alongside the condition \mu > \mu 0,

\Delta uj +

\biggl( 
r - uj  - b

wj
1 + kuj

\biggr) 
uj = 0 and \Delta wj +

r - wj

1+kuj
 - cuj

\mu j(1 + kuj)
wj = 0,(2.3)

and the homogeneous Neumann boundary condition. By Lemma 2.1 and (2.1), we
deduce that uj \rightarrow 0 and vj \rightarrow 0 uniformly in \=\Omega . Now, if we divide the first equation
of (1.8) by uj , and integrate the result by parts, we get

0 =

\int 
\Omega 

| \nabla uj | 2

(uj)2
dx+

\int 
\Omega 

(r - uj  - bvj)dx.

Sending j \rightarrow \infty , we deduce
\int 
\Omega 
rdx \leq 0, which is a contradiction. Therefore, (2.1) is

false and there is a constant \delta 0 > 0 such that inf \=\Omega u+ inf \=\Omega v \geq \delta 0 for all \mu \in [\mu 0,\infty ).
Particularly, this \delta 0 > 0 can be chosen to depend only on \mu 0 but independent of
\mu \in [\mu 0,\infty ), since the L\infty bound of the coefficients of the elliptic equations (2.3) only
depends on \mu 0. The proof is thus completed.

Lemma 2.3. Consider the problem

 - \mu j\Delta wj = Fj in \Omega , and
\partial wj
\partial \nu 

= 0 on \partial \Omega ,

where \mu j \rightarrow \infty as j\rightarrow \infty . If \{ Fj\} is uniformly bounded in L2, then \mu j
\int 
\Omega 
| \nabla wj | 2dx\rightarrow 0

as j\rightarrow \infty .

Proof. First, one observes that
\int 
\Omega 
Fjdx = 0 by integrating the equation along

with the boundary condition. Multiplying the equation by wj , integrating the result,
and using H\"older's inequality, we get

\mu j

\int 
\Omega 

| \nabla wj | 2dx=
\int 
\Omega 

wjFjdx=

\int 
\Omega 

(wj  - wj)Fjdx\leq \| wj  - \=wj\| L2\| Fj\| L2 ,(2.4)

where \=wj = 1
L

\int 
\Omega 
wjdx. Then applying the Poincar\'e inequality: \| wj  - \=wj\| L2 \leq 

c\| \nabla wj\| L2 for some constant c > 0 into (2.4), one finds a constant C > 0 depend-
ing on c and the L2-norm of Fj such that

\| wj  - \=wj\| L2 \leq C

\mu j
.

Now sending j\rightarrow \infty in (2.4), we obtain the desired conclusion.

With the help of the above lemmas, we now prove Theorem 1.2.

Proof of Theorem 1.2. The result of Theorem 1.2 (1) directly follows from Propo-
sition 2.1. We proceed to prove Theorem 1.2 (2). Suppose to the contrary that there
is a sequence of positive solutions (\mu j , uj , vj) of (1.6) with \mu j \rightarrow \infty as j \rightarrow \infty and
b < 1 < c. Now, we claim that inf \=\Omega vj \not \rightarrow 0. Indeed, uj and wj := (1 + kuj)vj satisfy
the Harnack inequality with constant independent of j (as explained in Lemma 2.2).
It then follows that vj also has the Harnack inequality (Lemma 2.1). If inf \=\Omega vj \rightarrow 0,
then vj \rightarrow 0 uniformly by the Harnack inequality. It then follows from the equation
of uj that uj \rightarrow r or 0 uniformly and hence r  - vj  - cuj \rightarrow (1 - c)r or r uniformly.
Since c > 1, this means r - vj  - cuj does not change sign for j sufficiently large. This
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6047

is impossible since
\int 
\Omega 
vj(r  - vj  - cuj)dx = 0. Hence, inf \=\Omega vj \geq \delta 1 for some \delta 1 > 0

independent of j.
Next, we divide the equation of uj by uj(1 + kuj) and integrate the result by

parts to obtain\int 
\Omega 

1

1 + kuj
(r - uj  - bvj) = - 

\int 
\Omega 

| \nabla uj | 2(1 + 2kuj)

(uj)2(1 + kuj)2
dx< 0,(2.5)

where the strict inequality results from that (1.6) has no constant positive solution
for b < 1< c. Dividing the equation of vj by wj := (1 + kuj)vj , we have

\mu j

\int 
\Omega 

| \nabla wj | 2

(wj)2
dx+

\int 
\Omega 

1

1 + kuj
(r - vj  - cuj)dx= 0.(2.6)

Combining (2.5) and (2.6), we get

\mu j

\int 
\Omega 

| \nabla wj | 2

(wj)2
dx=

\int 
\Omega 

cuj + vj  - r

1 + kuj
dx>

\int 
\Omega 

(c - 1)uj + (1 - b)vj
1 + kuj

dx.

Using Lemma 2.2, we obtain

\mu j

\int 
\Omega 

| \nabla wj | 2

(wj)2
dx> (1 - b)

\int 
\Omega 

\delta 0
1 + kC0

dx,(2.7)

where C0 is the uniform bound for uj obtained in (2.2). However, Lemma 2.3 and
the fact that inf \=\Omega vj \geq \delta 1 implies that wj \geq \delta 1, and hence

0\leq \mu j

\int 
\Omega 

| \nabla wj | 2

(wj)2
dx\leq 1

\delta 21
\cdot \mu j

\int 
| \nabla wj | 2dx\rightarrow 0.

Then sending j\rightarrow \infty in (2.7), we obtain

0\geq (1 - b)

\int 
\Omega 

\delta 0
1 + kC0

dx.

This is a contradiction and hence the proof of Theorem 1.2 is complete.

3. Existence and multiplicity of positive solutions of system (1.7) and
(1.8). In this section, we establish the existence and multiplicity of positive solutions
of system (1.8) when \mu is large. First, inspired by Proposition 1.1, we consider the
shadow system (1.7).

The following lemma says that every nonconstant solution of the shadow system
can be constructed from monotone solutions by reflection.

Lemma 3.1. Let (u, \xi )\in C2([0,L])\times [0,\infty ) be a nonnegative solution of the shadow
system (1.7). If u is nonconstant, then there exists m \in \BbbN such that (u

\bigm| \bigm| 
[0,L/m]

, \xi ) is

a strictly monotone solution of (1.7) with the domain (0,L) replaced by (0,L/m).
Furthermore,

u(x) =

\Biggl\{ 
u(x - jL/m) when x\in [jL/m, (j + 1)L/m], j even,

u((j + 1)L/m - x) when x\in [jL/m, (j + 1)L/m], j odd.
(3.1)

In particular, if u is nonconstant and increasing in [0,L], then u\prime > 0 in (0,L).
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6048 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

Proof. Since u\prime (L) = 0, the following is well defined:

x\ast = inf\{ x\in (0,L] : u\prime (x) = 0\} .

First, we claim that x\ast > 0. Suppose, not, then there exists a sequence xj \searrow 0 such
that u\prime (xj) = 0 for all j. By Rolle's theorem, there exists yj \in (xj+1, xj) such that
yj \rightarrow 0 and u\prime \prime (yj) = 0 for all j. Sending j \rightarrow \infty , we deduce that u\prime \prime (0) = 0. By
uniqueness of ODE, it follows that u(x) \equiv u(0) for all x, which is impossible as u is
nonconstant. Hence, x\ast > 0.

By construction, u is strictly monotone in [0, x\ast ], as u\prime does not change sign
in (0, x\ast ). By uniqueness of ODE again, we easily see that u(x) = u(x\ast  - x) for
x\in [x\ast ,2x\ast ]. Repeating the argument, we have

u(x) =

\left\{   u(x - jx\ast ) when x\in [jx\ast , (j + 1)x\ast ], j is even,

u((j + 1)x\ast  - x) when x\in [jx\ast , (j + 1)x\ast ], j is odd.

It follows that L=mx\ast for some m\in \BbbN .
Finally, if m= 1, then x\ast =L, so the definition of x\ast implies u\prime > 0 in (0,L). This

completes the proof.

To find a positive solution of (1.7), we first investigate the regular boundary value
problem \left\{   uxx + u

\biggl( 
r - u - b\xi 

1 + ku

\biggr) 
= 0 in (0,L),

ux(0) = ux(L) = 0
(3.2)

for given positive parameters \xi , b, r, k. Motivated by Lemma 3.1 (see also [11, 47]),
it is equivalent to consider the existence/nonexistence of increasing solutions of (3.2)
for arbitrary L> 0. To simplify notations, we define for u\geq 0,

h(u) = (r - u)(1 + ku), g(u) =
h(u) - b\xi 

1 + ku
= r - u - b\xi 

1 + ku
,

f(u) = ug(u), and F (u) =

\int u

0

f(\tau )d\tau .(3.3)

With the maximum principle, we can obtain the following result.

Proposition 3.1. Let u be a positive solution of (3.2). Then 0<u< r on [0,L].

Next, we establish the necessary condition for (3.2) admitting a strictly increasing
positive solution.

Lemma 3.2. For any L> 0, let u be a nonnegative, nonconstant, and increasing
solution of (3.2). Then rk > 1 and b\xi \in (h(0), h( rk - 1

2k )), where h(0) = r and h( rk - 1
2k ) =

(rk+1)2

4k .

Proof. Denote the boundary values of \alpha := u(0) and \beta := u(L), and let E(x) =
u2
x

2 + F (u(x)). Then Ex(x)\equiv 0. Since ux(0) = ux(L) = 0, we have

1

2
| ux(x)| 2 + F (u(x))\equiv F (\alpha ) and F (\alpha ) = F (\beta ) =B0.
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6049

Combining ux > 0 in (0,L) (see Lemma 3.1) and E(x) \equiv F (\alpha ) = F (\beta ), one observes
that

F (u(x))<F (\alpha ) for any x\in (0,L).

So, there exists some z \in (\alpha ,\beta ) \subset (0, r) at which F (\cdot ) takes a minimum value. This
along with (3.3) and the fact that f(u) has at most three isolated zeros implies that
there exists some small \epsilon > 0 such that f(z) = 0 and

f(s)< 0 in (z  - \epsilon , z) and f(s)> 0 in (z, z + \epsilon ).

Since f(\cdot ) and g(\cdot ) have the same sign in (0, r) by (3.3), we have g(z) = 0 and

g(s)< 0 in (z  - \epsilon , z) and g(s)> 0 in (z, z + \epsilon ).(3.4)

Obviously, g(z) = 0 if and only if b\xi = h(z).
Claim. rk > 1.
Indeed, if rk \leq 1, then h(\cdot ) is strictly decreasing in (0, r), which, combined with

g(s) = h(s) - b\xi 
1+ks , indicates that (3.4) cannot hold. Thus, we have rk > 1.

It is trivial to show that

hx(x)

\left\{             
> 0, x\in 

\biggl( 
0,
rk - 1

2k

\biggr) 
,

= 0, x=
rk - 1

2k
,

< 0, x\in 
\biggl( 
rk - 1

2k
, r

\biggr) 
,

and max
u\in (0,r)

h(u) = h

\biggl( 
d
rk - 1

2k

\biggr) 
=

(rk+ 1)2

4k
.

(3.5)

From (3.4), (3.5), and g(s) = h(s) - b\xi 
1+ks , it follows that b\xi = h(z)\in (h(0), h( rk - 1

2k )).

From now on, we assume that rk > 1 and b\xi \in (h(0), h( rk - 1
2k )). Given b\xi \in 

(h(0), h( rk - 1
2k )), by (3.5), one has that there exits 0< z - <

rk - 1
2k < z+ < r such that

b\xi = h(z - ) = h(z+) and f(u)

\left\{     
< 0, u\in (0, z - )\cup (z+, r),

> 0, u\in (z - , z+),

= 0, u= 0, z - , z+,

(3.6)

where

z\pm =
kr - 1\pm 

\sqrt{} 
(1 - kr)2  - 4k(b\xi  - r)

2k
.(3.7)

Definition 3.1. Define \alpha 0 \in [0, z - ) as follows:
\bullet If F (0)\leq F (z+), then take \alpha 0 = 0.
\bullet If F (0) > F (z+), then we define \alpha 0 to be the unique number in (0, z - ) such
that F (\alpha 0) = F (z+).

Lemma 3.3. Given b\xi \in (h(0), h( rk - 1
2k )), for any \alpha \in (\alpha 0, z - ), (3.2) admits a

strictly increasing solution for some L\alpha > 0 with u(0) = \alpha and u(L\alpha ) = \beta , where
\beta \in (z - , z+) and F (\alpha ) = F (\beta ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

3/
25

 to
 1

58
.1

32
.1

75
.1

77
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



6050 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

Proof. Based on the definition of \alpha 0, (3.3), and (3.6), we have F (\alpha ) < F (z+),
which, combined with (3.6), implies that there exits unique \beta \in (z - , z+) such that
F (\alpha ) = F (\beta ).

Since the proofs are similar, we only consider the case F (0)\leq F (z+). Then \alpha 0 = 0.
Denote the unique solution to the initial value problem

uxx + f(u) = 0, u(0) = \alpha \in (\alpha 0, z - ), ux(0) = 0(3.8)

by u(x;\alpha ). By (3.6), one has uxx(0;\alpha ) = - f(\alpha )> 0 and, therefore, u(x;\alpha ) is initially

increasing. Let E(x) = (ux(x;\alpha ))
2

2 + F (u(x;\alpha )). Then we have that

Ex(x)\equiv 0 and E(x)\equiv F (\alpha ).(3.9)

Claim. There exists some finite L\alpha > 0 such that ux(x;\alpha ) > 0 in (0,L\alpha ) and
ux(L\alpha ;\alpha ) = 0. If not, we assume that

ux(x;\alpha )> 0 in (0,\infty ).(3.10)

This together with (3.9) gives that

F (u(x;\alpha ))<F (\alpha ) for any x> 0,

which together with (3.3), (3.6), and the definition of \beta yields that

u(x;\alpha )<\beta for any x> 0.(3.11)

Let u\infty = limx\rightarrow \infty u(x;\alpha ). Then \alpha < u\infty \leq \beta . Moreover, from (3.10) and (3.11), it
follows that limx\rightarrow \infty uxx(x;\alpha ) = 0, which combined with (3.8) yields that f(u\infty ) = 0.
Recall that z - is the only zero of f in (\alpha ,\beta ] and one obtains that u\infty = z - . This
further implies that uxx(x;\alpha )> 0 in (0,\infty ), which contradicts (3.11). Therefore, the
claim holds. Moreover, by (3.9) and the definition of \beta , one has that u(L\alpha ;\alpha ) = \beta .
Thus, (3.2) admits a strictly increasing solution u(x;\alpha ) with L=L\alpha , u(0;\alpha ) = \alpha , and
u(L\alpha ;\alpha ) = \beta . This completes the proof.

To obtain more precise information for the existence, we shall study the function
L\alpha , \alpha \in (\alpha 0, z - ). Multiplying (3.8) by ux(x;\alpha ) and integrating the resulting equation
over (0, x), we have

ux(x;\alpha ) =
\sqrt{} 
2(F (\alpha ) - F (u(x;\alpha ))), x\in (0,L\alpha ).

Dividing both sides by
\sqrt{} 
2(F (\alpha ) - F (u(x;\alpha ))) and integrating the resulting equation

over (0,L\alpha ), it follows that

L\alpha =

\int \beta 

\alpha 

du\sqrt{} 
2(F (\alpha ) - F (u))

,(3.12)

which is a singular integral. Next, inspired by the approaches in [11, 40, 41], we shall
apply several change of variables to transform the singular integral into a regular one.

Next, define p0 =
\sqrt{} 
2(F (\alpha 0) - F (z - ), where \alpha 0 is as in Definition 3.1 and z - 

satisfies (3.7). Define the mapping \gamma : [ - p0, p0]\rightarrow [\alpha 0, z+] by

F (\gamma (s)) - F (z - ) =
s2

2
, sign s= sign(\gamma (s) - z - ) = sign(f(\gamma (s))),(3.13)
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6051

Since \gamma \prime > 0 and it is clear that [\alpha ,\beta ] is contained in the image of \gamma , then s= \gamma  - 1(u) is
well defined and is strictly increasing in (\alpha ,\beta ) due to the facts that 0<\alpha < z - <\beta < r,
(3.6) and the definition of F (u).

Similarly, for each \alpha \in (\alpha 0, z - ), associate p > 0 by

p2

2
= F (\alpha ) - F (z - )> 0.(3.14)

Note that

dp

d\alpha 
< 0(3.15)

and \alpha \in (\alpha 0, z - ) iff p \in (0, p0). Then, one obtains L\alpha =
\int p
 - p

\gamma \prime (s)ds\surd 
p2 - s2

. Let s= - p cos t,
0\leq t\leq \pi , and we have

L\alpha =

\int \pi 

0

\gamma \prime ( - p cos t)dt.(3.16)

For later use, we first express \gamma \prime (s), \gamma \prime \prime (s), and \gamma \prime \prime \prime (s) as functions of u \in (\alpha ,\beta ),
following the calculation similar to that in [40, pp. 4--6]. Differentiating the identity
(3.13) with respect to s, one obtains

f(u)\gamma \prime (s) = s.

Let

\~F (u) = F (u) - F (z - ).

This together with (3.13) yields that \gamma \prime (s) =

\surd 
2 \~F (u)

| f(u)| > 0, as long as s \not = 0 or u \not = z - .
For s= 0, by the L'Hopital's rule, one arrives at

\gamma \prime (0) = lim
u\rightarrow z - 

\sqrt{} 
2 \~F (u)

| f(u)| 
=

1\sqrt{} 
f \prime (z - )

,

which further implies that

lim
\alpha \rightarrow z - 

L\alpha =
\pi \sqrt{} 
f \prime (z - )

:=L0.(3.17)

Differentiating the identity f(u)\gamma \prime (s) = s with respect to s further gives

f \prime (u)[\gamma \prime (s)]2 + f(u)\gamma \prime \prime (s) = 1

and

f \prime \prime (u)[\gamma \prime (s)]3 + 3f \prime (u)\gamma \prime (s)\gamma \prime \prime (s) + f(u)\gamma \prime \prime \prime (s) = 0.

This further suggests that

\gamma \prime \prime (s) =
f2  - 2f \prime \~F

f3
(u), \gamma \prime \prime (0) = - f \prime \prime 

3(f \prime )2
(z - ),

and

\gamma \prime \prime \prime (s) = - \gamma \prime (s)

f4(u)
H(u), \gamma \prime \prime \prime (0) =

[5(f \prime \prime )2  - 3f \prime f \prime \prime \prime ](z - )

12(f \prime (z - ))7/2
,(3.18)

where f \prime (z - ) = z - g
\prime (z - )> 0 and

H(u) = 2f(u)f \prime \prime (u) \~F (u) + 3f \prime (u)[f2(u) - 2f \prime (u) \~F (u)].(3.19)

The following calculus lemma will be useful later.
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6052 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

Lemma 3.4. H(z - ) = 0 and H(u)< 0 for u\in (0, z - )\cup (z - , z+). In particular,

\gamma \prime \prime \prime (s)> 0 for s\in Dom(\gamma ), and s \not = 0.(3.20)

Proof. Clearly, H(z - ) = 0 derived from the facts that f(z - ) = 0 and \~F (z - ) = 0.
Direct computations show that

f \prime (u) = r - 2u - b\xi 

(1 + ku)2
, f \prime \prime (u) = - 2 +

2kb\xi 

(1 + ku)3
, and f \prime \prime \prime (u) =

 - 6k2b\xi 

(1 + ku)4
< 0.

(3.21)

In particular, observe that u \mapsto \rightarrow f \prime \prime (u) changes sign exactly once, and that f changes
sign exactly three times at u = 0, z - , z+ (see (3.6)). It follows that f \prime changes sign
exactly twice at some c - and c+ such that 0< c - < z - < c+ < z+ and moreover

f \prime \prime > 0 in [0, c - ], f \prime \prime < 0 in [c+, z+], and f \prime (u)

\left\{     
< 0 for u\in (0, c - )\cup (c+, z+),

= 0 for u= c - , c+,

> 0 for u\in (c - , c+).

(3.22)

If u\in (0, c - ], by (3.6) and (3.22), one sees that

f(u)< 0, f \prime \prime (u)> 0, \~F (u)> 0, and f \prime (u)\leq 0,

which suggests that H < 0 in (0, c - ].
If u\in [c+, z+), from (3.6) and (3.22), it follows that

f(u)> 0, f \prime \prime (u)< 0, \~F (u)> 0, and f \prime (u)\leq 0.

This further gives that H < 0 in [c+, z+).
We now consider the case u\in (c - , z - )\cup (z - , c+). First, differentiating (3.19) with

respect to u yields

H \prime (u) = 2f(u)f \prime \prime \prime (u) \~F (u) + 5f \prime \prime (u)[f2(u) - 2f \prime (u) \~F (u)].(3.23)

Multiplying (3.19) and (3.23) by 5f \prime \prime and 3f \prime , respectively, subtracting the resulting
identities, one gets

5f \prime \prime (u)H(u) - 3f \prime (u)H \prime (u) = 2f \~FG(u),(3.24)

where

G(u) = 5[f \prime \prime (u)]2  - 3f \prime (u)f \prime \prime \prime (u)> 0.

Next, we make a claim.
Claim. There exists \delta > 0 such that H(u)< 0 for u \in (z -  - \delta , z - ) \cup (z - , z - + \delta ).

Indeed, by (3.18), one has

\gamma \prime \prime \prime (0) =
G(z - )

12(f \prime (z - ))7/2
> 0,

and so \gamma \prime \prime \prime (s)> 0 for s close to zero. This together with (3.18) and (3.22) implies that
H(u)< 0 for all u close to z - but not equal to z - . This proves the claim.
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6053

We proceed by the argument of contradiction. Assume that there exists some
\chi \in (z - , c+) such that

H < 0 in (z - , \chi ) and H(\chi ) = 0.

Then, using also (3.22), we have

H \prime (\chi )\geq 0, f \prime (\chi )> 0, f(\chi )> 0, \~F (\chi )> 0, and G(\chi )> 0,

which contradicts (3.24). Hence, H < 0 in (z - , c+). Similarly, if there exists some
\chi 1 \in (c - , z - ) such that

H(\chi 1) = 0 and H < 0 in (\chi 1, z - ),

then, by (3.22), we have

H \prime (\chi 1)\leq 0, f \prime (\chi 1)> 0, f(\chi 1)< 0, \~F (\chi 1)> 0, and G(\chi 1)> 0,

which also contradicts (3.24). Thus, H < 0 in (c - , z - ).
Finally, (3.20) follows by combining the above with \gamma \prime (s) > 0 and (3.18). This

completes the proof.

Lemma 3.5. Let \alpha \in (\alpha 0, z - ). Then dL\alpha 

d\alpha < 0.

Proof. Since dp
d\alpha < 0 (thanks to (3.15)), it is enough to prove the an equivalent

inequality dL\alpha 

dp > 0. By (3.16), we have

dL\alpha 
dp

= - 
\int \pi 

0

cos t\gamma \prime \prime ( - p cos t)dt and d2L\alpha 
dp2

=

\int \pi 

0

cos2 t\gamma \prime \prime \prime ( - p cos t)dt.

Using (3.20), we obtain

d2L\alpha 
dp2

> 0.

Combining with dL\alpha 

dp (0) =  - \gamma \prime \prime (0)
\int \pi 
0
cos tdt = 0, implies that dL\alpha 

dp > 0 for all p > 0.
This completes the proof.

Now we provide the necessary and sufficient condition for (3.2) admitting a strictly
increasing positive solution.

Lemma 3.6. The scalar equation (3.2) admits a strictly increasing positive solu-
tion if and only if

rk > 1, b\xi \in 
\biggl( 
r,
(rk+ 1)2

4k

\biggr) 
, and L>L0 =

\pi \sqrt{} 
f \prime (z - )

.(3.25)

Furthermore, if b, \xi , r, k, and L are given numbers such that (3.25) holds, then the
scalar equation (3.2) has exactly one strictly increasing solution u, and u must be
nondegenerate. Let u(0) = \alpha and u(L) = \beta . Then \alpha \in (\alpha 0, z - ), \beta \in (z - , z+), and
\partial \alpha 
\partial L < 0 and \partial \beta 

\partial L > 0.
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6054 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

Proof. Given b\xi \in (r, (rk+1)2

4k ), the mapping \alpha \mapsto \rightarrow L\alpha is decreasing by Lemma 3.5,
with the domain (\alpha 0, z - ) and the range (L0,\infty ).

We claim that lim\alpha \rightarrow \alpha 0 L\alpha = \infty . Actually, if F (0) > F (z+), then \alpha 0 > 0 and
F (\alpha 0) = F (z+), in which case u(x;\alpha 0) is defined for x \in [0,\infty ), ux(x;\alpha 0) > 0 for all
x > 0, and limx\rightarrow \infty u(x;\alpha 0) = z+. If F (0) \leq F (z+), then \alpha 0 = 0 and u(x; 0) \equiv 0,
for which one still has L\alpha \rightarrow \infty as \alpha \rightarrow \alpha 0 by the continuous dependence on initial
conditions.

Hence, \alpha \mapsto \rightarrow L\alpha is a strictly decreasing homeomorphism with domain (\alpha 0, z - )
and range (L0,\infty ). This combined with Lemma 3.3 implies that the existence and
uniqueness results as stated. Furthermore, in view of Lemmas 3.3 and 3.5, we obtain
the properties for \alpha and \beta .

It remains to show that u must be nondegenerate. Differentiating the relation
ux(L\alpha ;\alpha ) = 0 with respect to \alpha , one obtains

uxx(L\alpha ;\alpha )
dL\alpha 
d\alpha 

+ \omega x(L\alpha , \alpha ) = 0, \omega (L\alpha ;\alpha ) =
\partial u(x;\alpha )

\partial \alpha 

\bigm| \bigm| \bigm| 
x=L\alpha 

,

which gives that \omega x(L\alpha ;\alpha ) = f(\beta )dL\alpha 

d\alpha < 0. Differentiating (3.8) with respect to \alpha ,
one obtains \Biggl\{ 

\omega xx + f \prime (u)\omega = 0, x\in (0,L\alpha )

\omega (0;\alpha ) = 1, \omega x(0;\alpha ) = 0, \omega x(L\alpha ;\alpha )< 0.
(3.26)

Claim. The only solution to the linear problem\Biggl\{ 
\phi xx + f \prime (u)\phi = 0, x\in (0,L\alpha ),

\phi x(x) = \phi x(L\alpha ) = 0
(3.27)

is the trivial solution. Indeed, multiplying (3.26) and (3.27) by \phi and \omega , respectively,
subtracting the resulting equations, and integrating it over (0,L\alpha ), we have

\omega x(L\alpha ;\alpha )\phi (L\alpha ) = 0,

which further implies that \phi (L\alpha ) = 0. By the uniqueness of the solution of ODEs, one
has that \phi \equiv 0, which shows that the claim holds. Thus, u is nondegenerate, which
completes the proof.

In the following, we denote the quantity b\xi by \tau for simplicity. In the following,
we will treat the first zero z - of f(u) on (0, r) as a function of \tau . Recalling (3.7), we
see that

z - = z - (\tau ) =
kr - 1 - 

\sqrt{} 
(1 - kr)2  - 4k(\tau  - r)

2k
(3.28)

is a well defined function for \tau \in (r, (rk+1)2

4k ). Also, z - (\tau ) is a strictly increasing
function, with

lim
\tau \rightarrow r

z - (\tau ) = r and lim
\tau \rightarrow (rk+1)2

4k

z - (\tau ) =
rk - 1

2k
.

With the one-to-one correspondence between \tau and z - , we can define d
dz - 

= 1
dz - 
d\tau 

d
d\tau .
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6055

Next, we try to understand the existence of solutions to (3.2) when the interval

length L is fixed. Given \tau \in (r, (rk+1)2

4k ), we have f \prime (z - ) = r - 2z - + z -  - r
1+kz - 

, where we

have used f(z - ) = 0. Then, one has

\partial f \prime (z - )

\partial z - 
= - 2 +

1+ kr

(1 + kz - )2
.(3.29)

Let

z\ast =

\sqrt{} 
2(1 + kr) - 2

2k
(3.30)

which is characterized by \partial f \prime (z - )
\partial z - 

| z - =z\ast = 0. It is trivial to show that

max
z - \in (0, rk - 1

2k )
f \prime (z - ) = f \prime (z - )| z - =z\ast = r - 2z\ast +

z\ast  - r

1 + kz\ast 
=
rk+ 3 - 2

\sqrt{} 
2(1 + kr)

k
.

(3.31)

Let L\ast =
\pi \surd 

f \prime (z - )| z - =z\ast 
=

\surd 
k\pi \sqrt{} 

rk+3 - 2
\surd 

2(1+kr)
. We have the following result.

Lemma 3.7. The following results on (3.2) hold.
(i) If L\leq L\ast , then (3.2) does not admit strictly increasing solution for any \tau > 0.
(ii) If L > L\ast and rk > 1, then there exist two numbers \tau  - < \tau + such that

(\tau  - , \tau +) \subset (r, (rk+1)2

4k ), and (3.2) admits a strictly increasing solution if and
only if \tau \in (\tau  - , \tau +), Furthermore, for each \tau \in (\tau  - , \tau +), (3.2) admits exactly
one strictly increasing solution u, and u is nondegenerate. Here \tau L\pm are
defined in (3.32) and (3.33).

Proof. For assertion (i). Suppose (3.2) has a strictly increasing solution for some
\tau > 0, then

L> \pi [f \prime (z - )]
 - 1/2 = \pi 

\biggl( 
r - 2z - +

z -  - r

1 + kz - 

\biggr)  - 1/2

for some z - .

It then follows from (3.31) and the definition of L\ast that L>L\ast .
Next, we prove assertion (ii). By (3.29) and (3.31), one concludes that f \prime (z - ) is

increasing in (0, z\ast ) and it is decreasing in
\bigl( 
z\ast , rk - 1

2k

\bigr) 
, and, in particular, that f \prime (z - )

has a unique maximum value at z - = z\ast . Given L > L\ast , there exists two numbers

z - < z+, such that z\ast \in (z - , z+)\subset 
\bigl( 
0, rk - 1

2k

\bigr) 
, and f \prime (z - )| z - =z - = f \prime (z - )| z - =z+ = \pi 2

L2 .
One can verify that

z\pm =
\bigl( 
rk - 1 - k\pi 2/L2 \pm 

\sqrt{} 
(k\pi 2/L2  - rk+ 1)2  - 8k\pi 2/L2

\bigr) 
/4k.(3.32)

Let

\tau  - = h(z - ) = (r - z - )(1 + kz - ) and \tau + = h(z+) = (r - z+)(1 + kz+).(3.33)

So, for \tau \in (\tau  - , \tau +), it holds that f
\prime (z - ) = f \prime (z - (\tau ))>

\pi 2

L2 , i.e., L>L0. By Lemma 3.6,
there must be a unique, increasing, and nondegenerate solution to (3.2). The proof is
completed.

Clearly, as L\rightarrow L\ast , the set (\tau  - , \tau +) shrinks to an empty set; whereas as L\rightarrow \infty ,

(\tau  - , \tau +) expands to the interval (r, (rk+1)2

4k ).
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Next, we consider the existence of positive solutions to system (1.7). Given L >
L\ast , Lemma 3.7 says that (3.2) admits exactly one strictly increasing solution u\tau for
\tau \in (\tau  - , \tau +), and admits no strictly increasing solutions for \tau \not \in (\tau  - , \tau +). Define

\zeta (\tau ) =

\int L

0

1

1 + ku\tau 

\biggl( 
r - cu\tau  - 

\tau 

b(1 + ku\tau )

\biggr) 
dx, \tau \in (\tau  - , \tau +).

Let

c\tau =

\int L
0

r
1+ku\tau 

dx\int L
0

u\tau 

1+ku\tau 
dx

and b\tau ,c =

\left\{       
\int L
0

\tau 
(1+ku\tau )2

dx\int L
0

r - cu\tau 

1+ku\tau 
dx

for c\in (0, c\tau ),

+\infty for c\in [c\tau ,\infty ).

(3.34)

One sees that c\tau > 1 due to the fact that u\tau < r.

Lemma 3.8. The following results on (1.7) hold:
(i) If L\leq L\ast or rk\leq 1, then (1.7) does not admit any increasing solution.
(ii) If L>L\ast and rk > 1, the following statements hold:

(ii.1) Fix all the parameters except \xi (\xi = \tau 
b ). If 0 \in (min\tau \in (\tau  - ,\tau +) \zeta (\tau ),

max\tau \in (\tau  - ,\tau +) \zeta (\tau )), then (1.7) admits a strictly increasing positive so-
lution. If 0 \not \in (min\tau \in (\tau  - ,\tau +) \zeta (\tau ),max\tau \in (\tau  - ,\tau +) \zeta (\tau )), then (1.7) does not
have any strictly increasing positive solution.

(ii.2) Given \tau \in (\tau  - , \tau +), if c \geq c\tau , then (1.7) does not have any strictly
increasing positive solution. If c < c\tau , (1.7) admits a strictly increasing
positive solution if and only if b= b\tau ,c and \xi =

\tau 
b\tau ,c

. Especially, we have

c\tau \rightarrow 
r

z\pm 
and b\tau ,c\rightarrow 

r - z\pm 

r - cz\pm 
as \tau \rightarrow \tau \pm .(3.35)

Here z\pm , \tau \pm , c\tau , and b\tau ,c are defined in (3.32), (3.33), and (3.34).

Proof. Assertion (i) follows directly from assertion (i) of Lemma 3.7.
By the nondegeneracy of u\tau , one sees that \zeta (\tau ) is a smooth function of \tau \in 

(\tau  - , \tau +). From statement (ii) of Lemma 3.7, it follows that statement (ii.1) and the
first part of statement (ii.2) hold.

Finally, (3.35) follows from the above analysis.

Fix rk > 1 and L>L\ast . Statement (ii.2) of Lemma 3.8 indicates that (1.7) has a
strictly increasing positive solution if and only if

(\tau , c, b)\in \Gamma r,k,L := \{ (\tau , c, b)| \tau \in (\tau  - , \tau +), c\in (0, c\tau ), b= b\tau ,c\} .

Next, we study the shape of \Gamma r,k,L.

Lemma 3.9. Fixing rk > 1 and L > L\ast , for any \tau \in (\tau  - , \tau +), b\tau ,c is strictly
increasing in c\in (0, c\tau ) and c\tau > 1. Moreover, we have

lim
c\rightarrow 0

b\tau ,c =

\int L
0

\tau 
(1+ku\tau )2

dx\int L
0

r
1+ku\tau 

dx
>

1

1 + kr
and lim

c\rightarrow c\tau 
b\tau ,c =\infty .(3.36)

Proof. The proposition follows directly from \tau  - > r, u\tau < r, and (3.34).

Remark 3.1. Given \tau \in (\tau  - , \tau +), let

\Gamma \tau ,r,k,L = \{ (c, b)| c\in (0, c\tau ), b= b\tau ,c\} .
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6057

Lemma 3.9 shows that \Gamma \tau ,r,k,L is an increasing curve. Moreover, if there exist distinct
\tau 1, \tau 2, . . . , \tau n \in (\tau  - , \tau +) such that

\bigcap n
i=1 \Gamma \tau i,r,k,L \not = \emptyset , then for any (b, c)\in 

\bigcap n
i=1 \Gamma \tau i,r,k,L,

system (1.7) admits at least n increasing positive solutions.

Proposition 3.2. Given r, k,L satisfying rk > 1 and L > L\ast , we have the
following results:

(i) There exists b\ast \in ( 1
1+rk ,1) such that the following results hold:

(i.1) If b < b\ast , then (1.7) does not admit any strictly increasing positive
solution for any c and \tau .

(i.2) If b > b\ast , then there is a single bounded interval Ib such that the system
(1.7) has a strictly increasing positive solution (for one or more values
of \tau ) if and only if c \in Ib. Moreover, if b \in (b\ast ,1), then for any c \in Ib,
we have c < 1.

(ii) There exists c\ast \in (1,\infty ) such that the following results hold.
(ii.1) If c > c\ast , then (1.7) does not admit any strictly increasing positive

solution for any b and \tau .
(ii.2) If c < c\ast , then there is a single interval Ic such that the system (1.7)

has a strictly increasing positive solution (for one or more values of \tau )
if and only if b \in Ic. Moreover, if c \in [1, c\ast ), then for any b \in Ic, we
have b > 1.

Proof. For statement (i), define

b\ast = inf
\tau \in (\tau  - ,\tau +)

b\tau ,0.

From (3.35), (3.36), and u\tau < r, it follows that b\ast \in ( 1
1+rk ,1). If b < b\ast , from statement

(ii.2) of Lemma 3.8, it follows that (1.7) does not admit any strictly increasing positive
solution for any c and \tau . Given b > b\ast , based on the definition of b\ast , there exists
\tau 0 \in (\tau  - , \tau +) such that

b\tau 0,0 < b,

which combined with statement (i) and Lemma 3.8 yields that (1.7) admits a strictly
increasing positive solution with \tau = \tau 0 and appropriate c\in (0, c\tau 0).

Next, fix b > b\ast and define Ib to be the set of c such that the shadow system has
a solution, i.e.,

Ib = \{ c > 0 : (\tau , c, b)\in \Gamma r,k,L for some \tau \} .

The boundedness of Ib follows from statement (ii.2) of Lemma 3.8 and (3.34). Fur-
thermore, if b\in (b\ast ,1), then for any c\in Ib, by Proposition 2.1, we have c < 1.

It remains to show the connectedness of Ib. We first claim the following: If (1.7)
admits a strictly increasing positive solution with some (\tau 1, c1) and (\tau 2, c2) (without
loss of generality, assume c1 < c2), then for any c \in [c1, c2], (1.7) admits a strictly
increasing positive solution with some appropriate \tau .

If not, assume that there exists c0 \in (c1, c2) such that b \not = b\tau ,c0 for any \tau \in (\tau  - , \tau +).
Define

Ab,c0 = \{ \tau \in (\tau  - , \tau +) : b\tau ,c0 < b\} and Bb,c0 = \{ \tau \in (\tau  - , \tau +) : b\tau ,c0 > b\} ,

where b\tau ,c is given in (3.34). Then, we have

Ab,c0 and Bb,c0 are open subsets of (\tau  - , \tau +) and Ab,c0 \cup Bb,c0 = (\tau  - , \tau +).(3.37)
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Combining the facts that b= b\tau 1,c1 = b\tau 2,c2 , c1 < c < c2, and Lemma 3.9, one obtains
from the monotone increasing property of c \mapsto \rightarrow b\tau ,c that

b\tau 1,c0 > b and b\tau 2,c0 < b,

which means that both Ab,c0 and Bb,c0 are nonempty. This contradicts the connect-
edness of (\tau  - , \tau +). So, the claim holds, which suggests that there is a single interval
Ib such that the system (1.7) has a strictly increasing positive solution (for one or
more values of \tau ) if and only if c\in Ib. This proves assertion (i).

Finally, similar to the arguments proving the statement (i), letting

c\ast = sup
\tau \in (\tau  - ,\tau +)

c\tau ,

one can show that the statement (ii) holds.

Proposition 3.2 gives the existence/nonexistence of the increasing positive solu-
tion of (1.7). However, given b \in (b\ast ,\infty ) (resp., c \in (0, c\ast )), the size of Ib (resp., Ic)
cannot be explicitly characterized. Below we give some more decisive information for
Ib and Ic.

Proposition 3.3. Given L > L\ast and rk > 1, let z\pm be defined in (3.32) which

indicates z - < z+ and z+

r - z+ > z - 

r - z - . Then there exists some \epsilon = \epsilon (k, r,L) > 0 such
that the following results hold:

(i) If b \in (1,1 + \epsilon ) and c \in (1  - \epsilon ,1), then (1.7) at least admits two increasing
positive solutions.

(ii) Assume b \in (1 - \epsilon ,1) and c \in (1 - \epsilon ,1). If 1/b - 1
1 - c < z - 

r - z - , then (1.7) at least

admits two increasing positive solutions, which are nondegenerate; if 1/b - 1
1 - c \in 

( z - 

r - z - ,
z+

r - z+ ), then (1.7) admits at least one increasing positive solution.

(iii) Assume b \in (1,1 + \epsilon ) and c \in (1,1 + \epsilon ). If 1 - 1/b
c - 1 > z+

r - z+ , then (1.7) at least

admits two increasing positive solutions, which are nondegenerate; if 1/b - 1
1 - c \in 

( z - 

r - z - ,
z+

r - z+ ), then (1.7) admits at least one increasing positive solution.

Proof. Given L>L\ast , by Lemma 3.7, there exist two numbers \tau  - < \tau + such that
(\tau  - , \tau +)\subset (h(0), h(uh)), and (3.2) admits increasing solution if and only if \tau \in (\tau  - , \tau +).
Given \tau \in (\tau  - , \tau +), then (3.2) admits an increasing solution denoted by u\tau .

Claim.
\int L
0

1
1+ku\tau 

(r - u\tau  - \tau 
1+ku\tau 

)dx< 0. Indeed, recall that u\tau satisfies\left\{   u\tau xx
+ u\tau 

\biggl( 
r - u\tau  - 

\tau 

1 + ku\tau 

\biggr) 
= 0 in (0,L),

u\tau x(0) = u\tau x(L) = 0.
(3.38)

Dividing the first equation of (3.38) by u\tau and integrating it over (0,L), one finds that\int L

0

\biggl( 
r - u\tau  - 

\tau 

1 + ku\tau 

\biggr) 
dx= - 

\int L

0

(u\tau x)
2

u2\tau 
dx< 0,(3.39)

due to the fact that u\tau is a strictly increasing solution of (3.38).
Recall that f(y) satisfies

f(y)

\left\{     
< 0, y \in (u\tau (0), z - (\tau )),

= 0, y= z - (\tau ),

> 0, y \in (z - (\tau ), u\tau (L)),
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6059

which combined with the fact that u\tau is a strictly increasing solution on (0,L) yields
a unique x0 \in (0,L) such that u\tau (x0) = z - (\tau ) and

f(u\tau (x))

\left\{     
< 0, x\in (0, x0),

= 0, x= x0,

> 0, x\in (x0,L).

(3.40)

From (3.39) and (3.40), it follows that\int L

0

1

1 + ku\tau 

\biggl( 
r - u - \tau 

1 + ku\tau 

\biggr) 
dx

=

\int x0

0

1

1 + ku\tau 

\biggl( 
r - u - \tau 

1 + ku\tau 

\biggr) 
dx+

\int L

x0

1

1 + ku\tau 

\biggl( 
r - u - \tau 

1 + ku\tau 

\biggr) 
dx

<

\int x0

0

1

1 + kz(\tau )

\biggl( 
r - u - \tau 

1 + ku\tau 

\biggr) 
dx+

\int L

x0

1

1 + kz(\tau )

\biggl( 
r - u - \tau 

1 + ku\tau 

\biggr) 
dx

=
1

1+ kz(\tau )

\int L

0

\biggl( 
r - u - \tau 

1 + ku\tau 

\biggr) 
dx< 0.

Therefore, the claim holds. Recall that h(z\ast ) \in (\tau  - , \tau +) (z\ast =

\surd 
2(1+kr) - 2

2k is defined
in (3.30)), then it is trivial to show that there exists \epsilon = \epsilon (r, k,L)> 0 such that

\zeta (h(z\ast ))< 0 for b\in (1 - \epsilon ,1 + \epsilon ) and c\in (1 - \epsilon ,1 + \epsilon ).(3.41)

On the other hand, as \tau \rightarrow \tau  - (resp., \tau +), then z - (\tau ) \rightarrow z - (resp., z+) and
u\tau \rightarrow z - (resp., z+) in (0,L). By Lemma 3.7, one sees that

0< z - < z+ <uh =
rk - 1

2k
<
r

2
.

For statement (i), that is b > 1> c, then we have

lim
\tau \rightarrow \tau  - 

\zeta (\tau ) =
L

1 + kz - 

\biggl( 
r - cz -  - r - z - 

b

\biggr) 
>

L

1 + kz - 
\bigl( 
r - z -  - (r - z - )

\bigr) 
= 0

and

lim
\tau \rightarrow \tau +

\zeta (\tau ) =
L

1 + kz+

\biggl( 
r - cz+  - r - z+

b

\biggr) 
>

L

1 + kz+
\bigl( 
r - z+  - (r - z+)

\bigr) 
= 0.

Since \zeta (\tau ) is a continuous function of \tau \in (\tau  - , \tau +), one can conclude that there exists
two numbers \tau 1 < \tau 2 such that \tau  - < \tau 1 < \tau 2 < \tau + and \zeta (\tau 1) = \zeta (\tau 2)= 0. So, by
Lemma 3.8, we have that (1.7) at least admits two increasing positive solutions.

For statement (ii), if 1/b - 1
1 - c < z - 

r - z - , one can show that

lim
\tau \rightarrow \tau  - 

\zeta (\tau ) =
L

1 + kz - 

\biggl( 
r - cz -  - r - z - 

b

\biggr) 
>

L

1 + kz - 
\bigl( 
r - cz - + (c - 1)z - + z -  - r

\bigr) 
= 0.

If 1/b - 1
1 - c < z+

r - z+ , then

lim
\tau \rightarrow \tau +

\zeta (\tau ) =
L

1 + kz+

\biggl( 
r - cz+  - r - z+

b

\biggr) 
>

L

1 + kz+
\bigl( 
r - cz+ + (c - 1)z+ + z+  - r

\bigr) 
= 0.
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6060 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

Similar to the arguments as that in proving statement (i), one can prove statement (ii).
Finally, following the approach same as that in proving statements (i) and (ii),

one can prove the statement (iii). This completes the proof.

Remark 3.2. We have some comments related to Proposition 3.3.
\bullet For statements (ii) and (iii), we will show that all the cases may occur. For

example, let

b= 1 - \varrho 1\epsilon and c= 1 - \varrho 2\epsilon ,

where \varrho 1, \varrho 2 \in (0,1). One can choose appropriate \varrho 1 and \varrho 2 such that
1/b - 1
1 - c < z - 

r - z - or 1/b - 1
1 - c \in ( z - 

r - z - ,
z+

r - z+ ) holds.
\bullet Given b \in (1,1 + \epsilon ), statement (i) of Proposition 3.3 and statement (i)

of Proposition 3.2 yield that (1  - \epsilon ,1) \subset Ib. Moreover, statement (iii) of
Proposition 3.3 and statement (i) of Proposition 3.2 suggest that (1,min\{ 1+
(b - 1)(r - z+)

bz+ ,1+ \epsilon \} )\subset Ib. These facts combined with statement (ii) of Propo-
sition 3.2 further imply that\biggl( 

1 - \epsilon ,min

\biggl\{ 
1 +

(b - 1)(r - z+)

bz+
,1 + \epsilon 

\biggr\} \biggr) 
\subset Ib.

\bullet Symmetrically, given c\in (1 - \epsilon ,1), statement (i) of Proposition 3.3 and state-
ment (ii) of Proposition 3.2 yield that (1,1 + \epsilon ) \subset Ic. Moreover, statement
(ii) of Proposition 3.3 and statement (ii) of Proposition 3.2 suggest that

(max\{ r - z - 
r - cz - ,1  - \epsilon \} ,1) \subset Ic. These facts combined with statement (ii) of

Proposition 3.2 further imply that\biggl( 
max

\biggl\{ 
r - z - 

r - cz - 
,1 - \epsilon 

\biggr\} 
,1 + \epsilon 

\biggr) 
\subset Ic.

Now we are in a position to prove Theorems 1.3 and 1.4. Before embarking on
this, we prove Proposition 1.1.

Proof of Proposition 1.1. Define \scrL :H2
0 (0,L)\times \BbbR \times \=H2

0 (0,L)\times [0,+\infty )\rightarrow L2(0,L)\times 
\BbbR \times \=L2(0,L) by

\scrL (u, \xi , \zeta , \nu ) =

\left(        
uxx + u

\biggl[ 
r - u - 

b(\xi + \zeta )

1 + ku

\biggr] 
\int L

0

\xi + \zeta 

1 + ku

\biggl( 
r - cu - 

\xi + \zeta 

1 + ku

\biggr) 
dx

\zeta xx + \nu 

\biggl[ 
\xi + \zeta 

1 + ku

\biggl( 
r - cu - 

\xi + \zeta 

1 + ku

\biggr) 
 - 

1

L

\int L

0

\xi + \zeta 

1 + ku

\biggl( 
r - cu - 

\xi + \zeta 

1 + ku

\biggr) 
dx

\biggr] 

\right)        ,

where H2
0 (0,L) = \{ u\in H2(0,L)| ux(0) = ux(L) = 0\} , \=H2

0 (0,L) = \{ u\in H2
0 (0,L)| 

\int L
0
udx

= 0\} , and \=L2(0,L) = \{ u\in L2(0,L)| 
\int L
0
udx= 0\} . Then, we have

D(u,\xi ,\zeta )\scrL | (u,\xi ,\zeta ,\nu )=(u\ast ,\xi \ast ,0,0)(\phi ,\psi , \eta )

=

\left(      
\phi xx + \phi 

\biggl[ 
r - 2u\ast  - 

b\xi \ast 

(1 + ku\ast )2

\biggr] 
 - 
bu\ast (\psi + \eta )

1 + ku\ast \int L

0

\biggl[ 
\xi \ast \phi (3\xi \ast k - (kr+ c)(1 + ku\ast ))

(1 + ku\ast )3
+

\eta 

1 + ku\ast 

\biggl( 
r - cu\ast  - 

\xi \ast 

1 + ku\ast 

\biggr) 
 - 

\xi \ast (\psi + \eta )

(1 + ku\ast )2

\biggr] 
dx

\eta xx

\right)      .
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6061

Next, we claim the following: D(u,\xi ,\zeta )\scrL | (u,\xi ,\zeta ,\nu )=(u\ast ,\xi \ast ,0,0) is nondegenerate. To prove
this claim, it suffices to show that the following problem

\left\{             
\phi xx + \phi 

\biggl[ 
r - 2u

\ast  - 
b\xi \ast 

(1 + ku\ast )2

\biggr] 
 - 
bu\ast (\psi + \eta )

1 + ku\ast = 0 in (0,L),\int L

0

\biggl[ 
\xi \ast \phi (3\xi \ast k - (kr+ c)(1 + ku\ast ))

(1 + ku\ast )3
+

\eta 

1 + ku\ast 

\biggl( 
r - cu

\ast  - 
\xi \ast 

1 + ku\ast 

\biggr) 
 - 

\xi \ast (\psi + \eta )

(1 + ku\ast )2

\biggr] 
dx= 0,

\eta xx = 0 in (0,L)

(3.42)

only admits the trivial solution in H2
0 (0,L) \times \BbbR \times \=H2

0 (0,L). The third equation of
(3.42) and the definition of \=H2

0 (\Omega ) suggest that \eta \equiv 0. Hence, we have\left\{       
\phi xx + \phi 

\Bigl[ 
r - 2u\ast  - b\xi \ast 

(1 + ku\ast )2

\Bigr] 
 - bu\ast \psi 

1 + ku\ast 
= 0 in (0,L),\int L

0

\Bigl[ \xi \ast \phi (3\xi \ast k - (kr+ c)(1 + ku\ast ))

(1 + ku\ast )3
 - \xi \ast \psi 

(1 + ku\ast )2

\Bigr] 
dx= 0.

(3.43)

From Lemma 3.1, it follows that there exists some m\in \BbbN such that u\ast satisfies (3.1).
If m = 1, combining Lemmas 3.1 and 3.6, one has that operator T is invertible.

By the first equation of (3.43), one obtains

\phi =\psi T - 1

\biggl( 
bu\ast 

1 + ku\ast 

\biggr) 
.

Hence, (1.9) suggests that (3.43) only admits the trivial solution (0,0).
If m\geq 2, for any \psi \in \BbbR , consider the following truncated problem:\left\{   \phi \ast xx + \phi \ast 

\biggl[ 
r - 2u\ast  - b\xi \ast 

(1 + ku\ast )2

\biggr] 
=

bu\ast \psi 

1 + ku\ast 
in (0,L/m),

\phi \ast x(0) = \phi \ast x(L/m) = 0.

By Lemma 3.6, we have \phi \ast =\psi T - 1
(0,L/m)(

bu\ast 

1+ku\ast ), where

T(0,L/m)(\phi ) = \phi xx + \phi 

\biggl( 
r - 2u\ast  - b\xi \ast 

(1 + ku\ast )2

\biggr) 
for \phi \in C2(0,L/m) \cap C1([0,L/m]) satisfying \phi x(0) = \phi x(L/m) = 0. Then by the
symmetry, one has

\phi (x) =

\Biggl\{ 
\phi \ast (x - jL/m) when x\in [jL/m, (j + 1)L/m], j is even,

\phi \ast ((j + 1)L/m - x) when x\in [jL/m, (j + 1)L/m], j is odd.

Thus, T - 1( bu\ast 

1+ku\ast ) is well-defined. Moreover, (1.9) also yields that (3.43) only admits
the trivial solution (0,0).

Finally, based on the implicit function theorem, there exists small \delta \ast > 0 such
that for any \nu \in (0, \delta \ast ), there exists (u\nu , \xi \nu , \zeta \nu ) near (u\ast , \xi \ast ,0) such that L(u\nu , \xi \nu ,
\zeta \nu , \nu ) = 0, which implies that for any \nu \in (0, \delta \ast ), the steady-state problem (1.8)
admits a nonconstant positive solution (u\mu , \xi \nu + \zeta \nu ). This completes the proof.

Proof of Theorems 1.3 and 1.4. Combining the results in Proposition 3.2 with
Proposition 1.1, one obtains Theorem 1.3 directly. Theorem 1.4 is a consequence of
Proposition 3.3 alongside Proposition 1.1.
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6062 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

4. Weak competition 0< \bfitb , \bfitc < 1. Though we have proved the existence of
nonconstant positive solutions to system (1.8) in Theorem 1.3 by studying the shadow
system (1.7), the admissible parameter regime is somewhat narrow (see also Theo-
rem 1.4), where \mu is particulary required to be large. In this section, we shall employ
the global bifurcation theory to show that system (1.8) may admit nonconstant pos-
itive solutions for any 0 < b, c < 1, and \mu > 0 which largely expands the admissible
parameter regimes given in Theorem 1.3 (see also Theorem 1.4) for the case of weak
competition.

A nonlinear problem can be formulated as an abstract equation F (\rho ,u) = 0, where
F : \BbbR \times X :\rightarrow Y is a nonlinear differentiable mapping, and X,Y are Banach spaces.
We introduce a celebrated global bifurcation Theorem [42, Theorem 4.3]. For more
results about the bifurcation theory, we refrer to references [3, 4, 6, 24, 37]. Recall
that a Fredholm operator is a bounded linear mapping F from a Banach space B1 to
another Banach space B2 such that the mapping has a finite-dimensional null space
Ker(F ), and has a closed range Ran(F ) with a finite co-dimension. We say the index
of F is zero if the dimension of Ker(F ) is equal to the co-dimension of Ran(F ).

Theorem 4.1 (see [42, Theorem 4.3]). Let V be an open connected subset of
\BbbR \times X and (\rho 0, u0) \in V , and let F be a continuously differentiable mapping from V
into Y . Suppose the following:

(i) F (\rho ,u0) = 0 for (\rho ,u0)\in V .
(ii) The partial derivative D\rho uF (\rho ,u) exists and is continuous in (\rho ,u) near

(\rho 0, u0).
(iii) DuF (\rho 0, u0) is a Fredholm operator and dimKer(Fu(\rho 0, u0)) = codimRan

(Fu(\rho 0, u0)) = 1.
(iv) D\rho ,uF (\rho 0, u0)\phi 0 \not \in Ran(Fu(\rho 0, u0)) where \phi 0 \in X= span \{ Ker(Fu(\rho 0, u0))\} .
Let Z be any complement of span\{ \phi 0\} in X. Then there exist an open interval

I1 = ( - \epsilon , \epsilon ) and continuous functions \rho : I1 \rightarrow \BbbR , \psi : I1 \rightarrow Z, such that \rho (0) = \rho 0,
\psi (0) = 0, and if u(s) = u0 + s\phi 0 + s\psi (s) for s\in I1, then F (\rho (s), u(s)) = 0. Moreover,
F - 1(\{ 0\} ) near (\rho 0, u0) consists precisely of u = u0 and the curves \Gamma = \{ (\rho (s), u(s)) :
s \in I1\} . If, in addition, DuF (\rho ,u) is a Fredholm operator for all (\rho ,u) \in V , then
the curve \Gamma is contained in \scrC , which is a connected component of closure of S where
S = \{ (\rho ,u)\in V : F (\rho ,u) = 0, u \not = u0\} ; and either \scrC is not compact in V , or \scrC contains
a point (\rho \ast , u0) with \rho 

\ast \not = \rho 0.

4.1. Applying abstract bifurcation theory to (1.8). In this subsection, we
will apply abstract bifurcation Theorem 4.1 to obtain the existence of nonconstant
positive solutions of (1.8), where d(u) = 1+ku. We shall fix all the parameters except
\mu and treat \mu as a bifurcation parameter. The positive solutions will be the ones
bifurcating from the constant steady states (u+, v+), where

u+ =
(1 - b)r

1 - bc
> 0 and v+ =

(1 - c)r

1 - bc
> 0,

due to 0< b, c < 1.
We recall a well-known result. The eigenvalue problem\Biggl\{ 

 - \phi xx = \lambda \phi , x\in (0,L),

\phi x(0) = \phi x(L) = 0,

has a sequence of simple eigenvalues \lambda 0 <\lambda 1 < \cdot \cdot \cdot <\lambda n . . ., where

\lambda i =
\pi 2i2

L2
, i= 0,1,2, . . . ,
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6063

with normalized eigenfunctions given by

\phi i(x) =

\left\{       
1\surd 
L
, i= 0,\sqrt{} 

2

L
cos(\pi ix/L), i > 0.

The set of eigenfunctions forms an orthonormal basis in L2(0,L).
Let Y =L2(0,L)\times L2(0,L) be the Hilbert space with the inner product

(U1,U2)Y = (u1, u2)L2(0,L) + (v1, v2)L2(0,L)

for U1 = (u1, v1),U2 = (u2, v2), and X = \{ (u, v)| u, v \in H2
N (0,L)\} . Here

H2
N (0,L) = \{ u\in H2(0,L)| ux(0) = ux(L) = 0\} .

We regard X as a Banach space with usual H2 norm. Define the map F : (0,\infty )\times X\rightarrow 
Y by

F (\mu ,u, v) =

\biggl( 
uxx + u(r - u - bv)

\mu ((1 + ku)v)xx + v(r - v - cu)

\biggr) 
.

Then the solutions of the boundary value problem (1.8) are exactly zeros of this map.
For any \mu > 0, we have that

F (\mu ,u+, v+) = 0.

For any fixed (u, v)\in X, the Frechet derivative is given by

D(u,v)F (\mu ,u, v)(\phi ,\psi ) =

\biggl( 
\phi xx + \phi (r - 2u - bv) - bu\psi 

\mu k(v\phi )xx + \mu ((1 + ku)\psi )xx +\psi (r - 2v - cu) - cv\phi 

\biggr) 
.

(4.1)

By Remark 2.5 of case 3 in [42], D(u,v)F (\mu ,u, v)(\phi ,\psi ) is elliptic and satisfies Agmon's
condition. Therefore, by [42, Theorem 3.3 and Remark 3.4], one obtains that

D(u,v)F (\mu ,u, v) :X\rightarrow Y is a Fredholm operator with zero index.(4.2)

The necessary condition for bifurcation to occur at the constant steady state (\mu ,u+, v+)
is that the null space

ker(D(u,v)F (\mu ,u
+, v+)) \not = \{ 0\} .

We study the eigenvalues of the operator D(u,v)F (\mu ,u
+, v+). The eigenvalue \tau with

corresponding eigenfunction (\phi ,\psi ) of operator D(u,v)F (\mu ,u
+, v+) satisfy\left\{     

\phi xx  - u+\phi  - bu+\psi = \tau \phi , x\in (0,L),

\mu (1 + ku+)\psi xx + \mu kv+\phi xx  - v+\psi  - cv+\phi = \tau \psi , x\in (0,L),

\phi x(0) = \phi x(L) =\psi x(0) =\psi x(L) = 0.

(4.3)

Let

\phi =

\infty \sum 
j=0

tj cos
j\pi x

L
and \psi =

\infty \sum 
j=0

sj cos
j\pi x

L
.(4.4)
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Substituting (4.4) into (4.3), we get\Biggl\{ 
( - \lambda j  - u+  - \tau ) tj  - bu+sj = 0,

( - \mu kv+\lambda j  - cv+) tj + ( - \mu (1 + ku+)\lambda j  - v+  - \tau )sj = 0.
(4.5)

Then (4.3) has nonzero solutions if and only if\bigl( 
\lambda j + u+ + \tau 

\bigr) \bigl( 
\mu (1 + ku+)\lambda j + v+ + \tau 

\bigr) 
 - bu+v+ (\mu k\lambda j + c) = 0 for some j \geq 0.

Define

Aj(\tau ) = \tau 2 + (\lambda j + u+ + \mu (1 + ku+)\lambda j + v+)\tau +Bj(\tau ),

where

Bj = (\lambda j + u+)(\mu (1 + ku+)\lambda j + v+) - bu+v+(\mu k\lambda j + c)

= \lambda j\mu [(\lambda j + u+)(1 + ku+) - bku+v+] + (1 - bc)u+v+.

For each j \in \BbbN , Aj(\tau ) = 0 admits two roots \tau j,1 and \tau j,2, which satisfy

\tau j,1 + \tau j,2 = - (\lambda j + u+ + \mu (1 + ku+)\lambda j + v+)< 0 and \tau j,1\tau j,2 =Bj .

It is well-known that if any eigenvalue \tau of the operator D(u,v)F (\mu ,u
+, v+) satisfies

Re\tau < 0, then (u+, v+) is linearly stable. If the operator D(u,v)F (\mu ,u
+, v+) has an

eigenvalue \tau with Re\tau > 0, then (u+, v+) is linearly unstable. Therefore, if there
exits j \in \BbbN such that Bj < 0, then (u+, v+) is linearly unstable; while (u+, v+) is

linearly stable if Bj > 0 for all j \in \BbbN . Hence, if (bkv+ - (1+ku+))u+

1+ku+ \leq \lambda 1, then for
each j \in \BbbN , we have Bj > 0 and (u+, v+) is linearly stable for any \mu > 0; while if
(bkv+ - (1+ku+))u+

1+ku+ >\lambda 1, then we have

B1 =

\left\{                 

> 0 for \mu <
(1 - bc)u+v+

(bku+v+  - (1 + ku+)(\lambda 1 + u+))\lambda 1
,

= 0 for \mu =
(1 - bc)u+v+

(bku+v+  - (1 + ku+)(\lambda 1 + u+))\lambda 1
,

< 0 for \mu >
(1 - bc)u+v+

(bku+v+  - (1 + ku+)(\lambda 1 + u+))\lambda 1
.

Moreover, if (bkv+ - (1+ku+))u+

1+ku+ \in (\lambda j , \lambda j+1] for some j \geq 1, then operatorD(u,v)F (\mu ,u
+,

v+) has zero eigenvalue only when

\mu = \mu \lambda i
> 0, \mu \lambda i

=
(1 - bc)u+v+

(bku+v+  - (1 + ku+)(\lambda i + u+))\lambda i
, i= 1,2, . . . , j,(4.6)

and

(u+, v+) is linearly

\Biggl\{ 
stable for \mu <min\{ \mu \lambda 1

, \mu \lambda 2
, . . . , \mu \lambda j

\} ,
unstable for \mu >min\{ \mu \lambda 1 , \mu \lambda 2 , . . . , \mu \lambda j\} .

To obtain the existence of nonconstant positive solutions of (1.8), we first establish
several lemmas.

Lemma 4.1. Let (u, v) be a positive solution of (1.8). Then we have

0<u< r and 0< v < r(1 + kr) on [0,L].
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6065

Proof. The result follows directly from the strong maximum principle and we
omit the details.

Lemma 4.2. Given all the parameters except \mu , if bc < 1, then there exits some
small \mu \ast > 0 such that (1.8) only admits the constant positive solution (u+, v+) for
any \mu \in (0, \mu \ast ), where

\mu \ast =
4\eta u+

v+
\cdot 1 + kr

k2r2
and \eta =

4 - 2bc

2b2
.

Proof. We will show that (u+, v+) is globally asymptotically stable for (1.1) when
\mu < \mu \ast .

Let

\scrF (t) = \eta 

\int L

0

\Bigl( 
u - u+  - u+ ln

u

u+

\Bigr) 
dx+

\int L

0

\Bigl( 
v - v+  - v+ ln

v

v+

\Bigr) 
dx

and

G(t) =

\int L

0

\biggl[ 
(u - u+)2 + (v - v+)2 +

u2x
u2

+
v2x
v2

\biggr] 
dx,

where (u, v) is the unique positive solution of (1.1).
Claim 1. For all \epsilon > 0, there exits some T\epsilon > 0 (depending on u0) such that

u\leq (1 + \epsilon )r for t\geq T\epsilon . Consider the ODE:\Biggl\{ 
zt = z(r - z),

z(0) = \| u0\| L\infty .

It is trivial to show that z(t)\rightarrow r exponentially as t\rightarrow \infty . Moreover, by comparison
principle, one has

u(x, t)\leq z(t) for x\in (0,L), t\geq 0.

Therefore, Claim 1 holds. Given \mu < \mu \ast , one can choose small \epsilon such that

\mu <
4\eta u+

v+
\cdot 1 + k(1 + \epsilon )r

k2(1 + \epsilon )2r2
.

Claim 2. There exists \delta > 0, such that dF (t)
dt \leq  - \delta G(t) for t > T\epsilon . Indeed, one can

compute that

dF (t)

dt
=

\int L

0

\biggl[ 
\eta (u - u+)uxx

u
+
\mu (v - v+)((1 + ku)v)xx

v

\biggr] 
dx

+

\int L

0

(\eta (u - u+)(r - u - bv) + (v - v+)(r - v - cu))dx

= - 
\int L

0

\bigl( 
ux

u
vx
v

\bigr) \Biggl( \eta u+ \mu ukv+

2
\mu ukv+

2 \mu (1 + ku)v+

\Biggr) \biggl( 
ux

u
vx
v

\biggr) 
dx

 - 
\int L

0

\bigl( 
u - u+ v - v+

\bigr) \biggl( \eta \eta b+c
2

\eta b+c
2 1

\biggr) \biggl( 
u - u+

v - v+

\biggr) 
dx.

From bc < 1, \eta = 4 - 2bc
2b2 , and \mu < 4\eta u+

v+ \cdot 1+k(1+\epsilon )r
k2(1+\epsilon )2r2 , it follows that

\eta >
(\eta b+ c)2

4
and \mu \eta (1 + ku)u+v+ >

(\mu ukv+)2

4
for t > T\epsilon .
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6066 KING-YEUNG LAM, DE TANG, AND ZHI-AN WANG

Then, one obtains Claim 2. Next, one can argue using LaSalle's invariance principle
(see, e.g. [48, Lemma 3.2]), to show that (u+, v+) is globally asymptotically stable
for (1.1). Therefore, (1.8) only admits the constant positive solution (u+, v+) for any
\mu \in (0, \mu \ast ).

Now we are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. We will prove the theorem in two steps.
Step 1. Local bifurcation. Recall thatX = \{ (u, v)| u, v \in H2

N (0,L)\} , Y =L2(0,L)\times 
L2(0,L), and F (\mu ,u+, v+) = 0 for any \mu > 0. Let V = (0,\infty )\times X. By (4.6), one finds
that

KerD(u,v)F (\mu \lambda i
, u+, v+) = s

\bigl( 
bu+, - (\lambda i + u+)

\bigr) 
cos

ix\pi 

L
, s\in \BbbR 

and

dim(KerD(u,v)F (\mu \lambda i , u
+, v+)) = 1.

Direct computations show that

D\mu ,(u,v)F (\mu ,u, v)(\phi ,\psi ) =

\biggl( 
0

k(v\phi )xx + ((1 + ku)\psi )xx

\biggr) 
.

By (4.2), to apply Theorem 4.1, it remains to check the transversality condition

D\mu ,(u,v)F (\mu \lambda i
, u+, v+)(\phi i,\psi i) \not \in Ran(D(u,v)F (\mu \lambda i

, u+, v+)),

where \phi i = bu+ cos ix\pi L and \psi i = - (\lambda i + u+) cos ix\pi L . If this condition fails, then there
exits \zeta , \eta such that\left\{     

\zeta xx  - u+\zeta  - bu+\eta = 0 in (0,L),

\mu \lambda i
kv+\zeta xx + \mu \lambda i

(1 + ku+)\eta xx  - v+\eta  - cv+\zeta = \chi i in (0,L),

\zeta x(0) = \zeta x(L) = \eta x(0) = \eta x(L) = 0,

(4.7)

where

\chi i = kv+(\phi i)xx + (1+ ku+)(\psi i)xx =
\bigl[ 
(\lambda i + u+)(1 + ku+) - bku+v+

\bigr] 
\lambda i cos

ix\pi 

L
.

Let

\zeta =

\infty \sum 
i=0

\^ti cos
ix\pi 

L
, \eta =

\infty \sum 
i=0

\^si cos
ix\pi 

L
.(4.8)

Substituting (4.8) into (4.7), we have\left\{     
\lambda i\^ti + u+\^ti + bu+\^si = 0,

k\^ti\lambda i\mu \lambda i
v+ + (1+ ku+)\^si\lambda i\mu \lambda i

+ v+\^si + cv+\^ti

= [bku+v+  - (\lambda i + u+)(1 + ku+)]\lambda i > 0.

From the definition of \mu \lambda i
, one obtains that this linear system has no solutions.

Therefore, by Theorem 4.1, we have that there exist an open interval I1 = ( - \epsilon , \epsilon ) and
continuous functions \mu : I1 \rightarrow \BbbR , \sigma : I1 \rightarrow Z, such that \mu (0) = \mu \lambda i , \sigma (0) = 0, and
if (u(s), v(s)) = (u+, v+) + s(\phi i,\psi i) + s\sigma (s) for s \in I1, then F (\mu (s), u(s), v(s)) = 0.
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SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 6067

Here, Z be any complement of span\{ (\phi i,\psi i)\} in X. Moreover, F - 1(\{ 0\} ) near the
bifurcation point (\mu \lambda i , u

+, v+) consists precisely of (u, v) = (u+, v+) and the curves
\Gamma = \{ (\mu (s), u(s), v(s)) : s\in I1\} .

Step 2: Global bifurcation. By (4.2) and Theorem 4.1, we obtain that the curve
\Gamma is contained in \scrC , which is a connected component of closure of S with

S = \{ (\mu ,u, v)\in V : F (\mu ,u, v) = 0, (u, v) \not = (u+, v+)\} ,

and either \scrC is not compact in V , or \scrC contains a point (\mu \ast , u+, v+) with \mu \ast \not = \mu \lambda i
. We

now show that the first alternative must occur by using the approach in [11, 35, 45].
Indeed, if \scrC is bounded, by Lemma 4.2, one obtains that it is compact, and \scrC meets
some other bifurcation points. Let 1\leq i\ast \leq j be such that \scrC meets (\mu \lambda i\ast , u

+, v+), but
not (\mu \lambda m

, u+, v+) for any \lambda m >\lambda i\ast , where m\leq j. Consider an auxiliary problem\left\{     
uxx + u(r - u - bv) = 0 in (0, Li\ast ),

\mu [(1 + ku)v]xx + v(r - v - cu) = 0 in (0, Li\ast ),

ux(0) = ux(
L
i\ast ) = vx(0) = vx(

L
i\ast ) = 0.

(4.9)

We note here that if (4.9) admits a positive solution (u\ast , v\ast ), then one can construct
a solution (u, v) to (1.8) by a reflective and periodic extension. Let xn = nL

i\ast , n =
0,1, . . . , i\ast , and define

(u, v)(x) =

\Biggl\{ 
(u\ast , v\ast )(x - x2n) if x2n \leq x\leq x2n+1,

(u\ast , v\ast )(x2n+2  - x) if x2n+1 \leq x\leq x2n+2.

It is easy to verify that (\mu \lambda i\ast , u
+, v+) is also a bifurcation point of problem (4.9).

Let \Lambda i\ast denote the bifurcation branch of this new problem that meets (\mu \lambda i\ast , u
+, v+),

then using the same argument above it is clear that it either meets infinity or meets
(\mu \lambda m\ast , u

+, v+) for some \lambda m\ast > \lambda i\ast . If the second case occurs, then by the above
extension one sees that \scrC meets (\mu \lambda m\ast , u

+, v+), which violates the definition of \mu \lambda i\ast ;
hence \Lambda i\ast meets infinity, and then by the extension again \scrC meets infinity too. To
show that the projection of \scrC on the \mu interval must be unbounded, we first establish
some results.

Claim 1. For all (\mu ,u, v) \in \scrC , we have u > 0 and v > 0 on [0,L]. From step 1,
it follows that u, v > 0 on [0,L] for (\mu ,u, v) \in \scrC and (\mu ,u, v) close to (\mu \lambda i

, u+, v+).
By Lemma 4.2, the projection of \scrC on the \mu has positive lower bound. Assume
the claim is false. That is, there exits (\mu i, ui, vi) \in \scrC with ui, vi > 0 on [0,L] and
(\mu i, ui, vi)\rightarrow (\^\mu , \^u, \^v) as i\rightarrow \infty , where (\^\mu , \^u, \^v)\in \scrC with

min

\biggl\{ 
min
x\in [0,L]

\^u, min
x\in [0,L]

\^v

\biggr\} 
= 0.(4.10)

If minx\in [0,L] \^u= 0, by maximum principle, one obtains that \^u\equiv 0. Recall that \^v
satisfies \Biggl\{ 

\^\mu d(0)\^vxx + \^v (r - \^v) = 0 in (0,L),

\^vx(0) = \^vx(L) = 0.

Hence, we have

\^v\equiv 0 or \^v\equiv r.(4.11)
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Let \^ui =
ui

\| ui\| L\infty . Applying the elliptic regularity (cf. [8]) and the Sobolev imbedding

theorem, without loss of generality, we assume that \^ui \rightarrow \^u\infty in C1([0,L]) as i\rightarrow \infty 
and \^u\infty satisfies \Biggl\{ 

\^u\infty xx + \^u\infty (r - b\^v) = 0 in (0,L),

\^u\infty x (0) = \^u\infty x (L) = 0.

This together with (4.11) and \^u\infty \geq 0 implies that \^u\infty \equiv 0, which contradicts
\| \^u\infty \| L\infty = 1. Hence, \^u > 0 on [0,L]. This combined with (4.10) suggests that
minx\in [0,L] \^v= 0. Let wi = (1+ kui)vi and \^w= (1+ k\^u)\^v. Then \^w satisfies\left\{   \^\mu \^wxx +

\^w

1 + k\^u

\biggl( 
r - \^u - \^w

1 + k\^u

\biggr) 
= 0 in (0,L),

\^wx(0) = \^wx(L) = 0.

So, we have \^w \equiv 0. Let \^wi = wi

\| wi\| L\infty . Similarly, one attains that \^wi \rightarrow \^w\infty in

C1([0,L]) as i\rightarrow \infty and \^w\infty satisfies\left\{   \^\mu \^w\infty 
xx +

\^w\infty 

1 + k\^u
(r - \^u) = 0 in (0,L),

\^w\infty 
x (0) = \^w\infty 

x (L) = 0.

This further yields that \^w\infty \equiv 0 due to Lemma 4.1, which contradicts \| \^w\infty \| L\infty = 1.
Therefore, Claim 1 holds.

Claim 2. For all (\mu ,u, v) \in \scrC , one has u and v are bounded in H2(0,L). Recall
Lemma 4.2 and it is standard to show that the claim holds.

Combining Claims 1 and 2 and the fact that \scrC meets infinity, one concludes that
the projection of \scrC on the \mu interval must be unbounded. This completes the proof.

Remark 4.1. We have the following remarks.
\bullet Let \Gamma + = \{ (\mu (s), u(s), v(s)) : s \in (0, \epsilon )\} and \Gamma  - = \{ (\mu (s), u(s), v(s)) : s \in 

( - \epsilon ,0)\} . Denote \scrC + (resp., \scrC  - ) be the component of \scrC \setminus \Gamma  - which contains
\Gamma + (resp., the component of \scrC \setminus \Gamma + which contains \Gamma  - ). Similarly, one can
show that the \scrC + (resp., \scrC  - ) meets infinity. We note here that we don't
exclude the possibillity that \scrC + and \scrC  - meet at some point.

\bullet If (bkv+ - (1+ku+))u+

1+ku+ \in (\lambda 1, \lambda 2], then we have

(u+, v+) is linearly

\Biggl\{ 
stable for \mu < \mu \lambda 1 ,

unstable for \mu > \mu \lambda 1
.

Moreover, applying the well-known index theory [5], one can show that (1.8)
admits at least two nonconstant positive solutions for \mu > \mu \lambda 1 because the
indices of (0,0), (r,0), (0, r) are all equal to 0, the index of (u+, v+) is  - 1,
and the sum of index of all the nonnegative solutions of (1.8) is 1.

\bullet If (bkv+ - (1+ku+))u+

1+ku+ \in (\lambda 2, \lambda 3], we assume \mu \lambda 1
\not = \mu \lambda 2

. Without loss of gener-
ality, we assume that \mu \lambda 1

< \mu \lambda 2
. For the case \mu \in (\mu \lambda 1

, \mu \lambda 2
), by the index

theory, one can show that (1.8) admits at least two nonconstant positive so-
lutions. For the case \mu > \mu \lambda 2 , if the positive solution bifurcating from \mu \lambda 1 is
nondegenerate, then (1.8) admits at least two nonconstant positive solutions
due to the facts that the indices of (0,0), (r,0), (0, r) are equal to 0, the index
of (u+, v+) is 1, the index of the nonconstant positive solution is 1 or  - 1;
and the sum of index of all the nonnegative solution of (1.8) is 1.
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5. Summary and discussion. In this paper, we consider the existence and
nonexistence of nonconstant positive solutions to the one-dimensional stationary SKT
system (1.8). Indeed, the existence/nonexistence and stability of positive solutions to
system (1.8) have been widely studied in the literature, but the results are confined to
the case of strong cross-diffusion (i.e., k\gg 1). In this paper, we make a step forward by
considering a fixed k > 0 and \mu \gg 1 at the first time. Our main results consist of two
parts. The first part includes some nonexistence and existence of positive solutions as
\mu \gg 1. We first establish the nonexistence of positive solutions for (1.8) with \mu \gg 1 in
the case of b < 1< c (see Theorem 1.2). This implies that the cross-diffusion strategy
of avoiding the strong competitor cannot help the weak competitor to survive. Then
by studying the existence of monotonic solutions to the shadow system of (1.8) as
\mu \rightarrow \infty for fixed k > 0, we obtain the existence of positive nonconstant solutions
of (1.8) under generic conditions (see Theorem 1.3) via the nondegeneracy condition
(1.9) (see Proposition 1.1). More explicit existence conditions are further given in
Theorem 1.4. The second part of our main results is the existence of nonconstant
positive solutions in the case of weak competition 0 < b, c < 1 for any \mu > 0 given in
Theorem 1.5 which is proved by the global bifurcation theory.

Various interesting open questions arise from our present study. For example, the
stability (or instability) of nonconstant positive solutions is yet to be studied. The
existence result given in Theorem 1.4-(i) requires that b and c are sufficiently close
to 1. Then one may ask whether system (1.1) admits nonconstant positive solutions
if 0 < c < 1 < b but b or c is not close to 1. The more interesting yet challenging
question is to find threshold values of b and c so that the existence or nonexistence of
nonconstant positive solutions can be determined.

Acknowledgments. The authors are grateful to the anonymous reviewers for
stimulating questions and insightful comments, which greatly helped us improve the
precision and exposition of our manuscript.
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