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Abstract

This paper is concerned with the following spatiotemporal population-toxicant model with
toxicant-taxis in a bounded domain Q C R"(n > 1) with inhomogeneous Robin boundary
conditions

ur=dAu+ xV-@Vw)+u(l —u) —ouw, xe,t>0
wy = AW — pw — Auw, xeQ,t>0,
dVu+ xuVw) -v=0, Vw-v=E&hx,t) —w), x €9, t>0
u(x,0) =up(x), wix,0) =wyx), x € Q,

where u = u(x, t) and w = w(x, t) denote the population density and toxicant concentration
at location x and time ¢, respectively. Here the toxicant enters the environment through the
boundary with a temporally and spatially heterogeneous ambient toxicant density A (x, 7).
Under suitable assumptions on /(x, t), we first establish the global existence of classical
solutions in two-dimensional spaces (n = 2). Moreover, we show that every solution (u, w)
converges to (1, 0) uniformly if /(x, ¢) decays to zero as t — oo with a mild rate satisfying

t+1
tl_l)n(;lQ[ ||h(, T)”Ll(aﬂ)df = O

If h(x,t) = h(x) = 0 with 0 < hg = sup,.yq h(x), we establish the existence of non-
constant positive steady states in all dimensional spaces (n > 1) under the condition

0<hg<h®:= min{é, %}
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We further show that this non-constant steady state is unique and globally asymptotically
stable if A is sufficiently small. On the other hand, we prove that the species u is uniformly
persistent if o < 1/hg, while the toxicant-only steady state is globally asymptotically stable
if o > 1/M), with some constant M), > 0 smaller than Ay.

Mathematics Subject Classification Primary 35A01 - 35B40 - 35B44 - 35K57 - 35Q92 -
92C17

1 Introduction and main results

Due to anthropogenic activities such as industrial effluents and increased urbanization in
recent decades, a great deal of toxicants and pollutants have been discharged into lakes and
rivers. This seriously threatens the living organisms in these aquatic ecosystems. Toxicant
increase in aquatic ecosystems has adverse effects on biospecies behavior, population growth,
community structure and ecosystem integrity (see review articles [1, 4, 30]). It is therefore
of paramount importance to understand the deleterious effects of toxicants on aquatic pop-
ulation dynamics and identifying the key factors determining the persistence or extinction
so that suitable water quality standards and regulatory measures can be enacted to protect
aquatic species and maintain ecosystem diversity. Towards this goal, various mathematical
models describing the population-toxicant interactions were proposed such as the ordinary
differential equation models [12-15, 18, 19], matrix population models [11, 16, 33, 34],
reaction-advection-diffusion equations [36, 38, 39] and so on. These existing models were
focused on the influence of toxicants on the population growth rate or on the environmental
carrying capacity, without considering the spatial movement such as dispersion, transport and
spatial avoidance of toxicants, etc. In fact, individuals may exhibit various toxicant-induced
behavioral changes including spatial movement (cf. [3, 5, 30]). In the literature, reaction-
advection-diffusion equations in one dimension have been used to describe the motion and
transport process of river pollutants alone (cf. [27, 31]). The first reaction-advection-diffusion
model considering the population-toxicant interactions with dynamical toxicants in a polluted
river was proposed in a paper [39] with Danckwerts boundary conditions, where sufficient
conditions for the population persistence or extinction were found based on the eigenvalue
theory. The model proposed in [39] assumed that species and toxicants only undertook ran-
dom diffusion. In reality, many aquatic species can detect and avoid toxicants (i.e. spatial
avoidance) [2, 35]. Taking into account this essential factor, a spatiotemporal population-
toxicant system with (negative) toxicant-taxis was proposed in [10] as follows:

ur=dAu+ xV-@Vw)+u(l —u) —ouw, x €, t >0,
w; = eAw + h(x) — pw — luw, xeQ,t>0, (1.1)
Vu-v=Vw-v=0, x €02, t>0,

where u(x, t) and w(x, t) represent the density of species and toxicant at location x €
and time ¢, and Q2 denotes the bounded habitat in R” (n > 1) with smooth boundary d<2. All
parameters are positive, where d and ¢ denote the random diffusion coefficients of the species
and the toxicant, respectively. The toxicant-taxis term xV - (1 Vw) entails that the species
can evade toxicants (i.e., the movement of individuals away from the gradient of toxicant
concentration). The term u(1 — u) — cuw accounts for the population growth under the
influence of toxicants where o is the toxicant-induced death rate. In the second equation of
(1.1), h(x) is the toxicant input rate, u is the decay rate of toxicant due to the detoxification
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and X denotes the uptake rate of toxicant by the aquatic species. The global existence of
classical solutions of (1.1) in two dimensions (n = 2) with (x) € C(Q) was established in
[10]. When h(x) = hy is a positive constant, the global stability of constant steady states and
spatial patterns of (1.1) were further studied in [10] showing that the value of A is critical for
the persistence of species while the toxicant-taxis may introduce spatial patterns. Recently,
the existence of non-constant positive steady states of (1.1) under certain conditions was
established in [9] by the Leray-Schauder degree theorem when £ (x) is a positive constant.

The model (1.1) is based on the following assumptions: (a) the aquatic system under
consideration is a closed environment where both the species and the toxicant cannot cross
the habitat boundary due to homogeneous Neumann boundary conditions, which particularly
implies that toxicants are not discharged into the aquatic system through the habitat boundary,
but through other ways like rainfall mixed with toxic emissions (e.g., acid rain); (b) the
toxicant input rate /4 is independent of time. However, in reality toxicants may enter aquatic
systems (lake orriver) through the boundaries such as industrial/agricultural runoff or polluted
surface water. In addition, both anthropogenic activities and environmental changes vary
seasonally. Clearly, these situations violate the assumptions (a) and (b) and are not described
by the model (1.1). To this end, we update the model with toxicants permeating through the
habitat boundary via a Robin-type boundary condition

ur=dAu+ xV-@Vw)+u(l —u) —ouw, xeQ,t>0,

wy = eAw — pw — Auw, x e, t>0, (12)
(dVu+ yuVw)-v=0, Vw-v=~&Mh(x,t) —w), x€dQ,t >0,

u(x,0) = up(x), wix,0) = wy(x), x € Q.

The boundary conditions in (1.2) indicate that no aquatic species can cross the habitat bound-
ary, while the toxicant with ambient density /(x, ) enters or leaves the habitat through the
boundary with an exchange coefficient £ > 0.

The main results of this paper include the global well-posedness (global boundedness and
stabilization of solutions), as well as existence and globally asymptotic stability of non-
constant steady states of (1.2). The global boundedness and stabilization of solutions to (1.2)
are asserted in the following theorem.

Theorem 1.1 (Global boundedness and stabilization) Let @ C R? be a bounded domain
with smooth boundary. Assume that the initial data (ug, wo) € [W1°()12 with ug, wo =0
and the following assumption on h(x, t) holds:

(Ho) h(x,t) € C*(0RQ x [0, 00)) is a nonnegative bounded function satisfying
||h(, [)”62*1(39) < C forallt > O,
where C > 0 is a constant independent of t.

Then the system (1.2) with x > 0 has a unique nonnegative global classical solution (u, w) €
[CO([0, 00) x ©) N C21((0, 00) x )12, such that

lu (-, )l Lo + lw(, )|l < M, forall t >0,

where M > 0 is a constant independent of t and o. Furthermore, if h(x, t) satisfies

t+1
Jfim [ WD lzrads =0, (13)

then the solution (u, w) converges to (1, 0) uniformly as t — oo.
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Remark 1.2 The conditions (Hp) and (1.3) can be fulfilled by a wide range of functions which
decay slowly in time, such as A(x,t) = (1 + ¢)7P¢(x) for any p > 0 or non-monotone
function like A (x, t) = e (sint + 1)¢ (x) with A > 0, where ¢ (x) is a bounded nonnegative
function.

Theorem 1.1 states that if the ambient toxicant density . (x, t) depends on time and decays
to zero as t — 0o, the global classical solution will converge to (1, 0) uniformly as ¢t — oo.
Below we aim to consider the asymptotic behavior of solutions if /1 (x, t) is stationary in time.
That is, we consider i (x, 1) = h(x) = 0 (i.e. h(x) is nonnegative but not identical to zero)
and is smooth on d€2. Clearly the global existence and boundedness of classical solutions
established in Theorem 1.1 hold true. We are interested in the existence and global stability
of non-constant steady states of (1.2) which satisty

0=dAU+V - (xUVW)+U( —-U)—oUW, xe,
0=eAW — uW —AUW, xeQ, (1.4)
@VU + xUVW) - v =0, VW -v =£(h(x) — W), x €.

In the sequel, we denote

sup h(x) := hg > 0. (1.5)
x€dQ
It is straightforward to check that if (1.4) admits a solution, then it must be non-constant.
Clearly the system (1.4) has a toxicant-only steady state (0, w), where w, = w,(x) is the
unique non-constant positive solution of the following system

(1.6)

0 =cAw, — pwy, x €,
Vwe -v=EMhKX) —w,), x €0R.

We observe that the solution of (1.6) must be non-constant if exists. Also, the existence of
solutions to system (1.6) can be obtained by the method of upper-lower solutions in view
of that 0 and A are a sub-solution and a super-solution, respectively. The uniqueness is a
consequence of the strong maximum principle and Hopf boundary point lemma.

Apart from the toxicant-only semi-trivial steady state (0, w,), we can show that if 1y > 0
is suitably small, then (1.2) admits a unique positive non-constant steady-state solution which
is globally asymptotically stable, as given in the following theorem.

Theorem 1.3 Let Q C R" (n > 1) be a bounded domain with smooth boundary. Assume h
is non-trivial, nonnegative and stationary, i.e. h = h(x) 2 0, and that hyg = sup,¢yq h(x)
satisfies

X (1 d

0<hy<h™:= mln{—, —}.
o X

Then the system (1.2) admits a positive non-constant classical steady state solution
(Ux), W(x)) € C>T4(Q) x C**(Q) satisfying (1.4) with

b < edVOUR) < 0%, 0 < W(x) < ho, (1.7)

where £, = min £(z) and £* = max £(z) with £(z) = (1 — az)e%lz. Moreover, (U, W)
0<z<ho 0<z<ho

is unique and, if n = 2 and if hg > 0 is sufficiently small, then it is globally exponentially
stable.
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Remark 1.4 The condition o hg < 1isimposed to obtain the positivity of non-constant steady
states. The condition xho < d is used to prove the continuous dependence of the mapping
V — WI[V]in Lemma 3.2, but it can be removed if u is large or A is small (see Remark
3.3). Particularly if x = 0, the mere condition ohy < 1 suffices to warrant the existence of
o, w).

The results of Theorem 1.3 do not address the global dynamics of (1.2) when kg > 0 is
not sufficiently small. The following theorem will partly elucidate this question.

Theorem 1.5 Let Q@ C R? be a bounded domain with smooth boundary. Assume h is non-
trivial, nonnegative and stationary and denote hy = sup,cyq h(x) > 0. Let (u, w) be the
solution of the time-dependent problem (1.2) obtained in Theorem 1.1. Then the following
results hold:

(1) If ohg < 1, then u > 0 is uniformly persistent, namely there is a constant §9 > 0

independent of initial data such that liminf inf u > §p.
=00 xe

(2) If oMy, > 1, then (u, w) converges to (0, w,) uniformly and exponentially as t — 00,

where My, := min W, (x) and 0 < wy(x) < hg satisfies
xeQ

0=cAWy — (W+AM)y, x €Q

- - (1.8)
Vg - v =Eh(x) — wy), x € 092,

and M > 0 is the constant given in Theorem 1.1 and My, > 0 is independent of o.

Remark 1.6 Since M; > 0 is independent of o, the condition o Mj;, > 1 is non-empty as
long as o > 0 is large enough. Theorem 1.5(2) implies that, for fixed parameters d, ¢, u,
X, A, ambient toxicant density 4 (x) and initial data, the solution (u, w) will exponentially
converge to (0, wy) (i.e., the aquatic species will go extinction) provided that the toxicant’s
lethality o is strong. The global dynamics of system (1.2) with &(x, #) = h(x) = 0 remains
open for the case 1/hg <o < 1/Mj,.

1.1 Discussion and biological interpretations

In this paper, we analyze a spatiotemporal population-toxicant model with toxicant-taxis in
a bounded domain. In previous work, toxicants are introduced into the model at a positive
rate inside the domain. Here we study the system under the assumption that the toxicant
enters the model only via the boundary, which can be more realistic in many situations
when the domain represents a lake and pollutants are introduced into the lake due to human
activities in surrounding areas. Under the assumption (Hp), we first establish the global
well-posedness of the time-dependent problem in Theorem 1.1. In case the ambient toxicant
density is independent of time (i.e. 7 = h(x)), we demonstrate in Theorem 1.3 the existence
of non-constant steady state solutions (U (x), W (x)). Furthermore, we also prove the global
attractivity of such nonconstant steady state solutions when ||/ . is sufficiently small. This
means that the long-time dynamics of the system, and particularly the population level of
the organism, can be estimated using the solution to the stationary problem. Finally, we
inquire the situation when |||z~ is not necessarily small, and obtain a sufficient condition
which says that (i) the organism population persists when ||/1]| o is small while (ii) a large
ambient toxicant density / (in some appropriate sense according to Theorem 1.5) leads to
the extinction of the organism.
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Sketch of proof ideas

The inhomogeneous Robin boundary conditions incapacitate the direct L2-estimate method
as in [10] to obtain the global existence of solutions to system (1.2). Instead, inspired by
some ideas in [7, 24], we first use change of variables to reformulate system (1.2) with
homogenized boundary conditions. Then we study the reformulated problem based on subtle
energy estimates and semigroup theory to derive the global boundedness of solutions by
frequently switching between the estimates of the original and changed variables (see Section
2). To study the global stability of the constant steady state (1, 0), we first use the condition
(1.3) to derive that tl_l)ngo lw(, t)||L~ = 0. Then we show ||u(-, 1) — 1||pe — 0ast — oo by

constructing a Lyapunov energy function based on the generalized relative entropy inequality
associated with [ (u — 1 — Inu). To achieve this, we use Harnack’s inequality to show that
ing2 u(x, t) has a positive lower bound for large time, by which we show that the entropy
xe

energy /o, (u—1—Inu) is equivalent to the L?-energy [, (u—1)2. With this crucial finding, we
employ the dissipation of Lyapunov energy function to show that llim lu(-, ) — 1||;2 = 0.
—> 00

By deriving the boundedness of ||u||c¢ for t > 1, we finally obtain that # — 1 uniformly as
t — oo and complete the proof of Theorem 1.1.

The existence of non-constant positive solutions determined by (1.4) was proved in virtue
of Schauder’s fixed point theorem. To this end, we first transfer the no-flux boundary condition
of U into the homogeneous Neumann boundary condition and split the system (1.4) into two
subsystems to construct a solution map. Based on suitable estimates for the solutions of
two subsystems, we show that this solution map is continuous and relatively compact and
hence yields a fixed point by the Schauder fixed point theorem. With the method of energy
estimates, we further prove the solution of (1.4) is unique and globally asymptotically stable
if hg > 0 is small, which proves Theorem 1.3.

To show the persistence result asserted in Theorem 1.5(1), we derive an inequality

ilo=l
— | u= u(l—u—crw)ZS/u,
dr Jo Q Q

for some small constant § > 0 under the condition oh¢ < 1. Then the persistence is obtained

by repeatedly using Harnack’s inequality. To study the global asymptotic stability of toxicant-

only state (0, w) with large o, the key is to show that ingz w(x, t) has a positive lower bound
Xe

independent of o as time is large. In fact, using the comparison principle and energy estimates,
we find o ing2 w(x,t) > % for large time and hence
xXe

d l1—oM
— u:/u(l—u—aw)gﬂfu, (1.9
dt Q Q 2 Q

which implies ||u(-, t)||;1 — O exponentially t — oo if o M), > 1. Then |u(-, f)||p< — 0
as t — oo follows by the interpolation inequality and boundedness of ||u(-, 1)||co fort > 1.
Finally using the energy estimates, we derive ||w(-,7) — w|ze — 0 exponentially as
t — 0o, which completes the proof of Theorem 1.5(2).

The rest of this paper is arranged as follows. In Section 2, we reformulate the problem
(1.2) into a problem with homogenous Neumann boundary conditions and establish the
global boundedness of solutions (i.e. Theorem 1.1) by the delicate bootstrap argument. The
existence and stability of non-constant steady states asserted in Theorem 1.3 are proved in
Section 3. Finally, we prove Theorem 1.5 in Section 4.
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2 Boundedness and Stabilization: Proof of Theorem 1.1

In this section, we shall prove the global boundedness of solutions to the system (1.2), which
consists of the local existence of solutions and the global a priori estimate of solutions. To
this end, we first homogenize the boundary conditions by introducing some transformations
and establish the local existence of solutions for the transformed system, from which the
local existence of solutions for the original system (1.2) follows.

2.1 Reformulation of the problem with homogenized boundary conditions

To prove the boundedness of solutions, we first introduce a transformation to homogenize the
boundary conditions. Noting the assumptions on 2 (x, f) in (Hp), and using [24, Theorem 9.4
in Chap. 1], we can find some bounded functions g| € C*(Q) and g € C®(Q x [0, 00))
satisfying

lgillizoee +1VgillLe + [1Ag1lILe < y1 in L, 2.1
and
g2l + IV&2llre + 1Ag2IL + 821l < y2 in €2 x (0, 00), 2.2)
with some positive constants y; (i = 1, 2) such that v - Vgi(x) = £ on 92 and
g(x,t) =h(x,t) and Vg -v =0, on 92 x (0, 00).
Motivated by an idea of [7], we introduce the following transformation

= ued” and W = e (g2 — w), (2.3)

<

and then using the facts (dVu + yuVw) -v =0and Vw - v = §(h — w) on 92, we have
Vi-v=Vw-v=0, ondQ x (0,00). 2.4
Using the transformation (2.3), we have
iy :egwut + gue%ww, =1+ Db. (2.5)
On the other hand, with some simple calculations, we have
dVu + xuVw = deff(fwaﬁ,
which implies that
dAu+V - (xuVw) = de™ % Afi — Xe_§wVw - Vii.
Then we can rewrite /| as follows

L = e%"u, =ez(7w[dAu + V- (xuVw)] + e§wu(1 —u) — ocedVyw

5 o o ~ (2.6)
=dAi — xVw -Vi+i(l —e a¥q) —ouw.
Similarly, we can rewrite I5 as follows:
L = Kueﬁww, :lue%ﬂ[sAw — pw — Auw]
d d @7
e e A ’
:%v C@vw) — Lvw . vi - %ﬁw - %e—§wwﬁ2.
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Substituting (2.6) and (2.7) into (2.5), and using the fact w = g» — e 8w =: y(w), we
obtain

iy = dAii + 22V - [aVy ()] — XXy () - Vi + Fi (@, w), x € Q1> 0,

W, = €AW — puw — 2eVgy -V + Fp(u, w), xeQ,t>0,
%Z%:Ov x €0Q,t >0,
u(x,0) = uo(x), w(x,0) = wo(x), X €,
(2.8)
where
_ Xk +do

Fl(ﬁ,ﬁ)):u— d

A _
iy (W) — <1 + %y(zﬂ)) e~ ay @2
and
~ o~ ~ _X ) ~ ~
Fy(it, W) = e(|Vg11* — Ag)w + ¢4 [go — eAgr + nga + re” 4V Piiy ()],
as well as

iio = upe ¥ and iy = €% (g2(-, 0) — wp).

Then for the transformed system (2.8), we can invoke the semigroup estimates method as in
[7, Proposition 2.6] to establish the local existence of classical solutions with the fixed-point
theorem. We skip the proof details for brevity and state the local existence result for the
original system (1.2) as follows.

Lemma 2.1 (Local existence) Let @ C R2 be a bounded domain with smooth boundary
and the hypotheses (Hy) hold. Assume (ug, wo) € [W(Q)1? with ug, wo = 0. Then
there exists Tyyqx > 0 such that the problem (1.2) has a unique classical solution (u, w) €
[CO([O, Tinax) X )N C%1 (0, Thax) x Q)12 satisfying u, w > 0 for allt > 0. Moreover

lf Tmax < 00, then ||u(~,t)||Loo + ”w('»t)”lew — 00 as t/ Tmax~
Moreover, we can show the solution (u, w) of (1.2) has the following basic estimates.

Lemma2.2 Let (u, w) be the solution of (1.2) obtained in Lemma 2.1. Then for all t €
(0, Tinax), it holds that

u(, DLy = Mo 1=/ uo + €21, (2.9)
Q

lw(, HllLe < My := max [||w0||L°c, lA(x, t)||L°°(BQ><(O,oo))}- (2.10)
Proof Integrating the first equation of (1.2) by parts, we have

d
S fu=2[u= [0 [ww=-[@-17~0 [ww+l<a,
dt Jo Q Q Q Q Q 2

which gives (2.9) by Gronwall’s inequality. Moreover, (2.10) follows directly from the com-
parison principle. O

Below, we recall two basic results.
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Lemma2.3 ( [26]) Let Q@ C R? be a bounded domain with smooth boundary and u €
WL2(Q). Then for any € > 0, there exists a constant Ce > 0 such that

3 2 2
lullzs < €Vl llulnfull g + Ce(llull 7 lluInfulll g + flullL1)-

Lemma 2.4 ([37]) Let y(t) € C'([0, 00)) and g(t) € C°([0, o)) be nonnegative functions
satisfying

1
y(6) < y(O)e M + / e Mg (s)ds, forall ¢ > 0,
0
with some A > 0. Then if g(t) is bounded on [0, 00) and satisfies

t+1
/ g(s)ds - 0 as t — oo,
t

we have

y(@) = 0 as t — oo.

2.2 Apriori estimates

In this subsection, we derive some a priori estimates of solutions based on the coupled energy
estimate method. Noting the no-flux boundary condition on u and the fact [[w(:, ) || 1.0 <
cillw(., £)llwie + c2, we are motivated to establish the a priori estimates of solutions for
the following system:

u =dAu+ xV-@Vw) +u(l —u) —ouw, xeQ,t>0,
Wy = AW — puw —2eVgy - Vi + Fz(u, W), xeQ,t>0, @.11)
(dVu + xuVw) -v=0, Vi-v =0, xea,t>0,
u(x,0) = uo(x), w(x,0)=wp(x)=e8(g2(-,0) —wo), x€Q,
with w = e8! (g — w) and
F3(u, ) = e(|Vg1]* — Ag)ib + €' (g2 — eAga + g + Auw). (2.12)
Lemma 2.5 Let (u, w) be the solution of (2.11). Then it holds that
d -4 2
ulnu < Ky [Vw| u"lnu+ | ulnu+ Ko, (2.13)
dr Jq Q Q Q

where K| and K> are positive constants independent of t and o.

Proof Multiplying the first equation of (2.11) by In u+1 and integrating the resulting equation
by parts, along with the fact —u Inu < é for all u > 0, and Young’s inequality

Vu2 2
—X/Vw~Vu§df [Vul +X— uIVwIZ,
Q Q u 4d Q
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we derive

d Vul?
— ulnu:—df| ul —X/Vw~Vu—/(lnu+1)u2
dr Jg Q u Q Q

+/(lnu+1)u—o/ u(lnu + DHw
Q Q

x* 2 2 g
<—f ulVwl = [ Inu+Du"+ | ulnu+ [ u+— | w
4d Jq Q Q Q e Ja

which, together with facts fQ u < Mpin (2.9) and ||lw(-, 1)| L~ < M in (2.10), gives

d x> 2 2 2
— ulnu < — ulVw|* — u“lnu — u- + ulnu + ¢y, (2.14)
dt Jo 4d Jq Q Q Q

,_ o M| 1 e .
where ¢ := My + =, Using Young’s inequality, one has

2
X 2
= \Y < P \Y 2.15
4d9”'“"—f9”+64d2f'w' 2.15)
Substituting (2.15) into (2.14) gives
i/ ulnu<X4/ |Vw|4—/u21nu+/ ulnu + cy. (2.16)
dt Q ~ 64d? Q Q Q

Using (2.1), (2.2) and noting ||w(:, t)||Lc < My, one can derive that

o, Ol = llef' (g2 — w)llLoe < eI (llg2lle + wllze) < e (y2 + M1) =t y3,
(2.17)

and hence
|Vw| = |Vgs — e 81V + e ¥ Vg | < [Vga| + el |Vip| + e8|V g ||| 2.18)
< "IV + y2 + y1y3e”, '

which gives

64d2f vl

64d2 / [ VD] + 2 + y1e]*

441 H4Q
Xe f|vw| +X()/2+)3;/3€ ) |’

IA

which substituted into (2.16) gives (2.13) and thus completes the proof of Lemma 2.5. O

Lemma 2.6 There are some positive constants K3, K4 and Ks independent of t and o such
that the solution of (2.11) satisfies

d . . -4 2
L wal+2u | Vol +ks | Vit < K | u®+Ks. (2.19)
dt Jg Q Q Q

Proof Integrating the second equation of (2.11) multiplied by —Aw and using the homoge-
neous Neumann boundary condition Vw - v = 0 on 9€2, we find that

2dt/ |Vi|? —l—s/ |Aw|? —I—,u/ V| —28/Vw VgiAw — /Fg(u, w)Aw.
Q
(2.20)
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With (2.1) and Young’s inequality, we have
& &
28/ Vib - Vg A < f/ |A1b|2+4s/ Vg2 IVw)? < f/ |Aﬁ)|2+48y12/ Vi
Q 4 Ja Q 4 Ja Q
(2.21)

Using the definition of F3(u, w) in (2.12), and the estimates in (2.1), (2.2) and (2.17), one
has

|F3(u, @) <e(IVg11* + 1AgiDIw] + el (|gar| + el Agal + lgal + ruw)
<e(y1 + Dyiyz + e (2 + ey2 + puyr + AMju) (2.22)
<ys(1+u),

with y4 1= e(y1 + Dy1y3 + e"'(y2 + €y2» + wy> + AM1). Then using Young’s inequality,
one can derive that

—/ Fa(u,wmws/ |F3(u,w>||Aw|5y4/<1+u)|mb|
@ @ @ , (223)

P . 292 2
57/ |Aw|2+ﬁ/u2+ﬁ|9|.
4 Q & Q &

Then substituting (2.21) and (2.23) into (2.20), we obtain

d 4y? 4y?
—f |vw|2+af |A11)|2+2,u/ |Vﬁ)|2§88y12/ |vw|2+ﬁ/ W+ ).
dt Jo Q Q Q e Ja €

(2.24)

Using the Gagliardo-Nirenberg inequality and the fact ||w(-, ¢)||L~ < y3 in (2.17) again, we
have

-4 -4 S ) -4 200 A7 112 4
/ IVo|" = V|4 = co(lAW[ 2 W7 + lwllpe) < c2v3 [AWIY 2 + c2¥3,
Q
which gives

[ ADP? > L |Vw|4 s (2.25)

Substituting (2.25) into (2.24), alongside Young’s inequality, one has

d " - & -
7/ |Vw|2+2u/ |Vw|2+—2/ |Vt
dr Jg Q y; Je
4y? 4y?
588)/12/ |vw|2+ﬁ/ P+ A1) 4 op?
Q & Q &

4y? 4y}
< 2/ |vw|4+ﬁfu2+3zeczyf‘y§|9|+ﬁ|9|+sy§,
20075 Ja e Jo €

which gives (2.19). Then we complete the proof of Lemma 2.6. O

Lemma 2.7 Let (u, ) be a solution of (2.11). Then we have
lulnul|;1 + [[Vwl|l;2 < K, (2.26)

where K¢ > 0 is a constant independent of t and o.
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Proof Multiplying (2.19) by %, and combining it with (2.13), we obtain

i /ulnu—l—ﬁ/IVuﬂ2 +2u /ulnu—i—ﬁ/Wuﬂz
dt Q K3 K3 Jo

2.27)
KKy K\ K5
< —ullnu+ —= +(1+2M)ulnu + Ko + .
Q K3 K3
Define F(u) := —u?lnu + K'K4 u? + (1 +2p) ulnu. Then F(u) is a continuous function
in [0, 00) such that
hm Fu)=0 and lim F(u) = —o0,
u—0 u—>0o00
which implies that there exists a constant ¢; > 0 such that
K4 K
—w’Inu+ —— >+ (1 +2u)ulnu ]—'(u) <cy. (2.28)
Q K3
Substituting (2.28) into (2.27) and letting ¢> := ¢ + K2 + K 'K5 , we have
i <[ ulnu + 71/ |Vﬁ)|2> +2u (/ ulnu + 71/ |V11)|2> < ¢y,
dt \ Jq K3 Jo Q K3 Ja
which, together with Gronwall’s inequality, gives
K, -
ulnu + — IVw|* < c3. (2.29)
Q K3 Ja
From (2.29), one derives
K
[ Vi *C3 (2.30)

Noting the fact —ulnu < é for all u > 0, from (2.29) we have fQ ulnu < c¢3 and hence

11 1 1 2|sz|
uInu| = ’ulnu—i-f—f‘f ulnu+-)+ [ = <e 231
Q Q e e Q e Qe

Then the combination of (2.30) and (2.31) gives (2.26). The proof of Lemma 2.7 is finished.
O

Next, we shall use the coupled energy estimate method to establish the boundedness of
llee(-, t)|l ;2. To this end, we first show the following results.

Lemma 2.8 Let (u, w) be a solution of (2.11). Then it holds that

d
7/ u2+/ u2+d/ |Vu|? 51@/ u? |V + K7, (2.32)
dt Jg Q Q Q

where K7 > 0 is a constant independent of t and o.

Proof Multiplying the first equation of (2.11) by 2u, integrating the result with respect to x
over €2, one has

d
—fu2+2d/ [Vu|? —2x/uw Vw+2/ uz(l—u)—ZG/uzw
dt Jg Q Q

(2.33)
<d/ |Vul® + 2 /u2|Vw|2+2/ u2—2/u3
Q Q
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Using (2.18), we can derive that

x? x2
f/ u?[Vw|? < f/ W[’ VD] + 2 + yiyse”
d Jg d Jo

(2.34)
2y 2271 2y2 712
B P
d Q d Q
Substituting (2.34) into (2.33), we can find a constant c; : W such that

d 2y 2e2n1
i +d/ Vul? +2/ < L/ u2|V1D|2+61/ W2 (235)
dt Q d Q Q

Using the Young s inequality, we have

(61+1)/u252/u3+02,
Q Q

which, substituted into (2.35), gives

ar ) +/u +d/ [Vul? /u2|Vﬁ1|2+cz,
Q

which yields (2.32). O

Lemma 2.9 Let (u, w) be a solution of (2.11). Then there exists a constant Kg > 0 indepen-
dent of t and o such that

d N 3 8 s .
—/ |Vw|4+/ |Vw|4+8/ |V|Vw|2|2+s/ V|2 D*w|?
dt Jg Q Q Q
< Kg/ u? |V + Ks. (2.36)
Q

Proof From the second equation of (2.11), we have
(IVD?); =26V - VAD — 2u| Vi[> — 46V - V(Vg| - Vw) + 2V - VFy(u, )
= eA|IVD|? = 2¢|D*0)? — 2u|VW|* — 46V - V(Vg - V) (2.37)
+ 2V - VF3(u, ),
where we have used the identity 2V - VA®D = A|V®|> — 2|D?*w|?. Then multiplying

(2.37) by 2|V|? and integrating the results by parts along with the boundary conditions, we
have

d
Ef |V171|4+4u/ |Vw|4+2e/ |V|vw|2|2+4e/ VP D2
Q

58| V|?
=2¢ | |V " ds —4e |Vw| Vi -V(Vgi - V)
092

+4/ VD>V - VF3(u, ©) (2.38)
Q

53| V|?
:28/ [Vw|? |8w| ds —4e /AlZ}|Vzb|2V1Z)-Vg1—45/ Ag |Vt
0 Q

—4/(V|V121|2-V1D)F3(u,11;)—4/ AD|VD|? Fs(u, ).
Q Q
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Noting the fact Vi - v|yq = 0, from [25, Lemma 4.2], we have W < Cq|Vd|? on 39,
for some constant Cq > 0, which, combined with the following trace inequality [29, Remark
52.7]

I 20 < SIV FllL2@ + csll flliL2q). for some constant § > 0

enables us to estimate the first term on the right hand of (2.38) as follows:

(0€2)

£ - ~
< —/ |V|Vw|2|2+c1/ Vi,
3 Ja Q

Moreover, we can use Young’s inequality, (2.1) and the fact |[Aw| < V2| D] to derive

Vw2
28/ v B s < 2ecqlviry,
aQ v (2.39)

—48/ AD|VO*V - Vg 54ﬁey1/ |D*®||Vw|?
Q @ (2.40)

ss/ |D21D|2|Vlb|2+88y12f |V |*
Q Q

and
—4e/ Ag1|vw|4g4e||Ag1||Loc/ |Vuv|4s4sy1/ Va4
Q Q Q
Using (2.22) and Young’s inequality again, one has
—4/ V|vw|2.vwF3(u,w)—4/ AD|VD>F3(u, ©)
Q Q
<y [ IVIVAPIVBI0 +0)+ 433 [ ID2IVERA 40
Q Q

2092
gf |V|Vﬁ)|2|2+8/ |Dzw|2|vw|2+i/ V21 + u)?
(2.42)

/|V|Vw| ? +g/ |D*0|)? |V y“ / |V fu2|vw|2
e 40
f/ |V|Vﬁ)|2|2+s/ |Dzw|2|vw|2+4M/ |vw|4+i/ u?|V|?
3Ja Q Q e Ja

10412
pe?

IA

I /\

IA

Then substituting (2.39), (2.40), (2.41) and (2.42) into (2.38), it follows that

d 4
7/ |vw|4+/ |vw|4+—8/ |V|V1I)|2|2+26/ Vi 2| D22
dt Jo Q 3 Ja Q

40y2 10y2192
<(I+4c +88y12+48)/1)/ IV1D|4+A/ uleﬂZJr#'
Q & Q 1222

(2.43)
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Using the Gagliardo-Nirenberg inequality along with the fact || |V1I)|2||L1 = |Vw ||2L2 < K62
from (2.26), we have

(1+c1 +8eyf +4eyl)/ Vil = (1 + ¢ +8eyl + ey IV 112,
Q
< VIV VBP0 + c2ll VI3 ,(2.44)
& -
- —/ VYRR + cs.
3Ja

Substituting (2.44) into (2.43), we obtain (2.36) directly. The proof of Lemma 2.9 is complete.
m}

Lemma 2.10 Suppose (u, w) is a solution of (2.11). Then it holds that
luC, Ol + IV, Dlis < Ko, (2.45)

where Ko > 0 is a constant indenpendent of t and o .

Proof Combining (2.32) and (2.36), we can find two positive constants ¢; and ¢ such that

d
d—/ (u2+|V1D|4)—I—/ (u2~|—|Vﬁ)|4)—|—d/ |Vu|?
tJo Q Q

(2.46)
+sf |V|vw|2|2+e/ |vw|2|02w|25c1/u2|vw|2+cz.
Q Q Q

Using the Holder inequality and Young’s inequality, one can find a positive constant x1 small
enough (which will be chosen later) such that

2 ~12 2 ~ 112 ~ 110 3
61/ w lVwl™ < cillull7:IIVwllzs < kil Vwllye +c3llullys. (2.47)
Q

Noting the facts |lulnu||; 1 < Ke and ||u||;1 < My, and using Lemma 2.3, one has
sllulls < dlIVull2, + cs. (2.48)

Then substituting (2.47) and (2.48) into (2.46), it holds that
G L ewary [ @it ve [ ivareee [ |Vuv|2|D2uv|2(2 o
<k fg IVD|® 4¢3 + cq.

Using the Gagliardo-Nirenberg inequality and the fact || Vw||;2 < K¢ in (2.26), we obtain

IV |® = [[Vw?135 < es (IVIVDIPIZ Vw0 + VD13
i 5 <o AN DI,

< sKGIIVIVBP|IT, + csKE.

Substituting (2.50) into (2.49), and choosing k| = we can derive that

_£& _
C5K§ i

i/ (u2+|Vﬁ)|4)+/ (u2+|VII)|4) < cs,
dr Jq Q

which gives (2.45) directly by using Gronwall’s inequality. Then we complete the proof of
Lemma 2.10. O
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Lemma 2.11 Let (u, w) be a solution of the system (2.11). Then we can find a positive constant
K¢ independent of t and o such that

lu(-, Ol < Kio. 2.51)

Proof We multiply the first equation of (2.11) with > and integrate it by part over 2 to have

1d
idr 3d/Qu|Vu| 3)(/uVuVU)+/u—/u—U/Qu4w
s—d/ u?|Vul? 4 / ut|Vw|? + / /
Q

which, together with the fact [Vw| < e”'|Vw| + y» + y1y3e?! in (2.18), gives

/u—l—/u—i—d/lv —/ule|+5/u—4/u5
(2.52)
<c1/u|Vw|2+c2/u - /

2,2 2 Y
where ¢y i= 2 and ey := w.ﬁom (2.45), wehave [[u?| 1 = u?, <
K 92 and ||Vw| ;4 < K9. Then using the Gagliardo-Nirenberg inequality and Young’s inequal-
ity, we can derive that

1 1
2 2
c1/ u4|Vﬁ)|2 <cp </ u8) (/ |Vﬁ)|4>
Q Q Q
3 1 _
< <||Vu2|| Ll + ||u2||il) IVl (2.53)

3
< 3K Vu?| 2, + c3K§
22
<d|Vi |7, + ca.

Again, using Young’s inequality, we have

Cz/ ut < 4/ u + cs. (2.54)
Q Q
Substituting (2.53) and (2.54) into (2.52), we have

d
—/u4+/u4SC4+C5,
dt Q Q

which together with Gronwall’s inequality gives (2.51). Then the proof of Lemma 2.11 is
finished. o

Lemma 2.12 The solution (u, w) of (2.11) satisfies
IVo(, Dl < K1, (2.55)

where K11 > 0 is a constant independent of t and o.

Proof Applying the variation-of-constants formula to the second equation of (2.11), we have

t t
W, 1) = AW G — 28/ EAWE=) e . Vi +/ AW Py ),
0 0
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which gives

t t

V(- 1) = VeA M, — 25/ VeEA—WE=) e, . Vi +/ VeEA=WE=S) By ).
0 0

(2.56)

Applying the well-known semigroup estimate with homogeneous Neumann boundary con-
ditions to (2.56), we can derive that

t
V@ (-, 1)l o0 <||VeEATM gl 100 + 26 / [VeEA—MU=)G g1 . Vi 10
0

t
+ [ 1veea e F oy
0 . (2.57)
3
<ci||Vibo |l + 2¢c) / (1+173)e EHFTWE) Ve . Vi 14
0

t
3 o ~
+ci / (1417 3)e” EMTWE=) ) By )| 4,
0

where A; is the first nonzero eigenvalue of —A with homogeneous Neumann boundary
condition. Using (2.1) and (2.45), we have

Vg1 - Vls < ilIVlis < y1Ko. (2.58)
On the other hand, from (2.22) and (2.51), one can derive that
I F3(u, W)+ < yalll +ullpse < co. (2.59)

Substituting (2.58) and (2.59) into (2.57), and using the fact f0°°(1+r—%)e—(“1+ﬂ>(f—” < 00,
we have

o0
- ~ _3. _
V(- 1)l e 561||Vw0||L°0+6’1(28)’1K9+02)/ (1417 3)e” EMFWI=S) < oy
0
which gives (2.55). O

Proof of Theorem 1.1 (global existence) From Lemma 2.12, we have ||[Vw(-,t)||L~ < ci,
which together with the fact w = g — e8! w gives
IVw(, L = [Vga — e 81 Vib 4+ we 81 Vg | Lo
<r2tnyze’ + e |V L= (2.60)
< +nye’ +ec.
With (2.60) and the Moser iteration (cf. see [17, Lemma 1]), from the first equation of (1.2),

we can derive the boundedness of ||u(-, #)|| .. Then the existence of global classical solutions
follows from the extensibility criterion in Lemma 2.1. O

2.3 Global stabilization
In this subsection, we show that if h(x, 1) satisfies (1.3), then every solution (u#, w) of (1.2)

converges to (1, 0) uniformly in € as ¢t — oco. Before embarking on this, we first improve
the regularity of # and w by the standard parabolic regularity theorem.
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Lemma 2.13 Let (u, w) be the nonnegative global classical solution of (1.2) obtained in
Theorem 1.1. Then there exist 6 € (0, 1) and C > 0 such that

luell 50 - <(C forall t>1 (2.61)
7 (Qx[t.t+1])

and

<C forall t>1. (2.62)

w 0 _
I ”C”"'”f(ﬂx[z,r+1])

Proof We can rewrite the first equation of (1.2) as follows
u; =V-A(x,t,u,Vu) + B(x,t,u)
with
A(x,t,u,Vu) =dVu + xuVw, B(x,t,u) =u(l —u) —ouw.

From the boundedness results obtained in Theorem 1.1, we know that there exist two positive
constants ¢ and ¢ such that ||u(-, #)[|p~ < ¢y and [|w(, t)|ly1.00 < c2. Then we can check
that

A(x,t,u,Vu) - Vu = (dVu + xuVw) - Vu
> d|Vul|® — xu|Vu||[Vw|

d 2
> Livup - X—u2|Vw|2 (2.63)
2 2d
d 222
> Zivat - 212
2 2d

and
[A(x,t,u, Vu)| = |dVu + yuVw| < d|Vu| + xlu||Vw| <d|Vu| + cic2x, (2.64)
as well as
|B(x,t,u)| = |u(l —u) —ouw| <c1(1+c; +o0cp). (2.65)

Then applying [28, Theorem 1.3] and using (2.63)-(2.65), we obtain (2.61). Moreover, we
can use the standard parabolic regularity with (2.61) to derive (2.62) directly. ]

Then we have the following results on the global convergence of w.

Lemma 2.14 Let (u, w) be the solution obtained in Theorem 1.1, and assume (1.3) holds.
Then it follows that

lim w(-, )L~ = 0. (2.66)
1—00

Proof We integrate the second equation of (1.2) alongside boundary condition Vw-v+&w =
Eh(x, 1) to have

i hyr=e o o=
— fw=ef| Aw—pu | w—XA[| uw
dt Jo Q Q Q
=—8§/ w—l—a%‘/ h(x,t)—u/w—k/uw,
Q2 Q2 Q Q
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which gives

d
—/ w—i—M/ wSSE/ hx,t) = e&llh(, DL
dt Jo Q 1Y)

and hence

t
f w<e M / wo + & / e IR Dl gy ds. (2.67)
Q Q 0
Then with (1.3), and applying Lemma 2.4, we can derive from (2.67) that
lim lw(, )|, =0. (2.68)
—00

On the other hand, from Theorem 1.1, we know [[Vw(-, #)||r~ < c¢;. Then using the
Gagliardo-Nirenberg inequality, we can derive that
2 1 2 1
[wliLe < c2(IVwliislwl; + lwlip) < cxeillwll;; +callwllg,

which together with (2.68) gives (2.66).
O

Next, we show ||u(-,t) — 1||po — 0 ast — oo. To this end, we first apply the Harnack’s
inequality to show that u(-, #) has a lower bound for large 7, which will be essentially used
later. More precisely, we have the following results:

Lemma 2.15 Let (u, w) be the solution obtained in Theorem 1.1, and assume that (1.3) holds.
Then there exists a To > 0 such that for all t > Ty

inf u(x,t) > ¢, (2.69)
xeQ
where {1 > 0 is a constant independent of t.

. . ~ X . .
Proof Using the transformation & = ued"™, from the first equation of (1.2), we can derive
that

{ﬁ,:dAﬁ—XVw-Vﬁ—f-ll[l—}-ngAw—Ww—(l—i-g‘w)e_gwﬁ], x e Q,

u =0, x €09Q.
(2.70)
From Theorem 1.1, we know there exists a constant ¢; > 0 such that
G Ollzee + Nlw(, DliLee =< ci. (2.71)
Moreover, from Lemma 2.13, we know that
AW, t)||pe < cp, forall t > 1. (2.72)

Hence using (2.71) and (2.72), we can find a constant ¢3 > 0 such that

d A
Hl—i—%EAw—iXMZ Uw— <1+X7w>e_§wﬁ

Lo <c¢3, forall t>1.(2.73)

With (2.73) in hand, and applying Harnack’s inequality (see [20, Theorem 2.5] and [23, Page
12]), from (2.70) we can find a constant ¢4 > 0 such that

sup i(x,t) <cq inf i(x,t), forall r > 1. (2.74)
xeQ xe
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Noting that iz = ued® and using (2.71), one derives from (2.74) that

sup u(x,t) <cs mf u(x,t), forallr > 1. (2.75)

xeQ

On the other hand, since ||w(-, t)||z~ — 0 ast — oo, there exists #; > 0 such that for all
t > 1t > 1, we have

1
ollwC. Dz~ = 5. (2.76)

Integrating the first equation of (1.2) and using (2.76), then for all t > #; > 1 one has
— u = / u— / u-—o / uw
(=otwl) [ u- [ @7
Q Q
1
sl L
2 Ja Q
Furthermore using (2.75), we can derive that

2
/uzfsupu(x,t)~ u < cs inf u(x, 1) /u<—</ u) , (2.78)
Q xeQ Q 2] \Ja

for all + > #; > 1. Substituting (2.78) into (2.77) yields

/ / 6] (/ ”)2’

A%

v

which allows us to obtain

Q
liminf/ u > u > 0. (2.79)
t—oo Jo 26‘5
Using (2.75) again, we can derive that for all # > #; that
1
—/ u(x,t) <supu(x,t) <cs 1nf u(x,t), (2.80)
12| xeQ

which together with (2.79) gives

liminf inf u(x,t) > — >0

t—>00 xeQ 20%
and hence (2.69) holds. O
Lemma 2.16 Assume the assumption (1.3) holds. Then the solution (u, w) of (1.2) satisfies

lim [lu(,t) —1]|;2 = 0. 2.81)
—00

Proof Multiplying the first equation of (1.2) by “”;1, and integrating the results by parts, we
have

— | (u—1—1Inu)+d ( — 1) =—yx —0 uw+0
dr Jo Q Q
|W|2

/|Vw| +af w,
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which gives

d x?2
= —1-1 —Dr<Z [ |Vw? / . 2.82
dt/gz(u nu)—i—/ﬂ(u ) §4d/9| w|“+o szw (2.82)

Using Taylor’s expansion, we have
1
u—1—1nu=2—§_2(u—1)230, (2.83)

where ¢ between 1 and u. Using the boundedness of |lu(-, t)| L~ and Lemma 2.15, we know
that for some 77 > 1, there exist two positive constants c¢; and ¢, such that

c1 <u(-,t) <cp forsome tr > Tj,

which combined with (2.83) gives
1 1
—2/(u—1)2§/(u—1—1nu)5 —2/(u—1)2, for some 1 > T1.  (2.84)
Cy JQ Q crJQ

Substituting (2.84) into (2.82), we can derive for all + > T that

d )(2
— —1-1 2 —1—Inu) <2 [ |Vw]? / . (285
dl/s;(u nu)—l—q/;z(u nu)_4d/;2| w|”+o Qw (2.85)

On the other hand, using the Gagliardo-Nirenberg inequality and (2.62), we can derive that

2 1 1
, 2 L 1
IVwligz < 3D wli L llwll}y + lwlip) < callwll}y + w1 for ¢ = T,

which together with (2.68) gives

XZ t+1 t+1
. / |Vw|2+a/ / w— 0, as { — 00. (2.86)
4d J; Q : Q

With (2.86), we apply Lemma 2.4 to (2.85) and get
/(u—l—lnu)—>0, as t — oo. (2.87)
Q
Then the combination of (2.84) and (2.87) gives

/(u—l)zgcgf(u—l—lnu)eo as t — oo,

Q Q

which gives (2.81). Then we complete the proof of Lemma 2.16. O

Next, we show that ||u(-, 1) — 1|z — 0ast — oo.

Lemma 2.17 Assume the assumption (1.3) holds. Then the solution (u, w) of (1.2) satisfies
lim |lu(-,t) — 1|z = 0. (2.88)
11— 00

Proof By Lemma 2.13, we have

sup [lu(-, Dl o) =< c1-
>1

Thanks to the Arzela-Ascoli Theorem, we may pass to a sequence ¢t = fy — oo and assume
that B
u(-, ty) — v uniformly in CO(Q).
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But then v = 1 due to Lemma 2.16. Hence, by the uniqueness of subsequential limit, it
follows that u(-, 1) — 1 as t — oo uniformly in Q. Then we complete the proof of Lemma
2.17.

[}

Now we are in a position to prove global stability result asserted in Theorem 1.1.

Proof of Theorem 1.1 (global stabilization) The global stability of (1, 0) stated in Theorem
1.1 is a consequence of Lemma 2.14 and Lemma 2.17. O

3 Non-constant steady states: Proof of Theorem 1.3
3.1 Existence

In this section, we first use the Schauder fixed point theorem to prove the existence of non-
constant positive solutions to the system (1.4) under some conditions on parameters. Then
we show that the solution is unique if hoy = sup, ¢y £(x) is small. Before proving our main
results, we first use the transformation

V=UedV 3.1)
to rewrite the elliptic system (1.4) as follows:

0=dV-(e d"VV)+e WV —e d"V) —ge d"WV, xeQ,
0=ecAW —uW —re i VWV, xeQ, (32
VV.v=0, VW-v=£&Mh(x)— W), x € 9Q.

Our idea of using the Schauder fixed point theorem to prove the existence of positive solutions
to the system (3.2) can be roughly described below. Given any non-negative function V' €
CO(Q), we first consider the following elliptic problem

(3.3)
VW .-v=§&MhKx) - W), x € 0Q2

{0 — AW — uW —re~ VWV, xeQ,
and show that (3.3) admits a non-negative solution W € C I+o Q). This generates a solution
map 7; : C%Q) — C11*() such that 7;(V) = W. With this generated solution W (x), we
further consider the problem

[0=dv.(e—WVV)Jre—szV(l—e—ZWV)—ae—WWV, xee oo

VV.v =0, x €09,

and show that (3.4) admits a non-negative solution V. This generates another solution map
T CH(Q) — C%(Q) such that T:(W) = V. Now we define a composite map 7 =
T 0T : COQ) — C%() and show that 7 has a fixed point, namely there isa V € C%()
such that 7 (V) = V and W = 7;(V). Then this pair (V, W) yields a classical solution to
(3.2).

In the following, we shall denote 77(V) =: W[V] and 75(W) =: V[W]. We first show
the existence of solutions to (3.3) for given V € cY(Q).
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Lemma 3.1 For any given non-negative function V. € C%Q), system (3.3) has a solution
W[V]e CH*(Q with0 <a < 1— & satisfying

0< W[V]<hy, foral xeg, (3.5)
where hg = sup,cyq h(x).

Proof Take a sequence V; € C?%2(Q) with 6, € (0, 1) such that V; — V uniformly in Q.
Observe that 0 and /¢ form a pair of strict sub/supersolutions for (3.3). It follows by monotone
iteration scheme that there exists a minimal solution W; = W[V;] € W2 () such that
0 < W; < ho; see, e.g. [23, Corollary 1.2.4]. Moreover, by L” estimate, we see that W; is
bounded uniformly in W2P (Q). Passing to a subsequence, we may assume that W ' converges
weakly in W2P?(2) and strongly in C11% () to a strong solution W & W2 P () to (3.3).
This proves the existence of W = W[V] € clHe(Q) satisfying (3.5), where 0 < o < 1 — %
due to the Sobolev imbedding (cf. [21]) for p > n

. n
IWlerog < ctlWlyer@ S ez with f=1- " (3.6)
O

Lemma3.2 Ifhox < d, then the solution obtained in Lemma 3.1 is unique, and the mapping
V — W[V] from CY%Q) to C1H*(Q) is continuous.

Proof Our proof is divided into the following two steps:
Step 1. We first prove the uniqueness of solutions under the condition hgx < d. Assume
that W, € H'(Q2) and W, € H'(Q) are two different solutions of (3.3). Then it holds that

{8A(W1 — W) = w(W) — W) + AV(e~ d"MW, — e~ iW2 W), x € Q, 37

V(W —Ws) - v+ &EW) — W,) =0, x € 092.
Multiplying (3.7) by W1 — W>, and integrating the resulting equation by parts, we have

—ef IV (W, —Wz)|2—ss/ (W) — Wp)?

Q Q

=uf (W — W2>2+Af V"tV W, — e~ a2 W) (W) — W) (3.8)
Q Q

- /Q [+ AV (TI(Wy — Wa)2,

where f'(z) = (1— %)e—§Z and W = 61W; + (1 — 6;)W, with 6; € (0, 1). Since
0 < W; <hgfori =1,2, wehave 0 < W < hg and then f’ (W) > 0 in the case of
hox < d. On the other hand, since V € C O(S_Z) is a nonnegative function, we know there
exists a constant K > O such that 0 < V < K and then

AV (W) = >0, (3.9)

if hox < d. Then combining (3.8) and (3.9), we have ,qu(Wl — W»)? < 0, which gives
Wi = Ws.
Step 2. We show the mapping V. — W[V] is a continuous function from C°(Q) to
C'**(Q). In fact, if we assume that {V;};en is a sequence in C%(Q) satisfying lim V; =V,
11— 00

but

lim W[V;] # W[V], in C'T%Q). (3.10)

11— 00
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Then there exists a subsequence {V,-j }jen and a constant § > 0 such that

IWIVi;1 = WIVIlicite(g =6 forall jeN. (3.11)
From (3.6), we know thgt there exists a 8* € («, 1) with 0 < @ < f such that the sequence
{W[V,-j]} jeN € c+p (£2). Then by the Arzeld-Ascoli theorem there exists a sub-sequence

{W[Vi/.k]}keN converge to W in C!+e (€2). Since for any k € N, the function W[Vijk] is a
weak solution of

AWV, |
AWV, ) = pWIV re P WV v xeR
VW[V, 1-v==§0x) — W[V, D, X € 09Q2.
Then sending k — oo in (3.12), we obtain that W is a weak solution of
EAW:;LVT/+Ae_§WWV, x € Q, (3.13)
VW v =E&hx) — W), x € 99. '

Noticing Lemma 3.1 with Step 1 implies that (3.13) admits a unique solution W[V] in
C'*e(Q) for any given non-negative function V € C°(Q), it hence follows that W = W[V,
which contradicts (3.11). This asserts that the mapping V' — W[V] is continuous from
C%() to C1*% (). The proof of Lemma 3.2 is finished. o

Remark 3.3 To prove the mapping V. — W[V]is a continuous function, we used the unique-
ness of solutions to (3.4), which is ensured by (3.9). Here x ho < d is a sufficient condition to
prove (3.9). However, for all 0 < W < hg we can easily derive that (W) > —e~2, which
together with the fact 0 < V < K gives

wHAVE (W) > pn—rKe 2. (3.14)

Then from (3.14), we know that if & > A Ke~2, the results in Lemma 3.2 are still hold. Hence
the condition x /o < d in Lemma 3.2 can be replaced for large w or small X.

Next, we shall study the existence of solutions for the system (3.4). First, we construct the
sub- and super-solution of the problem (3.4) as follows.

Lemma3.4 Let W € CO(Q) be a given function withO < W < hg forall x € Q and suppose
that oho < 1. Define two constants

V., =min(e®V —oedVW) =minedV (1 — o W), (3.15)
xe2 xeQ
and
V* = max(ed" —oed VW) = maxedV (1 — c W). (3.16)
xe xe

Then V, and V* are sub-solution and super-solution of (3.4), respectively
Proof The proof follows by a straightforward computation and is omitted. O

Next, we shall show that system (3.4) admits a unique solution between V, and V*. Precisely,
we prove the following results.

Lemma3.5 Let W € C!T(Q) be a given function. Then system (3.4) admits a unique
positive solution V(W] € C e (Q) satisfying

Ve < VIW]x) < V* forallx € Q, (3.17)
where V, and V* are defined by (3.15) and (3.16), respectively.

@ Springer



Global dynamics of the toxicant-taxis model... Page 250f40 270

Proof First, we introduce a solution space as follows:
X={Vecl Q) :V,<V <V}

which is closed and convex. For given Vex , we assume that V € H!() is a weak solution
of the following problem

—dV - (e_%WVV) +kV =V +e‘§W\7(1 - e‘ﬁWV) - ae‘§WWV, x € Q,
VV.v =0, x € 092,
(3.18)

where k > 0 is a constant chosen later. This defines a solution operator @ [V] = V. Next,
we show the operator @ is continuous and ®[X] C X is relatively compact in X'.

We first show the operator @ is continuous. Since W € C I+ (), we can rewrite the
first equation of (3.18) as follows

~ 2 ~

—de~ i AV + X67§WVV VW +kV = (K + e~V G€7§WW) Ve V2

Then using the LP-estimate together with the Sobolev imbedding theorem and Agmon-
Douglas-Nirenberg theorem, it follows from (3.19) with the boundary condition VV - v =0
on 92 that

D1 [Vi] — @1 [Valllze <[ @1Vi]— @1[Valllcres gy
<cillk + e 1Y — eIV WYV, = Vo) — e TV (V2 = V211
<ci(k + 1+ |Wil=) Vi = Vall
+e1(IVillzee + 1Vall) Vi = Vallpe

<clVi = VallLe,
where

ci=ai(k +1+0IWles + il + 172l ) < oo

due to W € C1*() and ‘7, e C%Q) fori = 1, 2. Hence the continuity of the operator @
is proved.

Second, we show that ®[X] is relatively compact in X In fact, due to W € C I+a ()
and V € C%(), we have

~ 2 ~
Ik +e @V —gem VW)V — e~ 7 VP2 1
<k +14+0|Wlge + VIV < 3

and .
lxe 7YV W]Lx < xIVW L% < cs.

Then by the elliptic regularity applied to (3.19), we have V € C'*#(Q) for all 8 € (0, 1),
which implies that ®;[X] is relatively compact in X.

At last, we show that ®([X] C X for large «. If ‘7(x) > V,, we let V(x) = Vi +gx),
where g(x) is a continuous non-negative function satisfying 0 < g(x) < V* — V, for all
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x € . Then from (3.18), we have

—dV - [e IV (V, = V)] 4+ k(Vs — V)
= —Kkg — e_%WV(e§W -V- ae§WW)

2 2
=—kg—(Vitge @V eV —V, —ced W) +g(V, + g)e- 4V  (320)

2
<[(Vi+ge @V —klg
<(Ve+V*—x)g,

where we have used the facts 0 < V,, < el W1—oW)and0 < g(x) < V*.Then multiplying
(3.20) by [(Vs — V)+]* and integrating the result by parts, we have

2d/ VIV, = VIRV — Vs +xf (Ve — V)P

e @ (3.21)

< / (Ve 4 V* = 0gl(Ve = V)T
Q

By choosing « large enough such that k > k1 := V, 4+ V*, from (3.21), we have fQ[(V* —
V)_,_]3 =0, and hence V > V,.

Using similar arguments as above, we can find a constant k; > 0 such that V < V* if
k > k. Hence, choosing k¥ > «k, := max{kq, k2}, we have V, < V < V* which implies
O [X] C X fork > k4.

In summary, we have proved the operator ®; : X — X is continuous and ®1[X] C X is
relatively compact in X'. Then by the Schauder fixed point theorem, there exist a fixed point
V € X such that ®([V] = V. That is, for a given W € CHe(Q), there exist a solution
V € X to the system (3.4) and hence

(3.22)

—d€_§WAV + X€_§WVV VW +V = H(Vv W)’ X € Q’
VV.v=0, * € 9%,

where X . X
HOV W)=V (14 e78V — e FVY — ooV W),

Since V € X and W e C't%(Q), we have that |H(V, W)|lL~ < c¢s. Then applying the
elliptic regularity estimate to (3.22), we can derive V[W] € C I+ (Q) with some a € (0, 1).
Then using again the fact W € C!'7%(Q), one has | H(V, W) lce sy < c6,andhence VW] €
C2*+(Q) follows by the elliptic regularity again. Moreover the positivity of V[W] follows
from the fact V > V, > 0.

Finally, we shall show the uniqueness of solutions for the system (3.4) with given W €
C'1(Q) based on some ideas from [8]. We assume that the problem (3.4) has two different
positive solutions Vi and V,. Then they solve the following equations weakly

AR CRr A AATA

2
v :(1—OW)67§W—€77XWV[ for i =1,2,
i

and hence

dv - (e 1"V LAV CRAAAD N

Ay
—e d Vi — V). 3.23
Vi V) e W 2) (3.23)
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Multiplying (3.23) by V12 — V22, and integrating the result by parts, we have

2
—f eV = V)R(V) + V)
Q

4w 43 4w VP
=d | e d"VV.V|Vi——=)+d | ¢ d"VV,- V[V, — —
Q Vi Q Va

V. 15
:d/ TV IV —222VV Vs 4 VY2
Q Vi V]

1% v?
+df e~V |VV2|2—2—1VV1'VV2+—12|VV2|2
Q Va 1%

V 2 1% 2
:d/ A (‘vvl - —]VV2’ n ‘vvz - ivvll ) >0
Q Vs Vi
which implies that V; = V5. This completes the proof. O
Lemma 3.6 The mapping W — V[W]is a continuous function from C(Q) into CO(Q).

Proof We shall show the conclusion by using the uniqueness of solutions for (3.4). Let
{W;}ien be a sequence in C!17%(Q) satisfying

lim W; = W.
1—> 00
Arguing by contradiction, we assume
lim V[W;] # V[W]. (3.24)
11— 00

Then there exist a constant 6; > 0 and a subsequence {Wij }jen such that for all j € N
IVIWi;1 = VIW]llLe = 61. (3.25)

Since { VIW;; 1} jen is uniformly bounded in C%t2 () and hence equi-continuous in C 2(€),
we can use the Arzeld-Ascoli theorem to find a sub-sequence {V[Wijk 1}ken and V such that

Jim [VIW; 1= Vg = 0. (3.26)

Since for any k € N, the function V[Wijk] > () satisfies

—_XW.. —_XW,. a7
0=dV-(e * "k VVIWi, D +e 47k VW, 11 —e 4 VIWi, 1-oW;,), xeQ,
VVIWi;, 1-v=0, X € 0%,
which together with (3.26) gives
0=dV (e d"VV)+e @VV(1 —e @VV)—ge iYWV, xeQ, (3.27)
Vv V= 07 X € 897 .

by taking k — oo. Since the problem (3.27) has a unique positive solution V[W] for given
W e C'*%(Q), we derive that V = V[W], which contradicts (3.25). The proof is complete.
[}

Now we are ready to prove the existence and uniqueness of solutions to (1.4) asserted in
Theorem 1.3.
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Proof of Theorem 1.3 (existence and uniqueness) We divide the proof into two steps.
Step 1: Existence. Consider the existence of solutions in the following closed and convex
solution space

X:={Vecl'Q):V,<V <V,

with V, and V* are defined by (3.15) and (3.16), respectively. From Lemma 3.1 and Lemma
3.2, we know that for any V € X, there exists a continuous operator 7;: C%(Q) — C!T*(Q)
such that W = 71[V] € C%(Q) which solves (3.3). For this W = 7;[V], from Lemma
3.5 and Lemma 3.6, we can define a continuous operator 7: C e @y — C%Q) such that
V = T5[W] solving (3.4). Define a composition operator 7 : CYQ) —» CYQ) as follows:

TIV]:=T oIVl ="DIn[VI].

Clearly, 7 is continuous since both operators 7; and 75 are continuous.
From Lemma 3.1, we know that 0 = W <hpand W € C H""(Q), which together with
Lemma 3.5 gives V = T[W] € C**%(Q) and

Vo<V V¥,

andhence 7[X] C X isrelatively compact in X'. Hence, by the Schauder fixed point theorem,
the operator 7 has a fixed point V € X, which in fact belongs to C 2+ (Q). Moreover, by
the Schauder estimates, we have W = 7[V] € C2T% (). Hence the pair

(TIVL, Li[vD) = (V. W)

yields a classical solution to the problem (3.2).

Next, we shall prove the solution pair (V, W) obtaine_d above is positive. Since 0 < V,, <
V < V*, we only need to prove W(x) > 0 for all x € Q. To this end, we first rewrite (3.3)
as

0=cAW —c(x)W, x €, (3.28)

VW .v=~&MhKx)—W), xea,
with c(x) = u + re iV > 0. Using the maximum principle [22, Lemma 3.5], we know
that W can not achieve non-positive minimum in € and hence for all x € Q it holds that
W(x) > 0. Then to show W(x) > 0 for x € Q, it remains to show W(x) > 0if x € 3.
Assume that there exist some xg € dQ2 suchthat W (xg) < W(x)forallx € Q. If W(xg) <0,
we can use the Hopf’s boundary point lemma [22, Lemma 3.4] to derive & (h(xo) — W (x0)) =
VW (x0)-v < 0, which contradicts the fact W (xo) < 0, and thus W (x) > 0 for x € Q. Hence
we prove that (3.2) admits a positive classical solution (V (x), W(x)) € CHe(Q) x C2H(Q)
satisfying

0<V,<V(x)<V*and 0 < W(x) < hg, for x € Q,

which yields a positive classical solution (U (x), W(x)) to (1.4) satisfying (1.7) by (3.1).
Step 2: Uniqueness. To show the uniqueness of the positive classical solution
(U (x), W(x)) under the assumptions that A is small, we first show that

Wi — 0 as hg — O. (3.29)

In fact, using [24, Theorem 9.4 in Chap. 1], we can find a bounded function g € C®(Q)
satisfying

g(x)=h(x) and Vg-v =0 on 2.
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Letting Z(x) = g(x) — W(x) for x € 2, we can derive from (1.4) that

EANZ —nZ =ecAg—ug— A UW, x e,

(3.30)
VZ - v+E&Z =0, x € 092.

Then applying Agmon-Douglis-Nirenberg L7 estimates and using the facts g € C®(Q),U e
C2(Q) and 0 < W(x) < ho, from (3.30) we have
1Zllw2r < cilleAg —pug —AUW|iLr < c2(lAglLx + I8l + Ul W)
< c3(1 + ho),
for all p > 1 and hence

[Wllw2r =g = Zllw2r < ca(l + ho). (3.3D)

Choosing p = 2n in (3.31), and using the Gagliardo-Nirenberg inequality and the fact
0 < W(x) < hg, one has

2 1
Wiyt = IVWlizs + Wiz < esIWIE 0, W + [ Wiz
1
< co(1+ho)Shi + ho,

which gives (3.29).
Assume (U, Wy) and (U, W») are two different solutions of (1.4). Then from (1.7), we
can derive that

_xho " .
loye” @ <U; <{" fori=1,2, (3.32)
where £, = min {e§z(1 —oz)}and £* = max {e§2(1 —02)}.
0<z=<hg 0<z<ho

Let U = U; — Uy and W = Wi — W». Then from (1.4) we have

0=V -[dVU + x(UVW) + Uy3VW) + U — UU, + Us) — oUW, —oUsW, x € Q,

0=cAW — uW —AUW, — AU, W, xeQ,

[dVU + x(UVW; +U,VW)]-v =0, x €0Q,

VW-v+EW =0, x € 99.
(3.33)

Multiplying (3.33) by U, and integrating the result by parts, we have
d/ VU + / (Ui +U)U0% + 0 / wi0?
@ @ @ (3.34)
= —x/(UVW1 +U2VW)~VU+/ Uz—a/ U,WU.
Q Q Q
On the other hand, we can use the Holder inequality and Young’s inequality to derive
—x / (UVW, + U, VW) - VU
Q
d ~ X2 ~ ~ 5
<— | |VU+Z= | [UVW +UyVW| (3.35)
2 Ja 2d Jq

d 02 x* 2 ~2 X’ 2 0712
<z | VU + =VWilix | U+ =|U2ll7= | VW],
2 Ja d Q d Q
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and
~ ~ ~ 1 ~
—0/ U, WU 502/ U2W2+f/ U,U>. (3.36)
Q Q 4 Ja

Substituting (3.35) and (3.36) into (3.34), we have

d ~ 3 2 ~
f/ |VU|2+/ U1+—U2—1—X—||vwllliw U2
2 Jo o 4 d

2 2
Us||? o ~ ~
- X0 /|VW|2+02/ U, W2,
d Q Q

which, together with (3.32), gives

xhg

d ~ Tloe™"d 2 -
f/ VOP+ | 2 - X vw s /U2
2 Jq 4 d Q

21p%(2

¢ ~ ~
Py /lVW|2+a2/ U W2,

d Q Q

We multiply the second equation of (3.33) by W to obtain

(3.37)

/|VW| +u/ W2 + et W2+A/U2W2:—A/ wiOW

<uf W 4 ||W1||Loo/QU2,

~ ~ A2 ~
5/ |VW|2+A/ U, W? < —||W1||ioc/ U>. (3.38)
Q Q 4p Q

which yields

Let y, == ng'f;F + ”7 Then multiplying (3.38) by y., and adding the result to (3.37), we
have

xho

d ~ Tlie™ d x? 2 A2y 2 / ~2

~ VO + | = 1= 2 VW P — U?<0. (339
2/Q| | 7 7 IVWilLe = 7 0?0 (339

Noting that £, = min {e@%(1 — oz)}, we have
0<z=<hg

Ly — 1 as hg — 0. (3.40)

On the other hand, from (3.29) we have |Wi|y1.c — 0 as hg — 0, which together with
(3.40) gives

7¢ -xp 2

e

im [ 1 X vwy 2.
hop—0 4 d

This yields a small constant 2, < h* := min { L % } such that the following holds if g < &

d ~ -
5/ |VU|2+C7/QU2 <0, (3.41)
Q
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for some positive constant ¢7 € (0, %). Then (3.41) implies U= 0, thatis Uy = Us.
~ h
Finally with U = 0 and the fact U, > Z*e’)%) > 0, from (3.38) we obtain

512 —to [ =
e | |IVW|" 4 Alye @ W= <0,
Q Q

which gives W = 0and hence W1 = W,. Then the uniqueness of solutions to (1.4) is proved.
O

3.2 Global stability

In this subsection, we further impose that €2 is two-dimensional and show that the positive

non-constant steady state (U, W) is globally asymptotically stable if 4o > 0 is sufficiently

small. We first use the Harnack inequality again and the fact o ¢ < 1 to derive that ing2 u(x,t)
xXe

has a positive lower bound as time is large.

Lemma 3.7 Let (u, w) be the solution of the system (1.2) with h(x,t) = h(x) obtained in
Theorem 1.1 and hy = sup,cyq h(x). Ifohy < 1, then

liminf inf u(x, 1) > &, (3.42)

—>00 xe

where { > 0 is a constant independent of t.

Proof Let w(x, t) be the solution of the following problem

W, = eAW — uW, xeQ,t>0,
Vw-v=E&EMhx)—w), x€d, t>0, (3.43)
w(x,0) = wo(x), x € Q.

Then using the comparison principle, one has

0 <w(x,t) <w(x,t). (3.44)
Using the method of energy estimates, we can derive from the system (3.43) that

lim [[@(x, ) — wse(x) 2o =0, (3.45)
—00

where w, (x) € C*(Q) is the solution of (1.6).
In fact, letting D(x, ) = W(x, ) — w4 (x), then from (3.43) and (1.6) one has

UV = eAV — uv, xeQ,t>0,
Vo-v+E&0=0, x €0, >0, (3.46)

2(x,0) =Do(x) = wo(x) — wx(x), x € Q.

Then we multiply the first equation of (3.46) by v and integrate the result by parts to obtain
d - ~ ~ ~
—/ vz—i—e/ |Vv|2+u/ v2+$e/ 72 =0,
dr Jq Q Q Fle)

~ .y e
VG, Dl 2 < llwo(x) — wyll e 2" < cre” 2" (3.47)

which gives
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Applying the parabolic regularity, we can derive from (3.46) that [|[0(-, )|l 1.0 < c2. Then
we use the Gagliardo-Nirenberg inequality and the fact (3.47) to derive

e 1 _u
(W(, 1) — wyllpee = V¢, )z < 3]0, f)|| Lo DC D17, < cae™ 77,
w L

which proves (3.45).
Noting that 0 < w(x) < h¢ and using (3.44)-(3.45), we can find r* > 1 such that for all
t >r* > 1that
1—o0ohy 14+ 0oho

0 ) <h = s
<w(x,t) <hy+ o 2

and hence

14+o0hy
2

ollwC, )|l < <1, forall t>1*> 1. (3.48)

Integrating the first equation of (1.2) and using (3.48), one has

4 u—/u_/u o [wwz ol [u-[@ze [u- [

1— Uh()
2

with ¢; =
Then the remaining proofs are the same as those for Lemma 2.15 and will be omitted for

brevity. This completes the proof.
O

Next, we shall study the global stability of the positive (coexistence) steady state under the
smallness assumptions on /y. More precisely, we have the following results.

Lemma 3.8 Let (u, w) be the global solution of (1.2) with h(x,t) = h(x) Z 0 and hg =
SUp,cayq h(x). Assume (U, W) is the positive non-constant steady state of (1.4) obtained in
Theorem 1.3. Then there exists a h > 0 and t,, > 1 such that the following estimate holds for
all0 <hg<h

lu(, 1) = Ullee + llw(-, 1) = Wiz < cre™, forall t > t, (3.49)
where ¢ and c; are two positive constants independent of t.
Proof Let =u — U and w = w — W. From (1.2) and (1.4) we can derive that

Uy =V - (dVi + xuVw + xuVW)+u(l —u —U) — otiw — oUW,
Wy = eAW — puw — Auw — AW,

~ ~ ~ ~ - (3.50)
dVu + yuVw + xuVW)-v=0, Vw-v+£&w =0,
u(x,0) =ug(x) = U, w(x,0)=wp(x)—
Then integrating the first equation of (3.50) multiplied by , we have
1d ~ ~ ~
2 u2+d/|Vu|2+/u2(u+U—l)+0/wHQ
Q Q Q Q (3.51)

=—X/uvw.vﬁ—xfisz.viz—a/ U,
Q Q Q

Noting the facts ||u(-, t)||pc < M and ||U||p~ < c;duetoU € C%(), we can use Young’s
inequality to derive that

22q2

U o d -
—x/Qqu-wsxnuumf V|| Vil < IVl + IV@|7,. (3.52)
Q
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and
—X/ uVW - Vi < x[IVW| el 2| Vil 2 < %IIVﬁIIiz + %ZHVWH%MWHiz,
¢ (3.53)
as well as

O'
—G/QUwu < olUlrellwl2 Nl < *Ilulle + 7II 172 (3.54)

Then substituting (3.53), (3.52) and (3.54) into (3.51), we obtain

d [ - - -
—/u2+d/ |Vu|2+2/ (u—l—U—l—;—z——llVWHLoQ)—}—Za/wu2
dr Jo Q Q 4 Q

<2X2M2”V 2 +202c2” 2 (3.55)
= d L2 {2 L2

< a(IVBI7, + [B]2,),

where ¢; = 2% ZM2 + 2(7;26‘ We multiply the second equation of (3.50) by @ and integrate

the result by part to obtain

1d - - ~ ~ ~ ~~
—— wz—i—e/|Vw|2+ufw2+A/uw2+8$/ w2=—A/ Wuw
2dt Jo Q Q Q Fle! Q

20w 2
iﬁ/ wz_i_}» ”W”Loo/,’ZZ’
2 Ja 2u Q

which gives

d [ - . ~ ~ o MWllie [~

—/wz—l—Ze/|Vw|2+u/w2+2A/uw2+28€ wzfﬁfu?

dit Jo Q Q Q Flo) M Q
(3.56)

. 2¢ . .
Then multiplying (3.56) by ¢3 = %2 + % and adding the result to (3.55), we end up with

d [ . 9 - - g
—/(u2+c3w2)+df IVM|2+62/ |Vw|2+02/ w*
dt Q Q

3.57)

.)\2‘/112Do (

+2/ u+U—1—9——||VW||LOO—u <0.
Q 4 7

Dueto U — 1 as hgp — 0and (3.29), there exists a constant & > 0 such that if 0 < hg < h
one has

— X <U-1<2 (3.58)
and

WAV &
2

2
X 2 C
VW [[foo + —————=— < 3.59
7 VWl + " < (3.59)

Noting the fact litm inf ing2 u(x,t) > ¢ in (3.42), we know that there exists 7, > 1 such that
—>0 xe
3
inf u(x, ) > 2 forall t > T, > 1,
XeQ 4
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which combined with (3.58) and (3.59) gives

2 A2
wtU—1-2 X owp, - MWl S 2 (3.60)
4 d m 4
forO < hg <handt > T, > 1.
Substituting (3.60) into (3.57), we can find a ¢4 > 0 such that

d - - ~ ~
— f (u2 +C3w2) +C4/ (u2 + C3w2) <0, forallt > T, > 1,
dt Q Q

which gives

MG t) = Ullz + lwC. 1) — W2 < cse” 2, forallt > T, > 1. (3.61)

For 0 < 6 < 1, we recall the interpolation inequality

n 0
If @) < c6ll fll g 111 g, for f e LY@ N C’ (. (3.62)

To see that, choose a point x € 2. Then

£ < Cl/B ) {f(x M ik f("”)'}dx < s (€I Flp + €l fller).

en |x|9

1

. 11 | 7"

By choosing € = TP , we deduce (3.62).
c? (&)

Along with the facts sup,~ [[u(-, 1)l co(g) < co from Lemma 2.13 and U (x) € C*(<),
and using (3.61) and (3.62) withn = 2, forallt > T, > 1 one has

2 o

luG, 1) = Ul < crolluC,6) = Ul lut, ) = Ul
< . (3.63)

<cnluC, 0 = Ul < cpe” @0,

On the other hand, with the facts [[w(-, )|ly1.0 < c13 and W(x) € C2(Q), we can use
Gagliadro-Nirenberg inequality to derive

1 1 [
lw(, 1) = Wiz < crallw(, 1) = Wil o llw( 1) = Wi, <cise”#'. (3.64)
Finally the combination of (3.63) and (3.64) gives (3.49). The proof of Lemma 3.8 is

complete. O

Proof of Theorem 1.3 (global stability) The global stability result in Theorem 1.3 is a conse-
quence of Lemma 3.8. O

4 Toxicant only steady state: Proof of Theorem 1.5

In this section, we again impose that 2 is two-dimensional and study the global dynamics
of toxicant-only steady state (0, wy), where 0 < wy < sup,.3q h(x) is the unique non-
constant positive solution of (1.6) (see the statement in the Introduction). We first show
that the species u is uniformly persistent and hence the toxicant only steady state (0, wy) is
uniformly strongly repelling if o sup, .5 2(x) < 1, as described in the following lemma.
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Lemma4.1 Let (u, w) be the solution of the time-dependent problem (1.2) with ug = 0. If
O SUPyQx[0,00) (X, 1) < 1, then the species u is uniformly persistent, i.e. there exists 5o > 0
independent of initial data such that

lim inf mf u(-,t) > 8.
=00 xeQ

In particular, if h(x, t) = h(x) satisfies o sup,cyq h(x) < 1, then the toxicant only steady
state (0, wy) is uniformly strongly repelling.

Proof Fix a solution (u, w) of (1.2) with ug = 0 and denote

hoo == sup h(x,1t).
992x[0,00)

Under the assumption o/, < 1, we may choose § € (0, 1) sufficiently small such that
ohe + 38 < 1.
Define
={u(x,1) € C°([0,00) x Q) 1 u < & for (x,1) € Q x [0, +00)}.
Observe, by the maximum principle, that

w(x, 1) < heo + sup woe M.

xeQ
So there exists #yp > 1 such that
8 1-28 .
wx, 1) <hscog+— < in 2 X [ty, 00). “4.1)
o o
Next, suppose
u(-,t) € Ns in(t1,1) forsome (t1,1) C (t9, 00). 4.2)

It is straightforward to see that r, < 0o, since

d
—/u:/u(l—M—O'UJ)ZS/M in(t]7t2)s
dt Q Q Q

512 z/ u(x,z)ze‘“’—’“/ we,t) in (11, 1), 43)
Q Q

which implies

Therefore, it follows that
limsup sup u(-, t) > 6,
t—>00 xef2

which, combined with Harnack’s inequality (2.75), gives

cslimsup inf u(-, t) > limsup sup u(-, t) > 6, “4.4)
t—00 XEQ =00 xeQ
where c¢5 > 0 is the Harnack’s constant in (2.75) and we may assume c5 > 1 without loss of
generality. Since § and ¢5 > 0 are independent of initial data so long as ug # 0, the species
u is said to be uniformly weakly persistent [32].
Next we will show that lim inf inf u > %, where ¢5 > 1 is the Harnack’s constant in

t—00 xe 5
(2.75).
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If supu > & for all + > 1, there is nothing to prove due to Harnack’s inequality (2.75).

x€Q
Otherwise, by (4.4) we suppose that (4.2) holds for some #1, 7, such that

supu(-,t1) =supu(-,tp) =68, and supu(,t)<§ fort e (t1,n).
xe xeQ xe

Then we proceed to derive auniform lower bound forinfqy ;, 1) u. Indeed, if sup, cq u(-, t1) =
8, then fQ u(x, ) > |2 % thanks to Harnack’s inequality (2.75) again. Then (4.3) implies
that

51| > 65(12—t1)|g2|£7
= .

which implies

1
2 — | =< s loges.
Applying (4.3) again, we obtain
s-1)y o S 8
u(x,t) > e "VQl— > |Q— forallt € (1, 12).
Q s cs
By Harnack’s inequality, it follows that
1)
¢s5|2] inf u(-, 1) > / u(x,t) > |Q|— forallz e (11, 1).
xeQ Q Cs5
This completes the proof that « is uniformly bounded from below, in the sense that

e 8
liminf inf u(-, 1) > .
=00 xe CS

This asserts that the species u is uniformly persistent and the proof is complete. O

Next we consider whether (0, w,) is globally stable if chg > 1. In fact, we can show that

(0, wy) is globally asymptotically stable provided o M}, > 1, where M}, := min w,(x) and
xeQ
Wy (x) is the solution of the system (1.8). More precisely, we have the following results:

Lemma 4.2 Let (u, w) be the solution of the system (1.2) with h(x,t) = h(x) = 0 and
(0, wy) is the corresponding toxicant-only steady state. Then if o My, > 1 with M}, is defined
in Theorem 1.5, the toxicant only steady state (0, w,.) is globally asymptotically stable with
exponential decay rate.

Proof We divide our proof into two steps:

Step 1: We first show that ||u(-, #)]|> — O exponentially as t — 0. From Theorem
1.1, there exists a constant M > 0 independent of ¢ and o such that 0 < u(x,1) < M. Let
w(x, t) be the solution of the following system

wy =eAw — (u+AM)w, x € Q2,t>0,
Vw-v =E&h(x) —w), x €0RQ,1 >0, 4.5)
w(x, 0) = wo(x), x € Q.

Then using the comparison principle, we have

w(x,t) > w(x,1t). (4.6)
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To proceed, we claim that
lim ||W(-, 1) — We(x)] e = 0, 4.7
—00

where 0 < W, (x) < hq satisfies (1.8).

The existence of unique non-constant positive solution for the system (1.8) can be proved
by the method of super-lower solutions using the same arguments as for (1.6).

Let M}, := min w,(x). Then the combination of (4.6) and (4.7) implies there exists #,, > 1

xeQ
such that
w(x,t) > wx,t) > M, — 8§, forall t > t,, (4.8)
with §; = % > 0. Integrating the first equation of (1.2) and using (4.8), for all r > t,,
we have

d 1—oMj,
—/u:/u(l—u—ow)f(l—aMh—}—mSl)/uzifu. 4.9)
dt Jq Q Q 2 Q

Since o Mj, > 1, we can derive from (1.9)

(=0 Mp)(=1:) (=0 My)(=1:)
luC, Dl <e p / u(x, t,) < Moe ) , forall t>1t,. (4.10)
Q
Using (4.10) and the interpolation inequality (3.62) with n = 2, we have
0 n_ _OoMy—1),
luG, Ol < etlluC, Ol luC D15 < coe” 200" fort > 1. (4.11)

Hence, it remains to show (4.7). In fact, letting v(x, 1) = w(x, t) — W« (x), one has

Uy = AV — (U + AM), xeQ,t>0,
Vio-v+&v=0, x €0Q,t >0, (4.12)
U(x,0) = Vp(x) = wo(x) — Wy (x), x € Q.

Then multiplying the first equation of (4.12) by v and integrating the result by parts, we have

d [ o -2 - fos ~2
v 4e | |IVOT+(n+AM) [ vV =¢ vVou-v = —&¢ v- <0,
dt Jo Q Q 00 90

and hence
3G, 0135 < [1T0ll7 e~ WM = Jlug(x) — by (x)[|7 e~ WM, (4.13)

Since Wy (x) is the steady state for the system (4.5), using the elliptic regularity estimates,
one has W, (x) € C2(). Hence from (4.13), we have

. . s M
[, 7) = Well2 = [0C, Dl 2 < cze” 2 “4.14)

On the other hand, using the parabolic_regularity, from (4.5) we derive that || W (-, )|l y1.00 <
c4, which together with W, (x) € C2(Q) gives

lW(-, 1) — Wyl i < cs. (4.15)

Then we can use the Gagliardo-Nirenberg inequality and (4.14)-(4.15) to derive

; - - T - L
W, 1) = wyllree < collw(-, 1) = Wl 1 o I, 1) — Wyl [, < c7e” —F7,

which gives (4.7).
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Step 2: Next, we shall show that ||w(-, 1) — w||L — 0 with exponential decay rate as
t — oo. To this end, we let v(x, ) = w(x, t) — wy(x). Then from (1.2) and (1.6), we see
that v satisfies
vy = AV — v — Auv — Awsu, x € Q2,1 >0,
Vv-v+&v=0, xe€d,t >0, (4.16)
v(x,0) = wo(x) — wi(x), x € Q.

Then multiplying the first equation of (4.16) by v, and integrating the result by parts and
using the fact 0 < wy(x) < hg, we have

d
— vz—l—/ |Vv|2+u/v2+k./uv2+.§ v?
dr Jo Q Q Q Bl

k2h2
=—k/w*uvfkho/|uvlsﬁ/v2+—° u?,
Q Q 2 Ja 2 Jo

which, together with (4.11), gives

AZh? AZh2|Q —oMy—1)

Rl R ol e R e T N R
dr Jg 2 Ja 2u Ja 2u

for all ¢ > t,. Then solving (4.17), one can find o] = % min{%, £} > 0 such that

o

lw(, 1) — willg2 = (-, D2 < cge™ ", forall 1 > t,,

which along with the Gagliardo-Nirenberg inequality as well as the facts [[w(-, )| 1.0 < ¢1
and wy(x) € C2(Q) gives

1 1

i i —at

lw(, 1) = wallee < w1 — wall oo lWE ) —wall;, <croe™2,  (4.18)
for all ¢ > t,. Then the combination of (4.11) and (4.18) completes the proof. m]
Proof of Theorem 1.5 Theorem 1.5 is a consequence of Lemma 4.1 and Lemma 4.2. O
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