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Abstract: Panel count data are commonly encountered in analysis of recurrent

events where the exact event times are unobserved. To accommodate the poten-

tial non-linear covariate effect, we consider a non-parametric regression model

for panel count data. The regression B-splines method is used to estimate the

regression function and the baseline mean function. The B-splines-based estima-

tion is shown to be consistent and the rate of convergence is obtained. Moreover,

the asymptotic normality for a class of smooth functionals of regression splines

estimators is established. Numerical studies are carried out to evaluate the finite

sample properties. Finally, we apply the proposed method to analyze the non-

linear effect of one of interleukin functions with the risk of childhood wheezing.

Key words and phrases: Empirical process; Maximum pseudolikelihood estima-

tor; Regression splines; Wheezing.
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1. Introduction

In many longitudinal studies, subjects’ information is observed at several

random discrete time points during the follow-up period. Instead of the event

times, only the number of events before each encounter (visit) is observed. The

number of visits and visit times vary among individuals. This kind of data is

often referred to as panel count data. Unlike recurrent event data, in panel count

data, the exact times of the events are not observed, and the number of events in

each observation interval can be greater than one. For example, in a childhood

wheezing study conducted at the Indiana University School of Medicine, 105

infants at a high risk of developing childhood asthma were followed for 5 years.

The interleukin function, airway reactivity, and demographic information were

collected at enrollment and the occurrence (number) of wheezing episodes were

collected on a monthly basis over the entire follow-up time, which resulted in

panel count data.

Statistical methods for panel count data have been studied extensively in

the past three decades. Thall and Lachin (1988) studied the data from NCGS

using a marginal model. They proposed a non-parametric estimation of the rate

of the counting process. Sun and Kalbfleisch (1995) estimated the mean function

using the isotonic regression method. Lee and Kim (1998) analyzed correlated

panel data. Wellner and Zhang (2000) studied the large sample theory for the
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likelihood-based non-parametric estimates for panel count data. They showed

that the non-parametric maximum pseudolikelihood estimator (NPMPLE) based

on the nonhomogeneous Poisson process is exactly the isotonic regression esti-

mator of Sun and Kalbfleisch (1995). In addition, they proved the consisten-

cy of NPMPLE and derived the convergence rate. Zhang (2002) investigated

a semi-parametric regression model of panel count data with the pseudolikeli-

hood approach. Nielsen and Dean (2008a,b) considered an estimating equation

for recurrent event panel data without providing theoretical properties. Other

methods of semi-parametric regression analysis for panel count data were devel-

oped by Sun and Wei (2000), Wellner and Zhang (2007) and Zhu et al. (2015).

For a comprehensive review of statistical methods for panel count data analysis,

see Sun and Zhao (2013).

The spline-based functional analysis has also been conducted for panel coun-

t data. Lu, Zhang, and Huang (2007, 2009) employed monotonic B-splines to

model the mean function, and developed a spline-based semi-parametric pro-

portional mean model. These papers demonstrated the benefits of spline-based

estimators in analyzing panel count data. However, the effects of covariates on

the mean function were assumed to be multiplicative in Lu, Zhang, and Huang

(2009), which may be too restrictive in some applications.

In practice, the functional forms of covariate effects are often unknown or
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might be too complicated to be explicitly specified. For example, in the afore-

mentioned childhood wheezing study, it is of interest to ascertain the effect of

the interleukin function during infancy with the risk of wheezing occurrence.

However the functional form of the interleukin 5 effect is unknown and can pos-

sibly be non-linear as shown in Figure 3. Proper analysis of such data is lacking

because of non-existence of non-parametric regression in the literature of panel

count data.

In this article, the regression spline technique is used to model the regression

function of the covariates and the baseline mean function using B-splines. We

modify the proportional mean model for panel count data of Lu, Zhang, and Huang

(2009) by incorporating non-linear covariate effects, and conduct a B-splines

based functional analysis for the covariate effect using the pseudolikelihood ap-

proach of Zhang (2002) for its numerical advantages. Our method shows that

the B-splines-based NPMPLEs of the baseline mean and the regression function

are consistent and converge to the true corresponding functions at the rate of

r/(1 + 2r), where r is the degree of smoothness of the baseline mean and the

regression function. The asymptotic normality for a class of functionals of the

B-splines-based NPMPLE of the regression function is derived for making a sta-

tistical inference.

The remainder of this paper is organized as follows. Section 2 presents the
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model and estimation procedure. Section 3 illustrates the asymptotic proper-

ties. The finite sample performance of the proposed estimators is numerically

evaluated by simulation studies in Section 4. Section 5 applies the proposed

method to the aforementioned wheezing study. Section 6 concludes the paper

with some discussions. Technical details are outlined in the online Supplemen-

tary Materials, which can be accessed via ftp://public.sjtu.edu.cn/ using account

name yuzhangsheng and password public.

2. Model and Regression B-spline Estimators

First, we introduce some notation. Let N = {N(t) : t ≥ 0} be a counting

process and K be the number of observation times. Denote T = {Tj : j =

1, 2, . . . ,K} the vector of ordered observation times with 0 < T1 < . . . < TK .

The counting process N(t) registers the number of events in a sequence of in-

tervals made by T1, T2, · · · , TK , which results in panel observed event counts

satisfying 0 ≤ N(T1) · · · ≤ N(TK). The observed data of a subject consist of

X = (K,T,N, Z), where T = (T1, · · · , TK), N = (N(T1), · · · ,N(TK)) and Z is a

vector of p-dimensional covariates. Suppose we have n independent and identi-

cally distributed copies of X denoted by

{Xi = (Ki, Ti,N(i), Zi), i = 1, · · · , n}
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with Ti = (Ti,1, · · · , Ti,Ki), Zi = (Zi1, . . . , Zip)
T and N(i) = (N(Ti,1), · · · ,N(Ti,Ki)).

We consider the following mean model for panel count data:

E{N(t)|Z} = Λ0(t) exp{β0(Z)}, (1)

where β0(Z) = β01(Z1)+ . . .+β0p(Zp), with β0j(·) an unknown function without

a pre-specified functional form of Zj for j = 1, 2, · · · , p, and Λ0(t) is the unknown

cumulative baseline mean function. To ensure the mean model (1) identifiable,

we require β0j(0) ≡ 0 for j = 1, 2, · · · , p. For the rest of the paper, we only

present the model for regression function β0(Z) with one covariate unless other-

wise specified for the sake of algebraic convenience. The estimation procedure

and theoretical justification can be readily generalized to models with p > 1.

Note that for subject i, the panel cumulative counts N(Ti,1), . . . ,N(Ti,Ki) are

correlated and it is generally difficult to specify their correlation structure. In

this paper, we adopt the pseudolikelihood approach developed by Zhang (2002),

which models the marginal distribution for each N(Tij) and assumes mutually in-

dependence among N(Ti,1), . . . ,N(Ti,Ki). It follows that the log pseudolikelihood

function for (β,Λ) is given by

lps(θ) =
n∑

i=1

Ki∑
j=1

[N(Ti,j) {log Λ(Ti,j) + β(Zi)} − Λ(Ti,j) exp{β(Zi)}] . (2)
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We propose to estimate the functions log Λ and β(z) using the regression B-splines

method. Let T = {ti}mn1+2l1
i=1 be a sequence of knots that partition the time

interval, [σ1, τ1], into mn1 subintervals J1i = [tl1+i, tl1+i+1), i = 0, . . . ,mn1 − 1

and J1mn1 = [tl1+mn1 , tl1+mn1+1] with σ1 = t1 = · · · = tl1 < tl1+1 < . . . <

tmn1+l1 < tmn1+l1+1 = · · · = tmn1+2l1 = τ1, where mn1 = O(nv1) for 0 < v1 <

1
2 is the number of interior knots and l1 boundary knots t1 = · · · = tl1 and

tmn1+l1+1 = · · · = tmn1+2l1 on each side are needed to complete the B-splines

basis functions for the l1th order B-splines (Schumaker, 2007).

Let Ψl1,t denote the class of B-splines of order l1 ≥ 1 that consists of functions

s1 satisfying (i) for each interval J1i, s1 is a polynomial of order l1 for i =

0, . . . ,mn1; (ii) for l1 ≥ 2, s1 is l
′
1 times continuously differentiable on [σ1, τ1] for

0 ≤ l
′
1 ≤ l1 − 2. The class Ψl1,t can be spanned by the B-splines basis functions

{B(1)
i (t), 1 ≤ i ≤ qn1} with qn1 = mn1 + l1,

Ψl1,t =

{
qn1∑
i=1

αiB
(1)
i (t) : α = (α1, α2, . . . , αqn1) ∈ Rqn1

}
.

Since log Λ0(t) is a monotonically non-decreasing function, we restrict the non-

parametric estimator in the subclass of Ψl1,t.

ψl1,t =

{
qn1∑
i=1

αiB
(1)
i (t) : α1 ≤ α2 . . . ≤ αqn1

}
,
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as any member of ψl1,t is monotonically non-decreasing (Schumaker, 2007).

Similarly, let Z = {zi}mn2+2l2
i=1 be a sequence of knots that partition the

interval, [σ2, τ2], intomn2 subintervals J2i = [zl2+i, zl2+i+1), for i = 0, . . . ,mn2−1

and J2mn2 = [zl2+mn2 , zl2+mn2+1] with σ2 = z1 = · · · = zl2 < zl2+1 < . . . <

zmn2+l2 < zmn2+l2+1 = · · · = zmn2+2l2 = τ2, where mn2 = O(nv2) for 0 < v2 <
1
2

is the number of interior knots, and l2 is the order of B-splines.

Let Φl2,z denote the class of B-splines of order l2 ≥ 1 that consists of functions

s2 satisfying the similar conditions as the Ψl1,t. The class Φl2,z can be spanned

by the B-splines basis function {B(2)
i (z), 1 ≤ i ≤ qn2} with qn2 = mn2 + l2,

Φl2,z =

{
qn2∑
i=1

ηiB
(2)
i (z) : η = (η1, η2, . . . , ηqn2) ∈ Rqn2

}
.

In the forthcoming simulation studies and data application, we use the popu-

lar cubic regression B-splines (l1 = l2 = 4) to estimate the model parameters

(β, log Λ). Specifically, the baseline mean function Λ(t) and the regression func-

tion β(Z) are modelled by the B-splines,

log Λ(t) =

qn1∑
l=1

αlB
(1)
l (t) = αTB(1)(t) and β(z) =

qn2∑
l=1

ηlB
(2)
l (z) = ηTB(2)(z),

respectively, whereB(1)(t) = {B(1)
1 (t), · · · , B(1)

qn1(t)}T andB(2)(z) = {B(2)
1 (z), · · · , B(2)

qn2(z)}T

for qn1 = mn1 + 4 and qn2 = mn2 + 4.
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After substituting the B-splines expression of Λ(·) and β(·) in (2), the log

pseudolikelihood function can be written as

lps(γ) =

n∑
i=1

Ki∑
j=1

[N(Ti,j){αTB(1)(Ti,j) + ηTB(2)(Zi)} − exp{αTB(1)(Ti,j) + ηTB(2)(Zi)}]

=

n∑
i=1

Ki∑
j=1

[N(Ti,j){B(Ti,j , Zi)
Tγ} − exp{B(Ti,j , Zi)

Tγ}],

where B(t, z) = (B(1)(t)T, B(2)(z)T)T and γ = (αT, ηT)T.

Hence, computation of a B-splines-based NPMPLE is converted to a convex

programming problem with the linear equality-inequality constraints

Aγ =



−1 1 0 · · · 0 0 0 · · · 0

0 −1 1 · · · 0 0 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

0 0 0 0 −1 1 0 · · · 0





α1

...

αqn1

η1

...

ηqn2



≥ 0.

To ensure identifiability, we also need to add the zero-intercept constraint
∑qn2

l=1 ηlB
(2)
l (0) =

0 for the regression splines.

The algorithm for the convex programming problem subject to linear equality-

inequality constraints developed by Lange (1994) is applied to this problem for
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computing the B-splines based NPMPLE of (β0,Λ0).

3. Asymptotic Results

In this section we study the asymptotic properties of the B-splines-based

NPMPLE of (β0,Λ0), (β̂n(·), Λ̂n(·)). Denote H the distribution for covariate Z

on R and B the collection of Borel sets on R. Let B[0, τ ] = {B
∩
[0, τ ] : B ∈ B}

and let µ2 denote the probability measure induced by H. Following the notation

in Wellner and Zhang (2007), for B ∈ B[0, τ ] and C ∈ B, we define

ν(B × C) =

∫
C

∞∑
k=1

P (K = k|Z = z)

k∑
j=1

P (Tk,j ∈ B|K = k, Z = z)dµ2(z)

with µ1(B) = ν(B × R).

We consider two classes of functions

F1 = {β : β is a continuous function in R} and

F2 = {Λ : [0,∞) → [0,∞)|Λ is nondecreasing,Λ(0) = 0} .

We aim to find the B-splines NPMPLE (β̂n(·), Λ̂n(·)) in the parameter space

Θ = F1 × F2. In order to study the asymptotic properties of (β̂n(·), Λ̂n(·)), we

define an L2-metric d(θ1, θ2) for the parameter space Θ given by

d(θ1, θ2) =
{
∥β1 − β2∥2L2(µ2)

+ ∥Λ1 − Λ2∥2L2(µ1)

}1/2
for θi = (βi,Λi) ∈ Θ i = 1, 2.
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We also postulate the following regularity conditions.

C1 The true parameter, θ0 = (β0,Λ0) ∈ Θ = F1 ×F2.

C2 The maximum spacing between the consecutive knots, defined as

∆1 = max
l1+1≤i≤mn1+l1+1

|ti − ti−1| = O(n−v1)

∆2 = max
l2+1≤i≤mn2+l2+1

|zi − zi−1| = O(n−v2)

satisfying ∆j/δj ≤Mj uniformly in nj , where Mj > 0 is a constant for j =

1, 2 with δ1 = minl1+1≤i≤mn1+l1+1 |ti−ti−1| and δ2 = minl2+1≤i≤mn2+l2+1 |zi−

zi−1|.

C3 The true baseline mean function Λ0 is rth bounded differentiable in O[T ]

with r > 1, where O[T ] = [σ1, τ1]. The regression function β0 is also

rth bounded differentiable in O[Z] with r > 1, where O[Z] = [σ2, τ2].

Moreover, there exists a positive constant c1 such that Λ
′
0(t) ≥ c1 for

t ∈ O[T ].

C4 For j = 1, . . . ,K, TK,j ∈ [0, τ ] for some τ ∈ (0,∞). The measure µ1 × µ2

on ([0, τ ],B[0, τ ]) is absolutely continuous with respect to ν.

C5 The support of the covariate distribution H is a bounded set in R, denoted

as Z.
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C6 For some functions h1 and h2, if h1(Z) + h2(T ) = 0 with probability 1 for

all Z and T , then h1 ≡ 0 and h2 ≡ 0.

C7 For some η ∈ (0, 1) and bounded function g ∈ Rd,

aTvar(g(Z)|U)a ≥ ηaTE(g(Z)g(Z)T|U)a a.s. for all a ∈ Rd,

where (U,Z) has distribution ν/ν(R+ ×Z).

C8 The function Mps
0 (X) =

∑K
j=1N(Tj) logN(Tj) satisfies PM

ps
0 (X) <∞.

C9 The number of observations is finite; that is, there exists a positive integer

k0 such that P (K ≤ k0) = 1 .

C10 For some C ≥ 0 , E(eCN(t)|Z) is uniformly bounded for Z ∈ Z .

Remark 1. C1 indicates that the true model parameters are in the estimation

space. C2 can be viewed as knots selection criteria that are easily satisfied using

quantile spaced knots. C3 is required for the proof of rate of convergence and

is a reasonable assumption in view of application. C4 and C6 are required for

the identifiability of the non-parametric model. C5 and C7 are the technical

conditions for proving the forthcoming theorems that were similarly provided in

Wellner and Zhang (2007). C8-C10 are exactly the conditions C4, C9 and C10,

respectively, given in Wellner and Zhang (2007).
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Theorem 1. Suppose that C1 − C10 hold and the counting process N satisfies

the proportional mean model (1), then

d(θ̂n, θ0) →p 0 as n→ ∞.

Theorem 2. Suppose that C1− C10 hold, if v1 = v2 = 1/(1 + 2r), then

nr/(1+2r)d(θ̂n, θ0) = Op(1) as n→ ∞.

Theorem 3. Let HΛ consist of all the functions in [σ1, τ1] whose total variation is

bounded by 1. Let Hβ consist of all the functions in [σ2, τ2] whose rth derivatives

are bounded by 1(r > 1). We take {Λ̂n(t)− Λ0(t), β̂n(z)− β0(z)} as a stochastic

class in l∞(HΛ ×Hβ) whose value for (h1, h2) ∈ HΛ ×Hβ is defined as

∫
(Λ̂n(t)− Λ0(t))dh1(t) +

∫
(β̂n(z)− β0(z))dh2(z).

Then under C1-C10, n1/2{Λ̂n(t) − Λ0(t), β̂n(z) − β0(z)} converges in distri-

bution to a mean-zero Gaussian process with variance V (h1, h2) in the metric
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space l∞(HΛ ×Hβ), where

V (h∗1, h
∗
2) = E{φ2(θ0;X,Z)[h

∗
1, h

∗
2]}

with

φ(θ0;X,Z)[h
∗
1, h

∗
2] =

K∑
j=1

{(
N(Tj)
Λ0(Tj)

− exp{β0(Z)}
)
h∗1(Tj)

+
[
N(Tj)− Λ0(Tj) exp{β0(Z)}

]
h∗2(Z)

}
,

in which h∗1 and h∗2 satisfy Q2(h
∗
1, h

∗
2)(t) = h1(t) and Q1(h

∗
1, h

∗
2)(z) = h2(z) with

Q1 and Q2 given in the Supplementary Materials.

Theorem 3 not only describes the asymptotic distribution of a class of esti-

mated smooth functionals of the model parameters, but is also useful to construct

a non-parametric test for the covariate effect on the underlying counting process:

H0 : β0(z) = 0 for all z. To do so, we need to identify a specific h∗ = (h∗1, h
∗
2)

such that

Q2(h
∗
1, h

∗
2)(t) = 0 and Q1(h

∗
1, h

∗
2)(z) = H(z)

The selection of such h∗ results in

√
n

∫ (
β̂n(z)− β0(z)

)
dH(z) →d N(0, σ2β0

)
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with σ2β0
given by

σ2β0
= E

 K∑
j=1

{
(N(Tj)− Λ0(Tj) exp(β0(Z)))h

∗
2(Z) +

(
N(Tj)
Λ0(Tj)

− exp(β0(Z))

)
h∗1(Tj)

}2

= E

 K∑
j=1

{
(N(Tj)− Λ0(Tj) exp(β0(Z)))

(
h∗2(Z)−

E{h∗2(Z) exp(β0(Z))|K,Tj}
E{exp(β0(Z))|K,Tj}

)}2

based on Theorem 3 (the proof is provided in the Supplementary Materials). It

then leads to constructing the test statistic

Tn =

∫
β̂n(z)dHn(z) =

1

n

n∑
i=1

β̂n(Zi),

where Hn is the empirical distribution of Z. It can be easily shown (the proof is

provided in the Supplementary Materials) that under the null hypothesis H0, Tn

is asymptotically normally distributed with mean 0.

Remark 2. Theorem 2 shows that the proposed B-splines-based NPMPLE

(β̂n(·), Λ̂n(·)) achieves the r/(1+2r) convergence rate. This convergence rate was

shown to be optimal in spline-smoothing non-parametric estimation literatures

(Speckman, 1985; Zhang et al., 2010). Theorem 3 demonstrates the asymptotic

normality of the functionals of the proposed non-parametric estimators and facil-

itates possible procedures for making an inference on β0(·) and Λ0(·). However,
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to do so, we need to estimate the standard error of a functional of the B-splines-

based NPMPLE, which is a daunting job in view of the complicated expression of

the asymptotic variance. The bootstrap estimation for standard error is a viable

alternative for inference due to the numerical advantage in NPMPLE.

4. Simulation Studies

In this section, we use simulation studies to evaluate the finite sample perfor-

mance of the proposed estimator. We generated n independent and identically

distributed observations Xi = (Ki, Ti,N(i), Zi) for i = 1, . . . , n. For subject i,

the number of visits (or encounters), Ki, was generated from a discrete uniform

distribution on {1, 2, . . . , N1} for a finite N1. Given the number of visits Ki, the

visit times vector Ti = (Ti,1, . . . , Ti,Ki) were Ki ordered random draws from a

uniform distribution Unif(0, T∞), where T∞ was the maximum length of follow

up time. Between two consecutive visit times Ti,j−1 and Ti,j , the number of re-

current events was generated from a Poisson process model with interval event

counts following the Poisson distribution given by

Ni,j − Ni,j−1 ∼ Po {2(Ti,j − Ti,j−1) exp(β(Zi))} (j = 1, . . . ,Ki),

which results in Ni,j , the number of cumulative events at Ti,j following the Poisson

distribution with mean 2Ti,j exp{β(Zi)}, conditional on Zi.
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We used cubic B-splines for the non-parametric estimation of log Λ(t). Seven

interior knots were used with the locations determined by quantiles of the total

observation times {Ti,j : i = 1, 2, . . . , n; j = 1, 2, . . . ,Ki; } so that there were

approximately equal numbers of observations in each interval. Similarly, for the

regression function β(Z), the cubic B-splines non-parametric estimate was also

calculated with the seven interior knots chosen to be the quantiles of observed

covariate values {Zi; i = 1, 2, . . . , n}.

We performed the simulation studies under four different settings with sam-

ple sizes 100 and 400. In all these settings, the cumulative baseline mean function

was Λ(t) = 2t+1. The maximum number of visits per subject was set as N1 = 6,

and the maximum follow-up time was T∞ = 10. The covariate was generated

from a uniform [0, 1] distribution, and the simulation was repeated for 1000 times

in each scenario.

S1. Null regression function β(Z) = 0.

S2. Linear regression function β(Z) = 2Z.

S3. Non-linear regression function β(Z) = Beta(Z, 2, 2), where Beta(·) is the

Beta density function.

S4. Non-linear regression function that oscillates at 0: β(Z) = 1.5 sin(2πZ)I(Z ≤

0.5) + 0.5 sin(2πZ)I(Z > 0.5) where I(·) is the indicator function.
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Estimation results are presented in Figures 1 and 2 for the four considered

settings. In all these figures, the solid curve is the true regression function β0(z),

and the dotted, dashed and dash-dotted curves are the pointwise 2.5-quantile,

mean and 97.5-quantile of β̂n(z)
′s respectively, with the estimated β0(z) based

on 1000 replicates. It can be seen from Figures 1 and 2 that the mean curves of

the estimated regression function are almost overlapped with the corresponding

true curves in all the settings. The bandwidth between the pointwise 97.5 and 2.5

quantile curves decreases as sample size increases from 100 to 400. The simulation

studies numerically justify the estimation consistency stated in Theorem 1.

As described in the preceding section, the result of Theorem 3 allows us to

construct a test statistic to make an inference about whether covariate Z affects

the underlying counting process N(t) by testing the null hypothesis H0 : β0(z) =

0 for all z. To evaluate the test statistic Tn, we estimate the standard error of Tn

by the bootstrap method based on 100 resamplings with a replacement: that is,

the estimate of se(Tn) is given by the standard deviations of the 100 estimates

of Tn from the bootstrap samples.

Table 1 presents the simulation results for Tn and the probability of rejecting

H0 under various scenarios. It can be seen from the table that the estimation

bias of
∫
β̂n(z)dHn(z) is virtually negligible, and the empirical standard devia-

tion of the estimator based on 1000 repetitions decreases as sample size increases.
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Figure 1: Estimation results for the regression function: The solid curve
is the true regression function β0(z), the dotted, dashed and dash-dotted
curves are the pointwise 2.5-quantile, mean and 97.5-quantile of β̂n(z)’s,
respectively; (a1)-(a2) are the results of β0(Z) = 0 under sample sizes 100
and 400; (b1)-(b2) are the results of β0(Z) = 2 ∗ Z under sample sizes 100
and 400.

However, the average of the bootstrap standard error estimates is slightly small-

er than the empirical standard deviation in all the settings, which results in a

slightly inflated type I error and the testing power. We believe the reason for
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Figure 2: Estimation results for the regression function: The solid curve
is the true regression function β0(z), the dotted, dashed and dash-dotted
curves are the pointwise 2.5-quantile, mean and 97.5-quantile of β̂n(z)’s,
respectively; (a1)-(a2) are the results of β0(Z) = Beta(Z, 2, 2) under sample
sizes 100 and 400; (b1)-(b2) are the results of β0(Z) = 1.5 sin(2πZ)I(Z ≤
0.5) + 0.5 sin(2πZ)I(Z > 0.5) under sample sizes 100 and 400.

the underestimation of the standard error is due to the use of pseudolikelihood

approach, which causes the observed count data to be ”overdispersed” in terms

of the proposed model. This fact of underestimation in standard error was also
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Table 1: Simulation results. SP, sample size; True value, the exact value of∫
β0(z)dH(z); M-C SD, Monte Carlo standard deviation; ASE, average of

bootstrap standard errors; Prob., probability.

Setting β(Z) SP True value Bias M-C SD ASE Prob. of rejecting H0

I 0 100 0 0·021 0·209 0·176 0·116
400 0·001 0·124 0·115 0·086

II 2 ∗ Z 100 1·000 -0·005 0·224 0·186 0·980
400 -0·014 0·127 0·116 1·000

III Beta(Z, 2, 2) 100 1·000 -0·053 0·21 0·173 0·989
400 -0·017 0·12 0·111 1·000

IV 1.5 sin(2πZ)I(Z ≤ 0.5) 100 0·318 -0·089 0·221 0·193 0·256
+0.5 sin(2πZ)I(Z > 0.5) 400 -0·030 0·121 0·113 0·727

presented in a study of B-splines-based semi-parametric models for panel count

data by Hua, Zhang, and Tu (2014). It implies that one may need to have a p-

value that is significantly smaller than 0.05 to reject the null hypothesis with the

significance test at the usual 0.05 level. Comparison of Settings 3 and 4 (Table 1

and Figure 2) also indicates that the test power is mainly affected by the value

of
∫
β(z)dH(z) and is not sensitive to the shape of β(z).

For real applications, it will be more common to consider a spline-based semi-

parametric model. Following a referee’s suggestion, we also considered the model

E{N(t)|Z} = Λ(t) exp{β1(Z1)+β2Z2+β3Z3}, where β1(Z1) = 0.5∗Beta(Z1, 2, 2)

, Z1 and Z2 are continuous variables generated from Unif [0, 1] distribution ,

and Z3 is a binary variable generated from Bernoulli(0.5) distribution. For

the simulated data, we fitted Λ(t) and β1(Z1) by B-splines and treated β2 and

β3 as two unknown regression parameters to be estimated. We conducted the
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Table 2: Simulation results. β∗, β1(Z1), β2 or β3; SP, sample size; True
value, the exact value of

∫
β(z)dH(z), β2 and β3; M-C SD, Monte Carlo

standard deviation; ASE, average of bootstrap standard errors; **, prob-
ability of rejecting H0 : β1(z1) ≡ 0, and coverage probability for β2 and
β3.

Setting β∗ SP True value Bias M-C SD ASE **
V β1(Z1) = 0.5 ∗Beta(Z1, 2, 2) 100 0·5 -0·026 0·136 0·121 0·908

400 -0·010 0·084 0·077 1·000
β2 100 1·0 -0·001 0·057 0·058 0·940

400 0·001 0·028 0·027 0·920
β3 100 0·5 0·001 0·033 0·033 0·943

400 0·000 0·015 0·016 0·931

same simulation study as we did for Data Settings 1-4. Simulation results for this

scenario are summarized in Table 2. The last column in Table 2 is the probability

of rejecting H0: β1(z1) = 0 for all z1 at significance level 0.05, and the coverage

probability of 95% confidence interval(CI) for β2 and β3, respectively. From Table

2 and Figure 4 (provided in the Supplementary Materials as Figure 1), it is clearly

seen that the proposed methodology works well for a general splines-based semi-

parametric model. To facilitate the use of our method, we provide the computing

code for the simulation studies online at ftp://public.sjtu.edu.cn/. Readers can

access the code with account name yuzhangsheng and password public

5. Application

We applied the proposed method to the childhood wheezing study described

in Yao et al. (2010). This is a study designed to evaluate interleukin function

during infancy with the risk of asthma and wheezing symptoms for the children
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with atopic dermatitis. One hundred and five infants were followed for an aver-

age of 5 years. Patients’ baseline demographic information and one of interleukin

functions Interleukin 5 denoted IL5 were included as covariates for data analy-

sis. The number of wheezing episodes was collected over time telephonically.

Although the phone calls were scheduled to be made every month, the actual

time for the phone call varied from month to month, and the information was

not available every month as the research coordinator was not able to reach the

patients. The number of the episodes since the last call was recorded, which was

potentially greater than one. This data type ideally fits the framework of panel

count data. The previous analysis by Yu et al. (2013) used a recurrent event

model to study the recurrence of wheezing symptoms without considering the

actual number of wheezing episodes between two consecutive calls. Therefore, it

did not take the full advantage of the observed data collected in the study. To

make better use of the collected data in studying the recurrence of wheezing, we

conducted an analysis using a panel count data model and modelled a flexible

non-linear effect of IL5 on the wheezing recurrence using B-splines.

We analyzed the effect of IL5 on the wheezing symptoms adjusted for the

infant’s age, sex, and mother’s smoking status during pregnancy in the panel

count data model. In this study, the mean age (month) at enrollment is 10.9,

53.7% are boys, and 8.04% of mothers smoked during pregnancy. The non-linear
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effect of IL5 was estimated using the proposed B-splines NPMPLE method and

is depicted in Figure 3. It appears the effect of IL5 on wheezing is more dramatic

at the lower end of the IL5 values and gradually stabilizes as IL5 increases. The

hypothesis testing procedure described in Section 4 yields a p-value of 0.005,

indicating that IL5 is indeed an influential factor for wheezing symptoms.

The multiple bumps shown in Figure 3 may present challenges in interpreta-

tion of the effect. However, this non-parametric approach is definitely informative

and it provides evidence to suggest a non-linear covariate effect. To ascertain a

potential non-linear effect, we also fitted the data using a piecewise linear re-

gression model with the changing point at log(IL-5) =-5.88. The cutoff point

for IL-5 was chosen based on the non-parametric estimate presented in Figure

3. The p-value for the test of slope difference between the two linear lines is

< 0.001, strongly implying a non-linear effect of IL-5. The piecewise linear mod-

el has a meaningful interpretation of a piecewise proportional effect and reveals

the similar information about the IL-5 effect compared to the proposed method.

Virtually, the IL-5 effect on the underlying childhood wheezing process is much

more pronounced when IL-5 is small.

6. Discussion and Conclusions

We propose a regression B-splines-based NPMPLE method for panel count

data analysis. The proposed estimators for the baseline mean function and the
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Figure 3: Estimation of the regression function. Solid line, B-splines model;
dotted line, piecewise linear regression model.

regression function are consistent and converge to the corresponding true func-

tions at the rate of r/(1 + 2r). This convergence rate was shown to be optimal

in spline-smoothing non-parametric estimation Speckman (1985); Zhang et al.

(2010). Simulation studies show that the estimators have good finite sample

properties. The proposed splines-based non-parametric functional analysis can be

easily extended to the splines-based semi-parametric analysis with both continu-

ous and discrete covariates included for analysis. The proposed non-parametric

curve fitting is, to our knowledge, the first such method applied to panel count

data analysis, and hence fills the gap of non-parametric regression for panel count

data analysis.
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The proposed splines-based regression method for non-parametric function-

al analysis requires predetermination of the number of B-spines basis functions,

which increases as sample size increases. The validity of the asymptotic proper-

ties relies on the special placement of the interior knots to construct the basis

functions, which can be somewhat subjective. Another approach is to use the

penalized spline, in which the degree of smoothness of the estimated curve relies

on the tuning parameter that can be selected using an objective approach, such

as the cross-validation method. However, the asymptotic properties of penalized

spline estimators have yet to be studied.

The proposed NPMPLE method has the advantage in numerical computa-

tion due to its likelihood simplicity, but the trade-off of this approach is the

underestimation of the standard error for the estimated functions and their s-

mooth functionals as shown in our simulation studies. This shortcoming is due

to the fact that the proposed model does not fully account for the association

among the count data. Although some standard error correction methods have

yet to be developed, we believe that the complete Poisson model with the gamma

frailty for B-splines estimation developed in Hua, Zhang, and Tu (2014) should

be a reasonable approach with which to address the underestimation issue for

the pseudolikelihood method.

The asymptotic normality theorem (Theorem 3) for a class of smooth func-
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tionals not only facilitates a hypothesis testing method to test whether the co-

variate affects the underlying counting process, but is also potentially useful in

model diagnosis for ascertaining if the covariate effect is linear. This task remains

for further investigation.

Supplementary Materials

The Supplementary Materials include proofs of theorems and part simulation

results.
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