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Multivariate recurrent event data are usually encountered in many clinical and longitudinal studies
in which each study subject may experience multiple recurrent events. For the analysis of such data,
most existing approaches have been proposed under the assumption that the censoring times are
noninformative, which may not be true especially when the observation of recurrent events is terminated
by a failure event. In this article, we consider regression analysis of multivariate recurrent event data
with both time-dependent and time-independent covariates where the censoring times and the recurrent
event process are allowed to be correlated via a frailty. The proposed joint model is flexible where
both the distributions of censoring and frailty variables are left unspecified. We propose a pairwise
pseudolikelihood approach and an estimating equation-based approach for estimating coefficients
of time-dependent and time-independent covariates, respectively. The large sample properties of the
proposed estimates are established, while the finite-sample properties are demonstrated by simulation
studies. The proposed methods are applied to the analysis of a set of bivariate recurrent event data from
a study of platelet transfusion reactions.
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1 Introduction

Recurrent event data arise in epidemiologic studies, reliability experiments, and longitudinal studies in
which the event of interest may occur repeatedly. Examples include repeated hospitalizations, repeated
tumor metastases, and repeated acute myocardial infarctions. The most important feature of recurrent
event data is that the recurrent event times within a subject are ordered and correlated. Hence, recurrent
event data can be viewed as an ordered multivariate failure time data. Many authors have discussed
the analysis of recurrent event data (e.g., Andersen and Gill, 1982; Pepe and Cai, 1993; Lin et al.,
2000). Cook and Lawless (2007) also provided a detailed review for the analysis of recurrent events.

A subject may experience several types of correlated recurrent events, resulting in multivariate
recurrent event data. For example, hematology/oncology patients may experience different febrile
nonhemolytic transfusion reactions (FNHTRs), pulmonary exacerbations may be differentiated by
severity, transient ischemic attacks may be classified according to location in cardiovascular trials, and
infections in bone marrow transplantation may be subtyped as of bacterial, fungal, and viral origin.
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To analyze the multivariate recurrent event data, some inference procedures have been developed, for
example, Abu-Libdeh et al. (1990), Spiekerman and Lin (1998), Cai and Schaubel (2004), Schaubel
and Cai (2005), and Sun et al. (2009). Many of these methods are based on the marginal model
in which the information of the correlation structure of the recurrent events is not incorporated.
An alternative approach is based on the conditional model (e.g., the frailty model). However, the
existing methods usually require dependence structures specified in conditional models. For example,
Ye et al. (2007) studied joint semiparametric models and specified frailty as a gamma distribution. This
parameterizing assumption seems overrestricted because it is hard to check distributional assumptions
about unobservable frailty random variables. In this article, we will use the frailty model while leaving
distributions of frailty variables to be arbitrary.

Independent censoring is another stringent assumption in the aforementioned studies. In many
applications, however, censoring can be informative about the recurrent event process, such as death,
and it is not sensible to assume independence between the censoring mechanism and the recurrent
event process. To resolve the informative censoring problem, joint marginal models and shared-frailty
models have been developed for the univariate recurrent time data in the literature. Lancaster and
Intrator (1998) presented an inference procedure through parametric modeling of recurrent event and
survival data, where the dependency between the two outcomes was induced by sharing an unobserved
frailty in the intensity model of the recurrent event process and the hazard model of the failure event.
Rondeau et al. (2007) proposed joint semiparametric models for recurrent events and terminal events
with a specified frailty distribution by using maximum penalized likelihood estimation. Wang et al.
(2001) and Huang and Wang (2004) relaxed the stringent distributional assumption on the frailty in
Rondeau et al. (2007) by extending the work of Lancaster and Intrator (1998) to a regression model
where covariates were assumed to be time-independent and the distributions of both the censoring
and frailty variables were treated as nuisance parameters. Zhu et al. (2010) extended the estimation
procedure in Wang et al. (2001) to multivariate recurrent event data with time-invariant covariates.
In practice, covariate information is often collected longitudinally in many studies. In other words,
some covariates may vary with time. For example, in the FNHTRs studies the platelet product donor
type may be collected at several time points and moreover some treatments such as premedication
may change over time. In this article, we propose an extension of the model in Huang et al. (2010)
to handle multivariate recurrent data with time-dependent covariates and informative censoring. For
inference, we develop a pairwise likelihood method for estimating the coefficient parameters of time-
dependent covariates and construct an estimating equation to estimate the coefficient parameters of
time-independent covariates.

The remainder of the article is organized as follows. Section 2 describes a marginal subject-specific
nonstationary Poisson process model taking the informative censoring into consideration via an
unobservable frailty. Section 3 presents an estimation procedure and the asymptotic properties of the
resulting estimators. Results from a series of simulation studies conducted for evaluating the finite-
sample properties of the proposed estimates are reported in Section 4. Section 5 illustrates the proposed
methodology by using a set of bivariate recurrent event data from a platelet transfusion reaction study.
Some concluding remarks are made in Section 6.

2 Joint modeling of multivariate recurrent events

Consider n independent subjects who experience J different types of recurrent events in observation
time period [0, τ ]. For subject i, let N∗

i j (t) be the number of events of type j that occur over the interval
[0, t], 0 ≤ t ≤ τ , i = 1, . . . , n, j = 1, . . . , J. Moreover, suppose that there exist two types of covariates
Xi j (·) and Zi j , where Xi j (·) is a bounded p-dimensional vector of time-dependent covariates and Zi j
is a q-dimensional vector of time-independent covariates. Denote by X i j (t) = {Xi j (u), 0 ≤ u ≤ t} the
covariate history of Xi j up to time t. In this article, the covariate histories Xi j ’s are assumed to be
left-continuous and observed. Let Ci j be the censoring time for subject i with recurrent event type j.
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Define Ni j (t) = N∗
i j (t ∧ Ci j ) and �i jk = I(Ti jk ≤ Ci j ), where a ∧ b = min(a, b) and I(·) denotes the

indicator function. Denote by mi j the number of recurrent events that occurred before time Ci j , and
Ti j1 < · · · < Ti jmi j

the j-th type recurrent event time points. Thus, the observed data for the i-th subject

consist of Di = {Di j, j = 1, . . . , J} with Di j = {Ci j,Xi j (Ci j ), Zi j, mi j, (Ti j1, . . . , Ti jmi j
)}. Assume that

{(Ci j, Xi j, Zi j, Ni j ), i = 1, . . . , n} is a random sample of (Cj, Xj, Zj, Nj ).
Let β and γ be vectors of unknown parameters, λ0 j an unspecified continuous baseline intensity

function with �0 j (t) = ∫ t
0 λ0 j (u)du, and ξi0 a nonnegative valued subject-specific frailty variable.

Conditioning on (ξi0,Xi j, Zi j ), the occurrence of recurrent events is modeled by a nonhomogeneous
Poisson process with intensity function

λi j (t) = ξi0λ0 j (t) exp{Xi j (t)
′β + Z′

i jγ }, t ∈ [0, τ ]. (1)

For an identifiability reason, we assume E{ξi0|Zi j,Xi j (τ )} = 1. Here, the subject-specific frailty variable
ξi0 characterizes the correlation of the within-subject multivariate recurrent events.

Because of the memoryless property of a Poisson process, conditional on ξi0, the rate function
equals the intensity function of the recurrent event process. Thus, the marginal rate function of
event occurrence is given by λ0 j (t) exp{Xi j (t)

′β + Z′
i jγ }, which has been discussed by Schaubel and

Cai (2005) and Lin et al. (2000) where the censoring time was assumed to be independent of the
recurrent event process. In this article, we assume that conditional on (ξi0,Xi j, Zi j ), Ci j is independent
of N∗

i j (·). The unobservable frailty ξi0 inflates/deflates the intensity and this assumption allows the
censoring time Ci j to depend on the frailty ξi0, which substantially relaxes the usual requirement of
independent censoring models. Note that the censoring time can handle a composite censoring event,
that is, Ci j = min(C(0)

i j ,C(1)
i j ), where C(0)

i j represents a noninformative censoring time independent

of N∗
i j (t) and C(1)

i j represents an informative censoring time correlated with N∗
i j (t). Furthermore,

we assume that the regression coefficients are the same for different types of event without loss
of generality. In fact, the methodology developed below still applies by defining a new vector of
covariates if they are type-specific. For example, for different β j and γ j , Xi j (t)

′β j + Z′
i jγ j can be

rewritten as X ∗
i j (t)

′β∗ + Z∗
i j

′γ ∗, where X ∗
i j (t) = (0, . . . , Xi j (t)

′, . . . , 0)′, Z∗
i j = (0, . . . , Z′

i j, . . . , 0)′, β∗ =
(β ′

1, . . . , β
′
J )′, and γ ∗ = (γ ′

1, . . . , γ
′
J )′.

3 Estimation procedure

We first estimate the regression parameter β. Conditional on (Ci j,X (Ci j ), Zi j, mi j, ξi0), the pseudo-
likelihood of (Ti j1, . . . , Ti jmi j

) is proportional to

n∏
i=1

J∏
j=1

mi j∏
k=1

λ0 j (Ti jk) exp{Xi j (Ti jk)′β}∫ Ci j

0
λ0 j (u) exp{Xi j (u)′β}du

=
n∏

i=1

J∏
j=1

mi j∏
k=1

pi j (Ti jk)

Pi j (Ci j )
, (2)

where

pi j (t) = λ0 j (t) exp{Xi j (t)
′β}∫ τ

0
λ0 j (u) exp{Xi j (u)′β}du

I(0 ≤ t ≤ τ )

and

Pi j (t) =
∫ t

0
pi j (s)ds.
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Since Xi j (·) is time-dependent, the integral in the denominator of the conditional likelihood does not
have a closed form unless λ0 j is specified. It is challenging to maximize the conditional likelihood
function. A natural idea is to eliminate the nonparametric component λ0 j in the likelihood.

Let δi jk,l js = 1 if max{Ti jk, Tl js} ≤ Ci j ∧ Cl j , and 0 otherwise. When δi jk,l js = 1, Ti jk and Tl js are
called a comparable pair for risk type j. By following the idea of Huang et al. (2010), the pairwise
pseudolikelihood of (Ti jk, Tl js), i < l , given the order statistics of (Ti jk, Tl js) and δi jk,l js = 1, can be
expressed as

pi j (Ti jk)pl j (Tl js)

pi j (Ti jk)pl j (Tl js) + pi j (Tl js)pl j (Ti jk)
= 1

1 + exp{ρi j,l j (Ti jk, Tl js)
′β} ,

where

ρi j,l j (t, u) = Xi j (u) + Xl j (t) − Xi j (t) − Xl j (u).

Note that as nuisance parameters, both frailty ξi0 and baseline intensity function λ0 j (t) are eliminated
from the likelihood. Hence, β can be estimated by maximizing the pairwise pseudolikelihood

∏
i<l

J∏
j=1

mi j∏
k=1

ml j∏
s=1

(
1

1 + exp{ρi j,l j (Ti jk, Tl js)
′β}

)δi jk,l js

.

The score function is given by

l (β) = 1(
n
2

) ∑
i<l

H (Di, Dl ;β),

where

H (Di, Dl ;β) =
J∑

j=1

∫ Ci j∧Cl j

0

∫ Ci j∧Cl j

0
hi j,l j (t, u;β)dNi j (t)dNl j (u)

and

hi j,l j (t, u;β) = − exp{ρi j,l j (t, u)′β}
1 + exp{ρi j,l j (t, u)′β}ρi j,l j (t, u).

Let β̂ be the solution of l (β) = 0 and β0 be the true value of β. Under some regularity conditions, β̂ is
a consistent estimator of β0 and

√
n(β̂ − β0) is asymptotically normal with mean 0 and a covariance

matrix that can be consistently estimated by V̂ as given in Theorem 1 of Appendix A1.
To estimate �0 j (t), we first consider estimation of F0 j (t) = �0 j (t)/�0 j (τ ), which is a proper cumu-

lative distribution function. Note that for given β, maximizing the pseudolikelihood in (2) is equivalent
to maximizing

Lj (λ0 j |β) =
n∏

i=1

mi j∏
k=1

λ0 j (Ti jk) exp{Xi j (Ti jk)′β}∫ Ci j

0 λ0 j (u) exp{Xi j (u)′β}du
=

n∏
i=1

mi j∏
k=1

pi j (Ti jk)

Pi j (Ci j )
, j = 1, . . . , J.
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Thus, following Huang et al. (2010), the Lj can be viewed as the likelihood of a biased sample
from the distribution function F0 j (t), where the observations are sampled with sampling weights

proportional to exp{Xi j (t)
′β} and are right truncated by Ci j . Thus, the estimator F̂0 j (t) of F0 j (t)

can be obtained by modifying the truncation product-limit estimator (Wang et al., 1986) and using
the inverse probability weighting technique, where F̂0 j (t) and the asymptotic results are given in
Appendix A2, and the proofs can be found in Supplementary Information on the journal’s website
(http://www.biometrical-journal.com).

For estimation of �0 j (τ ) and γ , we can use an estimating equation approach. The estimating

equation-based estimators �̂0 j (τ ) and γ̂ as well as an alternative estimator γ̃ are given in Appendix
A2. The asymptotic results are also given in this Appendix with proofs available in Supplementary
Information on the journal’s website (http://www.biometrical-journal.com).

4 Simulation study

In this section, the finite-sample properties of the proposed estimators are evaluated through sim-
ulation studies. In the study, we considered the situation where there are J = 2 types of recur-
rent events of interest and two covariates with p = q = 1. The time-independent covariate, Zi j ,
was generated from Bernoulli distribution with success probability 0.5, and the time-dependent
covariate Xi j (t) takes the form Xi j log(t), where Xi j has a uniform [0, 1] distribution. For sub-
ject i, we generated a frailty, ξi0, inducing positive correlation among the within-subject event
times, from a gamma distribution with unit mean and variance σ 2. We took σ 2 = 1, 0.7, 0.5, 0.3
and λ01(t) = 1/2, λ02(t) = 1/4. We generated recurrent event times from model (1), where the sub-
ject’s underlying recurrent event process is a nonhomogeneous Poisson process with intensity func-
tion ξi0λ0 j (t) exp{Xi j (t)

′β0 + Z′
i jγ0}, i = 1, . . . , n, j = 1, 2. The censoring times were generated as

Ci j = min(C(0)
i j ,C(1)

i j ), where C(0)
i j = 10 is the time of end of the study and C(1)

i j is from an exponential
distribution with mean 10 for subjects in the treatment arm (Zi j = 1) or an exponential distribution
with mean 6ξi0 + 4 for subjects in the control arm (Zi j = 0). Thus, the censoring time is correlated with
Ni j (·) through (ξi0,Xi j, Zi j ). Set (β0, γ0) = (0, 0.5), (0.2, 0.5), (0.2,−0.3), representing the different
effects of the covariates Xi j and Zi j on the recurrent events. For each setting, we considered two sample
sizes, n = 100 and 200, respectively. All the results reported here are based on 1000 Monte Carlo
replications using R software.

Table 1 presents the simulation results on estimation of β and γ for different situations. It can be
seen from the estimated bias given by the average of proposed estimates minus the true value that
β̂ and γ̂ are approximately unbiased for all the data configurations considered here. To evaluate the
validity of the estimators, the 95% bootstrap confidence intervals for γ̂ and γ̃ were produced based
on 200 bootstrap replications, while the 95% confidence intervals for β̂ were computed according to
Theorem 1. The average of estimated standard error, denoted by ESE, closely approximates the sample
standard error, SSE, with empirical coverage probabilities (CP) close to the nominal value, 0.95. These
results indicate that the proposed variance estimation procedure provides reasonable estimates and
the normal approximation seems to be appropriate. For n = 100, slight undercoverage occurs, which
reduced progressively with increasing sample size. Furthermore, the efficiency gains for γ̃ over γ̂ are
reduced by decreasing standard deviations of frailty variables. This reduction is reasonable because the
correlation between censoring times and frailty variables and the correlation among the within-subject
event times become weak when the standard deviations of frailty variables decrease. In the simulation,
we investigated the effect of the size of bootstrap samples on variance estimation and the size of 200
used here seems reasonable.

In practice, a natural question that one may ask is if one could simply apply the inference procedures
developed under the independent censoring assumption to informative censoring situations. To answer
this, we also investigated the sample bias and SSE of the estimates proposed by Schaubel and Cai (2005)
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Table 2 Simulation results based on Schaubel and Cai’s method and the proposed method with
n = 100, where censoring time Ci j = min(10,C1

i j ) with C1
i j ∼ E (1/10) if Zi j = 1, C1

i j |(ξi0,Xi j, Zi j ) ∼
E (1/(6ξi0 + 4)) if Zi j = 0.

β0 γ0 σ β̄ γ̄ β̂ γ̂

Bias SSE Bias SSE Bias SSE Bias SSE

0 0.5 1 −0.001 0.179 −0.193 0.189 0.000 0.156 −0.030 0.200
0.7 −0.003 0.140 −0.106 0.145 −0.003 0.152 −0.024 0.169
0.5 0.004 0.123 −0.057 0.120 −0.004 0.157 −0.018 0.150
0.3 0.005 0.103 −0.022 0.094 0.005 0.153 −0.002 0.137

0.2 0.5 1 −0.005 0.182 −0.207 0.187 −0.002 0.165 −0.033 0.208
0.7 −0.004 0.143 −0.113 0.144 −0.001 0.157 −0.026 0.168
0.5 0.006 0.126 −0.061 0.118 0.000 0.166 −0.021 0.159
0.3 0.003 0.100 −0.023 0.091 0.006 0.158 −0.003 0.139

0.2 −0.3 1 −0.008 0.198 −0.199 0.200 −0.001 0.201 −0.021 0.225
0.7 −0.002 0.157 −0.113 0.154 0.001 0.197 −0.022 0.187
0.5 0.006 0.138 −0.060 0.129 0.001 0.204 −0.016 0.171
0.3 0.003 0.118 −0.024 0.106 0.008 0.201 −0.003 0.156

β̄ and γ̄ represent the estimates of regression parameters β and γ in Schaubel and Cai (2005). SSE represents the sample
standard error of estimates.

based on 1000 samples of the same simulated data as those considered in Table 1. Table 2 shows that
γ̄ , the estimate obtained by using Schaubel and Cai’s method, seems biased, which results from the
restriction of independent censoring required in Schaubel and Cai (2005). In fact, higher frailty values
tend to have a longer observation period and the corresponding risk sets are more likely to consist of
sicker subjects at later time points. As a result, Schaubel and Cai’s method underestimates the difference
between treatment group and control group under the specified conditions in our simulations. Table
2 shows that our proposed method provides reasonable estimates. It deserves to note that β̄ seems
unbiased in Table 2, which may be caused by the data setting that Ci j is independent of the covariate
Xi j (t). Table 3 presents the estimated bias and SSE of the estimates based on 1000 samples of the
same data configurations as those considered in Table 1 except that censoring times were generated as
Ci j = min(C(0)

i j ,C(1)
i j ), where C(0)

i j = 10 and C(1)
i j follows an exponential distribution with mean 6ξi0 + 4

for subjects satisfying Zi j = 1 or Xi j ≤ 0.5, and an exponential distribution with mean 10 otherwise.
Table 3 also shows that under the informative censoring mechanism β̄ and γ̄ , the estimates by using
Schaubel and Cai’s method have larger absolute biases than our estimates, while their SSE is slightly
smaller than ours. These simulation results indicate that the proposed methods perform well in all the
situations considered here.

In addition, we conducted the simulation studies under the same setups as those in Tables 2 and 3
for the sample size of 200 and obtained similar results as shown in Supplementary Information on the
journal’s website (http://www.biometrical-journal.com).

5 Example: a platelet transfusion reaction study

We apply the proposed method to a set of bivariate recurrent event data on FNHTRs characterized by
fever, chills, rigors, hives, and others arising within 4–6 h of transfusion. The data were collected among
hematology/oncology patients at five university teaching hospitals in Toronto coded A–E over three
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Table 3 Simulation results based on Schaubel and Cai’s method and the proposed method with
n = 100, where censoring time Ci j = min(10,C1

i j ) with C1
i j |(ξi0,Xi j, Zi j ) ∼ E (1/(6ξi0 + 4)) if Zi j = 1

or Xi j ≤ 0.5, C1
i j ∼ E (1/10) otherwise.

β0 γ0 σ β̄ γ̄ β̂ γ̂

Bias SSE Bias SSE Bias SSE Bias SSE

0 0.5 1 −0.077 0.177 0.082 0.183 −0.004 0.156 0.005 0.196
0.7 −0.046 0.143 0.047 0.144 −0.003 0.155 0.005 0.167
0.5 −0.019 0.120 0.031 0.119 −0.002 0.151 0.003 0.149
0.3 −0.008 0.100 0.013 0.100 0.001 0.152 0.007 0.138

0.2 0.5 1 −0.087 0.180 0.090 0.181 −0.009 0.164 0.002 0.199
0.7 −0.048 0.143 0.054 0.143 −0.001 0.159 0.004 0.167
0.5 −0.020 0.122 0.034 0.116 0.001 0.156 0.001 0.154
0.3 −0.009 0.097 0.013 0.096 0.002 0.157 0.004 0.143

0.2 −0.3 1 −0.122 0.196 0.099 0.191 0.007 0.194 0.017 0.221
0.7 −0.070 0.154 0.053 0.153 0.019 0.191 −0.004 0.175
0.5 −0.033 0.135 0.033 0.124 −0.004 0.204 0.011 0.175
0.3 −0.008 0.121 0.013 0.107 −0.003 0.188 −0.005 0.167

β̄ and γ̄ represent the estimates of regression parameters β and γ in Schaubel and Cai (2005). SSE represents the sample
standard error of estimates.

consecutive summers from 1996 to 1998, which were conducted by Patterson et al. (2000). During
the first summer, an overview regarding platelet transfusion practices, premedication, and reaction
rate was obtained. In the second summer, platelet transfusion premedications were standardized and
the effect on reaction rate analyzed. The third summer addressed the effect of prestorage platelet
leukoreduction on the reaction rate. The occurrence of FNHTRs is temporary and it is natural to treat
a reaction as a recurrent event. We will focus on two types of causes for the occurrence of a reaction
in the following analysis: Type I = “fever” and Type II = “all other reactions”, where fever is defined
as the presence of a temperature increase of ≥ 1◦C within 6 h post transfusion.

The data available here are restricted to those collected during the 1997 summer where eligible
patients include all hematology/oncology patients who experienced at least one FNHTR reaction.
There are 254 patients with a total of 1395 transfusions. The missing values of the FNHTR data during
the 1997 summer concentrate on five types of transfusion reactions defined based on a temperature
increase ≥ 1 (fever), chills, rigors, hives, and other symptoms. Among 1395 transfusions, the missing
frequencies of fever, chill, rigors, hives, and other symptoms are 195, 65, 65, 65, and 66, respectively.
These missing values are imputed by carrying forward the last observed value. The covariates of interest
in our analysis include platelet product donor type (X (1)

i j (t) = 1 if random donor platelet at time t, 0

if single donor platelet or HLA-matched platelet), premedication (X (2)
i j (t) = 0 if yes at time t, 1 if no),

hospital center (Z(1)
i j = 1 if hospital A,B, or C, 0 if hospital D or E), gender (Z(2)

i j = 1 if female, 0 if

male) and age of patient at start of study (Z(3)
i j = 1 if age in (0, 27], 2 if age in (27, 42], 3 if age in (42, 55],

4 if age greater than 55). Censoring time Ci j is defined as the day of the last visit at the study and

τ denotes the maximum time of Ci j ’s. Since the time-dependent covariates Xi j (t) = (X (1)
i j (t), X (2)

i j (t))
were observed only at observation times and missing at nonobservation times, following the ideas of
Huang et al. (2010), we approximate the time-dependent covariates Xi j (t) in the interval between two
observation times by the measurement of Xi j (t) at the time point nearest to t. We suppose that the
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Table 4 Estimation results of the covariate effects on the transfusion reactions with the corresponding
p-values in parentheses.

Type β̂ γ̂

β̂ (1) β̂ (2) γ̂ (1) γ̂ (2) γ̂ (3)

I 2.129 (<0.01) 0.367 (0.143) −0.219 (0.597) 0.038 (0.916) 0.104 (0.521)
II 1.436 (<0.01) 1.133 (< 0.01) −0.765 (0.032) 0.163 (0.651) 0.337 (0.022)

Type I = “fever”; Type II = “all other reactions.”

covariates are type-specific. The goal is to investigate the effect of the covariates on the risk of two
types of transfusion reactions.

To analyze the data, we denote N∗
i1(t) and N∗

i2(t) to be the numbers of fever and all other reactions
over interval [0, t] with patient i, respectively, with risk intensity function λi j (t), j = 1, 2 satisfying (1).
The numbers of recurrence for two events range from 0 to 7 and 0 to 8 with the mean values of 0.76
and 1.01, respectively. Let β

(k)

0 j , j, k = 1, 2 be the regression coefficients of X (k)
i j (t), and let γ

(k)

0 j , j =
1, 2, k = 1, 2, 3 be the coefficients of Z(k)

i j . The application of the proposed estimation procedure in
Section 3 gave the estimates of regression parameters with p-values in Table 4. These results show that
random donor platelets significantly increase the rate of both types of FNHTRs, while a priori with
medication significantly decreases the rate of Type II platelet transfusion reactions and those patients
in hospital A, B, and C and younger patients experienced less Type II platelet transfusion reactions. On
the other hand, neither FNHTR rates seem to be related to the gender of the patients. Figure1 presents
the estimated �0 j (t), j = 1, 2 with the pointwise 95% bootstrap confidence intervals. By comparing
Fig. 1 (a) and (b), it can be observed that FNHTR accompanied with fever has a higher risk than
other reactions and the risk of the former increases over time.

We also investigated the effects of the covariates (X (1)
i j (t), X (2)

i j (t), Z(1)
i j , Z(2)

i j , Z(3)
i j ) on the

risk of four types of transfusion reactions, that is, fever, chill, rigor, and all other reactions
and obtained similar results as shown in Supplementary Information on the journal’s website
(http://www.biometrical-journal.com).

6 Concluding remarks

In this article we have propose a joint semiparametric frailty-based proportional intensity model for
regression analysis of multivariate recurrent event data. The model allows for both time-dependent
and time-independent covariates and informative censoring. Through the use of frailties, the proposed
model relaxes the noninformative censoring condition for the recurrent event process. Simulation
results show that the proposed method performed well and is more robust. The proposed model is
flexible in the sense that the frailty distribution is treated as a nuisance parameter and no paramet-
ric assumptions are imposed. However, the lack of involvement of the correlation structure in the
parameter estimation can cause to lose efficiency. To enhance the efficiency of the estimates, a borrow-
strength procedure is developed. Simulation studies indicate that the efficiency gain is reduced by less
correlation between different risk types.

One limitation is that each recurrent event process has been assumed to be a mixed Poisson process
and it would be useful to generalize the approach to situations where the recurrent event process
satisfies a proportional mean/rate model. In addition, one may investigate other models such as
additive and additive-multiplicative intensity models as well as mean/rate models. Another direction
for future research is to develop model-checking techniques.
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Figure 1 Plots of �̂0 j (t), j = 1, 2, the estimated mean numbers of recurrence of fever, and all other
reactions in the FNHTR data, with pointwise bootstrap 95% confidence intervals.

In the application, the missing values for transfusion reactions are imputed by carrying forward the
last observed. This approach takes all unobserved measurements as the last observed measurement,
resulting in either underestimating or overestimating the treatment effects. Furthermore, it may lead to
an underestimate of the standard deviation and inflation of the Type I error rate just like other single
imputation methods, for example, baseline observation carried forward or mean imputation. On the
other hand, multiple imputation methods, such as regression method, propensity score method, and
Markov chain Monte Carlo (MCMC) method, can be taken into consideration. As the latter replaces
each missing value with two or more plausible values that represent the uncertainty about the true
value, it may overcome the drawbacks of single imputation methods. It deserves for us to study the
effects of different imputation methods on FNHTR data in our future research.
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Appendix

For the sake of convenience, let
∑

i<l stand for
∑n

i=1

∑n
l=i+1 and

∑
i<l1<l2

stand for∑n
i=1

∑n
l1=i+1

∑n
l2=l1+1.

A.1 Asymptotic results of β̂

Theorem 1. Assume that Xj (t)’s be bounded by M and E [N(τ )]] < ∞, where N(τ ) = ∑J
j=1 Nj (τ ).

Then β̂ is a consistent estimator of β0. Furthermore,
√

n(β̂ − β0) converges weakly to a nor-
mal distribution with mean 0 and covariance V (β0) = V2(β0)

−1V1(β0)V2(β0)
−1, where V1(β0) =

4E [H (D1, D2;β0)H (D1, D3;β0)
′] and V2(β0) = −E [∂H (D1, D2;β0)/∂β0]. The covariance matrix V

can be estimated by V̂ −1
2 V̂1V̂

−1
2 , where

V̂1 = 4
n − 2

n−2∑
i=1

1(n−i
2

) ∑
i< j<l

H (Di, Dj; β̂ )H (Di, Dl ; β̂ )′,

and

V̂2 = − 1(n
2

) ∑
i<l

∂H (Di, Dl ; β̂ )

∂β
.

A.2 Asymptotic results of the estimators of �0 j(t) and γ

For each j, let s j(l )’s be the ordered and distinct values of the j-th type event times Ti jk’s,

d j(l )(β) = 1
n

n∑
i=1

mi j∑
k=1

I(Ti jk = s j(l )) exp{−Xi j (Ti jk)′β},

and

Rj(l )(β) = 1
n

n∑
i=1

mi j∑
k=1

I(Ti jk ≤ s j(l ) ≤ Ci j ) exp{−Xi j (Ti jk)′β}.

Then F0 j (t) can be estimated by

F̂0 j (t) = F̂0 j (t, β̂ ) =
∏

s j(l )>t

(
1 − d j(l )(β̂ )

Rj(l )(β̂ )

)
.
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To state the asymptotic distribution of (F̂0 j (t), j = 1, . . . , J)′, for any u ∈ [0, τ ] and d = 0, 1, define

Qd
0 j (u) =

∫ u

0
G0 j (v)d�0 j (v) =

∫ u

0
E [ξ10I(C1 j ≥ v) exp(Z′

1 jγ0)X1 j (v)
d ]d�0 j (v),

Rd
0 j (u) =

∫ u

0
E [ξ10I(C1 j ≥ u) exp(Z′

1 jγ0)X1 j (v)
d ]d�0 j (v),

ζ0 j (Di, Dl ; t, β) =
(

−
∫ τ

t

dQ1
0 j (u)

R0
0 j (u)

+
∫ τ

t
R1

0 j (u)
dQ0

0 j (u)

R0
0 j (u)2

)
V −1

2 (β)H (Di, Dl ;β),

ψ0 j (Di; t, β) =
mi j∑
k=1

I(t < Ti jk ≤ τ ) exp(−Xi j (Ti jk)′β)

R0
0 j (Ti jk)

−
mi j∑
k=1

∫ τ

t
I(t < Ti jk ≤ Ci j ) exp(−Xi j (Ti jk)′β)

dQ0
0 j (u)

R0
0 j (u)2

,

and

κ0 j (Di, Dl ; t, β) = ζ0 j (Di, Dl ; t, β) + {ψ0 j (Di; t, β) + ψ0 j (Dl ; t, β)}/2.

Lemma 1. Assume that (a) 0 < λ0 j (τ ) < ∞ for each j = 1, . . . , J, (b) P(Ci j > τ, ξi0 > 0) > 0, and
(c) G0 j (u) = E

{
ξi0I(Ci j ≥ u) exp(Z′

i jγ0)
}

is a continuous function for u ∈ [0, τ ]. Let τ0 = sup
1≤ j≤J

inf{y :

�0 j (y) > 0}. Then for each t ∈ (τ0, τ ],
√

n(F̂0 j (t) − F0 j (t), j = 1, . . . , J)′ converges weakly to a normal
distribution with mean 0 and variance �κ(t), where �κ(t) = 4E{κ(D1, D2; t, β0)κ(D1, D3; t, β0)

′} with
κ(Di, Dl ; t, β) = (κ0 j (Di, Dl ; t, β)F0 j (t), j = 1, . . . , J)′.

For estimation of �0 j (τ ) and γ , noting that

E{mi j |ξi0,Ci j, Zi j,Xi j (Ci j )} = ξi0�0 j (τ ) exp(Z′
i jγ )

∫ Ci j

0
exp{Xi j (u)′β}dF0 j (u), (A1)

we have

E

[
mi j∫ Ci j

0 exp(Xi j (u)′β)dF0 j (u)

∣∣∣∣∣Ci j, Zi j,Xi j (Ci j )

]
= �0 j (τ ) exp(Z′

i jγ ).

Let e j be a J-dimensional vector with the j-th entry being 1 and other entries being 0, and let
η = (log �01(τ ), . . . , log �0J (τ ), γ ′)′, Zi j = (e′

j, Z′
i j )

′, Z∗
i = (Zi1, . . . , ZiJ ),

Mi j (β, F0 j ) = mi j∫ Ci j

0 exp{Xi j (u)′β}dF0 j (u)
,
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and

Mi(η;β, F ) =
(

Mi1(β, F01) − exp(Zi1
′
η), . . . , MiJ (β, F0J ) − exp(ZiJ

′
η)

)′
,

where F = (F01, . . . , F0J ). Thus, η can be estimated by solving the following equation:

1
n

n∑
i=1

Z∗
i Mi(η; β̂, F̂ ) = 0, (A2)

where F = (F01, . . . , F0J ). Let η̂ = (η̂1, . . . , η̂J , γ̂
′)′ be the root of the estimating equation (A2). So,

(�̂0 j (t), j = 1, . . . , J)′ can be estimated by (F̂0 j (t) exp(η̂ j ), j = 1, . . . , J)′. In the following, let γ0 and
η0 be the true values of γ and η.

Theorem 2. Under the conditions of Theorem 1 and Lemma 1,
√

n(γ̂ − γ0) converges weakly to a normal
distribution with mean 0 and covariance �γ , which is the q × q submatrix consisting of the last q row and the
last q column of �η = �−1

2 �1�
−1
2 with �1 = 4E [ι(D1, D2)ι(D1, D3)

′] and �2 = −E [∂ι(D1, D2)/∂η0],
where

ι(Di, Dl ) =
∫

z∗(M j (Di, Dl ;β0), j = 1, . . . , J)′dV(z∗, m, x, c)

+1
2

Z∗
i Mi(η0;β0, F ) + 1

2
Z∗

l Ml (η0;β0, F )

with V being the joint probability measure of

(Z∗, m, X,C) = (Z∗, (m1, . . . , mJ ), (X1, . . . , XJ ), (C1, . . . ,CJ )),

and

M j (Di, Dl ;β0) = −mj

{
∫ c j

0
exp{xj (u)β0}dF0 j (u)}2

×
[

V −1
2 (β0)H (Di, Dl ;β0)

∫ c j

0
exp{xj (u)′β0}xj (u)′dF0 j (u)

−
∫ c j

0
exp{xj (u)′β0}d (κ0 j (Di, Dl ; u, β0)F0 j (u))

]
.

Moreover, for fixed t ∈ (τ0, τ ],
√

n(�̂0 j (t) − �0 j (t), j = 1, . . . , J) converges weakly to a normal
distribution with mean 0 and covariance matrix ��(t) = 4E [ f (D1, D2; t, β0) f (D1, D3; t, β0)

′] with
f (Di, Dl ; t, β0) = (F0 j (t) exp(η j )( f0 j (Di, Dl ) + κ0 j (Di, Dl ; t, β0)), j = 1, . . . , J)′, where f0 j (Di, Dl ) is
the j-th entry of the vector function �−1

2 ι(Di, Dl ).
To enhance the efficiency of the estimator of γ , we propose an alternative estimating equation where

the effect of the shared frailty is incorporated.

1
n

n∑
i=1

Z∗
i

(
Mi1(β, F01) − ξi0 exp(Z′

i1η), . . . , Mi1(β, F01) − ξi0 exp(Z′
i1η)

)′
= 0,
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where frailty ξi0 is unobservable. From (A1), given η, a natural estimator for ξi0 is

ξ̃i0 = 1
J

J∑
k=1

Mik(β̂, F̂0k) exp(−Z′
ikη)

by using the borrow strength ideas (Huang and Wang, 2004). Let

M̃i(η;β, F ) =
(

Mi j (β, F0 j ) − exp(Z′
i jη)

1
J

J∑
k=1

Mik(β, F0k) exp(−Z′
ikη), j = 1, . . . , J

)′

.

Then η can be estimated by the solution to the following equation:

1
n

n∑
i=1

Z∗
i M̃i(η; β̂, F̂ ) = 0,

denoted by η̃ = (η̃1, . . . , η̃J , γ̃
′)′, and �0 j (t) can be estimated by �̃0 j (t) = F̂0 j (t) exp(η̃ j ).

Theorem 3. Under the conditions of Theorem 1 and Lemma 1,
√

n(γ̃ − γ0) converges weakly to a normal
distribution with mean 0 and covariance �̃γ , which is the q × q submatrix consisting of the last q row and
the last q column of �̃η = �̃−1

2 �̃1�̃
−1
2 where �̃1 = 4E [̃ι(D1, D2 )̃ι(D1, D3)

′], �̃2 = −E [∂ι̃(D1, D2)/∂η0],
and

ι̃(Di, Dl ) =
∫

z∗
(
M j (Di, Dl ;β0) − exp(z

′
jη0)

1
J

J∑
k=1

Mk(Di, Dl ;β0)

exp(z
′
kη0)

, j = 1, . . . , J

)′

×dV(z∗, m, x, c)

+1
2

Z∗
i M̃i(η0;β0, F ) + 1

2
Z∗

l M̃l (η0;β0, F ).

Moreover, for fixed t ∈ (τ0, τ ],
√

n(�̃0 j (t) − �0 j (t), j = 1, . . . , J) converges weakly to a normal dis-
tribution with mean 0 and covariance �̃�(t) = 4E [ f̃ (D1, D2; t, β0) f̃ (D1, D3; t, β0)

′] where

f̃ (Di, Dl ; t, β0) =
(

F0 j (t) exp(η j )( f̃01(Di, Dl ) + κ0 j (Di, Dl ; t, β0)), j = 1, . . . , J
)′

,

and f̃0 j (Di, Dl ) is the j-th entry of the vector function �̃−1
2 ι̃(Di, Dl ).
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