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a b s t r a c t

This paper discusses nonparametric comparison of survival functions when one observes
only interval-censored failure time data (Peto and Peto, 1972; Sun, 2006; Zhao et al.,
2008). For the problem, a few procedures have been proposed in the literature. However,
most of the existing test procedures determine the test results or p-values based on ad
hoc methods or the permutation approach. Furthermore for the test procedures whose
asymptotic distributions have been derived, the results are only for the null hypothesis.
In other words, no nonparametric test procedure exists that has a known asymptotic
distribution under the alternative hypothesis and thus can be employed to carry out the
power and test size calculation. In this paper, a new class of generalized log-rank tests is
proposed and their asymptotic distributions are derived under both null and alternative
hypotheses. A simulation study is conducted to assess their performance for finite sample
situations and an illustrative example is provided.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This paper discusses nonparametric comparison of survival functions when one observes only interval-censored failure
time data (Peto and Peto, 1972; Sun, 2006; Zhao et al., 2008). By interval-censored data, we mean that the failure times of
interest are observed only to belong to some windows or intervals, instead of being observed or known exactly. This would
occur if, for example, a survival study involves periodic follow-ups such as clinical trials. Onewould get an interval-censored
observation for a survival event of interest if a subject has not experienced the event at one follow-up time but it is found at
the next follow-up time that the event has already occurred. Interval-censored data include right-censored data (Kalbfleisch
and Prentice, 2002) as a special case.

A well-known set of interval-censored failure time data that has been discussed by many authors arose from a breast
cancer study (Finkelstein, 1986; Sun, 2006). The data consist of 94 early breast cancer patients treated at the Joint Center for
Radiation Therapy in Boston between 1976 and 1980. For their treatments, the patients were given either radiation therapy
alone or radiation therapy plus adjuvant chemotherapy. Each patient was supposed to have clinic visits every 4–6 months
to be examined for cosmetic appearance such as breast retraction. However, actual visit times differ from patient to patient
and as a consequence, with respect to the breast retraction time, only interval-censored data were observed. Specifically,
some patients did not actually experience the breast retraction during the study and thus gave right-censored observations
for the time. For all other patients, the observation was interval-censored with the intervals given by the last clinical visit
time at which the breast retraction had not occurred and the first clinical visit time at which it was detected. In particular,
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there are some patients for whom the breast retraction was detected at their first clinical visits, meaning that the censored
intervals include zero. Another example of interval-censored data from an AIDS clinical trial will be discussed below.

Survival comparison is usually one of the main goals in survival studies. For the case of right-censored failure time data,
there exist a number of well-established procedures such as the weighted log-rank tests and the weighted Kaplain–Meier
tests (Fleming and Harrington, 1991; Kalbfleisch and Prentice, 2002). For the case of interval-censored failure time data, a
fewnonparametric test procedures have also been actually developed. For example, Finkelstein (1986) suggested a score test
procedure, and Sun (1996) and Zhao and Sun (2004) generalized the log-rank test for right-censored data. However, most
of the existing approaches for interval-censored data are ad hoc generalizations of those for right-censored data and have
unknown asymptotic properties (Sun, 2006). Some exceptions are the procedures proposed by Fang et al. (2002), Sun et al.
(2005) and Zhao et al. (2008), in which the null asymptotic distribution of the test statistics was established. It is clear that
all of these test procedures cannot be used if one intends to perform some power or test size calculation as their asymptotic
distributions under the alternative hypothesis are still unknown. In this paper, we propose a new class of test procedures
whose asymptotic distributions are established under both null and alternative hypotheses.

The remainder of the paper is organized as follows. We will begin in Section 2 with introducing some notation and
assumptions that will be used throughout the paper and then present the new test statistics. The asymptotic distributions
of the test statistics will be established in Section 3. In Section 4, we will present some numerical results obtained from a
simulation study for assessing the finite sample performance of the proposed test procedure. An illustrative example is also
given in Section 4. Section 5 contains some concluding remarks.

2. Generalized log-rank test statistics

Consider a survival study that involves n independent subjects. Let Ti denote the survival time of interest for subject
i, i = 1, . . . , n. Suppose that for subject i, we only observe {Ui, Vi, ∆i = I(Ti ≤ Ui), Γi = I(Ui < Ti ≤ Vi)}, where Ui and
Vi are non-negative random variables independent of Ti such that Ui < Vi with probability one, i = 1, . . . , n. This means
that one only knows if Ti is smaller than Ui, between Ui and Vi, or larger than Vi. In other words, we only have interval-
censored data on the Ti’s. Assume that the study involves two groups, control (group 1) and treatment (group 2) groups. Let
F1(t) and F2(t) denote the cumulative distribution functions of the Ti’s for the subjects in the control and treatment groups,
respectively. Suppose that the main goal is to compare the two groups or to test the hypothesis H0 : F1(t) = F2(t).

To construct the proposed test statistics, we first look at the test statistics given in Sun et al. (2005). For this, let F(t)
denote the common survival function under the null hypothesis H0 and define

KF (u, v, δ, γ ) = δ
η{F(u)} − c0

F(u)
+ γ

η{F(v)} − η{F(u)}
F(v) − F(u)

+ (1 − δ − γ )
c0 − η{F(v)}

1 − F(v)
.

Here η is a known function over (0, 1) such that limx→0 η(x) = limx→1 η(x) = c0, where c0 is a constant. Also let F̂n(t)
denote the nonparametric maximum likelihood estimate of F based on all samples and Sl the set of indices for the subjects
in group l, l = 1, 2. To test H0, Sun et al. (2005) proposed the following test statistic

USZZ =


i∈S1

KF̂n(Ui, Vi, ∆i, Γi),

i∈S2

KF̂n(Ui, Vi, ∆i, Γi)

T

and derived its null asymptotic distribution.
On the other hand, it is easy to see that it would be difficult or impossible to derive the asymptotic distribution of USZZ

under the alternative hypothesis partly because F̂n is not well-defined if F1 ≠ F2. To modify the test statistic USZZ , let n1

and n2 (n1 + n2 = n) denote the numbers of subjects in the control and treatment groups, respectively, and F̂n1 and F̂n2 the
nonparametric maximum likelihood estimates of F1 and F2 based on the samples from the control and treatment groups,
respectively. Naturally, by noting that

i∈S1

KF̂n1
(Ui, Vi, ∆i, Γi) = 0

and 
i∈S2

KF̂n2
(Ui, Vi, ∆i, Γi) = 0,

one could define a new statistic as
i∈S1

KF̂n2
(Ui, Vi, ∆i, Γi),


i∈S2

KF̂n1
(Ui, Vi, ∆i, Γi)

T

by replacing F̂n(t) with F̂n1 or F̂n2 in USZZ . However, it would still be difficult to derive the asymptotic distribution of the
statistic given above.
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To construct a workable test statistic, define

KF1,F2(u, v, δ, γ ) = δ
η{F2(u)} − c0

F1(u)
+ γ

η{F2(v)} − η{F2(u)}
F1(v) − F1(u)

+ (1 − δ − γ )
c0 − η{F2(v)}

1 − F1(v)
.

For testing the hypothesis H0, we propose to use the statistic

Ūn = (Ūn1 , Ūn2)
T

=


1

√
n1


i∈S1

KF̂n1 ,F̂n2
(Ui, Vi, ∆i, Γi),

1
√
n2


i∈S2

KF̂n2 ,F̂n1
(Ui, Vi, ∆i, Γi)

T

.

In the next section, wewill establish the asymptotic properties of Ūn1 and Ūn2 and hence present the resulting test procedure
for H0. Some comments will be given below on the determination of F̂n1(t) and F̂n2(t) as well as the selection of function η.

3. Asymptotic distributions and test procedures

In this section, we will first establish the asymptotic distributions of Ūn1 and Ūn2 and then present the test procedure. For
this, let H and h denote the distribution and density functions of (Ui, Vi), respectively, and λ2 and ν2 denote the Lebesgue
measure on R2 and counting measure on the set {(0, 1), (1, 0), (0, 0)}, respectively. Define

qF (u, v, δ, γ ) = h(u, v){F(u)}δ{F(v) − F(u)}γ {1 − F(v)}1−δ−γ

and similarly qF1(u, v, δ, γ ) and qF2(u, v, δ, γ ) with respect to λ2 ⊗ ν2. It is easy to see that qFl(u, v, δ, γ ) is the density
function of (Ui, Vi, ∆i, Γi) for i ∈ Sl, l = 1, 2. Also for l = 1, 2, define dQl = qFl d(λ2 ⊗ ν2) and the empirical measure

Qnl(u, v, δ, γ ) =
1
nl


i∈Sl

1{(Ui,Vi)≤(u,v),(∆i,Γi)=(δ,γ )}

with Qlf =

fdQl and Qnl f =


fdQnl =

1
nl


i∈Sl

f (Ui, Vi, ∆i, Γi) for any function f (u, v, δ, γ ). Then we have

Ūn1 =
√
n1 Qn1(KF̂n1 ,F̂n2

), Ūn2 =
√
n2 Qn2(KF̂n2 ,F̂n1

).

For the result below, we will assume that the regularity conditions given in Groeneboom and Wellner (1992) for the
strong consistency of F̂n1 and F̂n2 hold. Also following Sun et al. (2005), wewill assume that F1(t) and F2(t) have their support
in [0,M] with continuous density functions, and that there exist 0 < δ0, ε0 < M/2 andM0 < M such that Pr(Ui < δ0) = 0,
Pr(Ui + ε0 ≤ Vi ≤ M0) = 1, 0 < Fl(δ0) < Fl(M0) < 1 and minδ0≤t≤M0−ε0 [Fl(t + ε0) − Fl(t)] ≠ 0, where M is a positive
constant. These conditions usually hold for periodic follow-up studies such as clinical trials. The following theorem gives
the asymptotic behavior of Ūn1 and Ūn2 .

Theorem 1. Suppose that the assumptions described above hold and η is a bounded Lipschitz function on [a, 1] for any finite
positive number a < 1. Also suppose that as n → ∞, nk/n → pk, where 0 < pk < 1 and p1 + p2 = 1. Then we have,
asymptotically,

Ūn1 = Zn1 + op(1)

and

Ūn2 = Zn2 + op(1),

where

Zn1 =
√
n1(Qn1 − Q1)


KF1,F2 − θ̃g1,F1


and

Zn2 =
√
n2(Qn2 − Q2)


KF2,F1 − θ̃g2,F2


with gl and θ̃gl,Fl given in the Appendix.

The proof of the above theorem is sketched in the Appendix. Note that Zn1 and Zn2 are independent. Then it follows from
the theorem and the central limit theorem that Ūn1 and Ūn2 converge in distribution to two independent normal random
variables Z1 and Z2, where Z1 ∼ N(0, σ 2

1 ) and Z2 ∼ N(0, σ 2
2 ) with

σ 2
1 = Q1


KF1,F2 − θ̃g1,F1


− Q1


KF1,F2 − θ̃g1,F1

2



126 X. Zhao et al. / Computational Statistics and Data Analysis 60 (2013) 123–131

and

σ 2
2 = Q2


KF2,F1 − θ̃g2,F2


− Q2


KF2,F1 − θ̃g2,F2

2
.

Define

S =
Ū2
n1/σ

2
1

Ū2
n2/σ

2
2

.

Then it follows from the theorem above that S has an asymptotic F(1, 1) distribution and furthermore, under the hypothesis
H0 and as n → ∞, the distribution of S0 = Ū2

n1/Ū
2
n2 can be approximated by the F(1, 1) distribution. This suggests that one

can carry out the test of the hypothesis H0 by using the statistic S0 based on the F(1, 1) distribution.
To implement the test procedure proposed above, one needs to determine F̂n1 and F̂n2 and select the function η. For

the former, the simplest method is to apply the self-consistency algorithm given in Turnbull (1976). Some alternatives
can be found in Sun (2006). For the latter, a common choice, which will be used below for the numerical study, is
η(x) = 1 − (1 − x) log(1 − x) (1 − x)b xc , where b and c are some numbers between [0, 1]. More comments on this
can be found in Sun et al. (2005).

As discussed above, in practice, one may be often interested in performing power calculations. For this based on the test
procedure given above, for the given significance level α, let Z denote the random variable following the F(1, 1) distribution
and FL and FU be defined such that

P(Z < FL) = α/2 and P(Z > FU) = α/2.

Then the asymptotic power is given by

F1,1


σ 2
2

σ 2
1
FL


+ 1 − F1,1


σ 2
2

σ 2
1
FU


if F1 and F2 are known.

4. Numerical studies

Nowwe report some results obtained from a simulation study conducted to assess the finite sample performance of the
class of test procedures proposed in the previous sections and its application to a real set of interval-censored data. For the
simulation study, we assumed that a half of the subjects are from the control group and the other half from the treatment
group. To generate the survival times of interest, we considered two set-ups. One is to assume that Ti follows the exponential
distribution with the mean exp(α + βzi), where zi is the treatment indicator, being equal to 0 for the subjects in the control
group and 1 otherwise. The other is to generate Ti from the gamma distribution with the shape parameter equal to 2 and
the scale parameter 1/(α + βzi).

To generate the censoring interval for subject i, we first generatedUi1 andUi2 independently from theuniformdistribution
over (1, θ1) and (1, θ2), respectively. Here θ1 and θ2 are some positive constants chosen to give the desired percentages of
left-censored, interval-censored and right-censored observations. Given Ui1 and Ui2, we defined Ui to be the nearest integer
toUi1 and Vi the nearest integer to themaximumofUi1+1 andUi1+Ui2. Alsowe assumed that the study ended at t = 10 and
thus defined Vi to be 10 if the Vi generated above is larger than 10. The results given below are based on 1000 replications.

Table 1 presents the empirical or estimated size and power of the proposed test procedure based on the simulated data
generated from the exponential distribution with α = 2, β = −3, −2, −1.5, 0, 1.5, 2 or 3. Here we used the η function
given in Section 3 with different values of b and c and the self-consistency algorithm for the determination of the maximum
likelihood estimates F̂n1 and F̂n2 . In the table, the first column gives the percentages of left-censored, interval-censored
and right-censored observations in the generated data, which are roughly (20%, 20%, 60%) and (17%, 16%, 67%) for the two
situations considered here. The results obtained under the gamma distribution are given in Table 2 and here we took α = 1
and the same values for β as in Table 1. One can see from both Tables 1 and 2 that the proposed test procedure seems to
give the right size and have good power for the situations considered here.

To illustrate the proposed approach, we apply it to the set of interval-censored data discussed in Goggins and Finkelstein
(2000) and Sun (2006) among others. The data arose from an AIDS clinical trial concerning the opportunistic infection
cytomegalovirus (CMV). During the study, among other activities, blood and urine samples were collected from the patients
at their clinical visits and tested for the presence of CMV, which is also commonly referred to as shedding of the virus.
These samples and tests provide observed information on the two variables, the times to CMV shedding in blood and urine,
respectively. The study consists of 204 patients who provided at least one urine and one blood sample during the study.
For some patients, their shedding had already occurred at their first clinical visits or they had not yet started shedding by
the end of the study, giving either left- or right-censored observations on their shedding times. For the other patients, their
shedding times were observed to belong to some intervals given by the last negative and first positive blood or urine test,
respectively.
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Table 1
Estimated size and power based on simulated data from exponential distribution.

Censoring percentages b c β

3 2 1.5 0 −1.5 −2 −3

(20%, 20%, 60%) 0 0 0.478 0.158 0.085 0.057 0.260 0.838 1
0 0.5 0.397 0.118 0.075 0.059 0.365 0.921 1
0.5 0 0.708 0.242 0.103 0.043 0.212 0.804 1
0.5 0.5 0.628 0.214 0.095 0.044 0.320 0.893 1

(17%, 16%, 67%) 0 0 0.489 0.171 0.118 0.047 0.262 0.844 1
0 1 0.335 0.122 0.084 0.059 0.530 0.962 1
1 0 0.855 0.397 0.172 0.040 0.199 0.793 1
1 1 0.770 0.291 0.140 0.046 0.399 0.923 1

Table 2
Estimated size and power based on simulated data from gamma distribution.

Censoring percentages b c β

3 2 1.5 0 −1.5 −2 −3

(12%, 12%, 76%) 0 0 0.997 0.946 0.692 0.047 0.854 0.996 1
0 0.5 0.993 0.923 0.686 0.053 0.927 1 1
0.5 0 1.000 0.966 0.719 0.041 0.852 1 1
0.5 0.5 1.000 0.960 0.708 0.042 0.919 1 1

(10%, 15%, 75%) 0 0 0.997 0.930 0.704 0.041 0.853 0.999 1
0 1 0.989 0.907 0.695 0.053 0.946 1 1
1 0 1.000 0.958 0.714 0.043 0.817 0.998 1
1 1 0.999 0.948 0.705 0.040 0.936 1 1

Table 3
Results on the analysis of AIDS clinical trial.

(b, c) On blood shedding time
(0, 0) (0, 0.5) (0.5, 0) (0.5, 0.5) (0, 1) (1, 0) (1, 1)

Test statistics 0.00022 0.00029 0.00011 0.00036 0.00031 0.00023 0.00055
p-value 0.019 0.022 0.013 0.024 0.022 0.019 0.030
Exact p-value 0.039 0.037 0.032 0.047 0.046 0.036 0.044

On urine shedding time

Test statistics 0.0239 1.1376 0.0221 0.0002 0.0099 0.0073 0.4043
p-value 0.019 0.108 0.721 0.126 0.188 0.958 0.195
Exact p-value 0.021 0.063 0.408 0.134 0.097 0.551 0.169

In addition to the observed information about CMV shedding times in blood and in urine, the study also provided the
range of each patient’s baseline CD4 cell count. In particular, the patients were classified into two groups: those with their
baseline CD4 cell counts less than 75 (cells/µl) and the others. Note that the CD4 cell count indicates the status of a person’s
immune system and is commonly used to measure the stage of HIV infection. For this data set, one problem of interest is
to compare the two groups of patients with respect to their CMV shedding times. For this, we applied the test procedure
developed in the previous sections to the data on the times to CMV shedding in blood and urine separately and the obtained
results are presented in Table 3. They indicate that the CMV shedding times in bloodwere significantly different between the
two groups of patients. However, it seems that therewas no significant difference in CMV shedding times in urine. Suggested
by a reviewer, we also applied the Monte Carlo exact test to the data and include the obtained p-values in Table 3. It can be
seen that they gave similar conclusions and furthermore the results are also similar to those given by others (Sun, 2006).

5. Concluding remarks

This paper discussed the nonparametric comparison of survival functions when only interval-censored failure time data
are available. For the problem, a class of nonparametric testswas proposed and both finite sample and asymptotic properties
of the presented approach were established. One major advantage of the proposed test procedure is that its asymptotic
distribution is knownunder bothnull and alternative hypotheses,whichmakes bothpower and test size calculationpossible.
In contrast, for all existing nonparametric test procedures, their asymptotic distribution is either unknown or known only
under the null hypothesis. Note that another shortcoming for some existing test procedures is that the estimation or
determination of the variance of the test statistics involve the dealing of high dimension matrices, which makes them
unstable. It is easy to see that the proposed test procedure does not have the same problem.

In the previous sections, we only considered the two sample test and a natural question of practical interest would be if
the proposed test procedure can be extended to the k-sample comparison problem. For this, consider a survival study that
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involves k-groups with nl subjects from group l and n1 + · · · nk = n. Let Fl(t) denote the cumulative distribution function of
the survival time for group l. Suppose that one is interested in testing if the null hypothesis is H0 : F1(t) = · · · = Fk(t) and
define

Ū∗

n1 =
√
n1 Qn1(KF̂n1 ,F̂n2

), Ū∗

nl =
√
nl Qnl(KF̂nl ,F̂n1

), l = 2, . . . , k, k ≥ 2,

and

S∗

0 , =
(Ū∗2

n2 + · · · + Ū∗2
nk )/(k − 1)

Ū∗2
n1

.

In the above, Qnl denotes the empirical measure of sample l and F̂nl the nonparametric maximum likelihood estimate of Fl
based on sample l from group l, l = 1, . . . , k. One can expect to show that underH0, S∗

0 asymptotically follows the F(k−1, 1)
distribution and thus can construct a test procedure based on it.

It should be noted that there exist some limitations about the proposed nonparametric test procedure. One is that so far
we have assumed that no exact observation on the survival time of interest is observed. Although this may not be true in
general, it holds in many situations such as studies with periodic follow-ups. Also we have assumed that the distributions of
interest are continuous. But actually the procedure presented is valid if the distributions of interest have only finite support
points. Note that for this latter case, the problem ismuch simpler as the standardmaximum likelihood theory for parametric
models could be applied. Of course, it would be useful to generalize the proposed approach to situations where the observed
data include both exact and interval-censored observations on the survival time of interest.

Another limitation of the proposed approach is that we only considered the situation where the distributions generating
censoring intervals are identical for the subjects in different treatment groups. Sometimes this may not be true as, for
example, the subjects in different treatment groupsmay have different follow-up patterns in a periodic follow-up study. One
specific example of this is given by a clinical trial in which patients receiving placebo treatmentmay feel worse compared to
other patients and thus visit doctors more often. Among others, Sun (1999) discussed this problem for current status data, a
special case of interval-censored data. However, there does not seem to exist a nonparametric test procedure similar to the
one proposed here.

Acknowledgments

The authors wish to thank the co-Editor, Dr. Stanley Azen, the Associate Editor and two referees for their effort on the
manuscript and many useful comments and suggestions. The work was partly supported by the Research Grant Council of
Hong Kong (PolyU 5032/09P) and The Hong Kong Polytechnic University grants to the first author and a NIH grant to the
last author.

Appendix. Proof of Theorem 1

To prove the theorem, we will only need to prove the first part on Ūn1 as the proof for the second part is similar. For this,
note that we can rewrite Ūn1 as

Ūn1 =
√
n1(Qn1 − Q1)


KF̂n1 ,F̂2,n2

− KF1,F2


+

√
n1Q1


KF̂n1 ,F̂n2


+

√
n1(Qn1 − Q1)


KF1,F2


. (1)

For the second term at the right side of the above equation, we have
√
n1Q1


KF̂n1 ,F̂n2


=

√
n1Q1


KF̂n1 ,F̂n2

− KF̂n1 ,F2


−


KF1,F̂n2

− KF1,F2


+

√
n1Q1


KF1,F̂n2

− KF1,F2


+

√
n1Q1


KF̂n1 ,F2


(2)

and
√
n1Q1


KF̂n1 ,F2


=

√
n1

 
KF̂n1 ,F2

(u, v, δ, γ )qF1(u, v, δ, γ )

d(λ2 ⊗ ν2)

=
√
n1

 
KF̂n1 ,F2

(u, v, δ, γ ) − KF1,F2(u, v, δ, γ )


×


qF1(u, v, δ, γ ) − qF̂n1 (u, v, δ, γ )


d(λ2 ⊗ ν2)

+
√
n1


KF̂n1 ,F2

(u, v, δ, γ )qF̂n1 (u, v, δ, γ ) d(λ2 ⊗ ν2)

+
√
n1


KF1,F2(u, v, δ, γ )


qF1(u, v, δ, γ ) − qF̂n1 (u, v, δ, γ )


d(λ2 ⊗ ν2). (3)
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It can be easily shown that
√
n1Q1


KF̂n1 ,F̂n2

− KF̂n1 ,F2


−


KF1,F̂n2

− KF1,F2


= op(1),

√
n1Q1


KF1,F̂n2

− KF1,F2


= 0,

√
n1

 
KF̂n1 ,F2

(u, v, δ, γ ) − KF1,F2(u, v, δ, γ )
 

qF1(u, v, δ, γ ) − qF̂n1 (u, v, δ, γ )

d(λ2 ⊗ ν2) = op(1),

and 
KF̂n1 ,F2

(u, v, δ, γ )qF̂n1 (u, v, δ, γ )d(λ2 ⊗ ν2) = 0.

Thus it follows from (2) and (3) that

√
n1Q1


KF̂n1 ,F̂n2


= −In + op(1), (4)

where

In =
√
n1


KF1,F2(u, v, δ, γ )


qF̂n1 (u, v, δ, γ ) − qF1(u, v, δ, γ )


d(λ2 ⊗ ν2).

Now we will show that
√
n1 (Qn1 − Q1)(KF̂n1 ,F̂n2

− KF1,F2) → 0 (5)

in probability as n → ∞. For this, define

F = {F : F is a distribution function defined on [0,M]},

G =


F : F ∈ F , 0 < F(δ0) < F(M0) < 1, min

δ0≤t≤M0−ε0
[F(t + ε0) − F(t)] ≠ 0


and

H =

KF3,F4(u, v, δ, γ ) − KF1,F2(u, v, δ, γ ) : (u, v) ∈ D, F3, F4 ∈ G


,

where D = {(u, v) : u ≥ δ0, u + ε0 ≤ v ≤ M0}. Because F is a P-Donsker from the proof of Corollary 5.1 of Huang and
Wellner (1995), G is a P-Donsker by Theorem 2.10.1 of van der Vaart andWellner (1996). Note that for any F3, F4, F5, F6 ∈ G,
(u, v) ∈ D, we haveδ η(F4(u)) − c0

F3(u)
+ γ

η(F4(v)) − η(F4(u))
F3(v) − F3(u)

+ (1 − δ − γ )
c0 − η(F4(v))

1 − F3(v)

− δ
η(F6(u)) − c0

F5(u)
− γ

η(F6(v)) − η(F6(u))
F5(v) − F5(u)

− (1 − δ − γ )
c0 − η(F6(v))

1 − F5(v)


≤ c [|F3(u) − F5(u)| + |F3(v) − F5(v)| + |F4(u) − F6(u)| + |F4(v) − F6(v)|]

for some constant c. Then it can be shown by using the bracket entropy theorem of van der Vaart and Wellner (1996,
pp. 127–159)) and the arguments similar to those used in Huang and Wellner (1995) that H is P-Donsker. Also note that
F̂n1 , F̂n2 ∈ G for all n sufficiently large and as n → ∞, we have

{|F̂nl(u) − Fl(u)|2 + |F̂nl(v) − Fl(v)|2}dP −→ 0

in probability from the strong consistency of F̂nl (Groeneboom and Wellner, 1992, p. 85). Thus (5) is true based on this and
the uniform asymptotic equicontinuity of the empirical process resulting from the Donsker property (van der Vaart and
Wellner, 1996, pp. 168–171).

It follows from (1), (4) and (5) that we have

Ūn1 =
√
n1(Qn1 − Q1)KF1,F2 − In + op(1). (6)

To finish the proof, next we will show that

In =
√
n1(Qn1 − Q1)(θ̃g1,F1) + op(1), (7)
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where θ̃g,F is defined below. For this, note that

In =
√
n1


h1(u)

η(F2(u)) − c0
F1(u)

{F̂n1(u) − F1(u)}du

+
√
n1


h(u, v)

η(F2(v)) − η(F2(u))
F1(v) − F1(u)

[{F̂n1(v) − F1(v)} − {F̂n1(u) − F1(u)}]dudv

−
√
n1


h2(v)

c0 − η(F2(v))

1 − F1(v)
{F̂n1(v) − F1(v)}dv =

√
n1


g1(t){F̂n1(t) − F1(t)}dt,

where

g1(t) = h1(t)
η(F2(t)) − c0

F1(t)
+

 t

0
h(u, t)

η(F2(t)) − η(F2(u))
F1(t) − F1(u)

du

−

 M

t
h(t, v)

η(F2(v)) − η(F2(t))
F1(v) − F1(t)

dv − h2(t)
c0 − η(F2(t))
1 − F1(t)

with h1 and h2 being the marginal density functions of Ui and Vi, respectively.
Define

h∗(u, v) =


h(u, v), if u ≤ v,
h(v, u), if u > v,

and

dF (x) =
F(x){1 − F(x)}

h1(x){1 − F(x)} + h2(x)F(x)
.

Let φ = φg,F be the right-continuous solution to the following equation

φ(x) = dF (x)

g(x) −

 x

0

φ(x) − φ(x′)

|F(x) − F(x′)|
h∗(x′, x)dx′


.

Also define

θ̃g,F (u, v, δ, γ ) = −δ
φg,F (u)
F(u)

− γ
φg,F (v) − φg,F (u)

F(v) − F(u)
+ (1 − δ − γ )

φg,F (v)

1 − F(v)
.

Then it follows from Groeneboom (1996, p. 149) that we have

In =
√
n1


g1(t){F̂n1(t) − F1(t)}dt =

√
n1(Qn1 − Q1)(θ̃g1,F̂n1

)

=
√
n1(Qn1 − Q1)(θ̃g1,F̂n1

− θ̃g1,F1) +
√
n1(Qn1 − Q1)θ̃g1,F1

=
√
n1(Qn1 − Q1)(θ̃g1,F1) + op(1),

which is (7). Thus based on (6) and (7), we have

Ūn1 =
√
n1(Qn1 − Q1)


KF1,F2 − θ̃g1,F1


+ op(1),

which is the first part of Theorem 1.
As pointed above, the second part of Theorem 1 can be proved similarly and in this case, we have

g2(t) = h1(t)
η(F1(t)) − c0

F2(t)
+

 t

0
h(u, t)

η(F1(t)) − η(F1(u))
F2(t) − F2(u)

du

−

 M

t
h(t, v)

η(F1(v)) − η(F1(t))
F2(v) − F2(t)

dv − h2(t)
c0 − η(F1(t))
1 − F2(t)

.
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