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Panel count data frequently occur in many situations including medical follow-
up studies and reliability experiments. For two-sample comparison based on panel
count data, several procedures have been proposed including Thall and Lachin
(1988) and Sun and Fang (2003). In this article, a new class of nonparametric test
procedures are presented. The test is a generalization of that for the same problem
for failure time data and overcomes some shortcomings of the existing methods.
Monte Carlo simulation studies are conducted to evaluate the presented approach
and suggest that it works well. An illustrative example is discussed.

Keywords Cancer study; Follow-up study; Panel count data; Point processes;
Two-sample comparison.

Mathematics Subject Classification Primary 62G10; Secondary 62N05.

1. Introduction and Notation

Consider a recurrent event study and suppose that only panel count data are
available (Sun and Fang, 2003; Zhang, 2002). By panel count data, we mean that
each study subject is observed only at discrete observation time points instead
of continuously over an interval. Suppose that the study involves n independent
subjects and define Ni�t� as a point process recording the number of occurrences
of the event up to time t, i = 1� � � � � n. Then by panel count data, only the
values of Ni�t� at the observation time points are available. This article considers
the two-sample analysis of panel count data. Specifically, suppose that the study
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involves two groups: control (group 1) and treatment (group 2) groups. Let �1�t�
and �2�t� denote the mean functions of Ni�t� corresponding to the control and
treatment groups, respectively. Our main goal is to test the hypothesis H0 � �1�t� =
�2�t�.

Several authors have considered the analysis of panel count data. For example,
Kalbfleisch and Lawless (1985) studied panel count data arising from Markov
chains and Sun and Kalbfleisch (1995) and Wellner and Zhang (2000) investigated
estimation of the mean function of the Ni�t�’s when all subjects are from the same
population. Sun and Wei (2000) and Zhang (2002) discussed regression analysis of
panel count data. For testing the hypothesis H0 based on panel count data, two
model-free approaches are available in the literature. One is given by Thall and
Lachin (1988) who suggested to transform the two-sample comparison problem to
a multivariate comparison problem and then to apply a multivariate Wilcoxon-like
rank test. For the transformation, one needs to partition the whole study period
into several fixed, consecutive, and non overlapping intervals. It is apparent that the
test result may depend on these grouping intervals.

Sun and Fang (2003) gave the other model-free approach and suggested to base
the test on the comparison between the estimators of �2�t� and the common mean
function �0�t� under H0. In particular, their test statistic has the form

USF =
∫

w�t�
{
�̂2�t�− �̂0�t�

}
dÑ�t��

where �̂2�t� and �̂0�t� are the isotonic regression estimators of �2�t� and �0�t�
defined in the next section and w�t� and Ñ are some function and process defined
by the observed data. One drawback of the above procedure is that the validity of
the statistic requires the assumption that the group or treatment indicators can be
regarded as independent and identically distributed random variables, which may
not be true in practice.

Panel count data arise in many medical follow-up studies and reliability
experiments. For example, Schoenfield and Lachin (1981) and Thall and Lachin
(1988) described a follow-up study on patients with floating gallstones. In the
study, the patients were scheduled to return for clinical visits at prespecified times.
However, actual visit times differ from patient to patient and for each patient,
the observed information includes the numbers of nausea, a symptom relating to
the disease, between clinical visits. So the data consist of the successive visit times
and the associated counts of episodes of nausea for patients in different treatment
groups. The example is discussed in more details below. In addition, panel count
data also occur in AIDS clinical trials, animal tumorgenicity experiments, and
sociological studies.

In panel count data, each subject or underlying continuous point process is
observed only at the finite number of time points. In contrast, if every subject is
observed continuously over an interval �0� ��, the resulting data are usually referred
to as recurrent event data (Andersen et al., 1993; Cook and Lawless, 1997; Lawless
and Nadeau, 1995; Lin et al., 2000; Wang and Chang, 1999). A number of authors
have studied the analysis of recurrent event data. For example, Andersen et al.
(1993) gave an excellent book that includes most of commonly used statistical
methods for the analysis of recurrent event data.

The remainder of the article is organized as follows. Section 2 discusses
nonparametric test of the hypothesis H0 when only panel count data are available
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and presents a class of nonparametric test statistics. The statistics, motivated by
similar statistics in survival analysis, are formulated as the integrated weighted
differences between estimated mean functions corresponding to the two treatments.
To estimate the mean function, the isotonic regression estimate is used (Sun and
Kalbfleisch, 1995; Wellner and Zhang, 2000). In Sec. 3, the asymptotic normal
distribution is established for the test statistics. Section 4 investigates finite sample
properties of the proposed test statistics through simulation studies and Sec. 5 gives
the application of the proposed methods to the aforementioned gallstone follow-up
study. In Sec. 6, some concluding remarks follow.

2. A Class of Nonparametric Tests

Let the Ni�t�’s, �1�t�, and �2�t� be defined as before. For subject i, let 0 < ti�1 <
· · · < ti�ki denote the time points at which Ni�t� is observed, i = 1� � � � � n. Also, let
n1 and n2 (n1 + n2 = n) denote the numbers of subjects in control and treatment
groups, respectively, and ni�j = Ni�ti�j�, the observed value of Ni�t� at ti�j , j =
1� � � � � ki, i = 1� � � � � n.

To test the hypothesis H0, let �̂n1
and �̂n2

be the estimators of �1 and �2 based
on samples from subjects in control and treatment groups, respectively. Motivated
by the idea commonly used in survival studies (Pepe and Fleming, 1989), we propose
to use the statistic

Un =
√
n1n2

n

∫ �

0
Wn�t�

{
�̂n1

�t�− �̂n2
�t�

}
dGn�t�

where � is the largest observation time, Wn�t� is a bounded weight process, and

Gn�t� =
1
n

n∑
i=1

ki∑
j=1

I �ti�j ≤ t��

The statistic Un is the integrated weighted differences between �̂n1
and �̂n2

and
is sensitive especially to stochastically ordered mean functions. Statistics similar to
Un are commonly used in survival analysis. For two sample survival comparison
with right-censored data, for example, Pepe and Fleming (1989) proposed some test
statistics that have the same format as Un with replacing �̂n1

and �̂n2
by estimated

survival functions. Petroni and Wolfe (1994) and Zhang et al. (2001) used similar
statistics for the same comparison problem based on interval-censored data.

Note that for testing H0, the statistic Un compares two individual mean
functions directly. In contrast, the statistic USF used in Sun and Fang (2003)
compares one individual mean function with the whole mean function. Thus it seems
natural to expect that the test given here has better power than that given in Sun
and Fang (2003) as supported by the simulation results given in Sec. 4.

In the above definition, �̂n1
and �̂n2

could be any estimators. In the following,
we will focus on Un with them being the isotonic regression estimators of �1 and �2

given in Sun and Kalbfleisch (1995) and Wellner and Zhang (2000). To introduce
the isotonic regression estimator, for simplicity, assume that H0 is true and let ��t�
denote the common mean function of the Ni�t�’s. Also, let s1� � � � � sm denote the
ordered distinct observation times in the set 	ti�j
 j = 1� � � � � ki� i = 1� � � � � n� and
wl and n̄l the number and mean value, respectively, of the observations made
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at sl, l = 1� � � � � m. Then the isotonic regression estimator �̂n�t� is defined as a non
decreasing step function with possible jumps at the sl’s that minimizes

m∑
l=1

wl

{
n̄l −��sl�

}2

subject to the nondecreasing restriction. It can be shown that �̂n�t� has a closed
form given by

�̂n�sl� = max
r≤l

min
s≥l

∑s
v=r wvn̄v∑s
v=r wv

= min
s≥l

max
r≤l

∑s
v=r wvn̄v∑s
v=r wv

� l = 1� � � � � m

(Robertson et al., 1988).
We can rewrite the test statistic Un as

Un =
√
n1 n2

n3

n∑
i=1

ki∑
j=1

Wn�ti�j�
{
�̂n1

�ti�j�− �̂n2
�ti�j�

}
�

That is, Un is a Wilcoxon-type statistic. Similar approaches are often used in the
analysis of repeated measurement data (Davis and Wei, 1988). For the selection of
the weight process Wn�t�, a simple and natural choice is W�1�

n �t� = 1. Another natural
choice is W�2�

n �t� = Yn�t� =
∑n

i=1 I�t ≤ ti�ki �/n. In this case, weights are proportional
to the number of subjects under observation. One could also use

W�3�
n �t� = Yn1�t� Yn2�t�

Yn�t�
�

where Yn1�t� and Yn2�t� are defined as Yn�t� with the summation being over subjects
only in the control and treatment groups, respectively. The weight processes similar
to W�3�

n are commonly used when recurrent event data are observed (Andersen et al.,
1993). In the next section, we will establish the asymptotic distribution of Un.

3. Asymptotic Results

Let �0�t� denote the true mean function of the Ni�t�’s under H0. Suppose that K
is an integer-valued random variable and T = 	Tk�j� j = 1� � � � � k� k = 1� 2� � � � � is a
random triangular array and that the ki and ti�j = tki�j’s are realizations of them.
We assume that 	�Ki
 TKi�1

� � � � � TKi�Ki
�
 i = 1� � � � � n� are independent and identically

distributed and are independent of the Ni’s. Let X = �K� TK� NK�, where TK is
the kth row of the triangular array T and NK = 	N�Tk�1�� � � � � N�Tk�k��. Then Xi =
�Ki� TKi

� Ni�Ki
�, i = 1� � � � � n are n i.i.d. copies of X. Some comments on this are given

below. To establish the asymptotic results about �̂n�t� and Un, we need the following
regularity conditions.

A. The mean function �0 satisfies that �0��� ≤ M for some constant M ∈ �0���
and it is strictly increasing.

B. There exists a constant K0 such that Pr	K ≤ K0� = 1 and the random variables
Tk�j’s take values in a bounded set �0� ��, where � ∈ �0���.
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C. Pr	lim supn→� maxi Ni��� < �� = 1 and E�Ni�t��
2 ≤ M1 for all t ≤ � where M1 is

a constant.

Let �̂n�t� denote the isotonic regression estimate of �0�t� under H0 given in the
previous section. First we give the asymptotic distribution of �̂n�t�.

Theorem 3.1 (Asymptotic Normality of Functional of �̂n). Suppose that conditions
A, B, and C hold. Also suppose that W�t� is a bounded weight process such that W ��−1

0

is a bounded Lipschitz function. Let G�t� = E
(∑K

j=1 1	TK�j≤t�

)
. Then as n → �,

√
n
∫ �

0
W�t�	�̂n�t�−�0�t��dG�t� −→ Uw

in distribution, where Uw has a normal distribution with mean zero and variance that
can be consistently estimated by


̂2
w = 1

n

n∑
i=1

[ ki∑
j=1

W�tki�j�
{
Ni�tki�j�− �̂n�tki�j�

}]2

�

Now we are ready to establish the asymptotic distribution of Un. Let Sl denote
the set of indices for subjects in group l, l = 1� 2.

Theorem 3.2. Suppose that conditions A, B, and C hold. Also suppose that Wn�t� is a
bounded weight process and that there exists a bounded function W�t� such that W ��−1

0

is a bounded Lipschitz function and

sup
n

E
∫ �

0
�√n	Wn�t�−W�t���2dGn�t� < ��

Also suppose that n1/n → p1 and n2/n → p2 as n → �, where 0 < p1, p2 < 1
and p1 + p2 = 1. Then under H0 � �1 = �2 = �0, Un has an asymptotic normal
distribution with mean zero and variance that can be consistently estimated by


̂2
U = n2

n

̂2
1 +

n1

n

̂2
2�

where


̂2
l =

1
nl

∑
i�Sl

[ ki∑
j=1

Wn�tki�j�
{
Ni�tki�j�− �̂nl

�tki�j�
}]2

�

l = 1� 2.
The proof of the above theorems is sketched in the Appendix. It can be easily

shown that the three weight processes discussed in Sec. 2 satisfy the conditions
required by the theorem. By applying Theorem 3.2, the test of the hypothesis H0

can be carried out using the statistic U ∗
n = Un/
̂U based on the standard normal

distribution.
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Table 1
Estimated sizes and powers for Poisson processes

�

Test statistic −0.2 −0.1 0.0 0.1 0.2

USF 0.919 0.395 0.048 0.431 0.955
Un with W�1�

n 0.923 0.410 0.051 0.441 0.958
Un with W�2�

n 0.908 0.393 0.053 0.430 0.948
Un with W�3�

n 0.908 0.393 0.053 0.428 0.948

4. Numerical Studies

In this section we report some results obtained from simulation studies conducted
for investigating the finite sample properties of the proposed test statistic Un. To
generate panel count data, we mimic medical follow-up studies such as the example
discussed in the next section. In these situations, subjects are usually prescheduled to
be examined at prespecified time points for a prespecified number of times, but the
actual numbers of examinations and examination times may vary. In particular, we
first generated Ki, the number of observation times, from the uniform distribution
U	1� � � � � c� with c = 10 or 40 and given Ki, observation times tij’s were then also
generated from U	1� � � � � c� for simplicity. Note that one could generate the tij’s
from more general uniform distributions and the results should be similar.

For the Ni’s, we assume that they are non-homogeneous Poisson or mixed
Poisson processes. In particular, for given tij’s and �i defined below, we suppose
that Ni�tij� follows a Poisson distribution with case I: �1�tij� = �itij and �2�tij� =
�itij exp��� or case II: �1�tij� = �i5�5t

1/2
i�j and �2�tij� = �iti�j , where � is a parameter

representing the difference between the two groups. For the Poisson process, all �i’s
were set to be equal to 1 and for the mixed Poisson process, the �i’s were generated
from a Gamma distribution with mean one and variance 0.25. The results reported
below are based on 1,000 replications.

Table 1 presents the estimated sizes and powers of the proposed test statistic
Un at significance level � = 0�05 for case I with � = −0�2�−0�1� 0� 0�1, and 0.2, c =
10 and n1 = n2 = 100. Here we considered all three weight processes suggested in
Sec. 2 and assumed that the Ni’s are Poisson processes. For comparison, we also
calculated the estimated sizes and powers of the test procedure given in Sun and

Table 2
Estimated sizes and powers for mixed Poisson processes

�

Test statistic −0.2 −0.1 0.0 0.1 0.2

USF 0.481 0.185 0.047 0.175 0.502
Un with W�1�

n 0.502 0.196 0.051 0.185 0.512
Un with W�2�

n 0.494 0.182 0.049 0.187 0.510
Un with W�3�

n 0.494 0.181 0.049 0.187 0.509
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Table 3
Estimated powers with different sample sizes

Sample size

Test statistic n1 = n2 = 30 n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 200

USF 0.457 0.650 0.928 0.999
Un with W�1�

n 0.611 0.676 0.933 1.000
Un with W�2�

n 0.714 0.812 0.983 1.000
Un with W�3�

n 0.715 0.812 0.984 1.000

Fang (2003) and included them in the table with W�1�
n �t�. It can be seen that for

the situation considered here, all four tests gave reasonable sizes and their powers
are close to each other and the best performance was given by Un with the weight
process W�1�

n �t�.
Table 2 studied the same situation as in Table 1 except that the Ni�t�’s are mixed

Poisson processes. The results are similar to those given in Table 1. As expected,
compared to Table 1, the power decreases when more variability exists. To see the
effect of sample sizes on the power, Table 3 presented the estimated powers of the
above four test procedures at significance level � = 0�05 for case II with c = 40,
�i = 1 and n1 = n2 = 30, 50, 100, or 200. As expected, the power increases when the
sample size increases and as seen in Tables 1 and 2, the proposed test with W�1�

n �t�
has better performance than that based on USF . Two things that are different from
the results given in Tables 1 and 2 are that the power of the proposed method could

Figure 1. Poisson processes with � = 0�0.
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Figure 2. Mixed Poisson processes with � = 0�0.

be significantly higher than that of the method given in Sun and Fang (2003) and
the weight processes W�2�

n �t� and W�3�
n �t� are competitive with the weight processes

W�1�
n �t� depending on situations.
To evaluate the normal distribution approximation to the distribution of Un, we

studied the quantile plots of the standardized test statistic Un against the standard
normal distribution. Figures 1 and 2 display the plots for the situations considered
in Tables 1 and 2 with Wn�t� = W�1�

n �t� and � = 0, respectively, and suggest that the
approximation seems good. Similar plots were obtained for other situations.

5. An Analysis of the National Cooperative Gallstone Study

This section applies the proposed test in the previous sections to the floating
gallstones study discussed above. The observed data are given in Table 1 of Thall
and Lachin (1988) and comprise the first year follow up of the patients in two study
groups, placebo (48) and high-dose chenodiol (65), from the National Cooperative
Gallstone Study. The whole study consists of 916 patients who were randomized
to placebo, low dose, or high dose group and followed for up to two years. As
mentioned earlier, the data include the successive visit-times in study weeks and the
associated counts of episodes of nausea. As many longitudinal follow-up studies, at
the beginning of the study, all patients were scheduled to have clinical visits or be
examined at 1, 2, 3, 6, 9, and 12 months. Again as these studies, the actual visit times
differ from patient to patient. Most of the patients visited about six times within
the first year, but there exist some patients who had only one visit and others who
had nine visits. The goal here is to compare the effects of the two treatments on the
incidence rate of nausea.
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For the comparison, we treat the placebo group as group 1 (�1�t�) and the high-
dose chenodiol group as group 2 (�2�t�). The application of the proposed method
to the data gave U ∗

n = −0�748 with Wn�t� = W�1�
n �t�. This gives a p-value of 0.454 for

testing the equality of the two mean functions. Letting Wn�t� = W�2�
n �t� or Wn�t� =

W�3�
n �t�, we obtained U ∗

n = −0�814 or −0�818, respectively. They gave similar p-
values. The above results indicate that the overall incidence rates of nausea were not
significantly different for the patients in the two treatment groups. In comparison,
the use of the approach in Sun and Fang (2003) gave a p-value of 0.1428. Note that
the method given in Sun and Fang (2003) requires that the group indicators can be
regarded as independent and identically distributed variables, which may not be true
given the sample size difference between the two groups. For the problem, Thall and
Lachin (1988) partitioned the observation period (one year) into six intervals and
gave a quite smaller p-value. This is expected since as shown in Thall and Lachin
(1988) and Sun and Kalbfleisch (1995), the two underlying mean functions seem to
be overlapping and the method given by Thall and Lachin (1988) basically adds the
differences over different intervals together.

6. Concluding Remarks

This article discusses the two sample comparison problem of point processes
when only panel count data are available and a class of nonparametric tests
for the problem is proposed. Simulation studies are conducted and suggest that
the proposed method works well for practical situations. The presented approach
applies to more general situations than the existing methods (Sun and Fang, 2003;
Thall and Lachin, 1988). Another difference between the method given here and the
test statistic presented in Sun and Fang (2003) is that the former can be generalized
to general K-sample comparison problem, while the latter cannot. In addition to
the presented test procedure, some asymptotic results are also established for the
isotonic regression estimate of the mean function of the underlying point process,
the estimate commonly used in this situation.

Throughout the article we have assumed that observation times follow the same
distribution for subjects in the two treatment groups for two reasons. One is that
this seems to be the case for the example discussed in Sec. 5 and actually holds
for most of medical studies with periodic follow-up such as clinical trials; the other
reason is the fact that the distributions of observation times cannot be allowed to
be completely different between the two treatment groups. This can be seen through
a simple example. Suppose that all observation times for subjects in one group
are smaller than these for subjects in the other group. Then it is likely that no
comparison can be made for the two groups.

One possible direction for future research is to replace in the statistic Un isotonic
regression estimates with maximum likelihood estimates for the mean function. A
possible advantage could be the gain of efficiency assuming that the maximum
likelihood estimate is more efficient than the isotonic regression estimate. Also
it should be noted that unlike the isotonic regression estimate, the maximum
likelihood estimate has no closed form and its determination needs a great deal
of computational effort. Furthermore, there is very limited research available
discussing its asymptotic properties.
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Appendix: Proofs

A.1. Proof of Theorem 3.1

First note that

√
n
∫ �

0
W�t�

{
�̂n�t�−�0�t�

}
dG�t� = I1n + I2n + I3n�

where

I1n = √
n�Pn − P�

{ K∑
j=1

W�TK�j�
[
�0�TK�j�− �̂n�TK�j�

]}
�

I2n = √
nPn

{ K∑
j=1

W�TK�j�
[
�̂n�TK�j�− N�TK�j�

]}
�

and

I3n =
√
nPn

{ K∑
j=1

W�TK�j�
[
N�TK�j�−�0�TK�j�

]}
�

where Pn is the empirical measure corresponding to �N� T�K�, P is the corresponding
underlying true measure, Pnf = 1

n

∑n
i=1 fi and Pf = ∫

f dP. It is easy to see that
I3n is a U-statistic and has an asymptotic normal distribution with mean zero and
variance that can be consistently estimated by 
̂2

w. Thus it is sufficient to show that
both I1n and I2n converge in probability to zero.

We will show the convergence of I1n first. Note that the condition C implies

lim sup
n→�

�̂n��� < ��

almost surely. So, for every � > 0, there exists a constant M� > �0��� such that

sup
n

Pr	�̂n��� > M�� < ��

Let

� = 	� � �0� �� −→ �0��� �� is nondecreasing� ��0� = 0�

and

�� = 	� � � ∈ � � ���� ≤ M���

Define �̂n�� as

�̂n�� = arg max
�∈�∩��

{ n∑
i=1

Ki∑
j=1

[
Ni�TKi�j

� log��TKi�j
�−��TKi�j

�
]}

where � is the class of non decreasing step functions with possible jumps only at the
observation time points 	TKi�j

� j = 1� � � � � Ki� i = 1� � � � � n�. It is equivalent to �̂n��
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in Sun and Fang (2003) which is proved in Wellner and Zhang (2000). Let I1n��
denote the version of I1n obtained by replacing �̂n with �̂n��. Then, to prove that I1n
converges to zero in probability, it is sufficient to show that I1n�� = op�1� since

Pr	I1n�� �= I1n� ≤ Pr
{
�̂n��� > M�

}
< ��

By using arguments similar to those in Sun and Fang (2003), it can be shown that
I1n�� = op�1�. Now we show the convergence of I2n. Let the sl’s, wl’s, and �Nl = n̄l be
defined as in Sec. 2. Using the same block argument as these of Proposition 1.2 in
Part II of Groeneboom and Wellner (1992), we have that for any real function f ,

m∑
l=1

f
(
�̂n�sl�

)
wl

[
�̂n�sl�− �Nl

] = 0�

Hence we can rewrite I2n as

I2n = 1√
n

n∑
i=1

Ki∑
j=1

{
W�TKi�j

�−W ��−1
0

(
�̂n�TKi�j

�
)}{

�̂n�TKi�j
�− Ni�TKi�j

�
}

= √
nPn

{ K∑
j=1

[
W�TK�j�−W ��−1

0

(
�̂n�TK�j�

)][
�̂n�TK�j�− N�TK�j�

]}

= �1n + �2n + �3n�

where

�1n = √
n�Pn − P�

{ K∑
j=1

[
W�TK�j�−W ��−1

0

(
�̂n�TK�j�

)][
�̂n�TK�j�− N�TK�j�

]}
�

�2n = √
nP

{ K∑
j=1

[
W�TK�j�−W ��−1

0

(
�̂n�TK�j�

)][
�̂n�TK�j�−�0�TK�j�

]}
�

and

�3n =
√
nP

{ K∑
j=1

[
W�TK�j�−W ��−1

0

(
�̂n�TK�j�

)][
�0�TK�j�− N�TK�j�

]} = 0�

For �1n, let W0 = W ��−1
0 and �1n�� denote the version of �1n obtained by replacing

�̂n with �̂n��. Since W0 is a bounded Lipschitz function, then it can be shown that

�� =
{ K∑

j=1

[
W0��0�TK�j��−W0���TK�j��

][
��TK�j�− N�TK�j�

]
� � ∈ ��

}

is P-Donsker using the bracket entropy theorem of Van der Vaart and Wellner
(1996, pp. 127–159) and arguments similar to those in Huang and Wellner (1995).
Moreover, Theorem 4.1 of Wellner and Zhang (2000) gives that

d
(
�̂n��� �0

) ≤ d
(
�̂n� �0

) −→ 0
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where

d��1� �2� =
[ ∫ �

0
��1�t�−�2�t��2dG�t�

]1/2

�

Hence it follows from the uniformly asymptotic equicontinuity of the empirical
process (Van der Vaart and Wellner, 1996, pp. 168–171) that �1n�� = op�1�. Then,
we have that �1n = op�1� since

Pr	�1�n �= �1n��� ≤ Pr
{
�̂n��� > M�

}
< ��

For �2n, since W0 is a bounded Lipschitz function, it follows that

��2n� =
∣∣∣∣√nP

{ K∑
j=1

[
W0��0�TK�j��−W0

(
�̂n�TK�j�

)][
�̂n�TK�j�−�0�TK�j�

]}∣∣∣∣
=

∣∣∣∣√n
∫ �

0

[
W0��0�t�−W0

(
�̂n�t�

)][
�̂n�t�−�0�t�

]
dG�t�

∣∣∣∣ ≤ c1
√
nd2

(
�̂n��0

)

where c1 is a constant. To prove that
√
nd2

(
�̂n��0

) = op�1�, we only need to show
that

√
nd2

(
�̂n��� �0

) = op�1�. As shown below, d
(
�̂n��� �0

) = Op

(
n− 1

3
)
. This shows

that �2n = op�1� and thus completes the proof.
To establish the rate of convergence for �̂n��, we apply Theorem 3.2.5 of Van

der Vaart and Wellner (1996). Define

m��X� =
K∑
j=1

[
N�TK�j� log��TK�j�−��TK�j�

]

and ���� = Pm��X�. Let h�x� = x�log x − 1�+ 1. Then h�x� ≥ 1
5 �x − 1�2 for x in a

neighborhood of x = 1. Thus, in a neighborhood of �0,

���0�−���� = P

( K∑
j=1

�0�TK�j� log
�0�TK�j�

��TK�j�
−

(
�0�TK�j�

��TK�j�
− 1

)
��TK�j�

)

= P

( K∑
j=1

��TK�j�h

(
�0�TK�j�

��TK�j�

))
=

∫
��t�h

(
�0�t�

��t�

)
dG�t�

≥ 1
5

∫ ��0�t�−��t��2

��t�
dG�t� ≥ 1

5M�

d2����0��

and hence the separation condition of the theorem is satisfied. Also, let

���� = 	� � d����0� ≤ ��� ∈ ��� �� > 0�� ���� = 	m��X�−m�0
�X� � � ∈ ������

Since we have that

logN��

(
������� L2�P�

) ≤ c2�
−1
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where c2 is a constant which depends only on M�, then

∫ �

0

√
1+ logN��

(
������� L2�P�

)
d� ≤

∫ �

0

√
1+ c2�

−1 d�

= 2c2
∫ �
√

1+c2�
−1

u2

�u2 − 1�2
du

≤ c3

∫ �
√

1+c2�
−1

1
u2

du ≤ c3√
c2
�

1
2

Hence, applying Lemma 3.4.2 of Van der Vaart and Wellner (1996), we have that

E∗
√n�Pn − P�
����
≤ c4�n���

where E∗ denotes the outer expectation, and �n��� = �
1
2 + �−1n− 1

2 . Using
Theorem 3.2.5 of Van der Vaart and Wellner (1996), d

(
�̂n��� �0

)
converges in

probability to zero of order at least n− 1
3 .

A.2. Proof of Theorem 3.2

Let S1 and S2 be defined as before and define

Gnl
�t� = 1

nl

∑
i�Sl

Ki∑
j=1

I �TKi�j
≤ t��

l = 1� 2. To see the asymptotic distribution of Un, note that we can rewrite Un as

Un =
√
n2

n
U�1�

n −
√
n1

n
U�2�

n �

where

U�l�
n = √

nl

∫ �

0
Wn�t�

{
�̂nl

�t�−�0�t�
}
dGn�t��

l = 1� 2. Also note that U�l�
n = I

�l�
1n + I

�l�
2n + I

�l�
3n where

I
�l�
1n = √

nl

∫ �

0
	Wn�t�−W�t��

{
�̂nl

�t�−�0�t�
}
dGn�t��

I
�l�
2n = √

nl�Pn − P�

{ K∑
j=1

W�TK�j�
[
�̂nl

�TK�j�−�0�TK�j�
]}

�

I
�l�
3n = √

nl

∫ �

0
W�t�

{
�̂nl

�t�−�0�t�
}
dG�t��
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First we show that I�l�1n = op�1�, l = 1� 2. Using Cauchy–Schwarz inequality and the
proof of Theorem 3.1, we have that

E
{�I�l�1n �1	�̂nl

���≤M��

}
≤ E

{√
nl

[ ∫ �

0

(
Wn�t�−W�t�

)2
dGn�t�

]1/2[ ∫ �

0

(
�̂nl��

�t�−�0�t�
)2
dGn�t�

]1/2}

≤
{
E
∫ �

0

[√
n�Wn�t�−W�t��

]2
dGn�t�

}1/2{
E

[ ∫ �

0

(
�̂nl��

�t�−�0�t�
)2
dGn�t�

]}1/2

−→ 0

since ∫ �

0

(
�̂nl��

�t�−�0�t�
)2
dGn�t� = op�1�

and it is bounded. So, I�l�1n = op�1�, l = 1� 2. As the proof of Theorem 3.1, it can be
shown that I�l�2n = op�1�, l = 1� 2. Also, it follows from Theorem 3.1 that

I
�l�
3n = √

nl

∫ �

0
W�t�	N�t�−�0�t��dGnl

�t�+ op�1��

l = 1� 2. Hence, we have that U�l�
n converges in distribution to random variable U�l�

w

that has a normal distribution with mean zero and variance that can be estimated
by 
̂2

l given in Theorem 3.2, l = 1� 2. This proves the theorem since U�1�
w and U�2�

w

are independent.
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