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a b s t r a c t

In this article, a class of transformed hazards models is proposed for recurrent gap time
data, including both the proportional and additive hazards models as special cases. An
estimating equation-based inference procedure is developed for themodel parameters, and
the asymptotic properties of the resulting estimators are established. In addition, a lack-of-
fit test is presented to assess the adequacy of the model. The finite sample behavior of the
proposed estimators is evaluated through simulation studies, and an application to a clinic
study on chronic granulomatous disease (CGD) is illustrated.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recurrent events data are commonly encountered in medical and observational studies where each subject may experi-
ence a particular event repeatedly over time. Examples of such events include repeated hospitalization, multiple infection
episodes, tumor recurrences, recurrent economic recessions, and repeated breakdowns of an automobile. In these studies, it
is often of interest to assess the effects of covariates on certain features of the recurrent event times. The statistical analysis
of such data is challenging due to the dependence of the recurrent event times within each individual and the presence of
censoring such as the loss to follow-up. To analyze recurrent event data, the focus can be laid on two types of time scale:
the time since enrollment and the time between two successive recurrent events (i.e., the gap time).

When the time since enrollment is used as time index, recurrent events of a subject are modeled as the realization of
an underlying counting process (Cook and Lawless, 2007), and a variety of statistical methods has been proposed in the
literature. For example, Prentice et al. (1981), Andersen and Gill (1982) and Zeng and Lin (2006) proposed some intensity-
based methods. Nielsen et al. (1992), Murphy (1995) and Zeng and Lin (2007) developed some frailty model approaches.
Lawless andNadeau (1995), Lin et al. (2000), Schaubel et al. (2006) and Sun et al. (2011) considered somemarginalmeans and
ratesmodels. Cook and Lawless (2007) provided an excellent reviewof statisticalmethods for the analysis of this type of data.

In many applications, however, the gap time is a natural outcome of interest (Gail et al., 1980). Somemethods have been
developed for the analysis of recurrent gap time data (Huang and Chen, 2003; Schaubel and Cai, 2004; Strawderman, 2005;
Luo and Huang, 2011). For example, Huang and Chen (2003), Schaubel and Cai (2004) and Darlington and Dixon (2013)
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proposed the proportional hazards model for the gap times. Chang (2004) and Strawderman (2005) considered some accel-
erated gap time models. Sun et al. (2006) discussed the additive hazards model for the gap times. In addition, some authors
suggested various nonparametric models for the gap time distribution (e.g., Lin et al., 1999; Wang and Chang, 1999; Peña
et al., 2001 and Du, 2009). Luo and Huang (2011) demonstrated that many existing methods for recurrent gap time data can
be viewed as weighted risk-set methods.

Recently, the semiparametric transformation models have been studied extensively in survival analysis (e.g., Chen et al.,
2002; Zeng et al., 2005 and Zeng and Lin, 2007). However, there is a dearth of suitable transformation models for the
analysis of recurrent gap time data. Lu (2005) studied the semiparametric linear transformation models for the gap times,
which include the proportional hazards and proportional odds models as special case. Note that this class of models does
not contain the additive hazards model as a special case. For classical survival data, Zeng et al. (2005) proposed a class of
transformed hazards models which encompasses the proportional and additive hazards models and which accommodates
time-varying covariates. In this paper, we consider this class of transformed hazards models for the analysis of recurrent
gap time data, and propose an estimation procedure for the model parameters, which is easy to implement.

The remainder of the paper is organized as follows. In Section 2, we introduce data structure and the proposed models.
Estimation procedures are presented for the model parameters, and the asymptotic properties of the proposed estimators
are established. In Section 3, we develop a technique for checking the adequacy of the proposed model. Section 4 reports
some results from simulation studies conducted for evaluating the proposed methods. An application to a clinic study on
CGD is provided in Section 5, and some concluding remarks are given in Section 6. All proofs are given in the Appendix.

2. Model and estimation procedure

2.1. The model

Consider a longitudinal study that involves n independent subjects, each of which experiences recurrences of the same
event (Huang and Chen, 2003; Luo and Huang, 2011). For subject i, let Tij denote the time from the (j − 1)th to the jth
occurrence of the event. That is, Ti1 + · · · + Tij is the jth recurrent event time. Also let Zi denote the p-dimensional vector
of covariates associated with subject i, and Ci the follow-up or censoring time. Let Ni = {Tij : j = 1, 2, . . .}. Assume that
{Ni, Ci, Zi} (i = 1, . . . , n) are independent and identically distributed (i.i.d.), and Ni is independent of Ci given Zi. Define Mi
to be the index of observed gap times for subject i, which satisfies

Mi−1
j=1

Tij ≤ Ci and
Mi
j=1

Tij > Ci,

where
0

j=1 · ≡ 0. Then observed data are {Ti1, . . . , Ti,Mi−1, Ci, Zi}. That is, the first Mi − 1 gap times are observed, but Ti,Mi

is censored at T+

i,Mi
= Ci −

Mi−1
j=1 Tij.

Following Huang and Chen (2003), we assume that each individual recurrent event process is a renewal process, which
implies that for a given i, {Tij, j = 1, 2, . . .} are i.i.d., and that for given (Ci,Mi, T+

i,Mi
), the observed complete gap times

{Tij, j = 1, . . . ,Mi − 1} are identically distributed (Wang and Chang, 1999).
Let λij(t|Zi) be the hazard function of Tij given Zi. The proposed transformed hazards models take the form

λij(t|Zi) = H{λ0(t) + β ′

0Zi}, (1)

where λ0(t) is an unknown function, β0 is a p × 1 vector of unknown regression parameters, and H(·) is pre-specified
and assumed to be twice continuously differentiable and strictly increasing. Model (1) defines a very rich family of models
through the link function H(·), which includes the proportional hazards model (H(x) = exp(x)) and the additive hazards
models (H(x) = x). One example of H(·) is the Box–Cox transformation, in which H(·) is given by H(x) = {(1 + x)s − 1}/s
for s ≥ 0 with s = 0 corresponding to H(x) = log(x+ 1). Another useful class is the logarithmic transformations, which are
given by H(x) = log(1 + γ x)/γ for γ ≥ 0 with γ = 0 corresponding to H(x) = x.

2.2. Inference procedure

Our inference procedure is based on the establishment of a connection between a subset of the observed gap times and
clustered survival data. Let ∆i = I(Mi > 1), Si = max(Mi − 1, 1), and

Xij =


Tij if ∆i = 1,
T+

ij if ∆i = 0, j = 1, . . . , Si.

Then {Xij, ∆i, Zi, j = 1, . . . , Si} (i = 1, . . . , n) can be treated as clustered survival data. Since the cluster size is informative,
the censored gap time needs to be removed forMi > 1 (Wang and Chang, 1999; Huang and Chen, 2003).

Define Nij(t) = ∆iI(Xij ≤ t), Yij = I(Xij ≥ t), and

Mij(t; β, λ) = Nij(t) −

 t

0
Yij(u)H{λ(u) + β ′Zi}du.
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Then under model (1), Mij(t; β0, λ0) (j = 1, . . . , Si; i = 1, . . . , n) are zero-mean stochastic processes but not martingales,
since the hazard function is notmodeled conditionally on the recurrent event process. Based on this fact and using the gener-
alized estimating equation approach (Liang andZeger, 1986),wepropose the following estimating functions forλ0(t) andβ0:

n
i=1

1
Si

Si
j=1

 t

0


dNij(u) − Yij(u)H{λ(u) + β ′Zi}du


= 0, (2)

and

n
i=1

1
Si

Si
j=1

 τ

0
Zi


dNij(u) − Yij(u)H{λ(u) + β ′Zi}du


= 0, (3)

where τ is a pre-specified constant such that P(Ci ≥ τ) > 0.
Because the first term on the left-hand side of (2) represents a pure jump process while the second is absolutely contin-

uous, this equation has no solution. However, the above estimating equations will be the starting point for our estimation.
To this end, we proceed by a Taylor expansion of H{λ(t)+β ′Zi} around the current value of estimates λ(k)(t) and β(k) to get
the approximated estimating equations:

n
i=1

1
Si

Si
j=1

 t

0


dNij(u) − Yij(u)H{λ(k)(u) + Z ′

iβ
(k)

}du − Yij(u)Ḣ{λ(k)(u) + Z ′

iβ
(k)

}{λ(u) − λ(k)(u)}du

− Yij(u)Ḣ{λ(k)(u) + Z ′

iβ
(k)

}Z ′

i (β − β(k))du


= 0, (4)

and

n
i=1

1
Si

Si
j=1

 τ

0
Zi


dNij(u) − Yij(u)H{λ(k)(u) + Z ′

iβ
(k)

}du − Yij(u)Ḣ{λ(k)(u) + Z ′

iβ
(k)

}{λ(u) − λ(k)(u)}du

− Yij(u)Ḣ{λ(k)(u) + Z ′

iβ
(k)

}Z ′

i (β − β(k))du


= 0, (5)

where Ḣ(x) = dH(x)/dx. Define

dMi(t; β, λ) =
1
Si

Si
j=1

dMij(t; β, λ),

φi(t; β, λ) =
1
Si

Si
j=1

Yij(t)Ḣ{λ(t) + Z ′

iβ},

S0(t; β, λ) =
1
n

n
i=1

1
Si

Si
j=1

Yij(t)Ḣ{λ(t) + Z ′

iβ},

Sz(t; β, λ) =
1
n

n
i=1

1
Si

Si
j=1

Yij(t)Ḣ{λ(t) + Z ′

iβ}Zi,

Ezz(t; β, λ) =
1
n

n
i=1

{Zi − Ez(t; β, λ)}φi(t; β, λ){Zi − Ez(t; β, λ)}′,

and dM(t; β, λ) = (dM1(t; β, λ), . . . , dMn(t; β, λ))′, where Ez(t; β, λ) = Sz(t; β, λ)/S0(t; β, λ). Also let Z be a n × p ma-
trix with rows Z ′

i , and Z̄(t; λ, β) be a n× pmatrix with rows Ez(t; λ, β)′. Solving (4) for λ(t) and inserting it into (5), we get
the (k + 1)th iterative estimator for β0: β(k+1)

= Q (β(k)), where

Q (β(k)) = β(k)
+

1
n
A(τ ; β(k), λ(k))−1

 τ

0
{Z − Z̄(t; β(k), λ(k))}′dM(t; β(k), λ(k)), (6)

and A(τ ; β, λ) =
 τ

0 Ezz(t; β, λ)dt .
For λ0(t), it is not a good idea to try to iterate towards a solution for each time point t , because the information about

any particular time point is limited. So, a smoothing solution is needed. In the following, we focus on Λ0(t) =
 t
0 λ0(u)du

(e.g., Martinussen et al., 2002; Zeng and Lin, 2006). Using the updated version β(k+1) and solving (4), we obtain the (k+1)th
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iterative estimator for Λ0(t): Λ(k+1)(t) = Ψ (Λ(k))(t), where

Ψ (Λ(k))(t) =

 t

0
λ(k)(u)du +

1
n

n
i=1

 t

0
S−1
0 (u; β(k), λ(k))dMi(u; β(k), λ(k))

−

 t

0
Ez(u; β(k), λ(k))′du(β(k+1)

− β(k)). (7)

Here for simplicity, λ(k)(t) is taken to be a simple kernel estimator based on Λ(k)(t) with positive bandwidth h, that is,

λ(k)(t) =


1
h
K
u − t

h


dΛ(k)(u),

and K is a symmetric kernel function with a compact support.
Given the initial estimators λ(k)(t) and β(k), the estimation procedure can be summarized as follows.

Step 1. Use Eq. (6) to obtain β(k+1).
Step 2. Use β(k+1) and Eq. (7) to obtain Λ(k+1).
Step 3. Smooth Λ(k+1) to obtain λ(k+1), and return to Step 1 with updated estimators until convergence.

2.3. Asymptotic properties

We now describe the asymptotic behavior of the proposed estimators, and the results are summarized in the following
theorem with the proof given in Appendix A.

Theorem 1. Under the regularity conditions (C1)–(C5) stated in Appendix A, we have

(i) with probability tending to one, (6) and (7) have solutions Q (β̂) = β̂ and Ψ (Λ̂) = Λ̂ such that ∥β̂ −β0∥ = Op(n−1/2) and
sup0≤t≤τ |Λ̂(t) − Λ0(t)| = Op(n−1/2).

(ii) n1/2(β̂ − β0) is asymptotically normal with zero mean and a covariance matrix that can be consistently estimated by
Â−1Σ̂ Â−1, where Σ̂ = n−1 n

i=1 ξ̂iξ̂
′

i ,

ξ̂i =

 τ

0
{Zi − Ez(t; β̂, λ̂)}dMi(t; β̂, λ̂),

Â =

 τ

0
Ezz(t; β̂, λ̂)dt,

and

λ̂(t) =


1
h
K
u − t

h


dΛ̂(u).

(iii) n1/2
{Λ̂(t) − Λ0(t)} (0 ≤ t ≤ τ) converges weakly to a zero-mean Gaussian process whose covariance function at (s, t)

can be consistently estimated by

Γ̂ (s, t) =
1
n

n
i=1

η̂i(s)η̂i(t),

where

η̂i(t) =

 t

0
S−1
0 (u; β̂, λ̂)dMi(u; β̂, λ̂) −

 t

0
Ez(u; β̂, λ̂)′Â−1ξ̂idu.

3. Goodness-of-fit tests

First we consider checking a possible misspecification of the functional form of covariates. Let Zji be the jth component
of Zi. We define the cumulative sum of residuals

Fj(τ , z) = n−1/2
n

i=1

 τ

0
I{Zji ≤ z}dMi(u; β̂, λ̂)

in the same way as used in Lin et al. (1993). When K is an rth-order (r > 3) kernel function, which satisfies

K(u)du = 1,

umK(u)du = 0, m = 1, . . . , r − 1, and

urK(u)du ≠ 0, we show in Appendix B that the null distribution of Fj(τ , z) can

be approximated by the zero-mean Gaussian process

F̃j(τ , z) = n−1/2
n

i=1

 τ

0
I{Zji ≤ z}dMi(u; β̂, λ̂) −

 τ

0
Φ̂j(u, z)dη̂i(u) − B̂j(τ , z)′Â−1ξ̂i


,
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where

Φ̂j(u, z) =
1
n

n
i=1

I{Zji ≤ z}φi(u; β̂, λ̂),

and

B̂j(τ , z) =
1
n

n
i=1

 τ

0
I{Zji ≤ z}φi(u; β̂, λ̂)Zidu.

In Section 5, to check the functional form for the jth component of Zi, we simply plot the residualMi(τ ; β̂, λ̂) against Zji.
Furthermore,we propose a lack-of-fit test for assessing the adequacy ofmodel (1). Following Lin et al. (2000), we consider

the following cumulative sum of residuals:

F (t, z) = n−1/2
n

i=1

 t

0
I{Zi ≤ z}dMi(u; β̂, λ̂), (8)

where I{Zi ≤ z} means that each component of Zi is not larger than the corresponding component of z.
The null distribution of F (t, z) can be approximated by the zero-mean Gaussian process

F̃ (t, z) = n−1/2
n

i=1

 t

0
I{Zi ≤ z}dMi(u; β̂, λ̂) −

 t

0
Φ̂(u, z)dη̂i(u) − B̂(t, z)′Â−1ξ̂i


, (9)

where

Φ̂(u, z) =
1
n

n
i=1

I{Zi ≤ z}φi(u; β̂, λ̂),

and

B̂(t, z) =
1
n

n
i=1

 t

0
I{Zi ≤ z}φi(u; β̂, λ̂)Zidu.

Note that it is impossible to evaluate the above distribution analytically because the limiting process of F (t, z) does not
have independent increments. To overcome this difficulty, we propose to use the following resampling approach (e.g., Lin
et al., 2000). Let (G1, . . . ,Gn) be independent standard normal variables independent of the data. Then it can be shown that
the distribution of F (t, z) can be approximated by that of the zero-mean Gaussian process

F̂ (t, z) = n−1/2
n

i=1

 t

0
I{Zi ≤ z}dMi(u; β̂, λ̂) −

 t

0
Φ̂(u, z)dη̂i(u) − B̂(t, z)′Â−1ξ̂i


Gi.

Thus, we can obtain a large number of realizations from F̂ (t, z) by repeatedly generating the standard normal random
sample (G1, . . . ,Gn) while fixing the observed data, and use the empirical distribution of these realizations to approximate
the distribution of F (t, z). To assess the fit of model (1), we can apply the supremum test statistic U = sup0≤t≤τ ,z |F (t, z)|,
whose p-value can be obtained by comparing the observed value of sup0≤t≤τ ,z |F (t, z)| to a large number of realizations
from sup0≤t≤τ ,z |F̂ (t, z)|. Similarly, we can obtain p-values of Uj = sup0≤t≤τ ,z |Fj(t, z)| for j = 1, . . . , p. By applying the
proposed test statistics to a given set of data, themodelwith the largest p-value fits the data best among all candidatemodels.

4. Simulation studies

Simulation studies were conducted to examine the finite sample properties of the proposed estimators. In the study, a
heterogeneous mixture of individual renewal processes was used with model (1). Specifically, the baseline gap time T 0

ij was
assumed to follow the standard exponential distribution, and set to be − ln{1 − Φ(Ai + Bij)}, where Φ is the cumulative
distribution function of the standard normal distribution, Ai and Bij are independent normal random variables with mean
zeros and variances ρ and 1−ρ, respectively, with ρ ∈ [0, 1]. Here the parameter ρ dictates the heterogeneity of between-
individual, and 1 − ρ controls the heterogeneity of between-episodes within an individual. Given the baseline gap times,
general gap times were taken as T 0

ij /H(0.5 + β0Zi) with β0 = 0.5, where Zi is a uniform random variable on (0, 1).
We considered three choices for H: an identity transformation H1(x) = x, an exponential transformation H2(x) = 0.3

exp(x), and a Box–Cox transformation H3(x) = {(1 + x)s − 1}/s, with s = 0, 0.5, 1, 2 and 3. Note that model (1) reduces to
the additive hazards model studied by Sun et al. (2006) when H(x) = H1(x) or H(x) = H3(x) with s = 1, and reduces to the
proportional hazards model studied by Huang and Chen (2003) when H(x) = H2(x).

For each case, we considered ρ = 0.25, 0.5 or 0.75. The censoring time Ci was taken as the minimum of the uniform
distribution on (0, ν) and τ , with τ = 2 and ν varying to yield an average recurrence number of 1–3 for different model
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Table 1
Simulation results for the estimation of β0 under H1(x).

n ρ Proposed method SPS method
Bias SSE ESE CP Bias SSE ESE CP

100 0.25 0.040 0.371 0.355 0.942 0.040 0.371 0.356 0.940
0.5 0.025 0.366 0.354 0.942 0.025 0.366 0.356 0.943
0.75 0.002 0.357 0.353 0.947 0.002 0.357 0.354 0.944

200 0.25 0.022 0.256 0.244 0.945 0.022 0.256 0.245 0.945
0.5 0.012 0.253 0.245 0.941 0.012 0.253 0.246 0.940
0.75 0.003 0.246 0.243 0.945 0.003 0.246 0.244 0.948

Note: ‘‘SPS method’’ stands for the method of Sun et al. (2006).

Table 2
Simulation results for the estimation of β0 under H2(x).

n ρ Proposed method HC method
Bias SSE ESE CP Bias SSE ESE CP

100 0.25 0.014 0.548 0.557 0.962 0.014 0.548 0.533 0.948
0.5 −0.033 0.545 0.557 0.953 −0.033 0.545 0.535 0.945
0.75 −0.003 0.554 0.561 0.956 −0.003 0.554 0.542 0.939

200 0.25 0.010 0.378 0.384 0.951 0.010 0.378 0.373 0.945
0.5 0.012 0.380 0.384 0.958 0.012 0.380 0.374 0.957
0.75 −0.011 0.388 0.388 0.955 −0.011 0.388 0.380 0.951

Note: ‘‘HC method’’ stands for the method of Huang and Chen (2003).

Table 3
Simulation results for the estimation of β0 under H3(x).

s ρ n = 100 n = 200
Bias SSE ESE CP Bias SSE ESE CP

0 0.25 0.035 0.454 0.449 0.947 0.012 0.310 0.308 0.950
0.5 −0.008 0.449 0.449 0.958 0.010 0.298 0.309 0.955
0.75 −0.010 0.425 0.440 0.966 −0.021 0.303 0.303 0.952

0.5 0.25 0.024 0.437 0.454 0.955 0.012 0.298 0.295 0.945
0.5 0.021 0.439 0.455 0.958 0.008 0.296 0.295 0.946
0.75 0.038 0.437 0.447 0.951 −0.026 0.284 0.290 0.951

1 0.25 0.033 0.380 0.366 0.940 0.017 0.255 0.246 0.951
0.5 0.020 0.374 0.365 0.948 0.013 0.252 0.245 0.942
0.75 0.005 0.378 0.364 0.938 −0.008 0.250 0.245 0.942

2 0.25 0.045 0.291 0.323 0.951 0.020 0.190 0.197 0.953
0.5 0.034 0.292 0.326 0.951 0.020 0.206 0.198 0.932
0.75 0.031 0.302 0.331 0.943 0.000 0.203 0.196 0.945

3 0.25 0.026 0.261 0.280 0.946 0.009 0.179 0.177 0.946
0.5 0.033 0.260 0.279 0.940 0.017 0.175 0.176 0.953
0.75 0.015 0.260 0.283 0.940 0.005 0.182 0.177 0.941

parameters. For the estimation of λ0(t), we used the Epanechnikov kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1) with bandwidth
h = 0.05 for all simulations. Note that the commonly used cross-validation criterion cannot be directly used for the optimal
bandwidth selection, since it is difficult to derive the mean square error of the kernel estimator λ̂(t) for recurrent gap time
data. It deserves a further study to develop an optimal bandwidth selection method for this case. Here, we selected the
bandwidth based on the average distance between data points such that several data points lay within one bandwidth at
a given data point. In our simulation with n = 100, we find that there are 1.5, 4 and 7 data points on average within one
bandwidth at a given data point for h = 0.01, 0.03 and 0.05, respectively. We also conducted simulations for h = 0.01
and 0.03. When h = 0.01, the estimated variance is too large; while h = 0.03, the obtained simulation results are similar
to those with h = 0.05. Therefore, the bandwidth can be chosen to be 0.03 or 0.05 in the settings considered here. For
comparison, we also considered the method of Sun et al. (2006) with H1(x), and the method of Huang and Chen (2003) with
H2(x) under the same setup as above. The results presented below are based on 1000 replicationswith sample sizes n = 100
and n = 200, and the final estimates were reached at convergence.

Tables 1–3 present the simulation results for the estimate of β0 under H1(x), H2(x) and H3(x), respectively. In these
tables, Bias, SSE, ESE, and CP stand for the sample mean of the estimate minus the true value, the sampling standard error of
the estimate, the sampling mean of the estimated standard error, and the 95% empirical coverage probability for β0 based
on a normal approximation, respectively. It can be seen from Tables 1–3 that the proposed estimation procedures perform
well for the situations considered here. It appears that the proposed estimators are practically unbiased, and there is a
good agreement between the estimated and empirical standard errors. The coverage probabilities seem reasonable, and the
results become better when the sample size increases from 100 to 200.
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Fig. 1. Estimates are Λ0(t) and their pointwise 95% confidence bands for the s = 0 model considered.

Note that under H1(x), our estimator has the same expression as that of Sun et al. (2006). Thus, the twomethods provide
the same estimates and the same sampling standard errors of the estimates. Also the variances are almost the same for the
two methods. Under H2(x), our method and Huang and Chen (2003)’s method give reasonable and comparable estimates,
and the variances of our method are only slightly larger than those of Huang and Chen (2003)’s method.

We also considered other setups and the results were similar to those given above. In particular, we obtained the similar
simulation results for different values of bandwidth h, which seems to indicate that the proposed estimation method is
robust with respect to the bandwidth choice.

5. An application

In this section, we apply the proposed method to the multiple-infection data taken from the CGD study. The data are
given in Appendix D of Fleming and Harrington (1991) and were analyzed by Lin et al. (2000) and Sun et al. (2011) among
others. The CGD is a group of inherited rare disorders of the immune function characterized by recurrent pyogenic infections
which usually occur early in life and may lead to death in childhood. In order to investigate the ability of gamma interferon
to reduce the hazard of serious infections requiring hospitalization, a double-blinded clinical trial was conducted in which
patients were randomized to either placebo or gamma interferon group, and a total of 128 patients were enrolled into the
study. The data set includes the dates of randomization and each serious infection during the follow-up for each patient. By
the end of the study, 30 of the 65 patients in the placebo group and 14 of 63 in the gamma interferon group had experienced
at least one serious infection.

For the analysis, we defined Z1i as the treatment indicator, which took the value 1 if the subject received gamma
interferon or 0 if the subject was in the placebo group, Z2i as the patients age at enrollment, Z3i as an indicator for use of
prophylactic antibiotics at study entry (yes = 1, no = 0), and Z4i as a binary indicator of gender (male = 0, female = 1). Let
Zi = (Z1i, Z2i, Z3i, Z4i)′. For the illustration purpose, we assumed that the data can be described bymodel (1) with a Box–Cox
transformation H(x) = {(1+ x)s − 1}/s for s = 0, 0.5, 1 and 2, and an exponential transformation H(x) = 0.3 exp(x). When
s = 0, log(1+λ0(t)) is the baseline hazard function, and β0 denotes the log linear influence of the covariates.When s = 0.5,
2((1+λ0(t))1/2−1) is the baseline hazard function, and β0 is the square root linear influence of the covariates.When s = 1,
λ0(t) is the baseline hazard function, and β0 denotes the linear influence of the covariates. For the estimation of λ0(t), we
used the bivariateGaussian-based kernel function of order 4 (Wand and Schucany, 1990):K(u) = (3−u2) exp(−u2)/(8π)1/2

with bandwidth h = 1. Using the same principle adopted in the simulation, we selected h = 1 such that there are 3–7 data
points within one bandwidth at each given data point. Let τ be the largest observed infection time. The analysis results
are summarized in Table 4. All results suggest that treatment, age and gender all have significant effects on the hazard of
infections. In particular, the gamma interferon is effective in reducing the hazard of infections, the infection hazard is lower
for older patients, and females are more easily infected than males. These findings are similar to those obtained by Lin et al.
(2000) and Sun et al. (2011). Figs. 1–5 display the confidence interval estimates of Λ0(t) together with their pointwise
95% confidence bands for all models considered. For comparison, we also provided the predicted survival functions for the
additive hazards model and the Cox model with the corresponding stratified Kaplan–Meier estimates in Figs. 6–7, in which
the curves are stratified by treatment and gender, where the age value is taken as its median and the indicator for use of
prophylactic antibiotics is taken as 0. These plots indicate that the additive hazards model provides a good fit to the data.

In order to examine which model fits the data best, we used the model checking techniques presented in Section 3 to
compare the performances of the five models considered here. The estimated p-values of the proposed test statistics for
these models are given in Table 4. The last column of Table 4 suggests that all five models are reasonable to fit the data, and
the additive hazards model (s = 1) and the Cox model fit the data more adequately.
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Table 4
Analysis results for CGD data.

Model Covariate Est 95% confidence interval SE p-value (Uj) p-value (U)

s = 0 Treat −0.2264 (−0.2763, −0.1765) 0.0255 0.002
Age −0.0148 (−0.0151, −0.0145) 0.0001 0.002
Prophy −0.1374 (−0.2875, 0.0127) 0.0766 0.003
Gender 0.3862 ( 0.2787, 0.4937) 0.0549 0.003 0.004

s = 0.5 Treat −0.2132 (−0.2587, −0.1676) 0.0233 0.440
Age −0.0160 (−0.0162, −0.0158) 0.0001 0.287
Prophy −0.1304 (−0.2812, 0.0205) 0.0770 0.467
Gender 0.3563 ( 0.2729, 0.4397) 0.0425 0.464 0.390

s = 1 Treat −0.2009 (−0.2427, −0.1591) 0.0213 0.995
Age −0.0169 (−0.0171, −0.0167) 0.0001 0.985
Prophy −0.1240 (−0.2670, 0.0190) 0.0730 1.000
Gender 0.3285 ( 0.2757, 0.3814) 0.0270 0.994 0.951

s = 2 Treat −0.1788 (−0.2085, −0.1491) 0.0151 0.166
Age −0.0179 (−0.0180, −0.0178) 0.0001 0.187
Prophy −0.1127 (−0.2028, −0.0227) 0.0459 0.171
Gender 0.2788 ( 0.2234, 0.3341) 0.0282 0.178 0.263

Cox Treat −0.5785 (−0.8570, −0.3001) 0.1421 0.602
Age −0.0554 (−0.0562, −0.0546) 0.0004 0.770
Prophy −0.3598 (−0.9938, 0.2743) 0.3235 0.611
Gender 0.9171 ( 0.5375, 1.2968) 0.1937 0.604 0.901

Est: the parameter estimate; SE: the standard error estimate.

Fig. 2. Estimates are Λ0(t) and their pointwise 95% confidence bands for the s = 0.5 model considered.

Fig. 3. Estimates are Λ0(t) and their pointwise 95% confidence bands for the s = 1 model considered.
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Fig. 4. Estimates are Λ0(t) and their pointwise 95% confidence bands for the s = 2 model considered.

Fig. 5. Estimates are Λ0(t) and their pointwise 95% confidence bands for the Cox model considered.

Furthermore, for the additive hazards model and the Cox model, we checked the misspecification of the functional form
of covariates. We plotted the residual Mi(τ ; β̂, λ̂) against each component of Zi shown in Figs. 8–9. These results indicate
that the residuals fluctuate around zero and seem to be random for the additive hazards model, while some residuals do not
fluctuate around zero for the Cox model. Therefore, the additive hazards model may be the best one among the five models
for fitting the CGD data.

6. Concluding remarks

In this article, we have proposed a class of transformed hazardsmodels for recurrent gap time data. The newmodel offers
great flexibility in formulating the effects of covariates on the hazards function for the gap times. An estimation procedure
was proposed for themodel parameters, and the asymptotic properties of the proposed estimatorswere derived. Simulation
studies showed that the proposed method performs well for practical situations, and an illustrative example was provided.

Note that model (1) assumes a common baseline hazard function λ0(t) for the recurrent gap times of each subject.
However, the proposed estimation procedure can be extended in a straightforward manner to deal with gap-time-specific
baseline hazard functions. In this case, model (1) would become

λij(t|Z∗

ij ) = H{λ0j(t) + β ′

0Z
∗

ij },

where λ0j(t)′s are unspecified functions, and Z∗

ij is a covariate vector associatedwith the gap times Tij i = 1, . . . , n and j ≥ 1.
Our proposed method assumes that the censoring time and the gap times are independent conditional on covariates.

However, in many applications, this noninformative censoring assumptionmight not hold, especially when censoring could
be caused by a terminal event such as death. One possible way to adjust the method for such dependent censoring is to
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a b

c d

Fig. 6. s = 1. Note: Estimated survival functions (- - -) versus Kaplan–Meier estimates (—). (a) placebo, male; (b) placebo, female; (c) gamma interferon,
male; (d) gamma interferon, female.

a b

c d

Fig. 7. Cox. Note: Estimated survival functions (- - -) versus Kaplan–Meier estimates (—). (a) placebo, male; (b) placebo, female; (c) gamma interferon,
male; (d) gamma interferon, female.

use a joint frailty model to simultaneously analyze the gap times and the censoring time as in Huang and Liu (2007). When
time-varying covariates are associated with gap times, model (1) needs to be modified as discussed in Chapter 4 of Cook
and Lawless (2007). It would be interesting to extend the procedures for the class of transformed hazards models to handle
these problems.

Since estimating functions (2) and (3) were given in a somewhat ad hoc fashion using the generalized estimating equa-
tion approach, it would be worthwhile to further investigate the efficiencies of the proposed estimators. If the recurrent
event process is a Poisson process, then it might be possible to estimate β0 and λ0(t) more efficiently by the nonparametric
maximum likelihood approach, and the resulting inference procedure would be much more complicated.
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Appendix A. Proof of Theorem 1

Let s0(t; β, λ), sz(t; β, λ), ez(t; β, λ), ezz(t; β, λ) and z̄(t; β, λ) be the limits of S0(t; β, λ), Sz(t; β, λ), Ez(t; β, λ),
Ezz(t; β, λ), and Z̄(t; β, λ), respectively. Set s0(t) = s0(t; β0, λ0), and define sz(t), ez(t), ezz(t), and z̄(t) similar to s0(t).
Also let A =

 τ

0 ezz(t)dt .
In order to study the asymptotic properties of the proposed estimators, we need the following regularity conditions:

(C1) λ0(t) is three times continuously differentiable for t ∈ [0, τ ].
(C2) The covariate Z is bounded.
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(C3) K is a symmetric and continuous kernel function with a compact support satisfying

K(u)du = 1 and h = O(n−α),

where 1/8 < α < 1/4.
(C4) s0(t; β, λ), s1(t; β, λ), ez(t; β, λ) and ezz(t; β, λ) are uniformly continuous with respect to (t; β, λ) ∈ [0, τ ]×B ×H ,

where B is a compact set of Rp including β0, and H is a compact set of R that includes a neighborhood of λ0(t) for
t ∈ [0, τ ].

(C5) s0(t) and A are nonsingular for t ∈ [0, τ ].

Proof of Theorem 1(i). To prove consistency of β̂ and Λ̂, we will utilize Lemmas 1 and 2 of Martinussen et al. (2002) with
Rn = cn−δ and 2α < δ < 1

2 , where c > 0 is a constant. Define

Q (β) = β +
1
n

 τ

0
Ezz(t; β, λ̄)dt

−1  τ

0
{Z − Z̄(t; β, λ̄)}′dM(t; β, λ̄),

and

Ψ (Λ)(t) =

 t

0
λ̄(u)du +

1
n

n
i=1

 t

0
S−1
0 (u; β, λ̄)dMi(u; β, λ̄) −

 t

0
Ez(u; β, λ̄)′du{Q (β) − β},

where λ̄(t) =
 1

hK
 u−t

h


dΛ(u). Let λ̄0(t) =

 1
hK( u−t

h )dΛ0(u). Then it follows from the Taylor expansion that uniformly
in t ∈ [0, τ ],

λ̄0(t) − λ0(t) = O(h2). (A.1)

Thus, using the Taylor expansion, and the central limit theorem and the uniform strong law of large numbers (Pollard,
1990, p. 41), we have

Q (β0) − β0 =
1
n

 τ

0
Ezz(t; β0, λ̄0)dt

−1  τ

0
{Z − Z̄(t; β0, λ̄0)}

′dM(t; β0, λ0) + Op(∥λ̄0 − λ0∥
2)

= Op


n−

1
2


+ Op(h4).

Therefore,

R−1
n ∥Q (β0) − β0∥ = op(1),

and for any ε > 0, there exists a C such that for sufficiently large n,

P

n1/2

∥Q (β0) − β0∥ ≤ C


> 1 − ε,

which implies that condition (A2) of Lemma 1 and condition (C) of Lemma 2 in Martinussen et al. (2002) are satisfied for
Q (β0).

Note that for any ∥β1 − β0∥ ≤ Rn and ∥β2 − β0∥ ≤ Rn,

Q (β1) − Q (β2) =

 τ

0
{ht(β1) − ht(β2)}dt +

1
n

n
i=1

 τ

0
{Wi(t; β1) − Wi(t; β2)}dMi(t; β0, λ0), (A.2)

where for k = 1 and 2,

ht(βk) =
1
n

n
i=1

 τ

0
Ezz(t; βk, λ̄)dt

−1

{Zi − Ez(t; βk, λ̄)}
1
Si

Si
j=1

Yij(t)

H{λ0(t) + Z ′

iβ0}

−H{λ̄(t) + Z ′

iβk} − Ḣ{λ̄(t) + Z ′

iβk}Z ′

i (β0 − βk)

,

and

Wi(t; βk) =

 τ

0
Ezz(t; βk, λ̄)dt

−1

{Zi − Ez(t; βk, λ̄)}.

It can be shown that ht(β0) = 0, and h′
t(β0) =

∂ht (β)

∂β


β=β0

= 0. Then it follows from the mean value theorem that

∥ht(β1) − ht(β2)∥ = ∥h′

t(β
∗)(β1 − β2)∥

= ∥(h′

t(β
∗) − h′

t(β0))(β1 − β2)∥

= ∥h′′

t (β
∗∗)(β∗

− β0)(β1 − β2)∥, (A.3)
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where β∗ is between β1 and β2, β∗∗ is between β∗ and β0, and h′′
t (·) is the second derivative of ht(·). Since ∥β∗

− β0∥ ≤

max{∥β1 − β0∥, ∥β2 − β0∥} ≤ Rn and h′′
t (·) is bounded, we obtain that

∥ht(β1) − ht(β2)∥ ≤ Op(Rn)∥β1 − β2∥. (A.4)

Likewise, for every i, there exists a β̃∗ such that

Wi(t; β1) − Wi(t; β2) = W ′

i (t; β̃∗)(β1 − β2),

whereW ′

i (t; β) denotes the derivative ofWi(t; β) with respect to β . Thus, by the central limit theorem, we have

1
n

n
i=1

 τ

0
{Wi(t; β1) − Wi(t; β2)}dMi(t; β0, λ0) =

1
n

n
i=1

 τ

0
W ′

i (t; β̃∗)dMi(t; β0, λ0)(β1 − β2)

= Op


n−

1
2


∥β1 − β2∥. (A.5)

Thus, it follows from (A.2), (A.4) and (A.5) that for some θ < 1 and for all large n,

∥Q (β1) − Q (β2)∥ ≤ θ∥β1 − β2∥,

which means that Q (β) is a contraction map. That is, condition (A1) of Lemma 1 of Martinussen et al. (2002) is satisfied for
Q (β).

Next, we verify conditions (A1) and (A2) of Lemma 1 and condition (C) of Lemma 2 inMartinussen et al. (2002) forΨ (Λ).
Using the Taylor expansion and (A.1), we have that uniformly in t ∈ [0, τ ],

Ψ (Λ0)(t) =

 t

0
λ̄0(u)du +

1
n

n
i=1

 t

0
S−1
0 (u; β0, λ̄0)dMi(u; β0, λ̄0) −

 t

0
Ez(u; β0, λ̄0)

′
{Q (β0) − β0}du

=

 t

0
λ̄0(u)du +

1
n

n
i=1

 t

0
S−1
0 (u; β0, λ̄0)dMi(u; β0, λ0)

+
1
n

 t

0
S−1
0 (u; β0, λ̄0)

n
i=1

φi(u; β0, λ̄0){λ0(u) − λ̄0(u)}du

−

 t

0
Ez(u; β0, λ̄0)

′
{Q (β0) − β0}du + Op(∥λ̄0 − λ0∥

2)

= Λ0(t) +
1
n

n
i=1

 t

0
S−1
0 (u; β0, λ̄0)dMi(u; λ0, β0)

−

 t

0
Ez(u; β0, λ̄0)

′
{Q (β0) − β0}du + Op(∥λ̄0 − λ0∥

2)

= Λ0(t) + Op(n−1/2) + Op(h4).

Hence,

R−1
n ∥Ψ (Λ0) − Λ0∥ = op(1), (A.6)

and for any ε > 0, there exists a C such that for sufficiently large n,

P

n1/2

∥Ψ (Λ0) − Λ0∥ ≤ C


> 1 − ε, (A.7)

where ∥g∥ = sup0≤t≤τ |g(t)| for any function g .
Note that for any Λ1 and Λ2 satisfying ∥Λ1 − Λ0∥ ≤ Rn and ∥Λ2 − Λ0∥ ≤ Rn, we obtain that for given β ,

Ψ (Λ1)(t) − Ψ (Λ2)(t) =

 t

0
{fu(λ̄1(u)) − fu(λ̄2(u))}du

+
1
n

n
i=1

 t

0
{S−1

0 (u; β, λ̄1) − S−1
0 (u; β, λ̄2)}dMi(u; β0, λ0), (A.8)
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where for k = 1 and 2,

fu(λ̄k(u)) =
1
n

n
i=1

S−1
0 (u; β, λ̄k)

1
Si

Si
j=1

Yij(u)

H{λ0(u) + Z ′

iβ0}

−H{λ̄k(u) + Z ′

iβ} + Ḣ{λ̄k(u) + Z ′

iβ}{λ̄k(u) − λ0(u)}

,

and

λ̄k(t) =


1
h
K


u − t
h


dΛk(u).

It can be shown that fu(λ0(u)) = 0 and f ′
u(λ0(u)) =

∂ fu(λ)

∂λ


λ=λ0(u)

= 0. By the arguments leading to (A.3), we have

∥ft(λ̄1) − ft(λ̄2)∥ ≤ c∥λ̄1 − λ̄2∥ ∥λ∗
− λ0∥,

where ∥λ∗
− λ0∥ ≤ max{∥λ̄1 − λ0∥, ∥λ̄2 − λ0∥}. Note that

λ̄1(t) − λ̄2(t) =


h−1K


u − t
h


d[Λ1(u) − Λ2(u)]

= −


h−2Kd


u − t
h


[Λ1(u) − Λ2(u)]du,

where Kd is the derivative of K . Thus,

∥λ̄1 − λ̄2∥ ≤ h−1
∥Λ1 − Λ2∥.

In a similar manner, we can prove that ∥λ̄0 − λ̄k∥ ≤ h−1
∥Λ0 − Λk∥ = O(nα−δ). It then follows from (A.1) that

∥λ0 − λ̄j∥ = O(h2) + O(nα−δ).

Therefore,

∥ft(λ̄1) − ft(λ̄2)∥ = [O(h) + O(n2α−δ)]∥Λ1 − Λ2∥,

which implies the first term on the right-hand side of (A.8) is op(∥Λ1 − Λ2∥). By the same argument as that of (A.5), we get
that the second term on the right-hand side of (A.8) is also op(∥Λ1 − Λ2∥). Hence for sufficiently large n,

∥Ψ (Λ1) − Ψ (Λ2)∥ ≤ θ∥Λ1 − Λ2∥. (A.9)

In view of (A.6), (A.7) and (A.9), conditions (A.1) and (A.2) of Lemma 1 and condition (C) of Lemma 2 in Martinussen et al.
(2002) are satisfied for Ψ (Λ). Thus, it follows that with probability tending to one, (6) and (7) have solutions Q (β̂) = β̂ and
Ψ (Λ̂) = Λ̂ such that ∥β̂ − β0∥ = Op(n−1/2) and ∥Λ̂ − Λ0∥ = Op(n−1/2).

Proof of Theorem 1(ii). Note that

λ̂(t) − λ0(t) =


h−1K


u − t
h


d[Λ̂(u) − Λ0(u)] + {λ̄0(t) − λ0(t)}.

Then it follows from condition (C3) and Theorem 1(i) that

∥λ̂ − λ0∥ ≤ Op(h−1
∥Λ̂ − Λ0∥) + O(h2) = op(n−1/4). (A.10)

Using the functional central limit theorem (Pollard, 1990, p. 53), we have that uniformly in t ∈ [0, τ ], for k = 0 and z,

∥Sk(t; β0, λ0) − sk(t)∥ = Op(n−1/2).

Applying the Taylor expansion and (A.10), we obtain

sup
0≤t≤τ

∥Sk(t; β̂, λ̂) − Sk(t; β0, λ0)∥ = Op(∥β̂ − β0∥) + Op(∥λ̂ − λ0∥) = op(n−1/4).

Thus,

sup
0≤t≤τ

∥Sk(t; β̂, λ̂) − sk(t)∥ = op(n−1/4). (A.11)

Similarly, for k = z and zz,

sup
0≤t≤τ

∥Ek(t; β̂, λ̂) − ek(t)∥ = op(n−1/4). (A.12)
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To derive the asymptotic distribution of β̂ , it follows from (6) that

Q (β̂) − β̂ =
1
n

 τ

0
Ezz(t; β̂, λ̂)dt

−1
 τ

0
{Z − Z̄(t; β̂, λ̂)}′[dM(t; β̂, λ̂) − dM(t; β0, λ0)]

+
1
n

 τ

0
Ezz(t; β̂, λ̂)dt

−1
 τ

0
{Z − Z̄(t; β̂, λ̂)}′dM(t; β0, λ0)

=
1
n

n
i=1

 τ

0
Ezz(t; β̂, λ̂)dt

−1
 τ

0
{Zi − Ez(t; β̂, λ̂)}

×


φi(t; β̂, λ̂){λ0(t) − λ̂(t)} + φi(t; β̂, λ̂)Z ′

i (β0 − β̂)

dt

+
1
n

n
i=1

 τ

0
Ezz(t; β̂, λ̂)dt

−1
 τ

0
{Zi − Ez(t; β̂, λ̂)}dMi(t; β0, λ0)

+Op(∥λ̂ − λ0∥
2) + Op(∥β̂ − β0∥

2). (A.13)

It is easy to see that

n
i=1

{Zi − Ez(t; β̂, λ̂)}φi(t; β̂, λ̂) = 0,

and
n

i=1

{Zi − Ez(t; β̂, λ̂)}φi(t; β̂, λ̂)Zi(t) = nEzz(t; β̂, λ̂).

Hence the first term on the right side of (A.13) is equivalent to β0 − β̂ . Using (A.11), (A.12) and Lemma 1 of Lin et al. (2000),
the second term on the right side of (A.13) can be expressed as

1
n

n
i=1

A−1
 τ

0
{Zi − ez(t)}dMi(t; β0, λ0) + op(n−1/2).

Note that by (A.10) and the consistency of β̂ , we have

Op(∥λ0 − λ̂∥
2) + Op(∥β0 − β̂∥

2) = op(n−1/2).

Thus, it follows from (A.13) that

n1/2(β̂ − β0) = n−1/2
n

i=1

A−1ξi + op(1), (A.14)

which is a sum of i.i.d. zero-mean random vectors plus an asymptotically negligible term, where

ξi =

 τ

0
{Zi − ez(t)}dMi(t; β0, λ0).

It then follows from themultivariate central limit theorem and (A.14) that n1/2(β̂−β0) converges in distribution to a normal
randomvariablewithmean zero and variancematrix A−1E{ξ⊗2

i }A−1, which can be consistently estimated by Â−1Σ̂ Â−1 given
in Theorem 1(ii).

Proof of Theorem 1(iii). It follows from (7) that

Ψ (Λ̂)(t) =

 t

0
λ̂(u)du +

1
n

n
i=1

 t

0
S−1
0 (u; β̂, λ̂)dMi(u; β̂, λ̂)

=

 t

0
λ̂(u)du +

1
n

n
i=1

 t

0
S−1
0 (u; β̂, λ̂){dMi(u; β̂, λ̂) − dMi(u; β0, λ0)}

+
1
n

n
i=1

 t

0
S−1
0 (u; β̂, λ̂)dMi(u; β0, λ0). (A.15)
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By the consistency of β̂ and (A.10), we have that uniformly in t ∈ [0, τ ],

1
n

n
i=1

 t

0
S−1
0 (u; β̂, λ̂){dMi(u; β̂, λ̂) − dMi(u; β0, λ0)}

=
1
n

n
i=1

 t

0
S−1
0 (u; β̂, λ̂)φi(u; β̂, λ̂)[{λ0(u) − λ̂(u)}du + Z ′

i (β0 − β̂)du] + op

n−

1
2


.

Thus, applying (A.12), the second term on the right side of (A.15) is equivalent to t

0
{λ0(u) − λ̂(u)}du −

 t

0
ez(u)′(β̂ − β0)du + op(n−1/2) (A.16)

uniformly in t ∈ [0, τ ]. Using (A.11), the third term on the right side of (A.15) equals

1
n

n
i=1

 t

0
s−1
0 (u)dMi(u; β0, λ0) + op(n−1/2) (A.17)

uniformly in t ∈ [0, τ ]. Thus, it follows from (A.14)–(A.17) that uniformly in t ∈ [0, τ ],

n1/2
{Λ̂(t) − Λ0(t)} = n−1/2

n
i=1

ηi(t) + op(1), (A.18)

where

ηi(t) =

 t

0
s−1
0 (u)dMi(u; β0, λ0) −

 t

0
ez(u)′A−1ξidu.

By the multivariate central limit theorem, n1/2
{Λ̂(t) − Λ0(t)} converges in finite dimensional distributions to a zero-mean

Gaussian process. Since the first term on the right-hand side of (A.18) can be written as sums of monotone processes, it is
tight by Example 2.11.16 of van der Vaart andWellner (1996). The second term is tight because

 t
0 ez(u)′du is a deterministic

function. Thus, n1/2
{Λ̂(t)−Λ0(t)} is tight and convergesweakly to a zero-meanGaussian processwhose covariance function

at (s, t) can be consistently estimated by Γ̂ (s, t) given in Theorem 1(iii).

Appendix B. Proof of (9) in Section 3

We only give the proof of (9) in Section 3. The weak convergence of Fj(τ , z) can be derived similarly. Taking the linear
expansion of H(x) and using the same arguments used in the proof of Theorem 1(ii), we can obtain that uniformly in t and z,

F (t, z) = n−1/2
n

i=1

 t

0
I{Zi ≤ z}dMi(u; β0, λ0) −

 t

0
Φ(u, z)n1/2

{λ̂(u) − λ0(u)}du

− B(t, z)n1/2(β̂ − β0) + op(1), (B.19)

where

Φ(u, z) = E

I{Zi ≤ z}φi(u; β0, λ0)


,

and

B(t, z) = E
 t

0
I{Zi ≤ z}φi(u; β0, λ0)Zidu


.

Let Λ̃(t) =
 t
0 λ̂(u)du, and Λ̃0(t) =

 t
0 λ̄0(u)du. Using integration by parts, it is easy to see that Λ̃(t) =


Λ̂(y) 1

hK


y−t
h


dy

and Λ̃0(t) =


Λ0(y) 1
hK


y−t
h


dy. In view of (A.18), by the same argument as that of Theorem 2.15 of Stute (1982), we have

that for any y, u ∈ [0, τ ],

sup
|y−u|≤chn

|Λ̂(y) − Λ0(y) − Λ̂(u) + Λ0(u)| = op(n−1/2).

Hence, using integration by parts yields that uniformly in t and z, t

0
Φ(u, z)n1/2d[Λ̃(u) − Λ̃0(u) − Λ̂(u) + Λ0(u)] = op(1). (B.20)
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Using the Taylor expansion, we get that uniformly in t and z, t

0
Φ(u, z)n1/2d[Λ̃0(u) − Λ0(u)] = O(n1/2hr) = o(1). (B.21)

Note that the second term on the right-hand side of (B.19) can be written as

−

 t

0
Φ(u, z)n1/2d[Λ̃(u) − Λ̃0(u) − Λ̂(u) + Λ0(u)] −

 t

0
Φ(u, z)n1/2d[Λ̃0(u) − Λ0(u)]

−

 t

0
Φ(u, z)n1/2d[Λ̂(u) − Λ0(u)].

Then by (B.20) and (B.21), the second term on the right-hand side of (B.19) equals

−

 t

0
Φ(u, z)n1/2d[Λ̂(u) − Λ0(u)] + op(1) (B.22)

uniformly in t and z. Thus, it follows from (A.14), (A.18), (B.19) and (B.22) that uniformly in t and z,

F (t, z) = n−1/2
n

i=1

 t

0
I{Zi ≤ z}dMi(u; β0, λ0) −

 t

0
Φ(u, z)dη̂i(u) − B(t, z)n1/2A−1ξi + op(1)


.

The multivariate central limit theorem implies that F (t, z) converges in finite-dimensional distribution to a zero-mean
Gaussian process. By the same argument as the tightness of n1/2

{Λ̂(t)−Λ0(t)},F (t, z) is tight. Therefore,F (t, z) converges
weakly to a zero-meanGaussian processwhich can be approximated by the zero-meanGaussian process F̃ (t, z) given in (9).
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