# First- and Second-Order Necessary Conditions via Lower-order Exact Penalty Functions

# Xiaoqi Yang

Department of Applied Mathematics The Hong Kong Polytechnic University

Joint with Zhangyou Chen (SWJTU), Kaiwen Meng (SWJTU), Zhiqing Meng (ZJUTCEM).

April 1, 2019

Xiaoqi Yang (PolyU)

# Outline

# Introduction

- 2 KKT conditions of (NLP)
  - by Dini-directional derivative
  - by contingent derivative
  - by subderivative
- 3 KKT-type Penalty Terms and Their Characterizations
  - Second-order Necessary Conditions via Exact Penalty Functions
- **5** KKT conditions of (SIP) and (GSIP)
  - Max-Type and Integral-Type Penalty Functions
  - Optimality Conditions of (SIP)
  - Optimality Conditions of (GSIP)
  - Conclusions





# 2 KKT conditions of (NLP)

- 3 KKT-type Penalty Terms and Their Characterizations
- 4 Second-order Necessary Conditions via Exact Penalty Functions
- 5 KKT conditions of (SIP) and (GSIP)

# 6 Conclusions

# 7 References

Consider the nonlinear programming problem (NLP):

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g_i(x) \leq 0, \quad i \in I := \{1, \dots, m\}, \\ & h_j(x) = 0, \quad j \in J := \{m+1, \dots, m+q\}, \end{array}$$

where  $f, g_i, h_j : \mathbb{R}^n \to \mathbb{R}$  are assumed to be smooth functions.

**KKT** conditions, originated with [?] and [?], are the well-known first-order necessary conditions for local minima of (NLP).

KKT conditions are useful in the design of optimal algorithms as one can compute a KKT point at most.

We denote by C the feasible set and by  $\overline{S}$  the set of optimal solutions of (NLP).

(NLP) has a local minimum at  $\bar{x}$  plus a constraint qualification  $\}$   $\Longrightarrow$  the following KKT condition a

$$abla f(ar{x}) + \sum_{i\in I(ar{x})} \mu_i 
abla g_i(ar{x}) + \sum_{j\in J} \eta_j 
abla h_j(ar{x}) = 0 \quad (\mu_i \geq 0).$$

Constraint qualifications include:

- LICQ [**?**]
- MFCQ [?]
- ACQ [?]
- GCQ (weakest CQ) [?]

Another approach to study optimality conditions is by virtue of exact penalty functions. [?] and [?] used  $l_1$  exact penalty functions to derive KKT necessary optimality conditions.

On the other hand, [?] and [?] used  $l_p(p \in [0, 1])$  exact penalty functions (see [?] to derive KKT necessary optimality conditions together with some nonpositivity condition on the second-order directional derivative of the constraints.

Let  $0 \le p \le 1$ ,  $0^0 := 0$  and  $g_{i+}(x) = \max\{g_i(x), 0\}$ . A particular penalty term associated with (NLP) is of the form

$$S^p(x) = \sum_{i \in I} g^p_{i+}(x) + \sum_{j \in J} |h_j(x)|^p \quad \forall x \in \mathbb{R}^n,$$

while the  $l_p$  penalty function associated with (NLP) is of the form

$$\mathcal{F}_p(x) := f(x) + \mu S^p(x).$$

- p = 1, the classical  $l_1$  penalty function, see [?] and [?].
- p < 1, referred to as the lower order l<sub>p</sub> penalty function, first introduced in [?] for the study of MPEC and was rediscovered from a unified augmented Lagrangian scheme by [?] and [?].

A penalty function is said to be exact if any optimal solution of (NLP) is also one for the penalty problem.

By definition,  $\mathcal{F}_0$  is exact at any local minimum of (NLP). It was shown in [?] that  $\mathcal{F}_p$  with 0 is exact if and only if the following generalized calmness-type condition holds:

$$\liminf_{u\to 0}\frac{\beta(u)-\beta(0)}{\|u\|^{p}}>-\infty,$$

where  $\beta(u)$  is the optimal value of the optimization problem

min 
$$f(x)$$
  
s.t.  $g_i(x) \le u_i$ ,  $i \in I$ ,  $h_j(x) = u_j, j \in J$ .

When p = 1, this result was established in [?] and [?].

### Let f be locally Lipschitz. If the following error bound condition holds

$$au d(x, \overline{S}) \leq S^p(x), \ x \in X$$

then  $\mathcal{F}_p(x)$  is an exact penalty function.

The exact penalty function plays a key role in deriving KKT conditions.



# 2 KKT conditions of (NLP)

- 3 KKT-type Penalty Terms and Their Characterizations
- 4 Second-order Necessary Conditions via Exact Penalty Functions
- 5 KKT conditions of (SIP) and (GSIP)

# 6 Conclusions

# 7 References

$$I(\bar{x}) := \{i \in I \mid g_i(\bar{x}) = 0\}.$$
  
$$I(\bar{x}, w) := \{i \in I \mid g_i(\bar{x}) = 0, \langle \nabla g_i(\bar{x}), w \rangle = 0\}.$$

The first-order linearized tangent cone to C at  $\bar{x}$  is

$$L_{C}(\bar{x}) := \left\{ w \in \mathbb{R}^{n} \mid \begin{array}{cc} \langle \nabla g_{i}(\bar{x}), w \rangle \leq 0 & \forall i \in I(\bar{x}) \\ \langle \nabla h_{j}(\bar{x}), w \rangle = 0 & \forall j \in J \end{array} \right\}.$$

The Dini upper directional derivative of a function  $\phi : \mathbb{R}^n \to \mathbb{R}$  at  $x \in \mathbb{R}^n$ in the direction  $u \in \mathbb{R}^n$  is defined by

$$D_+\phi(x; u) = \limsup_{t\to 0+} \frac{\phi(x+tu) - \phi(x)}{t}.$$

The generalized Clarke second-order directional derivative of a  $C^{1,1}$  function is

$$g^{\circ\circ}(x;w) = \limsup_{y \to x, t \to 0+} \frac{\nabla g(y+tu)^T w - \nabla g(y)^T w}{t}.$$

Xiaoqi Yang (PolyU)

# If $F_p(x) = f(x) + \mu \sum_{i \in I} g_{i+}^p(x)$ is exact at $\bar{x}$ , then $D_+F_p(\bar{x}; u) \ge 0, \quad \forall u \in \mathbb{R}^n.$

Thus

$$abla f(ar{x})^{ op} u + \mu \sum_{i \in I} D_+ g^p_{i+}(ar{x}; u) \geq 0, \quad \forall u \in R^n.$$

Then,

$$\sum_{i\in I} D_+ g_{i+}^p(\bar{x}; u) \leq 0 \Longrightarrow \nabla f(\bar{x})^\top u \geq 0, \quad \forall u \in R^n.$$

By Farkas lemma, which says that exactly one of the following two systems has a solution:

 $\begin{array}{ll} \text{System 1} & Au \leq 0, \ c^\top u > 0, \ \text{ for some } u, \\ \text{System 2} & A^\top \mu = c, \ \mu \geq 0, \ \text{ for some } \mu, \end{array}$ 

we establish that the following KKT condition holds:

$$abla f(ar{x}) + \sum_{i \in I(ar{x})} \mu_i 
abla g_i(ar{x}) = 0 \quad (\mu_i \ge 0).$$

#### Lemma

[?]. Let  $\bar{h}(x) = (\max\{h(x), 0\})^p$  with  $p \in (0, 1)$  and h be continuously differentiable at x.

(i) If 
$$h(x) < 0$$
, then  $D_+\bar{h}(x; d) = 0$ ;

(ii) If 
$$h(x) = 0$$
 and  $\langle \nabla h(x), d \rangle < 0$ , then  $D_+\bar{h}(x; d) = 0$ ;

(iii) If  $p \in (0.5, 1)$ , h(x) = 0,  $\langle \nabla h(x), d \rangle = 0$  and  $h^{\circ \circ}(x; d)$  is finite, then  $D_+ \bar{h}(x; d) = 0$ ;

(iv) If 
$$p = 0.5$$
,  $h(x) = 0$  and  $\langle \nabla h(x), d \rangle = 0$ , then  
 $D_+ \bar{h}(x; d) \le \sqrt{\max\{\frac{1}{2}h^{\circ\circ}(x; d), 0\}};$ 

(v) If  $p \in (0, 0.5)$ , h(x) = 0,  $\langle \nabla h(x), d \rangle = 0$  and  $h^{\circ \circ}(x; d) < 0$ , then  $D_+ \bar{h}(x; d) = 0$ .

By estimating the upper Dini-directional derivative of  $\mathcal{F}_{p}(x)$ , we have

#### Theorem

[?] If  $F_p(x)$  is exact at  $\bar{x}$  and in addition, one of the following conditions is satisfied:

(i) 
$$p \in (\frac{1}{2}, 1]$$
,  $g_i(i \in I)$  and  $h_j(j \in I)$  are  $C^{1,1}$ ,  
(ii)  $p = \frac{1}{2}$  and, for every  $w \in L_C(\bar{x})$ , it follows that  
 $g_i^{\circ\circ}(\bar{x}; w) \leq 0$ ,  $\forall i \in I(\bar{x}, w)$ ,  
 $h_j^{\circ\circ}(\bar{x}; w) = 0$ ,  $\forall j \in J$ ,  
(iii)  $p \in [0, 1/2)$ ,  $q = 0$  (i.e., there is no equality constraint) and,  
for every  $w \in L_C(\bar{x})$  with  $w \neq 0$ , it follows that  
 $g_i^{\circ\circ}(\bar{x}; w) < 0$ ,  $\forall i \in I(\bar{x}, w)$ ,

then  $\text{KKT}(\bar{x}) \neq \emptyset$ .

Let  $M : \mathbb{R}^n \rightrightarrows \mathbb{R}^s$  be a set-valued map and  $(x, y) \in gphM$ . The contingent derivative of M at (x, y) is defined by the set-valued map  $DM(x, y) : \mathbb{R}^n \rightrightarrows \mathbb{R}^s$  such that

$$gph(DM(x, y)) = T_{gphM}(x, y).$$

In particular, when M is single-valued at x, i.e.,  $M(x) = \{y\}$ , we use DM(x) to denote DM(x, y) for simplicity, and define the kernel of DM(x) by

 $KerDM(x) = \{u \in R^n \mid 0 \in DM(x)(u)\}.$ 

Now, define an optimality indication set of (NLP) with respect to C and  $\bar{x}$  as follows:

$$\Pi(C,\bar{x}) := \{ p \in [0,1] \mid \textit{KerDS}^p(\bar{x})^* \subset \textit{KerDS}(\bar{x})^* \}.$$

By estimating the contingent derivative of  $\mathcal{F}_p(x)$ , we have

#### Theorem

**[?]** If there exists  $p \in \Pi(C, \bar{x})$  such that the  $l_p$  penalty function  $\mathcal{F}_p$  is exact at  $\bar{x}$ , then  $\text{KKT}(\bar{x}) \neq \emptyset$ .

In what follows,

- we distinguish a point  $\bar{x} \in C$  for consideration;
- let  $\phi: R^n \to R_+ \cup \{+\infty\}$  be a lower semicontinuous function such that

$$C = \{x \in \mathbb{R}^n \mid \phi(x) = 0\}.$$

- $\phi$  is called a **penalty term** associated with (NLP)
- The function of the form

$$f + \mu \phi$$

is called a **penalty function** associated with (NLP), where  $\mu$ , a positive number, is often referred to as the **penalty parameter**.

### Definition

We say that the penalty term  $\phi$  is of **KKT-type at**  $\bar{x}$  if the KKT condition holds at  $\bar{x}$  whenever the penalty function  $f + \mu \phi$  is exact at  $\bar{x}$ .

#### Theorem

# Consider the following conditions: (i) $[\ker d\phi(\bar{x})]^* \subset L_C(\bar{x})^*$ . (ii) $\widehat{\partial}\phi(\bar{x}) \subset L_C(\bar{x})^*$ .

(iii) The penalty term  $\phi$  is of KKT-type at  $\bar{x}$ .

Then (i)  $\Longrightarrow$  (ii)  $\iff$  (iii).

#### Theorem

Let  $0 \le p < 1$ . Consider the following conditions: (i)  $[\ker dS^p(\bar{x})]^* = L_C(\bar{x})^*$ . (ii)  $\widehat{\partial}S^p(\bar{x}) = L_C(\bar{x})^*$ . (iii)  $S^p$  is a KKT-type penalty term at  $\bar{x}$ . Then (i)  $\Longrightarrow$  (ii)  $\iff$  (iii).

### 1 Introduction

# 2 KKT conditions of (NLP)

# 6 KKT-type Penalty Terms and Their Characterizations

### 4 Second-order Necessary Conditions via Exact Penalty Functions

# 5 KKT conditions of (SIP) and (GSIP)

## 6 Conclusions

## 7 References

In what follows,

- we distinguish a point  $\bar{x} \in C$  for consideration;
- let  $\phi:R^n\to R_+\cup\{+\infty\}$  be a lower semicontinuous function such that

 $C = \{x \in \mathbb{R}^n \mid \phi(x) = 0\}.$ 

- $\phi$  is called a **penalty term** associated with (NLP)
- The function of the form

$$f + \mu \phi$$

is called a **penalty function** associated with (NLP), where  $\mu$ , a positive number, is often referred to as the **penalty parameter**.

## Definition

We say that the penalty function  $f + \mu \phi$  is **exact at**  $\bar{x}$  if,  $f + \mu \phi$  admits a local minimum at  $\bar{x}$  with some **finite penalty parameter**.

[exactness of penalty function at  $\bar{x} \Longrightarrow \bar{x}$  being a local minimum of (NLP)]

It is well-known that <sup>1</sup>

 $\mathcal{F}_p$  with p = 1 is exact at  $\bar{x} \Longrightarrow \mathsf{KKT}$  condition at  $\bar{x}$ .

But in general,

 $\mathcal{F}_p$  with  $0 is exact at <math>\bar{x} \neq \rightarrow \text{KKT}$  condition at  $\bar{x}$ .

<sup>&</sup>lt;sup>1</sup>See Theorem 4.8 of [?].

### Definition

We say that the penalty term  $\phi$  is of **KKT-type at**  $\bar{x}$  if the KKT condition holds at  $\bar{x}$  whenever the penalty function  $f + \mu \phi$  is exact at  $\bar{x}$ .

We will employ the tools from Variational Analysis, see [?]. For any  $f : \mathbb{R}^n \to \overline{\mathbb{R}}$  and a point  $\overline{x}$  with  $f(\overline{x})$  finite,

• The vector  $v \in R^n$  is a regular subgradient of f at  $\bar{x}$ , written  $v \in \widehat{\partial}f(\bar{x})$ , if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle + o(\|x - \bar{x}\|).$$

For any w ∈ R<sup>n</sup>, the subderivative (or Hadamard directional derivative) of f at x̄ for w is defined by

$$df(\bar{x})(w) := \liminf_{\tau \to 0+, w' \to w} \frac{f(\bar{x} + \tau w') - f(\bar{x})}{\tau}$$

$$\widehat{\partial}f(\bar{x}) = \{v \in R^n \mid \langle v, w \rangle \leq df(\bar{x})(w) \; \forall w \in \mathrm{dom} df(\bar{x})\}.$$

#### Lemma

Suppose that the function  $\psi : \mathbb{R}^n \to \overline{\mathbb{R}}$  has a local minimum at  $\overline{x}$  with  $\psi(\overline{x})$  finite. Then we have

$$[\operatorname{dom} d\psi(\bar{x})]^* \subset \widehat{\partial}\psi(\bar{x}) \subset [\operatorname{ker} d\psi(\bar{x})]^*.$$
(1)

Moreover,

- The first inclusion in (1) is an equality if and only if the regular subdifferential ∂ψ(x̄) is a cone;
- The second inclusion in (1) is an equality if and only if [domdψ(x̄)]\* = [kerdψ(x̄)]\*;
- If the subderivative dψ(x̄) is a sublinear function as is true when ψ is regular at x̄ (see Definition 7.25 of [?]), then

$$\operatorname{clpos}(\widehat{\partial}\psi(\bar{x})) = [\ker d\psi(\bar{x})]^*.$$

(2

### We recall the variational description of regular subgradients:

#### Lemma

([?], Proposition 8.5). A vector v belongs to  $\partial f(\bar{x})$  if and only if, on some neighborhood of  $\bar{x}$ , there is a function  $h \leq f$  with  $h(\bar{x}) = f(\bar{x})$  such that h is differentiable at  $\bar{x}$  with  $\nabla h(\bar{x}) = v$ . Moreover h can be taken to be continuously differentiable with h(x) < f(x) for all  $x \neq \bar{x}$  near  $\bar{x}$ .

#### Remark

This variational description is a contribution to the basics of variational analysis, as pointed out on p.347 of [?].

### We can obtain from Lemmas 9 and 10 the following.

### Theorem

Consider the following conditions:

#### Theorem

Let  $0 \le p < 1$ . Consider the following conditions: (i)  $[\ker dS^p(\bar{x})]^* = L_C(\bar{x})^*$ . (ii)  $\widehat{\partial}S^p(\bar{x}) = L_C(\bar{x})^*$ . (iii)  $S^p$  is a KKT-type penalty term at  $\bar{x}$ . Then (i)  $\Longrightarrow$  (ii)  $\iff$  (iii).

#### Remark

In the case of p = 0, (i) and (ii) are equivalent, and moreover Theorem 12 recovers a well-known result that the GCQ  $[T_C(\bar{x})^* = L_C(\bar{x})^*]$  is the weakest one ensuring KKT conditions.

#### Remark

In the case of 0 , we are not aware of the equivalence of (i) and (ii), although they are the same in many situations.

#### KKT-type Penalty Terms and Their Characterizations

By a direct calculation using the chain rule for second subderivatives of piecewise linear-quadratic functions  $^2$ , we have

$$dS^{\frac{1}{2}}(\bar{x})(w) = +\infty \quad \forall w \notin L_C(\bar{x}),$$

and if  $w \in L_C(\bar{x})$ , we have  $dS^{\frac{1}{2}}(\bar{x})(w)$ 

$$=\frac{\sqrt{2}}{2}\sqrt{\max_{\rho\in\mathrm{KKT}_{0}(\bar{x}),\,\|\rho\|_{\infty}=1}\left\langle\left[\sum_{i\in I}\rho_{i}\nabla^{2}g_{i}(\bar{x})+\sum_{j\in J}\rho_{j}\nabla^{2}h_{j}(\bar{x})\right]w,w\right\rangle},$$

where

$$\operatorname{KKT}_{0}(\bar{x}) := \left\{ \rho \left| \begin{array}{c} \sum_{i \in I} \rho_{i} \nabla g_{i}(\bar{x}) + \sum_{j \in J} \rho_{j} \nabla h_{j}(\bar{x}) = 0\\ \rho_{i} \geq 0 \quad \forall i \in I(\bar{x}), \ \rho_{i} = 0 \ \forall i \in I \setminus I(\bar{x}) \end{array} \right\} \right.$$

denotes the degenerate KKT multiplier set at  $\bar{x}$ .

But we have no idea the explicit formula of  $\partial S^p(\bar{x})$ , though we are sure that

$$\widehat{\partial}S^{rac{1}{2}}(ar{x}) = \{v \mid \langle v, w \rangle \leq dS^{rac{1}{2}}(ar{x})(w) \quad \forall w\}.$$

Zsoo Chaptor 12 of [2] Xiaoqi Yang (PolyU)

#### Proposition

 $S^{\frac{1}{2}}$  is of KKT-type at  $\bar{x}$  if one of the following conditions is satisfied: (i) For every  $w \in L_C(\bar{x})$ , it follows that

$$\langle w, \nabla^2 g_i(\bar{x})w \rangle \le 0 \ \forall i \in I(\bar{x}, w), \ \langle w, \nabla^2 h_j(\bar{x})w \rangle = 0 \ \forall j \in J.$$
(3)

(ii) For every  $w \in L_C(\bar{x})$ , there exists some  $z \in R^n$  such that

$$\begin{split} &\langle \nabla g_i(\bar{x}), z \rangle + \langle w, \nabla^2 g_i(\bar{x}) w \rangle \leq 0 \quad \forall i \in I(\bar{x}, w), \\ &\langle \nabla h_j(\bar{x}), z \rangle + \langle w, \nabla^2 h_j(\bar{x}) w \rangle = 0 \quad \forall j \in J. \end{split}$$

(iii) For every  $w \in L_C(\bar{x})$ , it follows that

$$\max_{\lambda \in \mathrm{KKT}_{0}(\bar{x})} \left\{ \sum_{i \in I} \lambda_{i} \langle w, \nabla^{2} g_{i}(\bar{x}) w \rangle + \sum_{j \in J} \lambda_{j} \langle w, \nabla^{2} h_{j}(\bar{x}) w \rangle \right\} = 0.$$
(4)

April 1, 2019

30 / 68

• Condition (3) was originally given in [?]. In general, we have

- LICQ  $\neq \Rightarrow$  (3). Consider  $x_2^2 x_1 \leq 0$  and  $\bar{x} = (0, 0)$ .
- (3)  $\neq \Rightarrow$  LICQ. Consider  $x^3 \leq 0$  and  $\bar{x} = 0$ .

• Condition (4) is newly obtained, and we have

 $\mathsf{MFCQ} \Longrightarrow (4),$ 

because the MFCQ at  $\bar{x} \iff \text{KKT}_0(\bar{x}) = \{0\}.$ 

#### Example

Let  $\bar{x} = (0,0)$  and let

$$C = \left\{ x \in R^n \left| \begin{array}{c} x_1^2 x_2 \leq 0 \\ x_2^2 - x_1 \leq 0 \end{array} 
ight\}.$$

- Neither the GCQ nor (3) is satisfied at  $\bar{x}$ .
- (4) holds and  $\text{KKT}_0(\bar{x}) = R_+ \times \{0\}.$



$$T_{C}(\bar{x}) = R_{+} \times (-R_{+}), \ L_{C}(\bar{x}) = R_{+} \times R, \text{ and}$$

$$\ker dS^{p}(\bar{x}) = \begin{cases} R_{+} \times (-R_{+}) & \text{if } 0$$

# Introduction

- 2 KKT conditions of (NLP)
- 3 KKT-type Penalty Terms and Their Characterizations

# Second-order Necessary Conditions via Exact Penalty Functions

# 5 KKT conditions of (SIP) and (GSIP)

# 6 Conclusions

# 7 References

Denote the set of all KKT multipliers at  $\bar{x}$  by  $KKT(\bar{x})$  and the critical cone at  $\bar{x}$  by

$$\mathcal{V}(ar{x}) := \left\{ egin{array}{ll} w \in R^n & ig\langle 
abla f(ar{x}), w 
ight
angle \leq 0 & orall i \in I ext{ with } g_i(ar{x}) = 0 \ ig\langle 
abla g_i(ar{x}), w 
ight
angle = 0 & orall j \in J \end{array} 
ight\}.$$

The second-order necessary condition (for short, SON), originated with [?], holds at a local minimum  $\bar{x}$  of (NLP) if

$$\sup_{\lambda \in \mathrm{KKT}(\bar{x})} \langle w, \nabla^2_{xx} \mathcal{L}(\bar{x},\lambda) w \rangle \geq 0 \qquad \forall w \in \mathcal{V}(\bar{x}),$$

where the convention sup  $\emptyset := -\infty$  is used.

# • $l_1$ exactness $\implies$ (SON). See Corollary 4.5 of [?].

For any w and z, let

$$\begin{split} I(\bar{x},w) &:= \{ i \in I(\bar{x}) \mid \langle w, \nabla g_i(\bar{x}) \rangle = 0 \}, \\ I(\bar{x},w,z) &:= \{ i \in I(\bar{x},w) \mid \langle z, \nabla g_i(\bar{x}) \rangle + \langle w, \nabla^2 g_i(\bar{x}) w \rangle = 0 \}, \end{split}$$

and let the second-order linearized tangent set to C at  $\bar{x}$  in the direction  $w \in L_C(\bar{x})$  be given by

$$L^2_C(\bar{x} \mid w) := \begin{cases} z \mid \langle \nabla g_i(\bar{x}), z \rangle + \langle w, \nabla^2 g_i(\bar{x})w \rangle \leq 0 & \forall i \in I(\bar{x}, w) \\ \langle \nabla h_j(\bar{x}), z \rangle + \langle w, \nabla^2 h_j(\bar{x})w \rangle = 0 & \forall j \in J \end{cases}$$

The parabolic subderivative of f at  $\bar{x}$  for w with respect to z is defined by, see [?]

$$d^2f(\bar{x})(w\mid z):=\liminf_{\tau\to 0+,\,z'\to z}\frac{f(\bar{x}+\tau w+\frac{1}{2}\tau^2 z')-f(\bar{x})-\tau df(\bar{x})(w)}{\frac{1}{2}\tau^2}$$

#### Theorem

Let  $\bar{x}$  be a local minimum of (NLP). Suppose that the penalty function  $f + \mu \phi$  is exact at  $\bar{x}$ . If

$$L^{2}_{\mathcal{C}}(\bar{x} \mid w) \subset \operatorname{clconv}[\operatorname{ker} d^{2}\phi(\bar{x})(w \mid \cdot)] \qquad \forall w \in \mathcal{V}(\bar{x}),$$
(5)

then the SON condition holds, and in particular when  $L^2_C(\bar{x} \mid w) = \emptyset$ , the supremum in the SON condition is  $+\infty$ .

Let  $\bar{x} \in C$  and let  $\phi = S^p$ .

We shall give sufficient conditions in terms of the original data for the inclusion

$$L^{2}_{C}(\bar{x} \mid w) \subset \ker d^{2}S^{p}(\bar{x})(w \mid \cdot) \qquad \forall w \in L_{C}(\bar{x})$$
(6)

to hold, which is slightly stronger than (5) since in general  $\ker d^2 S^p(\bar{x})(w \mid \cdot)$  is not a closed and convex set and  $\mathcal{V}(\bar{x}) \subsetneq L_C(\bar{x})$ .

#### Theorem

Let  $\bar{x}$  be a local minimum of (NLP). Suppose that the  $l_p$  penalty function is exact at  $\bar{x}$ . If, in addition, one of the following conditions is satisfied:

.3

(i) 
$$p \in (\frac{2}{3}, 1]$$
,  
(ii)  $p = \frac{2}{3}$  and, for every  $z \in L^{2}_{C}(\bar{x} \mid w)$ , it follows that  

$$\begin{cases} \langle w, \nabla^{2}g_{i}(\bar{x})z \rangle + \frac{1}{3}g_{i}^{(3)}(\bar{x})(w, w, w) \leq 0 \qquad \forall i \in I(\bar{x}, w, z), \\ \langle w, \nabla^{2}h_{i}(\bar{x})z \rangle + \frac{1}{2}h_{i}^{(3)}(\bar{x})(w, w, w) = 0 \qquad \forall j \in J, \end{cases}$$

(7)

(iii)  $p \in [0, \frac{2}{3})$ , q = 0 (i.e., there is no equality constraint) and, for every  $z \in L^2_C(\bar{x} \mid w)$  with  $(w, z) \neq 0$ , it follows that

$$\langle w, \nabla^2 g_i(\bar{x})z \rangle + \frac{1}{3}g_i^{(3)}(\bar{x})(w, w, w) < 0 \qquad \forall i \in I(\bar{x}, w, z),$$

### Remark

(a) Let p = 1. By applying the second-order Taylor expansion we have

$$L^2_C(\bar{x} \mid w) = \ker d^2 S(\bar{x})(w \mid \cdot) \quad \forall w \in L_C(\bar{x}), \tag{8}$$

which implies that condition (6) holds. This recovers a well-known result that the (SON) condition holds at  $\bar{x}$  when the  $l_1$  penalty function is exact at  $\bar{x}$ , see [?].

(b) Let  $0 \le p < 1$ . It can be shown that

 $\ker d^2 S^p(\bar{x})(w \mid \cdot) \subset L^2_C(\bar{x} \mid w) \quad \forall w \in \ker dS^p(\bar{x}).$ (9)

Thus, condition (5) holds if and only if

$$L^{2}_{C}(\bar{x} \mid w) = \operatorname{clconv}[\operatorname{ker} d^{2}S^{p}(\bar{x})(w \mid \cdot)] \quad \forall w \in \mathcal{V}(\bar{x}).$$
(10)

Moreover, it is clear that

$$T^2_C(\bar{x} \mid w) = \ker d^2 S^0(\bar{x})(w \mid \cdot), \quad \forall w \in T_C(\bar{x}).$$

Condition (10) with p = 0 reduces to the so-called SGCQ, originated with [?], which holds at  $\bar{x}$  if by definition

$$L^2_C(\bar{x} \mid w) = \operatorname{clconv}[T^2_C(\bar{x} \mid w)] \quad \forall w \in \mathcal{V}(\bar{x}).$$

(c) It was shown by [?] that if the linear independent constraint qualification (for short, LICQ) holds at  $\bar{x}$ , then

 $L^2_C(\bar{x} \mid w) = T^2_C(\bar{x} \mid w) \quad \forall w \in L_C(\bar{x}),$ 

and hence (6) holds for any  $p \in [0,1]$ . Simple example can be given to demonstrate that condition (7) may not hold even if the LICQ holds at  $\bar{x}$ .

## Introduction

- 2 KKT conditions of (NLP)
- 3 KKT-type Penalty Terms and Their Characterizations
- 4 Second-order Necessary Conditions via Exact Penalty Functions
- **5** KKT conditions of (SIP) and (GSIP)

# 6 Conclusions

# 7 References

Consider the following semi-infinite program, denoted as (SIP):

$$\min f(x)$$
 s.t.  $g(x,t) \leq 0, t \in \Omega$ ,

where  $f : \mathbb{R}^n \to \mathbb{R}$  and  $g : \mathbb{R}^n \times \Omega \to \mathbb{R}$  are smooth functions, and  $\Omega$  is a nonempty and compact set of parameters in  $\mathbb{R}^m$ .

Let  $x^*$  be a locally optimal solution of (SIP),

$$X := \{x \in R^n : g(x,t) \le 0, t \in \Omega\}$$

be the feasible set and, for  $x \in X$ , let

$$\Omega_x := \{t \in \Omega : g(x,t) = 0\}.$$

# Literature review

Three types of optimality conditions for (SIP):

$$0 \in \operatorname{conv} \{ \nabla f(x^*), \nabla_x g(x^*, t) \ (t \in \Omega_{x^*}) \},\$$

(see Fritz John (1948), Pschenichnyi (1971), Hettich and Jongen (1978), and Borwein (1981),)

$$0 \in \nabla f(x^*) + \operatorname{cl} \operatorname{cone} \{ \nabla_x g(x^*, t) \ (t \in \Omega_{x^*}) \},\$$

(see [?], Li, et al (2000),)

$$0 \in \nabla f(x^*) + \operatorname{cone} \{ \nabla_x g(x^*, t) \ (t \in \Omega_{x^*}) \},\$$

(see Pschenichnyi (1971), Lopez and Vercher (1983), Hettich and Kortanek (1993), Zheng and Yang (2007).)

# Literature review

By a Farkas lemma, see [?],

$$0 \in \nabla f(x^*) + \operatorname{cl} \operatorname{cone} \{ \nabla_x g(x^*, t) \ (t \in \Omega_{x^*}) \},$$
(11)

is equivalent to

$$\langle \nabla f(x^*), d \rangle \ge 0, \ \forall d \in D(x^*),$$
 (12)

where  $D(x) = \{0 \neq d \in \mathbb{R}^n : \langle \nabla_x g(x, t), d \rangle \le 0 \ \forall t \in \Omega_x \}.$ 

In this talk, we will study (11) but using the form of (12).

# Literature review

[?] introduced the following  $l_1$  integral penalty function

$$f(x) + 
ho \int_{\Omega(x)} g(x, t) \mathrm{d}\mu(t),$$

where  $\Omega(x) := \{t \in \Omega : g(x, t) > 0\}$ , but too weak penalty for infeasibility.

Let p > 0. For (SIP), [?] also introduced the following  $l_p$  integral penalty function

$$f(x) + 
ho \int_{\Omega} g^{p}_{+}(x,t) \mathrm{d}\mu(t)$$

and established the convergence of the solution sequence of the penalty problems to an optimal solution of (SIP).

[?] established the exact  $l_1$  integral penalty function

$$f(x) + 
ho \int_{\Omega(x)} g(x,t) \mathrm{d}\mu(t) \left/ \int_{\Omega(x)} \mathrm{d}\mu(t) \right|$$

# Penalty Functions

A pth-order max-type penalty function for SIP is defined as,

$$F_{max}^{p}(x) = f(x) + \rho \max_{t \in \Omega} g_{+}^{p}(x, t).$$

Let  $\mu$  be a non-negative regular Borel measure defined on  $\Omega$  with the support of  $\mu$  being equal to  $\Omega$ , that is  $\operatorname{supp}(\mu) = \Omega$ , where the support of  $\mu$  is defined as the set of the points  $t \in \Omega$  such that any open neighbourhood V of t has a positive measure:

$$\operatorname{supp}(\mu) := \{t \in \Omega : \mu(V) > 0, \text{ for any open neighbourhood } V \text{ of } t\}.$$

Two *p*th-order integral-type penalty functions for SIP are defined by

$$\begin{aligned} F_{int}^{\rho}(x) &= f(x) + \rho \int_{\Omega} g_{+}^{\rho}(x,t) \,\mathrm{d}\mu(t), \\ \bar{F}_{int}^{\rho}(x) &= f(x) + \rho \left( \int_{\Omega} g_{+}(x,t) \,\mathrm{d}\mu(t) \right)^{\rho}. \end{aligned}$$

Exactness of  $F_{int}^{p}(x) \Longrightarrow$  that of  $\overline{F}_{int}^{p}(x) \Longrightarrow$  that of  $F_{max}^{p}(x)$ .

# The case p = 1.

(SIP) can be rewritten as

$$\min f(x) \text{ s.t. } \max_{t \in \Omega} g(x, t) \le 0. \tag{13}$$

The exactness of  $F_{max}^1$  is equivalent to saying that problem (13) has an  $l_1$  exact penalty function in the usual sense, see Clarke (1983). Thus, if  $F_{max}^1$  is exact, then the KKT-type optimality condition (12).

Let  $h : \mathbb{R}^n \to \mathbb{R}$ . The upper Dini-directional derivative of h at a point x in the direction  $d \in \mathbb{R}^n$  is defined by

$$D_+h(x;d) = \limsup_{\lambda\downarrow 0} rac{h(x+\lambda d) - h(x)}{\lambda}.$$

The generalized upper second-order directional derivatives of a  $C^{1,1}$  function h at x in the direction  $d \in \mathbb{R}^n$  is defined by

$$h^{\circ\circ}(x;d) = \limsup_{y o x,\lambda\downarrow 0} rac{\langle 
abla h(y+\lambda d),d
angle - \langle 
abla h(y),d
angle}{\lambda}.$$

Let  $D(x) = \{0 \neq d \in \mathbb{R}^n : \langle \nabla_x g(x, t), d \rangle \le 0 \ \forall t \in \Omega_x\}$  and let  $\Omega_x^=(d) := \{t \in \Omega_x : \langle \nabla_x g(x, t), d \rangle = 0\},$  $\Omega_x^<(d) := \{t \in \Omega_x : \langle \nabla_x g(x, t), d \rangle < 0\},$ 

#### Lemma

[?] Let  $\bar{h}(x) = (\max\{h(x), 0\})^p$  with  $p \in ]0, 1[$  and h be continuously differentiable at x.

(i) If 
$$h(x) < 0$$
, then  $D_+\bar{h}(x; d) = 0$ ;

(ii) If 
$$h(x) = 0$$
 and  $\langle \nabla h(x), d \rangle < 0$ , then  $D_+\bar{h}(x; d) = 0$ ;

(iii) If  $p \in (0.5, 1)$ , h(x) = 0,  $\langle \nabla h(x), d \rangle = 0$  and  $h^{\circ \circ}(x; d)$  is finite, then  $D_+ \bar{h}(x; d) = 0$ ;

(iv) If 
$$p = 0.5$$
,  $h(x) = 0$  and  $\langle \nabla h(x), d \rangle = 0$ , then  
 $D_+ \bar{h}(x; d) \le \sqrt{\max\{\frac{1}{2}h^{\circ\circ}(x; d), 0\}};$ 

(v) If  $p \in (0, 0.5)$ , h(x) = 0,  $\langle \nabla h(x), d \rangle = 0$  and  $h^{\circ \circ}(x; d) < 0$ , then  $D_+ \bar{h}(x; d) = 0$ .

Now we establish a necessary optimality condition for SIP by virtue of the exact penalty function  $F_{int}^{p}$ .

#### Theorem

Let  $p \in (0,1)$  and  $F_{int}^p$  be exact at  $x^*$ . Under any one of the three assumptions below, (i)  $p \in (0.5,1)$  and  $g(\cdot,t)$  is  $C^{1,1}$ , for all  $t \in \Omega_{x^*}^{=}(d)$ , (ii) p = 0.5 and  $g^{\circ\circ}(x^*,t;d) \leq 0$  for all  $t \in \Omega_{x^*}^{=}(d)$  and  $d \in D(x^*)$ , and (iii)  $p \in (0,0.5)$  and  $g^{\circ\circ}(x^*,t;d) < 0$ , for all  $t \in \Omega_{x^*}^{=}(d)$  and  $d \in D(x^*)$ , we have

 $\langle \nabla f(x^*), d \rangle \geq 0, \forall d \in D(x^*).$ 

Next we employ the exactness of  $\overline{F}_{int}(p \in (0,1))$  to develop the optimality condition (12) of (SIP).

#### Theorem

Let  $p \in (0,1)$  and  $\overline{F}_{int}^p$  be exact at  $x^*$ . Under any one of the three assumptions below, (i)  $p \in (0.5,1)$  and  $g(\cdot,t)$  is  $C^{1,1}$ , for all  $t \in \Omega_{x^*}^{=}(d)$ , (ii) p = 0.5 and  $g^{\circ\circ}(x^*,t;d) \leq 0$  for all  $t \in \Omega_{x^*}^{=}(d)$  and  $d \in D(x^*)$ , and (iii)  $p \in (0,0.5)$  and  $g^{\circ\circ}(x^*,t;d) < 0$ , for all  $t \in \Omega_{x^*}^{=}(d)$  and  $d \in D(x^*)$ , we have

$$\langle 
abla f(x^*), d 
angle \geq 0, orall d \in D(x^*).$$

We need the following lemma in the proof of the above theorem.

Proposition

Let  $g: \mathbb{R}_+ \to \mathbb{R}_+$  be a non-negative function,  $f: \mathbb{R}_+ \to \mathbb{R}$  be a continuous and strictly increasing function and  $\lambda_0 \in \mathbb{R}_+$ . Then

$$\limsup_{\lambda \to \lambda_0} f(g(\lambda)) \leq f(\limsup_{\lambda \to \lambda_0} g(\lambda)).$$

We will also consider the following generalized semi-infinite program, denoted as (GSIP),

```
min f(x) s.t. g(x, t) \leq 0, t \in \Omega \cap \Omega(x),
```

where  $\Omega$  is a compact subset of  $\mathbb{R}^m$ ,

$$\Omega(x) := \{t \in \mathbb{R}^m : v_i(x,t) \le 0, i = 1, \cdots, l\}$$

and the functions  $f : \mathbb{R}^n \to \mathbb{R}$ ,  $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ , and  $v_i : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}(i = 1, \dots, l)$  are smooth.

[?] associated (GSIP) with an (SIP) problem via augmented Lagrangians of the lower level problem.

The lower level problem associated with (GSIP) is

$$Q(x)$$
  $\max_{t\in\Omega} g(x,t)$  s.t.  $v_i(x,t) \leq 0, i = 1, \cdots, l.$ 

Let valQ(x) be the optimal value of the problem Q(x). It is clear that

$$x \in X_{(GSIP)}$$
 iff  $\operatorname{val} Q(x) \leq 0$ .

Let  $\overline{f}(x, \mu, c) = f(x)$  and, for  $(x, \mu, c) \in \mathbb{R}^n \times \mathbb{R}^l \times \mathbb{R}_{++}$ ,

$$\bar{g}(x,t,\mu,c) = g(x,t) - \frac{1}{2c} \sum_{i=1}^{l} \{ ([cv_i(x,t) + \mu_i]_+)^2 - \mu_i^2 \}.$$

Then  $\bar{g}$  is of  $C^{1,1}$ , see Hiriart-Urruty et al (1984).

Next we recall some concepts from [?].

Problem Q(x) is said to satisfy the *quadratic growth condition* iff there is a  $c \ge 0$  such that  $\overline{g}(x, t, 0, c)$  is bounded above as a function of  $t \in \Omega$ .

Problem Q(x) is said to be *stable of degree* 2 iff there is a neighbourhood U of the origin in  $\mathbb{R}^{l}$  and a  $C^{2}$  function  $\pi_{x} : U \to \mathbb{R}$  such that

$$u(x,u) \leq \pi_x(u), \forall u \in U, \text{ and } \nu(x,0) = \pi_x(0).$$

Let 
$$\overline{H}(x,\mu,c) := \max_{t\in\Omega} \overline{g}(x,t,\mu,c).$$

#### Lemma

[?] Under the quadratic growth condition of Q(x), we have

$$\operatorname{val} Q(x) = \min_{(\mu, c) \in \mathbb{R}^l \times \mathbb{R}_{++}} \overline{H}(x, \mu, c)$$

iff the problem Q(x) is stable of degree 2.

Consider the following (SIP) problem, denoted as (SIPg),

 $\min_{(x,\mu,c)\in\mathbb{R}^n\times\mathbb{R}^l\times\mathbb{R}_{++}}\bar{f}(x,\mu,c)\quad\text{s.t.}\quad\bar{g}(x,t,\mu,c)\leq0,t\in\Omega.$ 

Therefore we have

Proposition

Assume that, for all  $x \in \mathbb{R}^n$ , Q(x) satisfies the quadratic growth condition and is stable of degree 2. Then problems (GSIP) and (SIPg) have the same optimal value, i.e., val(GSIP) = val(SIPg), and furthermore, (i) if  $\hat{x}$  is a locally optimal solution of (GSIP), then there exists  $(\hat{\mu}, \hat{c}) \in \mathbb{R}^l \times \mathbb{R}_{++}$  such that  $(\hat{x}, \hat{\mu}, \hat{c})$  is a locally optimal solution of (SIPg); (ii) if  $(\hat{x}, \hat{\mu}, \hat{c})$  is a locally optimal solution of (SIPg), then  $\hat{x}$  is a locally optimal solution of (GSIP). For  $p \in (0,1)$ , let

$$G^p_{int}(x,\mu,c) := \overline{f}(x,\mu,c) + 
ho \int_\Omega \overline{g}^p_+(x,t,\mu,c) \,\mathrm{d}\mu(t).$$

By applying previous Theorem for SIP, we have.

#### Theorem

Let the assumptions of the previous Proposition hold. Let  $\hat{x}$  be a locally optimal solution of (GSIP) and  $G_{int}^p$  be exact at the point  $(\hat{x}, \hat{\mu}, \hat{c})$ . Then, under one of the following assumptions,

(i)  $p \in (0.5, 1)$ , (ii) p = 0.5 and  $\bar{g}_{(x,\mu,c)}^{\circ\circ}(\hat{x}, t, \hat{\mu}, \hat{c}; d) \leq 0$  for all  $d \in D(\hat{x}, \hat{\mu}, \hat{c})$  and  $t \in \Omega_{(\hat{x}, \hat{\mu}, \hat{c})}$  with  $\langle \nabla_{(x,\mu,c)} \bar{g}(\hat{x}, t, \hat{\mu}, \hat{c}), d \rangle = 0$ , and (iii)  $p \in (0, 0.5)$  and  $\bar{g}_{(x,\mu,c)}^{\circ\circ}(\hat{x}, t, \hat{\mu}, \hat{c}; d) < 0$  for all  $d \in D(\hat{x}, \hat{\mu}, \hat{c})$  and  $t \in \Omega_{(\hat{x}, \hat{\mu}, \hat{c})}$  with  $\langle \nabla_{(x,\mu,c)} \bar{g}(\hat{x}, t, \hat{\mu}, \hat{c}), d \rangle = 0$ , we have

 $\langle \nabla f(\hat{x}), d_1 \rangle \geq 0,$ 

for all  $d_1 \in \mathbb{R}^n$  satisfying  $\langle \nabla_x g(\hat{x}, t) - \nabla_x^T v(\hat{x}, t) \hat{\mu}, d_1 \rangle \leq 0, t \in \Omega_{(\hat{x}, \hat{\mu}, \hat{c})}.$ 

We now compute the generalized second-order directional derivative  $\bar{g}_{(x,\mu,c)}^{\circ\circ}(\hat{x},t,\hat{\mu},\hat{c};d)$  for  $d \in D(\hat{x},\hat{\mu},\hat{c})$  and  $t \in \Omega(\hat{x},\hat{\mu},\hat{c})$ .

#### Lemma

Let  $d \in D(\hat{x}, \hat{\mu}, \hat{c})$  and  $t \in \Omega(\hat{x}, \hat{\mu}, \hat{c})$ . Then the following formula holds:

$$\bar{g}_{(x,\mu,c)}^{\circ\circ}(\hat{x},t,\hat{\mu},\hat{c};d) = d_1^T [\nabla_{xx}^2 g(\hat{x},t) - \sum_{i=1}^l \hat{\mu}_i \nabla_{xx}^2 v_i(\hat{x},t)] d_1 \\ - \sum_{i \in \hat{l}_{(\hat{x},\hat{\mu},\hat{c})}^+(t)} (\sqrt{\hat{c}} d_1^T \nabla_x v_i(\hat{x},t) + \frac{d_{2i}}{\sqrt{\hat{c}}})^2 + \sum_{i=1}^l \frac{d_{2i}^2}{\hat{c}},$$

where  $\hat{l}^+_{(\hat{x},\hat{\mu},\hat{c})}(t) = \{i \in \{i, \cdots, l\} : \hat{c}v_i(\hat{x}, t) + \hat{\mu}_i > 0\}.$ 

We have the following corollary.

### Corollary

Assume that the following conditions hold: (i)  $G_{int}^{\frac{1}{2}}(x,\mu,c)$  is exact at  $(\hat{x},\hat{\mu},\hat{c})$ ; (ii)  $g(\cdot,t)$  and  $-v_i(\cdot,t)$   $(i = 1, \cdots, l)$  are concave for each  $t \in \Omega$ ; and (iii)  $\hat{l}^+_{(\hat{x},\hat{\mu},\hat{c})}(t) = \{1, \cdots, l\}$  and  $\langle \nabla_x v_i(\hat{x},t), d_1 \rangle = 0$  for  $d \in D(\hat{x},\hat{\mu},\hat{c}), t \in \Omega(\hat{x},\hat{\mu},\hat{c})$  and  $i \in \hat{l}^+(t)$ . Then we have  $\langle \nabla f(\hat{x}), d_1 \rangle \ge 0$ ,

for all  $d_1 \in \mathbb{R}^n$  satisfying  $\langle \nabla_x g(\hat{x}, t) - \nabla_x^T v(\hat{x}, t) \hat{\mu}, d_1 \rangle \leq 0, t \in \Omega_{(\hat{x}, \hat{\mu}, \hat{c})}$ .

## Introduction

- 2 KKT conditions of (NLP)
- 3 KKT-type Penalty Terms and Their Characterizations
- 4 Second-order Necessary Conditions via Exact Penalty Functions
- 5 KKT conditions of (SIP) and (GSIP)

# 6 Conclusions



- For (NLP), we discussed the first-order optimality conditions by Dini-directional derivative, contingent directional derivative and subderivative respectively.
- For (SIP) and (GSIP), we investigated the first-order optimality conditions by Dini-directional derivative.

# Introduction

- 2 KKT conditions of (NLP)
- 3 KKT-type Penalty Terms and Their Characterizations
- 4 Second-order Necessary Conditions via Exact Penalty Functions
- 5 KKT conditions of (SIP) and (GSIP)

# 6 Conclusions



#### References