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Introduction

Consider the nonlinear programming problem (NLP):

min f (x)
s.t. gi (x) ≤ 0, i ∈ I := {1, . . . ,m},

hj(x) = 0, j ∈ J := {m + 1, . . . ,m + q},

where f , gi , hj : Rn → R are assumed to be smooth functions.

KKT conditions, originated with [?] and [?], are the well-known first-order
necessary conditions for local minima of (NLP).

KKT conditions are useful in the design of optimal algorithms as one can
compute a KKT point at most.

We denote by C the feasible set and by S̄ the set of optimal solutions of
(NLP).
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Introduction

(NLP) has a local minimum at x̄

plus a constraint qualification

}
=⇒ the following KKT condition at x̄

∇f (x̄) +
∑
i∈I (x̄)

µi∇gi (x̄) +
∑
j∈J

ηj∇hj(x̄) = 0 (µi ≥ 0).

Constraint qualifications include:

LICQ [?]

MFCQ [?]

ACQ [?]

GCQ (weakest CQ) [?]
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Introduction

Literature review

Another approach to study optimality conditions is by virtue of exact
penalty functions. [?] and [?] used l1 exact penalty functions to derive
KKT necessary optimality conditions.

On the other hand, [?] and [?] used lp(p ∈ [0, 1]) exact penalty functions
(see [?] to derive KKT necessary optimality conditions together with some
nonpositivity condition on the second-order directional derivative of the
constraints.
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Introduction

Let 0 ≤ p ≤ 1, 00 := 0 and gi+(x) = max{gi (x), 0}. A particular penalty
term associated with (NLP) is of the form

Sp(x) =
∑
i∈I

gp
i+(x) +

∑
j∈J
|hj(x)|p ∀x ∈ Rn,

while the lp penalty function associated with (NLP) is of the form

Fp(x) := f (x) + µSp(x).

p = 1, the classical l1 penalty function, see [?] and [?].

p < 1, referred to as the lower order lp penalty function, first
introduced in [?] for the study of MPEC and was rediscovered from a
unified augmented Lagrangian scheme by [?] and [?].
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Introduction

A penalty function is said to be exact if any optimal solution of (NLP) is
also one for the penalty problem.

By definition, F0 is exact at any local minimum of (NLP). It was shown in
[?] that Fp with 0 < p ≤ 1 is exact if and only if the following generalized
calmness-type condition holds:

lim inf
u→0

β(u)− β(0)

‖u‖p > −∞,

where β(u) is the optimal value of the optimization problem

min f (x)
s.t. gi (x) ≤ ui , i ∈ I , hj(x) = uj , j ∈ J.

When p = 1, this result was established in [?] and [?].
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Introduction

Let f be locally Lipschitz. If the following error bound condition holds

τd(x , S̄) ≤ Sp(x), x ∈ X

then Fp(x) is an exact penalty function.

The exact penalty function plays a key role in deriving KKT conditions.
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KKT conditions of (NLP)

I (x̄) := {i ∈ I | gi (x̄) = 0}.
I (x̄ ,w) := {i ∈ I | gi (x̄) = 0, 〈∇gi (x̄),w〉 = 0}.

The first-order linearized tangent cone to C at x̄ is

LC (x̄) :=

{
w ∈ Rn

∣∣∣∣ 〈∇gi (x̄),w〉 ≤ 0 ∀i ∈ I (x̄)
〈∇hj(x̄),w〉 = 0 ∀j ∈ J

}
.

The Dini upper directional derivative of a function φ : Rn → R at x ∈ Rn

in the direction u ∈ Rn is defined by

D+φ(x ; u) = lim sup
t→0+

φ(x + tu)− φ(x)

t
.

The generalized Clarke second-order directional derivative of a C 1,1

function is

g◦◦(x ; w) = lim sup
y→x , t→0+

∇g(y + tu)Tw −∇g(y)Tw

t
.
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KKT conditions of (NLP) by Dini-directional derivative

If Fp(x) = f (x) + µ
∑

i∈I gp
i+(x) is exact at x̄ , then

D+Fp(x̄ ; u) ≥ 0, ∀u ∈ Rn.

Thus
∇f (x̄)>u + µ

∑
i∈I

D+gp
i+(x̄ ; u) ≥ 0, ∀u ∈ Rn.

Then, ∑
i∈I

D+gp
i+(x̄ ; u) ≤ 0 =⇒ ∇f (x̄)>u ≥ 0, ∀u ∈ Rn.

By Farkas lemma, which says that exactly one of the following two
systems has a solution:

System 1 Au ≤ 0, c>u > 0, for some u,

System 2 A>µ = c , µ ≥ 0, for some µ,

we establish that the following KKT condition holds:

∇f (x̄) +
∑
i∈I (x̄)

µi∇gi (x̄) = 0 (µi ≥ 0).
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KKT conditions of (NLP) by Dini-directional derivative

The case p ∈ (0, 1).

Lemma

[?]. Let h̄(x) = (max{h(x), 0})p with p ∈ (0, 1) and h be continuously
differentiable at x.

(i) If h(x) < 0, then D+h̄(x ; d) = 0;

(ii) If h(x) = 0 and 〈∇h(x), d〉 < 0, then D+h̄(x ; d) = 0;

(iii) If p ∈ (0.5, 1), h(x) = 0, 〈∇h(x), d〉 = 0 and h◦◦(x ; d) is finite, then
D+h̄(x ; d) = 0;

(iv) If p = 0.5, h(x) = 0 and 〈∇h(x), d〉 = 0, then

D+h̄(x ; d) ≤
√

max{1
2 h◦◦(x ; d), 0};

(v) If p ∈ (0, 0.5), h(x) = 0, 〈∇h(x), d〉 = 0 and h◦◦(x ; d) < 0, then
D+h̄(x ; d) = 0.
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KKT conditions of (NLP) by Dini-directional derivative

By estimating the upper Dini-directional derivative of Fp(x), we have

Theorem

[?] If Fp(x) is exact at x̄ and in addition, one of the following conditions is
satisfied:

(i) p ∈ ( 1
2 , 1], gi (i ∈ I ) and hj(j ∈ I ) are C 1,1,

(ii) p = 1
2 and, for every w ∈ LC (x̄), it follows that

g◦◦i (x̄ ; w) ≤ 0, ∀i ∈ I (x̄ ,w),

h◦◦j (x̄ ; w) = 0, ∀ j ∈ J,

(iii) p ∈ [0, 1/2), q = 0 (i.e., there is no equality constraint) and,
for every w ∈ LC (x̄) with w 6= 0, it follows that

g◦◦i (x̄ ; w) < 0, ∀i ∈ I (x̄ ,w),

then KKT(x̄) 6= ∅.

Xiaoqi Yang (PolyU) April 1, 2019 13 / 68



KKT conditions of (NLP) by contingent derivative

Let M : Rn ⇒ Rs be a set-valued map and (x , y) ∈ gphM. The
contingent derivative of M at (x , y) is defined by the set-valued map
DM(x , y) : Rn ⇒ Rs such that

gph(DM(x , y)) = TgphM(x , y).

In particular, when M is single-valued at x , i.e., M(x) = {y}, we use
DM(x) to denote DM(x , y) for simplicity, and define the kernel of DM(x)
by

KerDM(x) = {u ∈ Rn | 0 ∈ DM(x)(u)}.
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KKT conditions of (NLP) by contingent derivative

Now, define an optimality indication set of (NLP) with respect to C and x̄
as follows:

Π(C , x̄) := {p ∈ [0, 1] | KerDSp(x̄)∗ ⊂ KerDS(x̄)∗}.

By estimating the contingent derivative of Fp(x), we have

Theorem

[?] If there exists p ∈ Π(C , x̄) such that the lp penalty function Fp is exact
at x̄ , then KKT(x̄) 6= ∅.
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KKT conditions of (NLP) by subderivative

In what follows,

we distinguish a point x̄ ∈ C for consideration;

let φ : Rn → R+ ∪ {+∞} be a lower semicontinuous function such
that

C = {x ∈ Rn | φ(x) = 0}.

φ is called a penalty term associated with (NLP)

The function of the form

f + µφ

is called a penalty function associated with (NLP), where µ, a
positive number, is often referred to as the penalty parameter.
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KKT conditions of (NLP) by subderivative

Definition

We say that the penalty term φ is of KKT-type at x̄ if the KKT
condition holds at x̄ whenever the penalty function f + µφ is exact at x̄ .
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KKT conditions of (NLP) by subderivative

Theorem

Consider the following conditions:

(i) [kerdφ(x̄)]∗ ⊂ LC (x̄)∗.

(ii) ∂̂φ(x̄) ⊂ LC (x̄)∗.

(iii) The penalty term φ is of KKT-type at x̄ .

Then (i) =⇒ (ii)⇐⇒ (iii).
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KKT conditions of (NLP) by subderivative

Theorem

Let 0 ≤ p < 1. Consider the following conditions:

(i) [kerdSp(x̄)]∗ = LC (x̄)∗.

(ii) ∂̂Sp(x̄) = LC (x̄)∗.

(iii) Sp is a KKT-type penalty term at x̄.

Then (i) =⇒ (ii)⇐⇒ (iii).
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KKT-type Penalty Terms and Their Characterizations

In what follows,

we distinguish a point x̄ ∈ C for consideration;

let φ : Rn → R+ ∪ {+∞} be a lower semicontinuous function such
that

C = {x ∈ Rn | φ(x) = 0}.

φ is called a penalty term associated with (NLP)

The function of the form

f + µφ

is called a penalty function associated with (NLP), where µ, a
positive number, is often referred to as the penalty parameter.
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KKT-type Penalty Terms and Their Characterizations

Definition

We say that the penalty function f + µφ is exact at x̄ if, f + µφ admits
a local minimum at x̄ with some finite penalty parameter.

[exactness of penalty function at x̄ =⇒ x̄ being a local minimum of (NLP)]

It is well-known that 1

Fp with p = 1 is exact at x̄ =⇒ KKT condition at x̄ .

But in general,

Fp with 0 < p < 1 is exact at x̄ 6=⇒ KKT condition at x̄ .

1See Theorem 4.8 of [?].
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KKT-type Penalty Terms and Their Characterizations

Definition

We say that the penalty term φ is of KKT-type at x̄ if the KKT
condition holds at x̄ whenever the penalty function f + µφ is exact at x̄ .
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KKT-type Penalty Terms and Their Characterizations

We will employ the tools from Variational Analysis, see [?].
For any f : Rn → R and a point x̄ with f (x̄) finite,

The vector v ∈ Rn is a regular subgradient of f at x̄ , written
v ∈ ∂̂f (x̄), if

f (x) ≥ f (x̄) + 〈v , x − x̄〉+ o(‖x − x̄‖).

For any w ∈ Rn, the subderivative (or Hadamard directional
derivative) of f at x̄ for w is defined by

df (x̄)(w) := lim inf
τ→0+, w ′→w

f (x̄ + τw ′)− f (x̄)

τ
.

∂̂f (x̄) = {v ∈ Rn | 〈v ,w〉 ≤ df (x̄)(w) ∀w ∈ domdf (x̄)}.
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KKT-type Penalty Terms and Their Characterizations

Lemma

Suppose that the function ψ : Rn → R has a local minimum at x̄ with
ψ(x̄) finite. Then we have

[domdψ(x̄)]∗ ⊂ ∂̂ψ(x̄) ⊂ [kerdψ(x̄)]∗. (1)

Moreover,

The first inclusion in (1) is an equality if and only if the regular
subdifferential ∂̂ψ(x̄) is a cone;

The second inclusion in (1) is an equality if and only if
[domdψ(x̄)]∗ = [kerdψ(x̄)]∗;

If the subderivative dψ(x̄) is a sublinear function as is true when ψ is
regular at x̄ (see Definition 7.25 of [?]), then

clpos(∂̂ψ(x̄)) = [kerdψ(x̄)]∗. (2)
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KKT-type Penalty Terms and Their Characterizations

We recall the variational description of regular subgradients:

Lemma

([?], Proposition 8.5). A vector v belongs to ∂̂f (x̄) if and only if, on some
neighborhood of x̄ , there is a function h ≤ f with h(x̄) = f (x̄) such that h
is differentiable at x̄ with ∇h(x̄) = v. Moreover h can be taken to be
continuously differentiable with h(x) < f (x) for all x 6= x̄ near x̄ .

Remark

This variational description is a contribution to the basics of variational
analysis, as pointed out on p.347 of [?].
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KKT-type Penalty Terms and Their Characterizations

We can obtain from Lemmas 9 and 10 the following.

Theorem

Consider the following conditions:

(i) [kerdφ(x̄)]∗ ⊂ LC (x̄)∗.

(ii) ∂̂φ(x̄) ⊂ LC (x̄)∗.

(iii) The penalty term φ is of KKT-type at x̄ .

Then (i) =⇒ (ii)⇐⇒ (iii).
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KKT-type Penalty Terms and Their Characterizations

Theorem

Let 0 ≤ p < 1. Consider the following conditions:

(i) [kerdSp(x̄)]∗ = LC (x̄)∗.

(ii) ∂̂Sp(x̄) = LC (x̄)∗.

(iii) Sp is a KKT-type penalty term at x̄.

Then (i) =⇒ (ii)⇐⇒ (iii).

Remark

In the case of p = 0, (i) and (ii) are equivalent, and moreover Theorem 12
recovers a well-known result that the GCQ [TC (x̄)∗ = LC (x̄)∗] is the
weakest one ensuring KKT conditions.

Remark

In the case of 0 < p < 1, we are not aware of the equivalence of (i) and
(ii), although they are the same in many situations.
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KKT-type Penalty Terms and Their Characterizations

By a direct calculation using the chain rule for second subderivatives of
piecewise linear-quadratic functions 2, we have

dS
1
2 (x̄)(w) = +∞ ∀w 6∈ LC (x̄),

and if w ∈ LC (x̄), we have dS
1
2 (x̄)(w)

=

√
2

2

√√√√√ max
ρ∈KKT0(x̄), ‖ρ‖∞=1

〈∑
i∈I

ρi∇2gi (x̄) +
∑
j∈J

ρj∇2hj(x̄)

w ,w

〉
,

where

KKT0(x̄) :=

ρ
∣∣∣∣∣∣
∑
i∈I

ρi∇gi (x̄) +
∑
j∈J

ρj∇hj(x̄) = 0

ρi ≥ 0 ∀i ∈ I (x̄), ρi = 0 ∀i ∈ I\I (x̄)


denotes the degenerate KKT multiplier set at x̄ .
But we have no idea the explicit formula of ∂̂Sp(x̄), though we are sure
that

∂̂S
1
2 (x̄) = {v | 〈v ,w〉 ≤ dS

1
2 (x̄)(w) ∀w}.

2See Chapter 13 of [?].
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KKT-type Penalty Terms and Their Characterizations

Proposition

S
1
2 is of KKT-type at x̄ if one of the following conditions is satisfied:

(i) For every w ∈ LC (x̄), it follows that

〈w ,∇2gi (x̄)w〉 ≤ 0 ∀i ∈ I (x̄ ,w), 〈w ,∇2hj(x̄)w〉 = 0 ∀j ∈ J.

(3)

(ii) For every w ∈ LC (x̄), there exists some z ∈ Rn such that

〈∇gi (x̄), z〉+ 〈w ,∇2gi (x̄)w〉 ≤ 0 ∀i ∈ I (x̄ ,w),
〈∇hj(x̄), z〉+ 〈w ,∇2hj(x̄)w〉 = 0 ∀j ∈ J.

(iii) For every w ∈ LC (x̄), it follows that

max
λ∈KKT0(x̄)

∑
i∈I

λi 〈w ,∇2gi (x̄)w〉+
∑
j∈J

λj〈w ,∇2hj(x̄)w〉

 = 0.

(4)

(iv) kerdS
1
2 (x̄) = LC (x̄).

Moreover, we have (i) =⇒ (ii)⇐⇒ (iii)⇐⇒ (iv).
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KKT-type Penalty Terms and Their Characterizations

Condition (3) was originally given in [?]. In general, we have
LICQ 6=⇒ (3). Consider x2

2 − x1 ≤ 0 and x̄ = (0, 0).
(3) 6=⇒ LICQ. Consider x3 ≤ 0 and x̄ = 0.

Condition (4) is newly obtained, and we have

MFCQ =⇒ (4),

because the MFCQ at x̄ ⇐⇒ KKT0(x̄) = {0}.

Example

Let x̄ = (0, 0) and let

C =

{
x ∈ Rn

∣∣∣∣∣ x2
1 x2 ≤ 0

x2
2 − x1 ≤ 0

}
.

Neither the GCQ nor (3) is satisfied at x̄ .

(4) holds and KKT0(x̄) = R+ × {0}.
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KKT-type Penalty Terms and Their Characterizations
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KKT-type Penalty Terms and Their Characterizations

TC (x̄) = R+ × (−R+), LC (x̄) = R+ × R, and

kerdSp(x̄) =


R+ × (−R+) if 0 < p ≤ 1

5 ,

R+ × (−R+) ∪ {0} × R+ if 1
5 < p ≤ 1

3 ,

R+ × R if 1
3 < p ≤ 1.
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Second-order Necessary Conditions via Exact Penalty Functions

Denote the set of all KKT multipliers at x̄ by KKT(x̄) and the critical
cone at x̄ by

V(x̄) :=

w ∈ Rn

∣∣∣∣∣∣
〈∇f (x̄),w〉 ≤ 0
〈∇gi (x̄),w〉 ≤ 0 ∀i ∈ I with gi (x̄) = 0
〈∇hj(x̄),w〉 = 0 ∀j ∈ J

 .

The second-order necessary condition (for short, SON), originated with [?],
holds at a local minimum x̄ of (NLP) if

sup
λ∈KKT(x̄)

〈w ,∇2
xxL(x̄ , λ)w〉 ≥ 0 ∀w ∈ V(x̄),

where the convention sup ∅ := −∞ is used.
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Second-order Necessary Conditions via Exact Penalty Functions

l1 exactness =⇒ (SON). See Corollary 4.5 of [?].
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Second-order Necessary Conditions via Exact Penalty Functions

For any w and z , let

I (x̄ ,w) := {i ∈ I (x̄) | 〈w ,∇gi (x̄)〉 = 0},
I (x̄ ,w , z) := {i ∈ I (x̄ ,w) | 〈z ,∇gi (x̄)〉+ 〈w ,∇2gi (x̄)w〉 = 0},

and let the second-order linearized tangent set to C at x̄ in the direction
w ∈ LC (x̄) be given by

L2
C (x̄ | w) :=

{
z

∣∣∣∣ 〈∇gi (x̄), z〉+ 〈w ,∇2gi (x̄)w〉 ≤ 0 ∀i ∈ I (x̄ ,w)
〈∇hj(x̄), z〉+ 〈w ,∇2hj(x̄)w〉 = 0 ∀j ∈ J

}
.
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Second-order Necessary Conditions via Exact Penalty Functions

The parabolic subderivative of f at x̄ for w with respect to z is defined by,
see [?]

d2f (x̄)(w | z) := lim inf
τ→0+, z ′→z

f (x̄ + τw + 1
2τ

2z ′)− f (x̄)− τdf (x̄)(w)
1
2τ

2
.

Theorem

Let x̄ be a local minimum of (NLP). Suppose that the penalty function
f + µφ is exact at x̄ . If

L2
C (x̄ | w) ⊂ clconv[kerd2φ(x̄)(w | ·)] ∀w ∈ V(x̄), (5)

then the SON condition holds, and in particular when L2
C (x̄ | w) = ∅, the

supremum in the SON condition is +∞.
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Second-order Necessary Conditions via Exact Penalty Functions

Let x̄ ∈ C and let φ = Sp.
We shall give sufficient conditions in terms of the original data for the
inclusion

L2
C (x̄ | w) ⊂ kerd2Sp(x̄)(w | ·) ∀w ∈ LC (x̄) (6)

to hold, which is slightly stronger than (5) since in general
kerd2Sp(x̄)(w | ·) is not a closed and convex set and V(x̄) ( LC (x̄).
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Second-order Necessary Conditions via Exact Penalty Functions

Theorem

Let x̄ be a local minimum of (NLP). Suppose that the lp penalty function
is exact at x̄ . If, in addition, one of the following conditions is satisfied:

(i) p ∈ ( 2
3 , 1],

(ii) p = 2
3 and, for every z ∈ L2

C (x̄ | w), it follows that
〈w ,∇2gi (x̄)z〉+

1

3
g

(3)
i (x̄)(w ,w ,w) ≤ 0 ∀ i ∈ I (x̄ ,w , z),

〈w ,∇2hj(x̄)z〉+
1

3
h

(3)
j (x̄)(w ,w ,w) = 0 ∀ j ∈ J,

(7)

(iii) p ∈ [0, 2
3 ), q = 0 (i.e., there is no equality constraint) and,

for every z ∈ L2
C (x̄ | w) with (w , z) 6= 0, it follows that

〈w ,∇2gi (x̄)z〉+
1

3
g

(3)
i (x̄)(w ,w ,w) < 0 ∀ i ∈ I (x̄ ,w , z),

then (6) holds and so does the SON condition.Xiaoqi Yang (PolyU) April 1, 2019 40 / 68



Second-order Necessary Conditions via Exact Penalty Functions

Remark

(a) Let p = 1. By applying the second-order Taylor expansion we
have

L2
C (x̄ | w) = kerd2S(x̄)(w | ·) ∀w ∈ LC (x̄), (8)

which implies that condition (6) holds. This recovers a
well-known result that the (SON) condition holds at x̄ when
the l1 penalty function is exact at x̄ , see [?].
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Second-order Necessary Conditions via Exact Penalty Functions

(b) Let 0 ≤ p < 1. It can be shown that

kerd2Sp(x̄)(w | ·) ⊂ L2
C (x̄ | w) ∀w ∈ kerdSp(x̄). (9)

Thus, condition (5) holds if and only if

L2
C (x̄ | w) = clconv[kerd2Sp(x̄)(w | ·)] ∀w ∈ V(x̄).

(10)

Moreover, it is clear that

T 2
C (x̄ | w) = kerd2S0(x̄)(w | ·), ∀w ∈ TC (x̄).

Condition (10) with p = 0 reduces to the so-called SGCQ,
originated with [?], which holds at x̄ if by definition

L2
C (x̄ | w) = clconv[T 2

C (x̄ | w)] ∀w ∈ V(x̄).
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Second-order Necessary Conditions via Exact Penalty Functions

(c) It was shown by [?] that if the linear independent constraint
qualification (for short, LICQ) holds at x̄ , then

L2
C (x̄ | w) = T 2

C (x̄ | w) ∀w ∈ LC (x̄),

and hence (6) holds for any p ∈ [0, 1].
Simple example can be given to demonstrate that condition
(7) may not hold even if the LICQ holds at x̄ .
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KKT conditions of (SIP) and (GSIP)

Consider the following semi-infinite program, denoted as (SIP):

min f (x) s.t. g(x , t) ≤ 0, t ∈ Ω,

where f : Rn → R and g : Rn × Ω→ R are smooth functions, and Ω is a
nonempty and compact set of parameters in Rm.

Let x∗ be a locally optimal solution of (SIP),

X := {x ∈ Rn : g(x , t) ≤ 0, t ∈ Ω}

be the feasible set and, for x ∈ X , let

Ωx := {t ∈ Ω : g(x , t) = 0}.
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KKT conditions of (SIP) and (GSIP)

Literature review

Three types of optimality conditions for (SIP):

0 ∈ conv{∇f (x∗),∇xg(x∗, t) (t ∈ Ωx∗)},

(see Fritz John (1948), Pschenichnyi (1971), Hettich and Jongen (1978),
and Borwein (1981),)

0 ∈ ∇f (x∗) + cl cone{∇xg(x∗, t) (t ∈ Ωx∗)},

(see [?], Li, et al (2000),)

0 ∈ ∇f (x∗) + cone{∇xg(x∗, t) (t ∈ Ωx∗)},

(see Pschenichnyi (1971), Lopez and Vercher (1983), Hettich and
Kortanek (1993), Zheng and Yang (2007).)
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KKT conditions of (SIP) and (GSIP)

Literature review

By a Farkas lemma, see [?],

0 ∈ ∇f (x∗) + cl cone{∇xg(x∗, t) (t ∈ Ωx∗)}, (11)

is equivalent to

〈∇f (x∗), d〉 ≥ 0, ∀d ∈ D(x∗), (12)

where D(x) = {0 6= d ∈ Rn : 〈∇xg(x , t), d〉 ≤ 0 ∀t ∈ Ωx}.

In this talk, we will study (11) but using the form of (12).
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KKT conditions of (SIP) and (GSIP)

Literature review

[?] introduced the following l1 integral penalty function

f (x) + ρ

∫
Ω(x)

g(x , t)dµ(t),

where Ω(x) := {t ∈ Ω : g(x , t) > 0}, but too weak penalty for infeasibility.

Let p > 0. For (SIP), [?] also introduced the following lp integral penalty
function

f (x) + ρ

∫
Ω

gp
+(x , t)dµ(t)

and established the convergence of the solution sequence of the penalty
problems to an optimal solution of (SIP).

[?] established the exact l1 integral penalty function

f (x) + ρ

∫
Ω(x)

g(x , t)dµ(t)

/∫
Ω(x)

dµ(t) .
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KKT conditions of (SIP) and (GSIP) Max-Type and Integral-Type Penalty Functions

Penalty Functions

A pth-order max-type penalty function for SIP is defined as,

F p
max(x) = f (x) + ρmax

t∈Ω
gp

+(x , t).

Let µ be a non-negative regular Borel measure defined on Ω with the
support of µ being equal to Ω, that is supp(µ) = Ω, where the support of
µ is defined as the set of the points t ∈ Ω such that any open
neighbourhood V of t has a positive measure:

supp(µ) := {t ∈ Ω : µ(V ) > 0, for any open neighbourhood V of t}.

Two pth-order integral-type penalty functions for SIP are defined by

F p
int(x) = f (x) + ρ

∫
Ω gp

+(x , t) dµ(t),

F̄ p
int(x) = f (x) + ρ

(∫
Ω g+(x , t)dµ(t)

)p
.

Exactness of F p
int(x) =⇒ that of F̄ p

int(x) =⇒ that of F p
max(x).
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (SIP)

The case p = 1.

(SIP) can be rewritten as

min f (x) s.t. max
t∈Ω

g(x , t) ≤ 0. (13)

The exactness of F 1
max is equivalent to saying that problem (13) has an l1

exact penalty function in the usual sense, see Clarke (1983). Thus,
if F 1

max is exact, then the KKT-type optimality condition (12).
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (SIP)

The case p ∈ (0, 1).

Let h : Rn → R. The upper Dini-directional derivative of h at a point x in
the direction d ∈ Rn is defined by

D+h(x ; d) = lim sup
λ↓0

h(x + λd)− h(x)

λ
.

The generalized upper second-order directional derivatives of a C 1,1

function h at x in the direction d ∈ Rn is defined by

h◦◦(x ; d) = lim sup
y→x ,λ↓0

〈∇h(y + λd), d〉 − 〈∇h(y), d〉
λ

.

Let D(x) = {0 6= d ∈ Rn : 〈∇xg(x , t), d〉 ≤ 0 ∀t ∈ Ωx} and let

Ω=
x (d) := {t ∈ Ωx : 〈∇xg(x , t), d〉 = 0},

Ω<
x (d) := {t ∈ Ωx : 〈∇xg(x , t).d〉 < 0},
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (SIP)

The case p ∈ (0, 1).

Lemma

[?] Let h̄(x) = (max{h(x), 0})p with p ∈ ]0, 1[ and h be continuously
differentiable at x.

(i) If h(x) < 0, then D+h̄(x ; d) = 0;

(ii) If h(x) = 0 and 〈∇h(x), d〉 < 0, then D+h̄(x ; d) = 0;

(iii) If p ∈ (0.5, 1), h(x) = 0, 〈∇h(x), d〉 = 0 and h◦◦(x ; d) is finite, then
D+h̄(x ; d) = 0;

(iv) If p = 0.5, h(x) = 0 and 〈∇h(x), d〉 = 0, then

D+h̄(x ; d) ≤
√

max{1
2 h◦◦(x ; d), 0};

(v) If p ∈ (0, 0.5), h(x) = 0, 〈∇h(x), d〉 = 0 and h◦◦(x ; d) < 0, then
D+h̄(x ; d) = 0.
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (SIP)

The case p ∈ (0, 1).

Now we establish a necessary optimality condition for SIP by virtue of the
exact penalty function F p

int .

Theorem

Let p ∈ (0, 1) and F p
int be exact at x∗. Under any one of the three

assumptions below,
(i) p ∈ (0.5, 1) and g(·, t) is C 1,1, for all t ∈ Ω=

x∗(d),
(ii) p = 0.5 and g◦◦(x∗, t; d) ≤ 0 for all t ∈ Ω=

x∗(d) and d ∈ D(x∗),and
(iii) p ∈ (0, 0.5) and g◦◦(x∗, t; d) < 0, for all t ∈ Ω=

x∗(d) and d ∈ D(x∗),
we have

〈∇f (x∗), d〉 ≥ 0, ∀d ∈ D(x∗).
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (SIP)

The case p ∈ (0, 1).

Next we employ the exactness of F̄int(p ∈ (0, 1)) to develop the
optimality condition (12) of (SIP).

Theorem

Let p ∈ (0, 1) and F̄ p
int be exact at x∗. Under any one of the three

assumptions below,
(i) p ∈ (0.5, 1) and g(·, t) is C 1,1, for all t ∈ Ω=

x∗(d),
(ii) p = 0.5 and g◦◦(x∗, t; d) ≤ 0 for all t ∈ Ω=

x∗(d) and d ∈ D(x∗), and
(iii) p ∈ (0, 0.5) and g◦◦(x∗, t; d) < 0, for all t ∈ Ω=

x∗(d) and d ∈ D(x∗),
we have

〈∇f (x∗), d〉 ≥ 0, ∀d ∈ D(x∗).
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (SIP)

The case p ∈ (0, 1).

We need the following lemma in the proof of the above theorem.

Proposition

Let g : R+ → R+ be a non-negative function, f : R+ → R be a continuous
and strictly increasing function and λ0 ∈ R+. Then

lim sup
λ→λ0

f (g(λ)) ≤ f (lim sup
λ→λ0

g(λ)).
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (GSIP)

We will also consider the following generalized semi-infinite program,
denoted as (GSIP),

min f (x) s.t. g(x , t) ≤ 0, t ∈ Ω ∩ Ω(x),

where Ω is a compact subset of Rm,

Ω(x) := {t ∈ Rm : vi (x , t) ≤ 0, i = 1, · · · , l}

and the functions f : Rn → R, g : Rn × Rm → R, and
vi : Rn × Rm → R(i = 1, · · · , l) are smooth.

[?] associated (GSIP) with an (SIP) problem via augmented Lagrangians
of the lower level problem.
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (GSIP)

The lower level problem associated with (GSIP) is

Q(x) max
t∈Ω

g(x , t) s.t. vi (x , t) ≤ 0, i = 1, · · · , l .

Let valQ(x) be the optimal value of the problem Q(x). It is clear that

x ∈ X(GSIP) iff valQ(x) ≤ 0.

Let f̄ (x , µ, c) = f (x) and, for (x , µ, c) ∈ Rn × Rl × R++,

ḡ(x , t, µ, c) = g(x , t)− 1

2c

l∑
i=1

{([cvi (x , t) + µi ]+)2 − µ2
i }.

Then ḡ is of C 1,1, see Hiriart-Urruty et al (1984).
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (GSIP)

Next we recall some concepts from [?].

Problem Q(x) is said to satisfy the quadratic growth condition iff there is
a c ≥ 0 such that ḡ(x , t, 0, c) is bounded above as a function of t ∈ Ω.

Problem Q(x) is said to be stable of degree 2 iff there is a neighbourhood
U of the origin in Rl and a C 2 function πx : U → R such that

ν(x , u) ≤ πx(u),∀u ∈ U, and ν(x , 0) = πx(0).
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (GSIP)

Let H̄(x , µ, c) := maxt∈Ω ḡ(x , t, µ, c).

Lemma

[?] Under the quadratic growth condition of Q(x), we have

valQ(x) = min
(µ,c)∈Rl×R++

H̄(x , µ, c)

iff the problem Q(x) is stable of degree 2.
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (GSIP)

Consider the following (SIP) problem, denoted as (SIPg),

min
(x ,µ,c)∈Rn×Rl×R++

f̄ (x , µ, c) s.t. ḡ(x , t, µ, c) ≤ 0, t ∈ Ω.

Therefore we have

Proposition

Assume that, for all x ∈ Rn, Q(x) satisfies the quadratic growth condition
and is stable of degree 2. Then problems (GSIP) and (SIPg) have the
same optimal value, i.e., val(GSIP) = val(SIPg), and furthermore,
(i) if x̂ is a locally optimal solution of (GSIP), then there exists
(µ̂, ĉ) ∈ Rl × R++ such that (x̂ , µ̂, ĉ) is a locally optimal solution of
(SIPg);
(ii) if (x̂ , µ̂, ĉ) is a locally optimal solution of (SIPg), then x̂ is a locally
optimal solution of (GSIP).
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (GSIP)

For p ∈ (0, 1), let

Gp
int(x , µ, c) := f̄ (x , µ, c) + ρ

∫
Ω

ḡp
+(x , t, µ, c) dµ(t).
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (GSIP)

By applying previous Theorem for SIP, we have.

Theorem

Let the assumptions of the previous Proposition hold. Let x̂ be a locally
optimal solution of (GSIP) and Gp

int be exact at the point (x̂ , µ̂, ĉ). Then,
under one of the following assumptions,
(i) p ∈ (0.5, 1),
(ii) p = 0.5 and ḡ◦◦(x ,µ,c)(x̂ , t, µ̂, ĉ ; d) ≤ 0 for all d ∈ D(x̂ , µ̂, ĉ) and

t ∈ Ω(x̂ ,µ̂,ĉ) with 〈∇(x ,µ,c)ḡ(x̂ , t, µ̂, ĉ), d〉 = 0, and
(iii) p ∈ (0, 0.5) and ḡ◦◦(x ,µ,c)(x̂ , t, µ̂, ĉ ; d) < 0 for all d ∈ D(x̂ , µ̂, ĉ) and

t ∈ Ω(x̂ ,µ̂,ĉ) with 〈∇(x ,µ,c)ḡ(x̂ , t, µ̂, ĉ), d〉 = 0,
we have

〈∇f (x̂), d1〉 ≥ 0,

for all d1 ∈ Rn satisfying 〈∇xg(x̂ , t)−∇T
x v(x̂ , t)µ̂, d1〉 ≤ 0, t ∈ Ω(x̂ ,µ̂,ĉ).

Xiaoqi Yang (PolyU) April 1, 2019 62 / 68



KKT conditions of (SIP) and (GSIP) Optimality Conditions of (GSIP)

We now compute the generalized second-order directional derivative
ḡ◦◦(x ,µ,c)(x̂ , t, µ̂, ĉ; d) for d ∈ D(x̂ , µ̂, ĉ) and t ∈ Ω(x̂ , µ̂, ĉ).

Lemma

Let d ∈ D(x̂ , µ̂, ĉ) and t ∈ Ω(x̂ , µ̂, ĉ). Then the following formula holds:

ḡ◦◦(x ,µ,c)(x̂ , t, µ̂, ĉ ; d) = dT
1 [∇2

xxg(x̂ , t)−
l∑

i=1

µ̂i∇2
xxvi (x̂ , t)]d1

−
∑

i∈Î+
(x̂,µ̂,ĉ)

(t)

(
√

ĉdT
1 ∇xvi (x̂ , t) +

d2i√
ĉ

)2 +
l∑

i=1

d2
2i

ĉ
,

where Î +
(x̂ ,µ̂,ĉ)(t) = {i ∈ {i , · · · , l} : ĉvi (x̂ , t) + µ̂i > 0}.
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KKT conditions of (SIP) and (GSIP) Optimality Conditions of (GSIP)

We have the following corollary.

Corollary

Assume that the following conditions hold:

(i) G
1
2
int(x , µ, c) is exact at (x̂ , µ̂, ĉ);

(ii) g(·, t) and −vi (·, t) (i = 1, · · · , l) are concave for each t ∈ Ω; and
(iii) Î +

(x̂ ,µ̂,ĉ)(t) = {1, · · · , l} and 〈∇xvi (x̂ , t), d1〉 = 0 for

d ∈ D(x̂ , µ̂, ĉ), t ∈ Ω(x̂ , µ̂, ĉ) and i ∈ Î +(t). Then we have

〈∇f (x̂), d1〉 ≥ 0,

for all d1 ∈ Rn satisfying 〈∇xg(x̂ , t)−∇T
x v(x̂ , t)µ̂, d1〉 ≤ 0, t ∈ Ω(x̂ ,µ̂,ĉ).
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Conclusions

• For (NLP), we discussed the first-order optimality conditions by
Dini-directional derivative, contingent directional derivative and
subderivative respectively.

• For (SIP) and (GSIP), we investigated the first-order optimality
conditions by Dini-directional derivative.
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