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Abstract Structured sparse optimization has been extensively applied in the modeling of

many important problems in various disciplines. The mix sparse structure is inherited in a

wide class of practical applications, namely, the sparse structure appears as the inter-group

and intra-group manners simultaneously. In this paper, we consider the `0 regularization

problem for mix sparse optimization and investigate its mathematical theory and algorithm.

In the theoretical part, we first introduce the notions of sparse eigenvalue conditions, one

of the weakest regularity conditions in the literature, and then establish the oracle property

without any regularity condition and provide a recovery bound for the mix sparse optimization

problem under the weak assumption of sparse eigenvalue condition. Moreover, an asymptotic

analysis is provided to advance the understanding of the convergence of the `p regularization

to the `0 regularization. In the algorithmic part, we propose an iterative mix thresholding

algorithm with continuation technique (IMTC) to solve the mix sparse optimization problem

and present its global convergence theorem and linear convergence rate to a local minimum.

The significant advantage of the IMTC is that it has a closed-form expression and low storage

requirement, and promotes the mix sparse structure of the solution. Numerical results on

simulated data indicate that the IMTC has a strong promoting capability of the mix sparse

structure and outperforms several state-of-the-art solvers on both accuracy and robustness,

benefiting from the use of the mix sparse structure and the (nonconvex) `0 regularization.

Moreover, we apply the mix sparse optimization to model the differential optical absorption

spectroscopy (DOAS) analysis with the wavelength misalignment, and find that the IMTC can

exactly and quantitatively predict the existing gases and the factual wavelength misalignment

simultaneously within 0.1 second, which may meet the demand of improvement of the DOAS

automatic analysis software.
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1 Introduction

In the past decade, sparse optimization has become one of the most popular topics in math-

ematical optimization and gained successful applications in various disciplines, such as com-

pressive sensing [15], image science [5], systems biology [43], and machine learning [3].

Sparse optimization is to find a sparse solution of an underdetermined linear system:

b = Ax+ ε,

where A ∈ Rm×n is a linear transformation matrix, b ∈ Rm is an observation vector with an

unknown noise ε ∈ Rm, and x ∈ Rn is the variable to be estimated. In many applications,

the dimension of variable is large while the sample size (the number of rows) is small, i.e.,

m� n; consequently, the above linear inverse problem is seriously ill-conditioned.

A popular and practical technique for approaching a sparse solution of the linear inverse

problem is to solve an associated regularization problem, where a regularizer is used to

characterize the sparse structure of the solution. For example, the `1 regularization problem

(also named as Lasso in statistics and basis pursuit in compressive sensing) is the most famous

tool for sparse optimization:

min
x∈Rn

‖Ax− b‖2 + λ‖x‖1, (1.1)

where ‖x‖1 :=
∑n

i=1 |xi| is a sparsity promoting norm, and λ > 0 is the regularization

parameter providing a tradeoff between data fidelity and sparsity.

Benefiting from the convex property, a great deal of attention has been attracted to ex-

plore the theoretical property and develop the numerical algorithms for the `1 regularization

problem (1.1). In particular, the nice statistical and theoretical properties, including the ora-

cle property and recovery bound (also named `2 consistency) of model, have been well studied

for the `1 regularization problem (1.1) under several types of regularity conditions on A, such

as the mutual incoherence property (MIP) [11], irrepresentable condition (IC) [36], restricted

isometry property (RIP) [12], sparse Riesz condition (SRC) [55] and restricted eigenvalue

condition (REC) [7]. Many exclusive and efficient algorithms have been proposed and devel-

oped for solving the `1 regularization problem (1.1), such as the iterative soft thresholding

algorithm (ISTA) [18], proximal gradient method (PGM) [5], alternative direction method of

multipliers (ADMM) [52], and splitting method [17].

1.1 Structured sparse optimization

Besides the sparse structure, a wide class of application problems usually have certain special

structures. In recent years, structured sparse optimization, which adopts the special structure

to enhance the structure promoting capability and the sparse recoverability, has been widely

applied in the modeling of many important problems in various disciplines. One of the most

common structures is the group sparse structure. In this structure, the solution has a natural

grouping of its components, and all components within each group are likely to be either

zero or nonzero simultaneously. Considering the group sparse structure, Yuan and Lin [54]
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proposed an `2,1 regularization model (named as group Lasso therein) to approach the group

variable selection and multi-factor analysis-of-variance problems:

min
x∈Rn

‖Ax− b‖2 + λ‖x‖2,1, (1.2)

where x is of a group structure based on the prior knowledge x := (x>G1
, . . . , x>GN )>, and

‖x‖2,1 :=
∑N

i=1 ‖xGi‖ is a group sparsity promoting norm. Employing this group sparsity

promoting norm and taking advantage of the group sparsity structure, the `2,1 regularization

problem processes the components in a particular group synchronously, and thus leads to the

reduction of freedom degrees in the solution. Consequently, the `2,1 regularization problem

(1.2) is more stable with respect to stochastic noise and results in better recovery performance

than the `1 regularization problem (1.1). Benefitting from these advantages, the group sparse

optimization model has been widely applied in practical problems in many fields, such as

multi-task machine learning [3], multi-channel Image reconstruction [39] and systems biology

[25, 44, 48]. Moreover, the nice statistical and theoretical properties have been well established

for the `2,1 regularization problem (1.2) in [2, 25, 27] and the references therein; many efficient

algorithms have been proposed to solve problem (1.2), such as PGM [25], proximal splitting

method [53], and proximal point algorithm (PPA) and ADMM [51].

The group sparse optimization model always selects important groups in an “all-in-all-

out” fashion, that is, the components within a particular group are either included or not

included in the model simultaneously. However, the “all-in-all-out” criterion is too restric-

tive in many practical applications, that leads to a crucial difficulty in the totally correct

definition of the group structure, such as portfolio selection in financial management, super-

vised learning in machine learning and gene regulatory network inference in systems biology.

For example, in portfolio selection [14], investors usually select a few sectors (classified by

the types of business) and then identify some most profitable stocks within each sector. In

systems biology [22], the gene regulatory network usually has a secondary structure that

indicates the regulations of gene clusters by transcription factor (TF) complexes (measured

by the cell-specific binding sites) in transcription factories; while in each transcription fac-

tory, only a fraction of TFs and genes take functions to regulation network. Therefore, in

these problems, the solution always has a mix sparse structure, that is, the sparse structure

appears as the inter-group and intra-group manners simultaneously. To deal with the mix

sparse structure, Simon et al. [46] introduced a sparse group Lasso (SGL) that blends the

`2,1 and `1 penalties to achieve sparse effects on the inter-group and intra-group structures,

respectively:

min
x∈Rn

‖Ax− b‖2 + λ‖x‖2,1 + τ‖x‖1. (1.3)

Clearly, SGL (1.3) combines Lasso (1.1) and group Lasso (1.2), and is reduced to Lasso and

group Lasso for the special cases when λ = 0 or τ = 0, respectively. Blending the `2,1
and `1 penalties simultaneously, the SGL is more flexible and precise in characterizing the

mix sparse structure, and thus arrives at a more stable and accurate optimization solution

than Lasso and group Lasso. Benefitting from the mix sparse structure, SGL (1.3) has
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gained an increasing amount of successful applications in various disciplines, such as portfolio

selection [14], genomic association study [32], visual tracking [59], hyperspectral imaging and

differential optical absorption spectroscopy [20]. Furthermore, the statistical consistency

theory has been explored for SGL in [32]; several efficient algorithms have been applied to

solve SGL, such as fast ISTA [59] and ADMM [20].

However, the `1 regularization problems of (structured) sparse optimization suffer several

frustrations in both theoretical property and practical applications. In particular, it has been

revealed by extensive theoretical and empirical studies that the `1 regularization problem suf-

fers from significant estimation bias when parameters have large absolute values; its induced

solutions may be much less sparse than the ground true solution; and it cannot recover a sig-

nal or an image with the least measurements when applied to compressive sensing; see, e.g.,

[13, 21, 25, 44, 26, 50, 56]. Therefore, there is a great demand for developing the alternative

(structured) sparse promoting technique that enjoys nice theoretical property and excellent

numerical performance.

1.2 Lower-order regularization method

Recently, the lower-order regularization method was developed to overcome these limitations

of the `1-type regularizations. For example, the `p and `2,p regularization problems (0 <

p < 1) were introduced by [50] and [25] to improve the performance of sparsity recovery and

group sparsity recovery, respectively. That is,

min
x∈Rn

‖Ax− b‖2 + λ‖x‖pp and min
x∈Rn

‖Ax− b‖2 + λ‖x‖p2,p, (1.4)

where the sparsity and group sparsity promoting (quasi-)norms are respectively defined by

‖x‖p := (
n∑
i=1

|xi|p)
1
p and ‖x‖2,p := (

N∑
i=1

‖xGi‖p)
1
p . (1.5)

The `p-type regularization problems have been found to endow with better theoretical prop-

erty and numerical performance than the (convex) `1-type regularization problems. Particu-

larly, it has been shown by many theoretical and empirical studies that the `p regularization

requires a weaker RIP [13] or a weaker REC [25] to guarantee a perfect sparsity recovery

or the consistency theory, and allows one to obtain a more sparse solution from fewer linear

measurements than that required by the `1 regularization; the `p regularization can remove

systematic biases and admit a significantly stronger sparsity promoting capability than the

`1 regularization [25, 50]. Benefitting from these advantages, the `p regularization method

has been extensively applied in many fields; see [25, 44, 30, 43, 50] and the references therein.

Moreover, it is worth noting that the `p regularization/penalty method has been investigated

for nonlinear constrained optimization problems in [28, 37].

Nevertheless, both the `1 and `p (0 < p < 1) norms are the relaxations of the sparsity

penalty, which have some gap from the original measurement of the sparsity, i.e., the `0

4



norm accounts for the cardinality of the support. Indeed, the `1 and `p norms penalize the

larger components more heavily than the smaller ones, while the `0 norm forces the unbiased

penalization on all components regardless of the magnitude. This is the intrinsical difference

between the `p (p > 0) norm and the `0 norm. By virtue of the exact characterizations of the

sparsity and group sparsity, the `0 and `2,0 regularization problems were explored in [8, 33]

and [40] to approach the sparse solution and group sparse solution, respectively. That is,

min
x∈Rn

‖Ax− b‖2 + λ‖x‖0 (1.6)

and

min
x∈Rn

‖Ax− b‖2 + λ‖x‖2,0, (1.7)

where ‖x‖0 :=
∑n

i=1 |xi|0 and ‖x‖2,0 :=
∑N

i=1 ‖xGi‖0 (adopting the convenience that 00 =

0) account for the numbers of nonzero components and nonzero groups, respectively. In

despite of its non-continuity and nonconvexity leading to difficulty in designing optimization

algorithms, the `0 regularization provides the most exact sparsity characterization among

the lower-order regularizations. However, to the best of our knowledge, there is still no

study devoted to investigating the oracle property and consistency theory for the `0-type

regularization problems.

Another major challenge of the lower-order regularization problems is the computational

issue. Since the lower-order regularization problem is nonconvex and nonsmooth, it is in-

tractable to find its global solutions. Alternatively, tremendous efforts have been devoted to

the development of optimization algorithms for approaching a local minimum or a stationary

point of the lower-order regularization problem. Many practical algorithms have been de-

veloped to approach the `0 and `p regularization problems, such as smoothing method [16],

splitting method [31], iterative reweighted minimization method [30], penalty method [35]

and difference of convex functions algorithm (DCA) [40]. Besides, one of the most widely ap-

plied numerical algorithms for solving the lower-order regularization problems is the class of

the iterative thresholding algorithms (ITA), which are of simple formulations and low compu-

tational complexity and thus efficient for large-scale structured sparse optimization problems.

In particular, iterative hard thresholding algorithm (IHTA) [8] and iterative half threshold-

ing algorithm [50] were proposed to solve the `0 regularization problem and ` 1
2

regularization

problem, respectively. The ITA for the lower-order `2,p regularization problem was studied in

[25] within a unified framework of PGM. Moreover, various variants and extensions of IHTA

have been proposed and explored in [4, 9, 29, 34, 58] and the references therein.

The global convergence theorems have been established for the ITA for solving the lower-

order regularization problems. The ITA-type algorithms for the `0 regularization problem

are shown to converge to a local minimum of (1.6), and the ones for the `p regularization

problem are proved to converge to a stationary point of (1.4) by virtue of the well-known

Kurdyka- Lojasiewicz theory [1].
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1.3 Aims of this paper

Inspired by the `0 regularization method and motivated by the mix sparse structure, we

consider the following `0 regularization problem for mix sparse optimization

min
x∈Rn

‖Ax− b‖2 + λ‖x‖2,0 + τ‖x‖0. (1.8)

Clearly, the mix sparse optimization problem (1.8) blends the `2,0 and `0 regularizations, and

covers the `0 regularization problem (1.6) and the `2,0 regularization problem (1.7) as special

cases when λ = 0 or τ = 0, respectively.

In this paper, we will first investigate the oracle property and recovery bound for the

mix sparse optimization problem (1.8), which fills the gap of consistency theory for the `0
regularization problem. For this issue, we will first introduce the notions of sparse eigenvalue

conditions (SEC), including the SEC, group SEC and mix SEC, and establish the relationships

among them. The SEC [19] is one of the weakest regularity conditions for guaranteeing the

nice theoretical property of sparse optimization problems, that is equivalent to the uniquely

solvable property. Particularly, sufficient conditions for the SEC-type conditions are provided

in terms of the REC-type conditions; see Proposition 2.3. We establish the oracle inequality

without any regularity condition on matrix A and provide a recovery bound for the mix

sparse optimization problem (1.8) under the weak assumption of mix SEC; see Theorems 2.1

and 2.2. Moreover, by using the notion of epi-convergence in variational analysis [45], we

provide an asymptotic approach to validate the epi-convergence of the `p-type regularizer to

the `0-type regularizer, the continuity of the p-REC to the SEC, and the outer semi-continuity

of the solution set of the `p-type regularization to the one of the `0-type regularization, as

p→ 0+. This helps us to re-establish the oracle property and recovery bound of the `0-type

regularization problem by virtue of the ones of the `p-type regularization problem in [25]; see

Theorem 2.4.

The ITA is one of the most popular and practical numerical algorithms for structured

sparse optimization problems, either convex or nonconvex problems. The continuation tech-

nique is a widely-applied parameter update strategy for speeding up relevant algorithms in

an easily-implemented but efficient way; see, e.g., [24, 23, 29, 49]. Inspired by the ideas of the

ITA and the continuation technique, we will propose an iterative mix thresholding algorithm

with continuation technique (IMTC) to solve the mix sparse optimization problem (1.8). The

IMTC consists of a gradient descent operator, a hard thresholding operator in an individual

manner and a group hard thresholding operator in a group manner. The significant advan-

tage of the IMTC is that it has a closed-form expression and low storage requirement, and

is able to promote the mix sparse structure of the solution. Hence, the IMTC is particularly

attractive and efficient for large-scale strictured sparse optimization problems.

To advance the understanding of our proposed IMTC, we provide a reformulation of the

IMTC in terms of proximal operator on mix sparse regularizer and show that it is indeed an

application of the PGM (with continuation technique) to solve the mix sparse optimization

problem (1.8); see Proposition 3.2. To derive the optimality condition of (1.8) and conver-
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gence analysis of the IMTC, we provide the characterization and regular property for the

subdifferentials of the `0 and `2,0 norms; see Proposition 3.3. In convergence analysis, we

prove that the sequence generated by the IMTC globally converges to a local minimum of the

mix sparse optimization problem (1.8) at a linear convergence rate under a mild condition on

the stepsize; see Theorems 3.2 and 3.3. Moreover, we provide an upper bound for the model

error at the limiting point approached by the IMTC, which partially fills a gap between the

theoretical and algorithmic studies of the mix sparse optimization problem (1.8). Numerical

simulations are conducted to validate the linear convergence rate of the IMTC, to demon-

strate the sensitivity analysis on the intra-group sparsity and the inter-group sparsity, and

to compare with several state-of-the-art solvers in structured sparse optimization, including

FoBa [57], ADMM [52], HalfTA [50], PGM-GSO [25], SGL [46] etc. Numerical results in-

dicate that the IMTC has a strong promoting capability of the mix sparse structure of the

solution and outperforms several state-of-the-art solvers on both accuracy and robustness,

benefiting from the use of the mix sparse structure and the (nonconvex) `0 regularization.

The motivation of our work also stems from applications. In particular, we propose

a novel mathematical method by virtue of the mix sparse structure for differential optical

absorption spectroscopy (DOAS) analysis, which is a fundamental and commonly used tech-

nique in atmospheric chemistry and computational optics [41]. DOAS aims to quantify the

concentrations of trace gases by measuring specific absorption spectrum from optical spec-

trometers, such as mass spectrum, ultra-violet spectrum (UV) and infrared spectrum (IR).

DOAS technique has been accepted as one of the most powerful methods to measure a wide

variety of trace gases, and nowadays, it has been widely applied in air quality monitoring

[41], tomography [20], satellite-based monitoring [42] and so on.

One of the central aspects of DOAS technique is the analysis of absorption spectra

recorded with instruments. However, traditional DOAS analysis methods suffer three major

limitations. (i) Only some specific narrow band absorption structures are used and can only

quantify the concentrations of certain types of gases, such as nitrous acid (HNO2), formalde-

hyde (CH2O), and ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), bromine dioxide

(BrO), sulfur dioxide (SO2). By virtue of the full absorption spectra from instruments, DOAS

can quantitatively monitor much more types of gases and materials, while a novel mathe-

matical method is required and improved for the analysis of full absorption spectra; see [41].

(ii) Traditional DOAS analysis methods divide the identification of involved gases and the

quantification of the concentrations of trace gases into two separate steps, which hinder the

development of DOAS automatic analysis software; see [41, Chapter 8]. (iii) In the data col-

lection process from optical spectrometers, there are two major types of noise: the additive

noise due to scattering and measurement and the basis noise due to wavelength misalignment.

The traditional linear least-squares method is designed to deal with the additive noise but

does not consider the wavelength misalignment; see [20]. To overcome these three limitations

from practical considerations, we propose a novel mathematical method for DOAS auto-

matic analysis by dealing with the full spectra structures and the wavelength misalignment

and executing identification and quantification simultaneously. By enlarging the full spectra
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data pool to the one with possible candidates and possible wavelength misalignments, we

cast the DOAS analysis problem to a mix sparse optimization model (1.8) by virtue of the

Lambert-Beer’s law and the mix sparsity structure of the solution. Particularly, we treat the

concentrations of all candidates associated to a wavelength misalignment as a group of vari-

ables; consequently, the group sparsity of the solution equals to 1 (the misalignment occurs

for the mixed gases simultaneously), and the sparsity of the solution equals to the number of

existing gases. Numerical results show that the IMTC can exactly and quantitatively predict

the existing gases and the factual wavelength misalignment simultaneously within 0.1 second,

which meets the demand of improvement of the DOAS automatic analysis software proposed

in [41, Chapter 8].

1.4 Notations and organization

The notations adopted in this paper are described as follows. We consider the n-dimensional

Euclidean space Rn with inner product 〈· , ·〉 and Euclidean norm ‖·‖. As usual, the lowercase

letters x, y, z are used to denote the vectors, calligraphic letters I, J , S denote the index

sets. For x ∈ Rn and I ⊆ {1, . . . , n}, we use xI to denote the subvector of x corresponding to

I. Let x := (x>G1
, . . . , x>GN )> represent the group structure, where xGi ∈ Rni is the i-th group

with
∑N

i=1 ni = n. Moreover, we write nmax := maxi=1,...,N ni and GS := ∪i∈SGi, and we use

I and Ai to denote the identical matrix in Rn×n and the i-th column of A, respectively.

The rest of this paper is organized as follows. In Section 2, we introduce the notions of

SEC, and use it to establish the oracle property and the recovery bound for the mix sparse

optimization problem (1.8), as well as its asymptotic analysis when p → 0+. In Section 3,

we propose an iterative mix thresholding algorithm with continuation technique (IMTC) to

solve the mix sparse optimization problem (1.8) and establish its global convergence theorem

and linear convergence rate to a local minimum of problem (1.8). In Section 4, we conduct

numerical experiments to demonstrate the numerical capacity of the IMTC and compare with

several state-of-the-art solvers in structured sparse optimization, and apply the IMTC to deal

with the DOAS analysis with the full spectra structures and the wavelength misalignment.

2 Oracle property and recovery bound

The aim of this section is to study the oracle property and the recovery bound for the mix

sparse optimization problem (1.8). The oracle property is an important statistical property of

the Lasso-type estimators, which provides an upper bound on the prediction of loss function

plus the violation of incorrect variable selection. The recovery bound provides an upper

bound on the error of the estimated solution, which tells how far is the estimator model

from the true model and shows the unbiased property in statistics. In order to explore the

oracle property and the recovery bound for problem (1.8), we shall introduce some regularity

conditions on the linear transform matrix A.
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2.1 Sparse eigenvalue conditions

The concept of sparse eigenvalues was first introduced by Donoho [19] to study the perfect

recovery property for Lasso. The s-sparse minimal eigenvalue and the s-sparse maximal

eigenvalue of A>A are denoted respectively by

ϕ(s) := min
‖x‖0≤s

√
x>A>Ax

x>x
and ϕmax(s) := max

‖x‖0≤s

√
x>A>Ax

x>x
. (2.1)

One popular regularity condition, in which the ratio of the s-sparse minimal eigenvalue to

the s-sparse maximal eigenvalue is assumed to have a positive lower bound, is used to ex-

plore the incoherence property of A, and thus to guarantee the nice statistical property of

sparse representation; see [7, 36, 55] and the references therein. Here, we introduce a sparse

eigenvalue condition (SEC), which is a weaker variant of the regularity condition and only

assumes the s-sparse minimal eigenvalue to be positive.

Definition 2.1 (SEC). The matrix A is said to satisfy the s-sparse eigenvalue condition (in

short, SEC(s)) if ϕ(s) > 0.

Equipping with a pre-defined group structure, we introduce the notions of group sparse

eigenvalue condition (GSEC) and mix sparse eigenvalue condition (MSEC). To this end,

the group sparse minimal eigenvalue and the mix sparse minimal eigenvalue are respectively

defined as follows:

Φ(S) := min
‖x‖2,0≤S

√
x>A>Ax

x>x
, (2.2)

Γ(S, s) := min
‖x‖2,0≤S, ‖x‖0≤s

√
x>A>Ax

x>x
. (2.3)

Definition 2.2 (GSEC/MSEC). The matrix A is said to satisfy

(i) the S-group sparse eigenvalue condition (in short, GSEC(S)) if Φ(S) > 0.

(ii) the (S, s)-mix sparse eigenvalue condition (in short, MSEC(S, s)) if Γ(S, s) > 0.

It was reported in [25, 36] that the SEC is one of the weakest regularity conditions to

ensure the nice property of sparse optimization problems. In the following subsections, we

relate the SEC-type conditions with the uniquely solvable property and the weak regularity

conditions for the compressed matrix.

2.1.1 Relations between SEC and uniquely solvable property

It is well-known that the SEC(2s) is a sufficient condition for the uniqueness of the s-sparse

solution of the linear system Ax = b. To advance the understanding on this unique property of

(structured) sparse solution, we introduce the notions of the uniquely solvable-type properties

for the matrix A.

9



Definition 2.3 (USP/GUSP/MUSP). The matrix A is said to satisfy

(i) the uniquely solvable property with s-sparsity (in short, USP(s)) if the linear inverse

problem Ax = b has a unique sparse solution satisfying ‖x‖0 ≤ s for any b := Az with

‖z‖0 = s;

(ii) the uniquely solvable property with S-group sparsity (in short, GUSP(S)) if the linear

inverse problem Ax = b has a unique group sparse solution satisfying ‖x‖2,0 ≤ S for

any b := Az with ‖z‖2,0 = S;

(iii) the uniquely solvable property with (S, s)-mix sparsity (in short, MUSP(S, s)) if the

linear inverse problem Ax = b has a unique mix sparse solution satisfying ‖x‖0 ≤ s and

‖x‖2,0 ≤ S for any b := Az with ‖z‖0 = s and ‖z‖2,0 = S.

The following proposition shows that the SEC(2s) (resp., GSEC(2S) and MSEC(2S, 2s))

is equivalent to the USP(s) (resp., GUSP(S) and MUSP(S, s)) of A. Hence, if the SEC(2s)

(resp., GSEC(2S) and MSEC(2S, 2s)) is not satisfied, one has no hope of recovering the

ground true s-sparse solution (resp., S-group sparse solution and (S, s)-mix sparse sollution)

from noisy observations.

Proposition 2.1. (i) The matrix A satisfies SEC(2s) if and only if it satisfies USP(s).

(ii) The matrix A satisfies GSEC(2S) if and only if it satisfies GUSP(S).

(iii) The matrix A satisfies MSEC(2S, 2s) if and only if it satisfies MUSP(S, s).

Proof. The proofs of assertions (ii) and (iii) adopt a line of analysis similar to that of assertion

(i), we omit the details. It remains to prove assertion (i) as follows.

“⇒”: Suppose that A satisfies SEC(2s). Proving by contradiction, we assume that the

USP(s) is not satisfied, that is, there exists b ∈ Rm such that the linear inverse problemAx = b

has two distinct s-sparse solutions x̂ and x̃; consequently, Ax̂ = Ax̃ and ‖x̂‖0 = ‖x̃‖0 ≤ s.

Let x := x̂ − x̃ 6= 0. Then one has that Ax = 0 and ‖x‖0 ≤ 2s, and thus by (2.1) that

φ(2s) = 0, which contradicts with SEC(2s). Hence, A satisfies USP(s), as desired.

“⇐”: Suppose that A satisfies USP(s). Proving by contradiction, we assume that the

SEC(2s) is not satisfied, that is, ϕ(2s) = 0. Then by (2.1), there exists x ∈ Rn with ‖x‖0 ≤ 2s

such that Ax = 0. Divide supp(x) into two disjoint index sets I and J with |I| = |J | ≤ s,

and let b := AxI . Then it is easy to check that xI and −xJ are two distinct s-sparse solution

of the linear inverse problem Ax = b, which yields a contradiction with the USP(s). Hence,

A satisfies SEC(2s). The proof is complete.

2.1.2 Joint sparse eigenvalue condition

The MSEC is not sufficient to guarantee the recovery bound of the mix sparse optimization

problem (1.8). Alternatively, we introduce the following joint sparse minimal eigenvalue and
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joint sparse eigenvalue condition (JSEC) according to the structure of problem (1.8):

Θ(S, s, λ, τ) := min
λ‖x‖2,0+τ‖x‖0≤λS+τs

√
x>A>Ax

x>x
. (2.4)

Definition 2.4 (JSEC). The matrix A is said to satisfy the (S, s, λ, τ)-joint sparse eigenvalue

condition (in short, JSEC(S, s, λ, τ)) if Θ(S, s, λ, τ) > 0.

It is interesting to discuss the relationships between the notions of SECs. It is clear by

definition that the JSEC is reduced to the SEC and the GSEC when λ = 0 and τ = 0,

respectively. The following proposition provides some sufficient conditions of JSEC in terms

of SEC and GSEC and a necessary condition of JSEC in terms of MSEC.

Proposition 2.2. The matrix A satisfies JSEC(S, s, λ, τ) provided that one of the following

conditions is assumed:

(i) A satisfies SEC(s) and GSEC(S);

(ii) A satisfies SEC(s+ λ
τ S);

(iii) A satisfies GSEC(S + τ
λs).

Moreover, A satisfies MSEC(S, s) if it satisfies JSEC(S, s, λ, τ). Particularly,

Γ(S, s) ≥ Θ(S, s, λ, τ) ≥ max

{
min{ϕ(s),Φ(S)}, ϕ(s+

λ

τ
S), Φ(S +

τ

λ
s)

}
. (2.5)

Proof. By definitions of the SEC-type conditions, the conclusions of this proposition follow

by (2.5). Then it remains to validate (2.5). To do this, associated to the MSEC and the

JSEC (cf. Definitions 2.2 and 2.4), we denote the constraint sets by

C(S, s) := {x ∈ Rn : ‖x‖2,0 ≤ S, ‖x‖0 ≤ s},

and

C(S, s, λ, τ) := {x ∈ Rn : λ‖x‖2,0 + τ‖x‖0 ≤ λS + τs},

respectively. Then one can easily verify that

C(S, s) ⊆ C(S, s, λ, τ) ⊆ C(0, s, 0, τ) ∪ C(S, 0, λ, 0);

C(S, s, λ, τ) ⊆ C(0, s+
λ

τ
S, 0, τ);

C(S, s, λ, τ) ⊆ C(S +
τ

λ
s, 0, λ, 0).

By definition, the sparse minimal eigenvalues (i.e., (2.1)-(2.4)) are reduced to

ϕ(s) = min
x∈C(0,s,0,τ)

√
x>A>Ax

x>x
;

11



Φ(S) = min
x∈C(S,0,λ,0)

√
x>A>Ax

x>x
;

Γ(S, s) = min
x∈C(S,s)

√
x>A>Ax

x>x
;

Θ(S, s, λ, τ) = min
x∈C(S,s,λ,τ)

√
x>A>Ax

x>x
.

Thus, by the inclusions of constraint sets mentioned above, we obtain that

Γ(S, s) ≥ Θ(S, s, λ, τ),

Θ(S, s, λ, τ) ≥ min{ϕ(s),Φ(S)},

Θ(S, s, λ, τ) ≥ ϕ(s+
λ

τ
S),

Θ(S, s, λ, τ) ≥ Φ(S +
τ

λ
s),

respectively. That is, (2.5) is shown to hold, and the proof is complete.

2.2 Oracle property and recovery bound

In this subsection, we establish the oracle property and the recovery bound for the mix sparse

optimization problem (1.8). The following theorem presents the oracle property for problem

(1.8), which extends the oracle property for the Lasso [7] and the `p regularization model

(0 < p ≤ 1) [25] to the `0 regularization model. Our theorem also improves these results in

the sense that the REC-type condition is assumed in [7, Theorem 7.2] and [25, Proposition

8], while Theorem 2.1 does not require any regularity condition on matrix A.

Theorem 2.1. Let x̄ be a solution of Ax = b at a group sparsity level S and a sparsity level

s simultaneously, and let Λ and S denote the index set of nonzero groups and the support

of x̄, respectively. Let x∗ be a global minimum of problem (1.8). Then the following oracle

inequality holds:

‖Ax∗ −Ax̄‖2 + λ‖x∗GΛc‖2,0 + τ‖x∗Sc‖0 ≤ λS + τs. (2.6)

Proof. Since x∗ is a global minimum of problem (1.8) and x̄ is a solution of Ax = b, one has

‖Ax∗ − b‖2 + λ‖x∗‖2,0 + τ‖x∗‖0 ≤ λ‖x̄‖2,0 + τ‖x̄‖0. (2.7)

Then it follows that

‖Ax∗ −Ax̄‖2 + λ‖x∗GΛc‖2,0 + τ‖x∗Sc‖0 ≤ λ‖x̄GΛ
‖2,0 − λ‖x∗GΛ

‖2,0 + τ‖x̄S‖0 − τ‖x∗S‖0
≤ λ‖x̄GΛ

− x∗GΛ
‖2,0 + τ‖x̄S − x∗S‖0

≤ λS + τs,

where the second inequality holds due to the triangle inequalities of the `0 and `2,0 norms.

The proof is complete.
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The following theorem provides the recovery bound for problem (1.8) under the assump-

tion of SEC-type condition, which is weaker than the REC-type conditions (see Proposition

2.3 below) assumed in the establishment of recovery bound for the Lasso and the `p regular-

ization model (0 < p ≤ 1) in [7, Theorem 7.2] and [25, Proposition 9], respectively.

Theorem 2.2. Suppose that A satisfies JSEC(2S, 2s, λ, τ). Let x̄ be a (unique) solution of

Ax = b at a group sparsity level S and a sparsity level s simultaneously, and let Λ and S
denote the index set of nonzero groups and the support of x̄, respectively. Let x∗ be a global

minimum of problem (1.8). Then the following recovery bound holds:

‖x∗ − x̄‖2 ≤ (λS + τs)/Θ2(2S, 2s, λ, τ). (2.8)

Proof. By assumptions, it follows from (2.7) that

λ‖x∗‖2,0 + τ‖x∗‖0 ≤ λ‖x̄‖2,0 + τ‖x̄‖0 ≤ λS + τs.

Consequently, one has by the triangle inequality that

λ‖x∗ − x̄‖2,0 + τ‖x∗ − x̄‖0 ≤ λ(‖x∗‖2,0 + ‖x̄‖2,0) + τ(‖x∗‖0 + ‖x̄‖0)

≤ 2λS + 2τs.

By the assumption of JSEC(2S, 2s, λ, τ), we obtain

‖x∗ − x̄‖ ≤ ‖A(x∗ − x̄)‖/Θ(2S, 2s, λ, τ),

which, together with (2.6), implies that (2.8). The proof is complete.

As direct applications of Theorems 2.1 and 2.2, we can derive oracle inequalities and

recovery bounds for the `0 regularization problem (1.6) and the `2,0 regularization problem

(1.7) as order O(λs) and O(λS) under the assumption of SEC(2s) and GSEC(2S), respec-

tively. In particular, applied to the case when τ = 0, we obtain the following special case

of Theorems 2.1 and 2.2. In Section 2.3.2, we will revisit this result by using an alternative

approach.

Corollary 2.1. Let x̄ be a solution of Ax = b at a group sparsity level S, and let Λ denote

the index set of nonzero groups of x̄. Let x∗ be a global minimum of problem (1.7). Then the

following assertions are true.

(i) The following oracle inequality holds

‖Ax∗ −Ax̄‖2 + λ‖x∗GΛc‖2,0 ≤ λS. (2.9)

(ii) Suppose that A satisfies GSEC(2S). Then the following recovery bound holds

‖x∗ − x̄‖2 ≤ λS/Φ2(2S). (2.10)
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Theorem 2.2 exhibits that the recovery bound

‖x∗ − x̄‖2 ≤ O(λS + τs)

is satisfied for any b := Ax̄ with ‖x̄‖0 = s and ‖x̄‖2,0 = S and an arbitrary global solution x∗

of the mix sparse optimization problem (1.8) under the JSEC assumption of A. We define

this sparse recovery property (SRP) as follows.

Definition 2.5. Let φ : Rn → R+ be a regularizer function and denote the associated regu-

larization problem of the linear system Ax = b by

min
x∈Rn

‖Ax− b‖2 + λφ(x). (2.11)

The regularizer φ is said to satisfy

(i) the sparse recovery property with s-sparsity (in short, SRP(s)) if an arbitrary global

solution x∗ of the regularization problem (2.11) satisfies ‖x∗ − x̄‖2 ≤ O(λs) for any

b := Ax̄ with ‖x̄‖0 = s;

(ii) the group sparse recovery property with S-group sparsity (in short, GSRP(S)) if an

arbitrary global solution x∗ of the regularization problem (2.11) satisfies ‖x∗ − x̄‖2 ≤
O(λS) for any b := Ax̄ with ‖x̄‖2,0 = S;

(iii) the mix sparse recovery property with (S, s)-mix sparsity (in short, MSRP(S, s)) if an

arbitrary global solution x∗ of the regularization problem (2.11) satisfies ‖x∗ − x̄‖2 ≤
O(λS + λs) for any b := Ax̄ with ‖z‖0 = s and ‖z‖2,0 = S.

By Proposition 2.1 and Theorem 2.1, we present in the following corollary the equivalence

between SRP (resp., GSRP) and SEC (resp., GSEC); this is because USP is a necessary

condition of SRP (if the linear inverse problem Ax = b has two distinct s-solution, SRP must

fail for small λ). However, JSEC is only a sufficent condition of MSRP, which suffices MUSP;

none of these three properties is equivalent to one of them.

Corollary 2.2. The following assertions hold.

(i) The `0 norm penalty satisfies SRP(s) if and only if A satisfies SEC(2s).

(ii) The `2,0 norm penalty satisfies GSRP(S) if and only if A satisfies GSEC(2S).

2.3 Relative to `p regularization as p→ 0+

The lower-order regularization method is also a popular nonconvex regularization technique

for (structured) sparse optimization; see [13, 25, 26, 43, 50] and the references therein. Partic-

ularly, the lower-order `2,p regularization problem (0 < p < 1) for group sparse optimization

was presented in [25] and is formulated as

min
x∈Rn

‖Ax− b‖2 + λ‖x‖p2,p, (2.12)
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where the `2,p (quasi-)norm is defined by (1.5). In [25], the authors proposed a notion of

lower-order group restricted eigenvalue condition (GREC)1 and used it to investigate the

oracle property and the recovery bound for problem (2.12).

We first recall the notion of the GREC and the recovery bound results from [25, Definition

4 and Theorem 9], respectively. To proceed, write 0 ≤ p ≤ 1, S ≤ T � N , J ⊆ {1, . . . , N},
and use J (x;T ) to denote the index set of the first T largest groups in value of ‖xGi‖ among

{‖xGj‖, j ∈ J c}. The (2, p)-group restricted minimal eigenvalue is defined as

Φp(S, T ) := min

{
‖Ax‖

‖xGJ∪J (x;T )
‖

: |J | ≤ S, ‖xGJ c‖2,p ≤ ‖xGJ ‖2,p

}
. (2.13)

Definition 2.6 (GREC). The matrix A is said to satisfy the (2, p)-(S, T )-group restricted

eigenvalue condition (in short, (2, p)-GREC(S, T )) if Φp(S, T ) > 0.

Theorem 2.3. Let x̄ be a solution of Ax = b at a group sparsity level S, and let Λ denote

the index set of nonzero groups of x̄. Let x∗ be a global minimum of problem (2.12). Suppose

that the (2, p)-GREC(S, S) is satisfied. Then the following assertions are true.

(i) The following oracle inequality holds

‖Ax∗ −Ax̄‖2 + λ‖x∗GΛc‖
p
2,p ≤ λ

2
2−pS/Φ

2p
2−p
p (S, S).

(ii) The following recovery bound holds

‖x∗ − x̄‖2 ≤ 2λ
2

2−pS/Φ
4

2−p
p (S, S).

The preceding subsections provide the recovery bounds for `0-type regularization problems

under the SEC-type assumptions, while Theorem 2.3 (i.e., [25, Theorem 9]) exhibited the

recovery bounds for `2,p regularization problems under the (2, p)-GREC assumptions as 0 <

p < 1. This subsection aims to provide an asymptotic approach for the recovery bound of

the `2,0 regularization problem (1.7) as in Corollary 2.1 by virtue of the ones for the `2,p
regularization problems (2.12) in [25] as p→ 0+.

2.3.1 Relation between GSEC and GREC

This section aims to provide a further understanding on the relation between the GSEC and

GREC, that is to investigate the continuity of the (2, p)-GREC to the GSEC as p→ 0.

Let p ∈ [0, 1]. Associated to the (2, p)-GREC, we denote its constraint set by

Cp(S) := {x ∈ Rn : ‖xGJ c‖2,p ≤ ‖xGJ ‖2,p for some J satisfying |J | ≤ S}. (2.14)

1The lower-order GREC [25] extends the classical restricted eigenvalue condition (REC) [7] to the lower-

order and group settings. The classical SEC is weaker than the well-known regularity conditions, such as the

mutual incoherence property (MIP) [11] and the restricted isometry property (RIP) [12]; see [7].
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By noting that

C0(S) = {x : ‖x‖2,0 ≤ 2S}, (2.15)

it is clear to derive the following equivalence:

GSEC(2S) ⇔ 0-GREC(S, S). (2.16)

It was revealed in [25, Proposition 5] that the lower-order GREC is less restrictive than the

classical GREC (as p = 1); particularly, the smaller the p ∈ (0, 1], the weaker the (2, p)-

GREC. The following proposition completes the implication when p ∈ [0, 1] and shows that

the GSEC is a weaker condition than the GREC,.

Proposition 2.3. Let p ∈ [0, 1]. If (2, p)-GREC(S, S) holds, then GSEC(2S) holds.

Proof. Fix p ∈ [0, 1]. By (2.16), the implication to be shown is equivalent to

(2, p)-GREC(S, S) ⇒ (2,0)-GREC(S, S).

By Definitions 2.2 and 2.6 and (2.14), it remains to prove that

C0(S) ⊆ Cp(S). (2.17)

To this end, let x ∈ C0(S), and J∗ denote the index set of the first S largest groups in value

of ‖xGi‖. Then it follows from the definition of C0(S) (2.15) that

‖xGJ c∗
‖2,0 ≤ ‖xGJ∗‖2,0 ≤ S. (2.18)

By the construction of J∗, one has ‖xGi‖ ≥ ‖xGj‖ for each (i, j) ∈ J∗ × J c∗ . This, together

with (2.18), implies that
∑

j∈J c
∗
‖xGj‖p ≤

∑
i∈J∗ ‖xGi‖

p; consequently, ‖xGJ c∗
‖2,p ≤ ‖xGJ∗‖2,p.

This says that x ∈ Cp(S), and hence, (2.17) is proved. The proof is complete.

It is well-known that the REC is a weaker regularity condition than the RIP and the

MIP; see [7]. This, together with Proposition 2.3, claims that the SEC-type conditions are

the weakest ones among these regularity conditions.

Proposition 2.3 shows the outer semicontinuity of the (2, p)-GREC to the GSEC as p→
0+. To provide a clear understanding, we below explore the continuity between them. To

this end, we recall a notion of epi-convergence from [45]. For f : Rn → R̄, the epigraph of f

is the set consisting of all the points of Rn+1 lying on or above the graph of f ; that is,

epif := {(x,w) ∈ Rn × R : f(x) ≤ w}.

Characterized via the epigraph, the notion of epi-convergence is taken from [45, Definition

7.1].

Definition 2.7. A sequence of functions {fi : Rn → R̄} is said to epi-converge to f if their

epigraphs {epifi} graphically converge to epif ; namely,

e- lim fi = f ⇔ lim
i→∞

epifi = epif.
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By virtue of the concept of epi-convergence and Proposition 2.3, we can show the con-

tinuity of the (2, p)-GREC to the GSEC as p → 0+. An interesting result can be derived

by Proposition 2.4(ii) that, if A satisfies the GSEC(2S), then it also satisfies the (2, p)-

GREC(S, S) for sufficiently small p > 0.

Proposition 2.4. The following assertions hold.

(i) C0(S) = limp→0+ Cp(S) = ∩p>0Cp(S).

(ii) limp→0+ Φp(S, S) = Φ(2S).

Proof. (i) It is clear by (2.17) that C0(S) ⊆ ∩p>0Cp(S). On the other hand, let x ∈
∩p>0Cp(S) and use JS to denote the index set of the first S largest groups in value of

‖xGi‖. Consequently, by the construction of JS , one has by (2.14) that

‖xGJ c
S
‖p2,p ≤ ‖xGJS ‖

p
2,p for each p > 0.

Noting that limp→0+ ‖x‖
p
2,p = ‖x‖2,0 for each x, we derive that ‖xGJ c

S
‖2,0 ≤ ‖xGJS ‖2,0 ≤ S;

that is, x ∈ C0(S). Hence, assertion (i) of this proposition is achieved.

(ii) Let S denote the unit sphere centered at the origin in Rn. Note by the definition of

Cp(S) in (2.14) that C0(S) and Cp(S) are cones and ‖xGJ∪J (x;S)
‖ ≤ ‖xGJ2S

‖ for each |J | ≤ S.

Note further by the definitions of Φ(S) and Φp(S, S) in (2.2) and (2.13) that the objective

functions associated to the GSEC and the (2, p)-GREC are zero-order homogeneous2. There-

fore, we derive the reformulations that

Φ(2S) = min

{
‖Ax‖
‖xGJ2S

‖
: x ∈ C0(S) ∩ S

}
= min

x

‖Ax‖
‖xGJ2S

‖
+ δC0(S)∩S, (2.19)

and

Φp(S, S) = min

{
‖Ax‖
‖xGJ2S

‖
: x ∈ Cp(S) ∩ S

}
= min

x

‖Ax‖
‖xGJ2S

‖
+ δCp(S)∩S. (2.20)

Below, we will show the convergence of minimal values by virtue of the notion of epi-

convergence. Indeed, by assertion (i) of this proposition, we obtain by [45, Proposition

7.4(e)] that e- limp→0+ δCp(S)∩S = δC0(S)∩S, and then by [45, Exercise 7.8(a)] that

e- lim
p→0+

f + δCp(S)∩S = f + δC0(S)∩S.

Moreover, {f + δCp(S)∩S}p is proper, lower semicontinuous and level-bounded (since S is

bounded), then [45, Theorem 7.33] is applicable to concluding that

lim
p→0+

min
x

f(x) + δCp(S)∩S(x) = min
x

f(x) + δC0(S)∩S(x).

This, together with (2.19) and (2.20), implies assertion (ii). The proof is complete.
2f is said to be zero-order homogeneous if f(αx) = f(x) for each α ∈ R and x ∈ Rn.
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2.3.2 An asymptotic approach for the recovery bound

It is shown in Corollary 2.1(ii) that the `2,0 regularization problem (1.7) has a recovery bound

of order O(λS) under the GSEC assumption. This recovery bound can be understood as an

asymptotic result of the recovery bounds of the `2,p regularization problem (2.12), which

are of orders O(λ
2

2−pS) (see Theorem 2.3), as p → 0+. For this purpose, we first show in

the following proposition that the convergence in minimization of `2,p regularization problem

(2.12) to that of `2,0 regularization problem (1.8) as p→ 0+.

Proposition 2.5. Let λ > 0. Then

lim sup
p→0+

(arg min
x∈Rn

‖Ax− b‖2 + λ‖x‖p2,p) ⊆ arg min
x∈Rn

‖Ax− b‖2 + λ‖x‖2,0.

Proof. We will claim that

e- lim
p→0+

‖x‖p2,p = ‖x‖2,0. (2.21)

Granting this, we obtain by [45, Exercise 7.8(a)] that

e- lim
p→0+

‖Ax− b‖2 + λ‖x‖p2,p = ‖Ax− b‖2 + λ‖x‖2,0.

Noting further that ‖Ax− b‖2 + λ‖x‖p2,p is proper, lower semicontinuous and level-bounded,

[45, Theorem 7.33] is applicable to guaranteeing the conclusion.

To show (2.21), by the equivalent characterization of epi-convergence in [45, Proposition

7.2], it suffices to validate the following relations for each x ∈ Rn:
lim inf

i→∞, p→0+

‖xi‖p2,p ≥ ‖x‖2,0 for each sequence xi → x,

lim sup
i→∞, p→0+

‖xi‖p2,p ≤ ‖x‖2,0 for some sequence xi → x.
(2.22)

Let x ∈ Rn and consider the following two cases.

Case 1. Let {xi} ⊆ Rn be such that limi→∞ x
i = x. Note that

lim
p→0+

|t|p = 1 for each t 6= 0, (2.23)

and |t|p ≥ 0 for each t ∈ R. Then we obtain that

lim inf
i→∞, p→0+

‖xi‖p2,p ≥ ‖x‖2,0. (2.24)

Case 2. Let {xi} ⊆ Rn be such that limi→∞ x
i = x and supp(xi) = supp(x) for each

i ∈ N. By the construction of {xi} and by (2.23), one can check that

lim
i→∞, p→0+

‖xi‖p2,p = ‖x‖2,0.

This, together with (2.24), validates (2.22), as desired. The proof is complete.
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In the following, we re-establish the oracle property and the recovery bound of the `2,0
regularization problem (1.7) (as in Corollary 2.1) as an asymptotic conclusion of the recovery

bound results of the `2,p regularization problems (see Theorem 2.3 or [25, Theorem 9]). To be

honest, Corollary 2.1 improves Theorem 2.4 in the sense that (i) all global minima of problem

(1.7) own the oracle property and recovery bound; (ii) the oracle property does not need the

GSEC assumption; and (iii) the recovery bound in (2.10) is tighter than the one below.

Theorem 2.4. Let x̄ be a solution of Ax = b at a group sparsity level S, and let Λ denote

the index set of nonzero groups of x̄. Suppose that A satisfies GSEC(2S). Then there exists

a global minimum x∗ of problem (1.7) satisfying the following properties.

(i) The oracle inequality (2.9) holds.

(ii) The following recovery bound holds

‖x∗ − x̄‖2 ≤ 2λS/Φ2(2S).

Proof. Suppose that the GSEC(2S) is satisfied. By Proposition 2.4, there exists p′ > 0 such

that the (2, p)-GREC(S, S) is satisfied for each 0 < p < p′. Fix 0 < p < p′. Hence Theorem

2.3 is applicable; particularly, letting x∗(p) be a global minimum of the the `2,p regularization

problem (2.12). Thus we have that

‖Ax∗(p)−Ax̄‖2 + λ‖x∗GΛc‖
p
2,p ≤ λ

2
2−pS/Φ

2p
2−p
p (S, S), (2.25)

‖x∗(p)− x̄‖2 ≤ 2λ
2

2−pS/Φ
4

2−p
p (S, S). (2.26)

Noting that limp→0+ ‖x‖
p
2,p = ‖x‖2,0 for each x, one sees that {x∗(p)} is bounded and must

have a cluster point x∗. Consequently, by applying Proposition 2.5, x∗ is a global minimum x∗

of the `2,0 regularization problem (1.7). Since (2.25) and (2.26) hold for arbitrary 0 < p < p′,

taking p→ 0+ and by Proposition 2.4, they are reduced to assertions (i) and (ii), respectively.

The proof is complete.

Remark 2.1. As a special case when max |Gi| = 1, group sparse optimization is reduced

to sparse optimization. Hence all results of group sparse optimization are true for sparse

optimization, e.g., the continuity of p-REC to SEC, the outer semicontinuity of the solution

sets of the `p regularization to the one of the `0 regularization, and the asymptotic approach

of the recovery bounds of the `p regularization to the one of the `0 regularization, as p→ 0+.

3 Iterative mix thresholding algorithm with continuation

In recent years, tremendous efforts have been devoted to the development of optimization

algorithms for structured sparse optimization problems. In modern applications of sparse

optimization, the number of variables and data are typical of large-scale, and thus drive
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the requirement for first-order numerical methods that are of simple formulations and low

computational complexity. In particular, the iterative thresholding algorithms (ITA) are

a class of popular and efficient first-order numerical methods for sparse optimization. For

example, the iterative soft thresholding algorithm (ISTA) [18], iterative hard thresholding

algorithm (IHTA) [8] and iterative half thresholding algorithm [50] were proposed to solve

the `1 regularization problem, the `0 regularization problem and ` 1
2

regularization problem,

respectively. The ITA for the group sparse optimization problem was studied in [25] within

a unified framework of the proximal gradient method (PGM).

The regularization parameter plays an important role in the numerical performance of

relevant algorithms. According to the oracle property and the recovery bound theory estab-

lished in Theorems 2.1 and 2.2 (also see [7, 25]), the regularization parameters λ and τ should

be quite small to guarantee the perfect recovery; however, the computational mathematics

theory and a great number of numerical experiments show that the quite small parameter

will result in the ill-posedness of the subproblems and the convergence rate will be faster

if themaintain parameter is properly large. To inherit both advantages in theoretical and

numerical aspects, the continuation technique is a widely-applied parameter update strategy

for speeding up the relevant algorithm in an easily-implemented but efficient way; see, e.g.,

[23, 24, 29, 49]. The main idea of the continuation technique uses a decreasing sequence of

parameters starting at a pair of large parameters to instead the fixed pair.

Inspired by the ideas of the ITA and the continuation technique, we propose an iterative

mix thresholding algorithm with continuation technique (IMTC) to solve the mix sparse opti-

mization problem (1.8) and establish its convergence theory in this section. In particular, by

selecting a decreasing sequence of parameter pairs {(λk, τk)} ↘ (λ, τ), the iteration of IMTC

consists of a gradient descent operator (3.1), a hard thresholding operator in an individual

manner (3.2) and a group hard thresholding operator in a group manner (3.3). Formally, the

IMTC is presented as follows.

Algorithm 3.1. Select an initial point x0 ∈ Rn, a sequence of stepsizes {vk} ⊆ (0,+∞),

and a decreasing sequence of parameter pairs {(λk, τk)} ↘ (λ, τ). The sequence {xk} ⊆ Rn

are generated via the iterations

zk := xk − 2vkA
>(Axk − b), (3.1)

yk := H(zk;
√

2vkτk), (3.2)

xk+1
Gi := HGi

(
ykGi ;

√
2vk(λk + τk‖ykGi‖0)

)
, for i = 1, . . . , N, (3.3)

where H : Rn × R→ Rn and HGi : Rni × R→ Rni are defined respectively by

H(z;α) :=

{
y ∈ Rn

∣∣∣∣yi = zi, if |zi| > α

yi = 0, if |zi| ≤ α

}
, (3.4)

HGi(y;β) :=

{
x ∈ Rni

∣∣∣∣x = y, if ‖y‖ > β

x = 0, if ‖y‖ ≤ β

}
. (3.5)
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In view of Algorithm 3.1, the IMTC has a closed-form expression and low storage require-

ment; hence it is particularly attractive for the structured sparse optimization problems,

especially for large-scale problems. Moreover, the IMTC alternately implements the hard

thresholding operators in an individual manner (3.2) and in a group manner (3.3), which is

able to promote the mix sparse structure of the solution.

To advance the understanding of the IMTC, we provide a reformulation of the IMTC

in terms of proximal operator. For a proper and lower semicontinuous function f : Rn →
(−∞,+∞], its proximal operator proxf : Rn ⇒ Rn is a set-valued mapping defined by

proxf (z) := arg min
x∈Rn

{f(x) +
1

2
‖x− z‖2}. (3.6)

The following proposition recalls the closed-form expressions of proximal operators of τ‖ · ‖0
and λ‖ · ‖2,0; see, e.g., [8] and [25, Proposition 18].

Proposition 3.1. (i) The proximal operator of τ‖ · ‖0 has a separable formulation as

(proxτ‖·‖0(z))i =


zi, |zi| >

√
2τ ,

0 or zi, |zi| =
√

2τ ,

0, |zi| <
√

2τ ,

for i = 1, . . . , n.

(ii) The proximal operator of λ‖ · ‖2,0 has a group separable formulation as

(proxλ‖·‖2,0(z))Gi =


zGi , ‖zGi‖ >

√
2λ,

0 or zGi , ‖zGi‖ =
√

2λ,

0, ‖zGi‖ <
√

2λ,

for i = 1, . . . , N.

One can see from Proposition 3.1 that the thresholding operators H and HGi in Algorithm

3.1 are the analytical solutions of proximal operators of τ‖ · ‖0 and λ‖ · ‖2,0, respectively.

It is well-known that the ISTA and the IHTA could be understood as the applications of

the PGM to solve the `1 regularization problem and the `0 regularization problem, respec-

tively; see, e.g., [5, 25]. In the following proposition, we show that Algorithm 3.1 is indeed

an application of the PGM (with the continuation technique) to solve the mix sparse opti-

mization problem (1.8). More precisely, compounding (3.2) and (3.3) presents a closed-form

expression of the proximal operator of the `2,0 plus the `0 penalties.

Proposition 3.2. Let {xk} be a sequence generated by Algorithm 3.1. Then it holds that

xk+1 ∈ proxvkλk‖·‖2,0+vkτk‖·‖0(xk − 2vkA
>(Axk − b)) for each k ∈ N.

Proof. Fix k ∈ N. It suffices to show

xk+1 ∈ arg min
x∈Rn

{vkλk‖x‖2,0 + vkτk‖x‖0 +
1

2
‖x− zk‖2}. (3.7)
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Note that problem (3.7) is of a group separable structure. The solution of problem (3.7) can

be achieved parallelly at each group, and thus it remains to verify the solutions of a cycle of

low dimensional proximal optimization subproblems (i = 1, . . . , N):

xk+1
Gi ∈ arg min

x∈Rni
Ψi(x; zkGi), (3.8)

where Ψi : Rni × Rni → R is defined by Ψi(x; y) := vkλk‖x‖0 + vkτk‖x‖0 + 1
2‖x− y‖

2.

Fix i ∈ {1, . . . , N}. To validate (3.8), we shall find the minimum of Ψi(·; zkGi) over Rni\{0}
and then compare the obtained minimal value with Ψi(0; zkGi). For each x ∈ Rni \ {0}, one

has

Ψi(x; zkGi) = vkλk + vkτk‖x‖0 +
1

2
‖x− zkGi‖

2,

which is the objective function of the proximal operator of vkτk‖ · ‖0 (plus a constant). Then

by Proposition 3.1(i), we have that a minimum of Ψi(·; zkGi) over Rni \ {0} is given by

ykj =

{
zkj , if |zkj | >

√
2vkτk,

0, if |zkj | ≤
√

2vkτk,
for each j ∈ Gi, (3.9)

which is exactly the same as (3.2). According to (3.9), one can check that

Ψi(y
k
Gi ; z

k
Gi) = vkλk + vkτk‖ykGi‖0 +

1

2
(‖zkGi‖

2 − ‖ykGi‖
2);

while Ψi(0; zkGi) = 1
2‖z

k
Gi‖

2. Hence, by comparing Ψi(y
k
Gi ; z

k
Gi) and Ψi(0; zkGi), we verify that a

minimum of Ψi(·; zkGi) over Rni is given by (3.3). That is, (3.8) is verified, and the proof is

complete.

As a consequence of Proposition 3.2, for the special cases when λk ≡ 0 or τk ≡ 0, the

IMTC is reduced to the IHTA for the `0 regularization problem [8] or the PGM for the `2,0
regularization problem [25] with continuation technique, respectively.

3.1 Subdifferential property

This subsection is devoted to characterizing the subdifferentials of ‖ · ‖0 and ‖ · ‖2,0 and

their regularity property, which will be useful in characterizing the optimality condition of

problem (1.8) and the convergence analysis of the IMTC. The definitions of subdifferentials

and subdifferential regularity of nonconvex functions are taken from [45, Definitions 8.3 and

7.25], respectively.

Definition 3.1. Let f : Rn → R̄ be a proper and lower semicontinuous function, and let

x ∈ dom(f).

(i) The regular subdifferential of f at x is defined by

∂̂f(x) :=

{
u ∈ Rn : lim inf

y 6=x,y→x

f(y)− f(x)− 〈u, y − x〉
‖y − x‖

≥ 0

}
.
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(ii) The (limiting) subdifferential of f at x is defined by

∂f(x) :=
{
u ∈ Rn : ∃xk f−→ x, uk ∈ ∂̂f(xk) with uk → u

}
.

(iii) The horizon subdifferential of f at x is defined by

∂∞f(x) :=
{
u ∈ Rn : ∃xk f−→ x, uk ∈ ∂̂f(xk), κk ↓ 0, with κkuk → u

}
.

f is said to be subdifferentially regular at x if epif is Clarke regular at (x, f(x)).

A point x is said to be a stationary point of f if 0 ∈ ∂f(x), which is also a necessary opti-

mality condition of x being a local minimum of f . Below, we characterize the subdifferentials

of ‖ · ‖0 and ‖ · ‖2,0.

Proposition 3.3. The functions ‖·‖0 and ‖·‖2,0 are subdifferentially regular at each x ∈ Rn.

Particularly,

∂‖x‖0 = {y ∈ Rn : yi = 0 for each i such that xi 6= 0}, (3.10)

∂‖x‖2,0 = {y ∈ Rn : yGi = 0 for each i such that ‖xGi‖ 6= 0}. (3.11)

Moreover, if f : Rn → R is differentiable on Rn, then

∂(f + λ‖ · ‖2,0 + τ‖ · ‖0)(x) = ∇f(x) + ∂‖x‖2,0 + ∂‖x‖0. (3.12)

Proof. Define an indicator function c : R→ R by assigning 0 if t = 0, and 1 otherwise. Then

the `0 norm can be reformulated as

‖x‖0 =

n∑
i=1

c(xi). (3.13)

It follows directly from Definition 3.1 that

∂̂c(t) = R if t = 0, and {0} otherwise, (3.14)

and thus one can check that

∂̂c(t) = ∂c(t) = ∂∞c(t) = (∂̂c(t))∞ for each t ∈ R, (3.15)

where the horizon cone of S is defined by S∞ := {x : ∃xk ∈ S, κk ↓ 0, with κkxk → x}.
Hence, we obtain by [45, Corollary 8.11] that c(·) is subdifferentially regular at each t ∈ R,

and then get the subdifferential regularity of ‖ · ‖0 at each x ∈ Rn by the decomposition

formulation (3.13) and [45, Proposition 10.5].

For the `2,0 norm, we define a sequence of group indicator functions Ci : Rni → R by

Ci(x) = c(‖x‖), namely, returning 0 if x = 0, and 1 otherwise, for i = 1, . . . , N . Consequently,

‖x‖2,0 =
∑N

i=1Ci(xGi). Similar to the arguments do for c(·), we obtain that

∂̂Ci(x) = ∂Ci(x) = ∂∞Ci(x) = (∂̂Ci(x))∞ =

{
Rni , if ‖x‖ = 0,

{0}, otherwise,
(3.16)
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and thus Ci(·) is subdifferentially regular at each x ∈ Rni for i = 1, . . . , N . Hence, it follows

from [45, Proposition 10.5] that ‖ · ‖2,0 is subdifferentially regular at each x ∈ Rn.

Finally, by the obtained subdifferential regularity and [45, Proposition 10.5], the formulas

(3.10) and (3.11) follow from (3.14) and (3.16), respectively; (3.12) follows from the obtained

subdifferential regularity and [45, Corollary 10.9]. The proof is complete.

3.2 Characterization of local minima

The structure of local minima usually provides an important and useful information for

the numerical study of the nonconvex regularized sparse optimization problem; see, e.g.,

[16, 25, 26, 50]. This subsection aims to study the characterization and structure of the local

minimum of problem (1.8). The following theorem provides an equivalent characterization

for the local minimum of problem (1.8) in terms of the global minimum of a least squares

problem over the subspace associated to its support.

Theorem 3.1. Let x∗ ∈ Rn and X := {x ∈ Rn : supp(x) ⊆ supp(x∗)}. Then x∗ is a local

minimum of problem (1.8) if and only if x∗ is a global optimal solution of

min
x∈X
‖Ax− b‖2. (3.17)

Proof. “⇒”: Suppose that x∗ is a local minimum of problem (1.8). By the optimality condi-

tion and the sum rule of subdifferential (3.12), we obtain

0 ∈ ∂F (x∗) = 2A>(Ax∗ − b) + λ∂‖x∗‖2,0 + τ∂‖x∗‖0.

Then one has by (3.10) and (3.11) that the following optimality condition holds

A>i (Ax∗ − b) = 0 for each i ∈ supp(x∗). (3.18)

Note that x∗ is an (relative) interior point of subspace X and (3.18) is also the optimality

condition of problem (3.17). Since (3.17) is a convex optimization problem, we conclude that

x∗ is a global optimal solution of problem (3.17), as desired.

“⇐”: Suppose that x∗ is a global optimal solution of problem (3.17). Define

ε := min

{
τ

2‖A‖‖Ax∗ − b‖
, min
i∈supp(x∗)

|x∗i |
}
. (3.19)

Then it suffices to show that, for each x ∈ B(x∗, ε),

F (x) ≥ F (x∗). (3.20)

Fix x ∈ B(x∗, ε). Without loss of generality, we assume that supp(x) 6= supp(x∗); oth-

erwise, (3.20) follows directly from the optimality of x∗ to (3.17). Noting by (3.19) that
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ε ≤ mini∈supp(x∗) |x∗i |, one has supp(x) ⊇ supp(x∗). This, together with the inconsistency of

the supports, implies that ‖x‖0 ≥ ‖x∗‖0 + 1 and ‖x‖2,0 ≥ ‖x∗‖2,0. Then we obtain

F (x)− F (x∗) ≥ ‖Ax− b‖2 − ‖Ax∗ − b‖2 + τ

= 〈x− x∗, 2A>(Ax∗ − b)〉+ ‖A(x− x∗)‖2 + τ

≥ −2ε‖A‖‖Ax∗ − b‖+ τ

≥ 0

(thanks to (3.19)). Hence, (3.20) is shown to hold for each x ∈ B(x∗, ε), and the proof is

complete.

Without loss of generality, it is always assumed that the rows of A are linearly indepen-

dent; otherwise, we can remove the redundant rows. As a byproduct of Theorem 3.1, we

show in the following proposition that the number of local minima of problem (1.8) with

cardinality being no more than the sample size m is finite. We use LM(A, λ, τ) to denote the

set of local minima of problem (1.8) and use #(s) to denote the set of vectors in Rn whose

cardinality is no more than s; namely,

#(s) := {x ∈ Rn : ‖x‖0 ≤ s}.

Proposition 3.4. Let λ+ τ > 0. Then |LM(A, λ, τ) ∩#(m)| ≤
∑m

i=1C
i
n.

Proof. Let x∗ ∈ LM(A, λ, τ) and let I := supp(x∗). Then one has by Theorem 3.1 that x∗

is a global optimal solution of (3.17) with X := {x ∈ Rn : supp(x) ⊆ I}. By the blanket

assumption that the rows of A are linearly independent, the global optimal solution (3.17)

with X := {x ∈ Rn : supp(x) ⊆ I} is unique whenever |I| ≤ m; particularly,

x∗I = (ATI AI)
−1ATI b and x∗Ic = 0.

Therefore, the number of local minima of problem (1.8) within #(m) is no more than the

number of index sets with |I| ≤ m. Hence, we obtain the conclusion, and the proof is

complete.

As corollaries of Proposition 3.4 as λ = 0 or τ = 0, we can respectively conclude that the

numbers of local minima of the `0 regularized sparse optimization problem (1.6) and the `2,0
regularized group sparse optimization problem (1.7) with cardinality being no more than the

sample size m are finite.

3.3 Convergence theory of IMTC

This subsection aims to establish the convergence theory of the IMTC, including the global

convergence theorem and the linear convergence rate. For the remainder of this section, we

make the following blanket assumption that
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• {xk} is a sequence generated by Algorithm 3.1 with {vk} satisfying

0 < inf
k∈N

vk ≤ sup
k∈N

vk <
1

2‖A‖2
. (3.21)

For the sake of simplicity, we use F : Rn → R to denote the objective function of the mix

sparse optimization problem (1.8), namely,

F (·) := ‖A · −b‖2 + λ‖ · ‖2,0 + τ‖ · ‖0, (3.22)

and define a sequence of functions {Fk : Rn → R} by

Fk(·) := ‖A · −b‖2 + λk‖ · ‖2,0 + τk‖ · ‖0. (3.23)

By the continuation technique rule that {(λk, τk)} is a decreasing sequence of positive pa-

rameter pairs converging to (λ, τ), one easily gets that

Fk(x) ≥ Fk+1(x) ≥ F (x) for each k ∈ N and x ∈ Rn. (3.24)

To establish the convergence theory of the IMTC, we begin with several lemmas that

describe the useful properties of the sequences {xk} and {F (xk)}. The following lemma

provides a lower bound for the absolute value of nonzero entries of {xk}, which directly

follows from (3.2) in Algorithm 3.1 and (3.21). We write supp(x) to denote the support of x.

Lemma 3.1. |xkj | >
√

2τ infk∈N vk for each k ∈ N and j ∈ supp(xk).

Recall from Proposition 3.2 that xk+1 could be understood as an iterate generated by one

PGM step for minimizing Fk (defined by (3.23)) starting at xk. Hence, the following lemma

directly follows from the descent property of the PGM step; see, e.g., [10, Lemma 2].

Lemma 3.2. Fk(x
k+1)− Fk(xk) ≤ −1

2( 1
vk
− 2‖A‖2)‖xk+1 − xk‖2 for each k ∈ N.

The following lemma shows a decreasing property of {Fk(xk)} and the vanishing property

of {‖xk+1 − xk‖}.

Lemma 3.3. {Fk(xk)} is decreasing and convergent, and limk→∞ ‖xk+1 − xk‖ = 0.

Proof. By Lemma 3.2, we have by (3.24) and (3.21) that

Fk+1(xk+1)− Fk(xk) ≤ Fk(xk+1)− Fk(xk) ≤ −
1

2
(

1

vk
− 2‖A‖2)‖xk+1 − xk‖2 ≤ 0,

which shows that {Fk(xk)} is decreasing and convergent (as {Fk(xk)} are positive). This also

indicates that

∞∑
k=0

‖xk+1 − xk‖2 ≤ 2

(
1

supk∈N vk
− 2‖A‖2

)−1

F0(x0) < +∞;

consequently, limk→∞ ‖xk+1 − xk‖ = 0. The proof is complete.
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The following lemma displays a consistent feature of the IMTC that {xk} share a consis-

tent support when k is sufficiently large, which is useful for providing a uniform decomposition

of {xk} in convergence analysis.

Lemma 3.4. There exists K ∈ N such that supp(xk) = supp(xk+1) for each k ≥ K.

Proof. By Lemma 3.3 that limk→∞ ‖xk+1 − xk‖ = 0, there exists K ∈ N such that

‖xk+1 − xk‖2 < 2τ inf
k∈N

vk for each k ≥ K. (3.25)

Proving by contradiction, we assume, without loss of generality, that there exists i ∈ {1, . . . , n}
such that xki = 0 and xk+1

i 6= 0. Then one has by Lemma 3.1 that |xk+1
i |2 > 2τ infk∈N vk, and

thus

‖xk+1 − xk‖2 ≥ (xk+1
i − xki )2 > 2τ inf

k∈N
vk,

which yields a contradiction with (3.25). The proof is complete.

The following lemma shows that the IMTC enjoys a descent property of {F (xk)}.

Lemma 3.5. There exists K ∈ N such that

F (xk+1)− F (xk) ≤ −1

2
(

1

vk
− 2‖A‖2)‖xk+1 − xk‖2 for each k ≥ K.

Proof. By Lemma 3.4, there exists K ∈ N such that supp(xk) = supp(xk+1), and thus

‖xk‖2,0 = ‖xk+1‖2,0 and ‖xk‖0 = ‖xk+1‖0, for each k ≥ K. Then we obtain that

F (xk+1)− F (xk) = ‖Axk+1 − b‖2 − ‖Axk − b‖2 = Fk(x
k+1)− Fk(xk).

Consequently, the conclusion follows from Lemma 3.2. The proof is complete.

The main theorem of this subsection is presented as follows, in which we establish the

global convergence of the IMTC to a local minimum of the mix sparse optimization problem

(1.8).

Theorem 3.2. Let {xk} be a sequence generated by Algorithm 3.1 with (3.21) being satisfied.

Then {xk} converges to a local minimum of problem (1.8).

Proof. By Proposition 3.2, we obtain that, for each k ∈ N,

xk+1 ∈ arg min
x∈Rn

{
λk‖x‖2,0 + τk‖x‖0 +

1

2vk
‖x− (xk − 2vkA

>(Axk − b))‖2
}
. (3.26)

It follows from Lemma 3.4 that there exists K ∈ N such that supp(xk) = supp(xk+1) for each

k ≥ K. Fix k ≥ K and define a subspace X := {x ∈ Rn : supp(x) ⊆ supp(xK)}. Then one

has xk+1 ∈ X, and also, ‖xk+1‖2,0 ≥ ‖x‖2,0 and ‖xk+1‖0 ≥ ‖x‖0 for each x ∈ X. Hence,

(3.26) is reduced to

xk+1 = arg min
x∈X
‖x− (xk − 2vkA

>(Axk − b))‖2. (3.27)
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This shows that {xk}∞k=K is a sequence generated by the projected gradient method for solving

the convex constrained least squares problem

min
x∈X
‖Ax− b‖2. (3.28)

We will show that {xk} converges to a global optimal solution of problem (3.28). Granting

this, by Theorem 3.1, we conclude that {xk} converges to a local minimum of problem (1.8),

as desired.

To complete the proof, it remains to show that {xk} converges to a global optimal solution

of problem (3.28). To this end, we use X∗ to denote the set of global optimal solutions of

problem (3.28). Fix k ≥ K and write gk := 2A>(Axk − b). We obtain by the optimality

condition of problem (3.27) that

〈xk+1 − (xk − vkgk), x− xk+1〉 ≥ 0 for each x ∈ X.

Fix x ∈ X. Then it follows that

‖x− (xk − vkgk)‖2 ≥ ‖xk+1 − (xk − vkgk)‖2 + ‖x− xk+1‖2;

equivalently,

‖x− xk‖2 + 2vk〈x− xk, gk〉 ≥ ‖xk+1 − xk‖2 + 2vk〈xk+1 − xk, gk〉+ ‖x− xk+1‖2. (3.29)

Note by definition of gk that

〈x− xk, gk〉 = 〈x− xk, 2A>(Axk − b)〉 = ‖Ax− b‖2 − ‖Axk − b‖2 − ‖Ax−Axk‖2.

Substituting this into (3.29), we derive that

‖Ax− b‖2 +
1

2vk
‖x− xk‖2

≥ ‖Axk+1 − b‖2 +
1

2vk
‖x− xk+1‖2 +

1

2vk
‖xk+1 − xk‖2 − ‖Axk+1 −Axk‖2 (3.30)

≥ ‖Axk+1 − b‖2 +
1

2vk
‖x− xk+1‖2

(due to (3.21)). Note that x ∈ X is arbitrary. Taking x := xk in (3.30), one has

‖Axk+1 − b‖2 ≤ ‖Axk − b‖2 − 1

2vk
‖xk − xk+1‖2,

i.e., {‖Axk − b‖2} is decreasing. Taking x := x∗ ∈ X∗ in (3.30), we obtain

0 ≤ ‖Axk+1 − b‖2 − ‖Ax∗ − b‖2 ≤ 1

2vk
(‖xk − x∗‖2 − ‖xk+1 − x∗‖2). (3.31)
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This shows that {‖xk − x∗‖2} is decreasing for each x∗ ∈ X∗, and so, {xk} is bounded and

must have a cluster point x̄. By the decreasing property of {‖Axk − b‖2}, we inductively

obtain by (3.31) and (3.21) that

‖Axk − b‖2 − ‖Ax∗ − b‖2 ≤ 1

k

k∑
i=1

(‖Axi − b‖2 − ‖Ax∗ − b‖2) ≤ 1

2k infi∈N vi
‖x0 − x∗‖2.

By letting k →∞, we have ‖Ax̄− b‖2 = ‖Ax∗ − b‖2, and thus x̄ ∈ X∗. Since {‖xk − x̄‖2} is

decreasing and x̄ is a cluster point of {xk}, then {xk} converges to such x̄ ∈ X∗. The proof

is complete.

In addition to the global convergence theorem, the establishment of convergence rate is

important to guarantee the numerical performance of relevant algorithms. We establish the

linear convergence rate of the IMTC in the following theorem.

Theorem 3.3. Let {xk} be a sequence generated by Algorithm 3.1 with (3.21) being satisfied.

Then {xk} converges linearly to a local minimum of problem (1.8).

Proof. Theorems 3.2 shows that {xk} globally converges to a local minimum x∗ of problem

(1.8). Hence, the optimality condition (3.18) is satisfied. Moreover, by Lemmas 3.1 and 3.4,

there exists K ∈ N such that

supp(xk) = supp(x∗) for each k ≥ K. (3.32)

Fix k ≥ K. In view of Algorithm 3.1 and by (3.18), we obtain that, for each i ∈ supp(x∗),

xk+1
i − x∗i = xki − 2vkA

>
i (Axk − b)− x∗i

= xki − x∗i − vkA>i ((Axk − b)− (Ax∗ − b))
= (I>i − 2vkA

>
i A)(xk − x∗).

Then one has by (3.32) that

‖xk+1 − x∗‖2 =
∑

i∈supp(x∗)

(xk+1
i − x∗i )2

=
∑

i∈supp(x∗)

(
(I>i − 2vkA

>
i A)(xk − x∗)

)2

≤ ‖I− 2vkA
>A‖2‖xk − x∗‖2.

By assumption (3.21), there exists η ∈ (0, 1) such that ‖I − 2vkA
>A‖ < η. This, together

with the above inequality, shows the linear convergence rate of {xk} to x∗. The proof is

complete.

There is still a gap between the theoretical and algorithmic studies of the mix sparse op-

timization problem (1.8). In particular, Theorems 3.2 and 3.3 present the linear convergence
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rate of the IMTC to a local minimum of problem (1.8); while Theorems 2.1 and 2.2 provide

the oracle property and the recovery bound for the global minimum of problem (1.8). To fill

this gap in some sense, we end this section by the following theorem, which provides an upper

bound for the model error at the limiting point approached by the IMTC. Indeed, the upper

bound (3.34) has the same order of O(λ+τ) as the ones in the oracle inequality (2.6) and the

recovery bound (2.8). Recall that ni is the size of the i-th group and nmax := maxi=1,...,N ni.

Theorem 3.4. Let {xk} be a sequence generated by Algorithm 3.1 with (3.21) being satisfied.

Let x∗ be the limiting point of {xk}. Suppose that

ψ(A) := inf
u∈Rm

‖A>u‖2∞
‖u‖2

> 03. (3.33)

Then

‖Ax∗ − b‖2 ≤ λ+ τnmax

2ψ(A) infk∈N vk
. (3.34)

Proof. Since x∗ is the limiting point of {xk}, in view of Algorithm 3.1 and by (3.21), there

exists v ∈ [infk∈N vk, supk∈N vk] such that

z∗Gi = x∗Gi − 2vA>Gi(Ax
∗− b), y∗Gi = H(z∗Gi ,

√
2vτ), x∗Gi = HGi

(
y∗Gi ;

√
2v(λ+ τ‖y∗Gi‖0)

)
(3.35)

for i = 1, . . . , N . Let Λ := {i : ‖x∗Gi‖ 6= 0} and Λc be its complement set. We first claim that

‖A>Gi(Ax
∗ − b)‖2 ≤ λ+ τni

2 infk∈N vk
for each i ∈ Λc, (3.36)

and

(A>j (Ax∗ − b))2 ≤ τ

2 infk∈N vk
for each j ∈ GΛ \ supp(x∗). (3.37)

To show (3.36), we fix i ∈ Λc. This says x∗Gi = 0. Consequently, we derive by the first two

equalities in (3.35) and the definition of H in (3.4) that

‖2vA>Gi(Ax
∗ − b)‖2 = ‖z∗Gi‖

2 ≤ ‖y∗Gi‖
2 + 2vτ(ni − ‖y∗Gi‖0), (3.38)

and by the last equality of (3.35) and the definition of HGi in (3.5) that

‖y∗Gi‖
2 ≤ 2v(λ+ τ‖y∗Gi‖0).

This, together with (3.38), deduces (3.36).

To prove (3.37), fix j ∈ Gi \ supp(x∗) with i ∈ Λ. This says that x∗j = 0 and x∗Gi 6= 0.

Then we obtain by (3.35) that |2vA>j (Ax∗ − b)| = |z∗j | ≤
√

2vτ , and thus (3.37) is achieved.

By (3.18), (3.36) and (3.37), we conclude that

‖A>(Ax∗ − b)‖2∞ ≤
λ+ τnmax

2 infk∈N vk
.

Then we obtain by assumption (3.33) (with Ax∗ − b in place of u) that

‖Ax∗ − b‖2 ≤ 1

ψ(A)
‖A>(Ax∗ − b)‖2∞ ≤

λ+ τnmax

2ψ(A) infk∈N vk
.

The proof is complete.
3A testable sufficient condition for (3.33) is that A is of full row rank and each ‖Ai‖ > 0.
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4 Numerical experiments

In this section, we carry out numerical experiments to illustrate the numerical performance

of the IMTC, and compare with several state-of-the-art solvers in structured sparse opti-

mization. All numerical experiments are implemented in Matlab R2014a and executed on a

personal desktop (Intel Core Duo i7-8550, 1.80 GHz, 8.00 GB of RAM).

4.1 Numerical simulations

In the numerical experiments, the simulation data are generated via the standard process of

compressive sensing with the mix sparse solution. In details, we randomly generate an i.i.d.

Gaussian ensemble A ∈ Rm×n satisfying A>A = I, and a mix sparse solution x̄ ∈ Rn via

randomly splitting its components into N equi-size groups and randomly picking S of them

as nonzero groups, each of which is set as an r-sparse vector with an i.i.d. Gaussian ensemble.

Consequently, the inter-group sparsity of the solution is S
N , and the intra-group sparsity is

rN
n . We define

γ :=
r

S
,

which is proportional to the ratio of the intra-group sparsity to inter-group sparsity when the

variable dimension and the group size are fixed. Given the transform matrix A and solution

x̄, the observation data b is generated via the Matlab script

b = A ∗ x̄+ sigma ∗ randn(m, 1),

where sigma is the standard deviation of additive Gaussian noise. In the numerical exper-

iments, the problem size is set as m = 256 and n = 1024, the number of groups N = 64

(unless otherwise specified), and the noise level is set as sigma = 0.1%.

In the implementation of the IMTC (cf. Algorithm 3.1), the initial point and parameters

are selected as follows. The initial point is x0 := 0, and we set the constant stepsize v := 0.5,

regularization parameters (λ, τ) := (10−4, 10−6) and the decreasing sequence of parameter

pairs in the continuation technique as (λk, τk) = (max{κλk−1, λ},max{κτk−1, τ}) with κ :=

0.96. Two key criteria to measure the performance of the solvers are the relative error

RE = ‖x−x̄‖
‖x̄‖ and the successful recovery rate, where the recovery is regarded as success if

RE < 0.5%; otherwise, it is regarded as failure. Five numerical experiments will be performed,

in each of which we will conduct 500 trials with randomly simulated data (unless otherwise

specified) to show the efficiency and stability of the IMTC, comparing with several state-of-

the-art solvers.

The first experiment aims to validate the linear convergence rate of the IMTC by con-

ducting extensive simulations. Figure 1 plots the relative error of the estimation along the

number of iterations in 500 random trials for different sparsity levels 5% and 10%, respec-

tively. As shown in Figure 1, the IMTC can successfully recover the ground true solution

and stably behave a linear convergence rate, which is consistent with Theorem 3.3. In this
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Figure 1: Linear convergence of IMTC.

experiment, we also note that the IMTC is very fast, whose CUP time is about 0.1 second

per 500 iterations.
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Figure 2: Sensitivity analysis on intra- and inter-group sparsity.

The second experiment is to illustrate the sensitivity analysis of the IMTC on the intra-

group sparsity and the inter-group sparsity by varying the ratio γ from 0.5 to 1.25. Figure

2 draws the successful recovery rate of the IMTC along the sparsity level for different γ. It

indicates that the IMTC can achieve a high successful recovery rate in the scenario of mix

sparse structure, and particularly, the IMTC performs better for a larger γ, e.g., when γ ≥ 1.

The third experiment is implemented to compare the IMTC with several state-of-the-art

solvers in structured sparse optimization. The solvers can be divided into three types of

structures: the sparse solvers, the group sparse solvers, and the mix sparse solvers. The

sparse solvers include YALL1 [52], ADMM (`0), OMP [47], CoSaMP [38], SPGL1 [6], FoBa

[57], HalfTA [50], HardST [8] and ISTA [18]; the group sparse solvers include PGM-GSO for

different `p,q regularizations [25], ADMM (`2,1) [51]; the mix sparse solvers include SGL [46],

ADMMSGL [20] and PGASGL [59].

In this experiment, we first illustrate in Figure 3 the structures of the signals obtained

by these solvers in a random trial with S = 15 and r = 8 (i.e., the total sparsity level is

32



Figure 3: Structures obtained by IMTC and several state-of-the-art solvers.
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(b) Compare with group sparse solvers.
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(c) Compare with mix sparse solvers.

Figure 4: Comparison between IMTC and several state-of-the-art solvers.

12%). We reshape the signal to a 32 × 32 matrix for convenience of viewing, in which a

group structure is denoted by a 4 × 4 sub-matrix. In Figure 3, the top picture plots the

heat-map of the ground true signal, the second and third (resp., the fourth and the last)

rows draw the solutions obtained by the sparse (resp., group sparse and mix sparse) solvers.

We can clearly observe from Figure 3 the structures of the solutions approached by these

three types of solvers. (i) The sparse solvers obtain the sparse solutions without any group

structure; (ii) the group sparse solvers get the sparse solutions with group structure, in which

the components within each group are either all zeros or all nonzeros; and (iii) the mix sparse

solvers achieve the solutions with the intra-group sparse and inter-group sparse structures

simultaneously. In particular, the IMTC performs the best in approaching the ground true

signal (RE∼ 2e-3) among the mix sparse solvers.

Furthermore, we compare the overall performance of the IMTC and these three types

of solvers by conducting extensive simulations with mix sparse structure. Figure 4(a)-(c)

plot the successful recovery rates on different sparsity levels compared with the sparse, group

sparse and mix sparse solvers, respectively. Figure 4 indicates that the IMTC can achieve a

higher successful recovery rate than the other solvers (with or without mix sparse structure),

by exploiting the mix sparse structure and (nonconvex) `0 regularization. In Figure 4(b), it

should be pointed out that the group sparse solvers perform unstable because of the high

sensitivity on γ (cf. Figure 5). From this experiment, it is revealed that the IMTC outper-

forms most solvers of structured sparse optimization in solving sparse optimization problems

with mix sparse structure.
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(a) Sparse solution without group structure.
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Figure 5: Performance of IMTC at two extreme situations.

The forth experiment is to explore the performance of the IMTC at two extreme situations:

(a) γ is very small (γ = 0.22), in which case the solution is sparse but has no group structure

(there is only one nonzero component in each nonzero group); and (b) γ is reasonably large

(γ = 4.5), in which case the solution is of group sparse structure (the components are all

nonzeros in each nonzero group). One representative is selected from each type of structured

sparse solvers: HalfTA for the sparse solvers, PGA (`2,1/2) for the group sparse solvers, and

IMTC for the mix sparse solvers. It is illustrated by Figure 5(a) that the IMTC works as well

as the HalfTA in the situation of sparse solution (without group structure), while the PGA

(`2,1/2) fails in this situation because the group sparse solvers always induce a solution with

group structure. It is observed from Figure 5(b) that the IMTC works almost as well as the

PGA (`2,1/2), and outperforms the HalfTA in the situation of group sparse solution. This

is because that the sparse solvers (without group or mix structure) are not able to promote

the group structure of the solution. From this experiment, it is displayed that the IMTC

performs well and stably at these two extreme situations of sparse or group sparse structure.

The last experiment is devoted to the phase transition study of the IMTC and to further

demonstrate its strong promoting capability of mix sparse structure. The phase diagram is

a popular and powerful tool in studying the stability and sensitivity of the relevant solvers;

see [25, 50] and the references therein. In this experiment, we set m = 256, n = 1024,

N = 64 and sigma = 0.1% as default, and vary the inter-group sparsity and the intra-group

sparsity from [0,1]. For each circumstance of mix sparse structure, we randomly generate the

simulation data 500 times and apply the relevant solvers to approach the solution. Each pixel

in the phase diagram is embodied as yellow whenever its successful recovery rate is 100%;

otherwise, blue when the successful recovery rate is 0. In this way, the phase diagrams of six

representative solvers, including IMTC, HalfTA, PGA (`2,1/2), PGASGL, ADMMSGL and

SGL, are exhibited in Figure 6, in which the color of each cell reflects the empirical recovery

rate (scaled between 0 and 1) and the red curve denotes the contour line of total sparsity

15%.

Observed from Figure 6, we find that the phase transition phenomenon does appear for

these six solvers of structured sparse optimization. It is displayed in Figure 6 that the yellow

area of the IMTC is closest to the red curve and is much larger than the other solvers’. This

indicates that the IMTC is more robust (on the inter- and intra-group sparsity simultane-
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Figure 6: Phase diagram study of structured sparse optimization solvers. Yellow and blue

denote success and failure in all experiments, respectively.

ously) than the other solvers in the sense that it allows to reach a higher successful recovery

rate, which achieves the same conclusion as the third experiment.

In conclusion, the numerical experiments with simulated data show that the IMTC has

a strong promoting capability of the mix sparse structure and outperforms several state-of-

the-art solvers on both accuracy and robustness, benefiting from the use of the mix sparse

structure and (nonconvex) `0 regularization.

4.2 Differential optical absorption spectroscopy

Differential optical absorption spectroscopy (DOAS) analysis is a fundamental and commonly

used technique in atmospheric chemistry and computational optics [41]. The goal of DOAS is

to identify the gases or materials in a mixture and quantify their concentrations by measuring

the reduction over a range of wavelengths in terms of the intensity of light shined through

it. When the light shines through a gas with path length L and concentration x(·), the light

intensity will be absorbed and attenuated; Lambert-Beer’s law [41, Chapter 8] relates the

process of light absorption as

A(ω) = log
I0(ω)

I(ω)
= θ(ω)

∫ L

0
x(l)dl (4.1)

where ω is the wavelength, A(·), I(·) and I0(·) are the absorbed, transmitted and the ini-

tial intensity of the light, respectively, and θ(·) is the characteristic absorption spectra for

the absorbing gas. For simplicity, assuming that the gas is equable at the path line, the
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concentration is a constant x, and then Lambert-Beer’s law (4.1) is reduced to

A(ω) = Lxθ(ω). (4.2)

When multiple absorbing gases M are present at the path line and the reduction of the

light intensity due to scattering is considered, xθ(·) can be replaced by a linear combina-

tion of the characteristic absorption spectra of involved gases plus an additive noise of light

scattering, and hence Lambert-Beer’s law (4.2) can be rewritten as

A(ω) = L
∑
i∈M

xiθi(ω) + ε(ω). (4.3)

Collected the reference characteristic absorption spectra {θi} from database and measured

the absorption spectra of the mixture of gases A from the optical spectrometer, the DOAS

analysis aims to estimate the concentrations of gases {xi}i∈M via (4.3). Considering only the

involved gases and dealing with the additive white Gaussian noise ε, one of the most classical

and common mathematical methods for DOAS analysis is the linear least-squares method;

see [41, Chapter 8].

Two issues should be considered in the improvement of the DOAS analysis technique.

The first issue is the identification of involved gases M, which was assumed to be known

in advance (or identified by other methods) as in the traditional DOAS analysis technique.

However, as shown in [41, Chapter 8], this prior information requirement may hinder the

development and applications of DOAS automatic analysis technique. Secondly, besides the

additive noise due to scattering, a challenging complication in practice is the wavelength

misalignment, which is caused by the installment of the optical spectrometer and leads to

the basis noise; see [20]. In particular, caused by the installment or environment of optical

spectrometers, the nominal wavelengths in the measurement of A(ω) may not correspond

exactly to those in the basis {θi(ω)}, but aligned with an approximately linear deformation

{θi(ω + d(ω))}. Hence, equipped with the wavelength misalignment, (4.3) is turned into

A(ω) = L
∑
i∈M

xiθi(ω + d(ω)) + ε(ω). (4.4)

However, the quantity of linear deformation d(·) is usually unknown in practice. Therefore,

given the data A(·) and reference spectra {θi(·)}, the DOAS automatic analysis aims to

identify the involved gases and quantify their concentrations {xi} and the deformation {d(·)}
from the linear model (4.4).

To deal with these two issues, inspired by the ideas of variable selection and using a set of

modified bases [20], we construct a dictionary by enlarging characteristic absorption spectra

database {θi}i∈M to that of a set of possible (common but concerned) gases {θi}i∈P with

M ⊆ P and deforming each θi with a set of possible deformations D. In particular, the

deformations can be approximated by linear functions, i.e.,

D := {d(ω) : d(ω) = uω + v, u ∈ U , v ∈ V}, (4.5)
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from two predetermined sets U and V. Let Θj denote a matrix whose columns are the

reference spectra {θi}i∈P of j-th deformation, i.e., Θj := [θi(ω + dj(ω))]i∈P for dj ∈ D, and

let xdj ∈ R|P| denote the concentrations of possible gases at j-th deformation. Then with the

enlarged sets of candidates P and deformations D, (4.4) can be rewritten as

A = L
[
Θ1, . . . ,Θ|D|

]  xd1

...

xd|D|

+ ε. (4.6)

Note that the solution of the linear system (4.6) enjoys a mix sparse structure. Specifically,

there are in general only a few gases involved in a mixture (contrast with the number of

possible candidates), and the deformation for the involved gases is unique and consistent

(tested in an experiment). Consequently, with the group structure x := (x>d1
, . . . , x>d|D|)

>,

the ground true solution of the DOAS has 1-group sparsity (inter-group sparsity) and the

nonzero group is also sparse (intra-group sparsity). Therefore, writing n := |P|×|D|, the mix

sparse optimization model for the DOAS automatic analysis with wavelength misalignment

(4.6) can be formulated as

min
x∈Rn

‖Θx− A

L
‖2 + λ‖x‖2,0 + τ‖x‖0, (4.7)

where ‖x‖2,0 is to promote the consistent deformation, ‖x‖0 is to promote the sparsity of

candidate selection.

For the database of numerical experiments, we choose 15 concerned materials as possible

candidates (listed in Table 1) and collect their reference characteristic absorption infrared

(IR) spectra {θi}i∈P at National Institute of Standards and Technology (NIST) Chemistry

WebBook4. Then we construct a dictionary Θ by deforming each collected reference IR

spectrum by a set of linear deformations (4.5) with U = {−0.15 + 0.05k : k = 1, . . . , 5} and

V = {−3 + k : k = 1, . . . , 5}; see Figure 7 for the reference IR spectra with some deformed

examples. Therefore, there are 15 possible materials and 25 possible deformations, and

each spectrum has 554 sample intensity along with wavelength; consequently, the dictionary

Θ ∈ R554×375.

In the numerical experiments, the simulation data are generated via the following process.

Firstly, the dictionary Θ is constructed as mentioned above with each θi being normalized.

Then we randomly pick several materials in P with their concentrations being i.i.d. Gaussian

ensembles and randomly select a deformation in D with a uniform distribution, that is, the

ground true solution x̄ is randomly generated. With the generated Θ and x̄, the observation

data (absorption spectra) A is generated via (4.6) with ε being an additive Gaussian noise

with the standard deviation being 0.1%.

In the implementation of the IMTC (cf. Algorithm 3.1), the initial point and parameters

are selected as follows. The initial point is x0 := 0, and we set the constant stepsize v := 1
2‖Θ‖2 ,

4https://webbook.nist.gov/chemistry/
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Table 1: Materials in reference dataset.
Number Name Formula Number Name Formula

1 pyridine C5H5N 9 ethyl ether C4H10O

2 acetone C3H6O 10 ethyl acetate C4H8O2

3 methyl alcohol CH4O 11 benzene C6H6

4 formaldehyde CH2O 12 benzoic acid C7H6O2

5 formic acid CH2O2 13 sodium bicarbonate CHNaO3

6 tetrahydrofuran C4H8O 14 ozone O3

7 ethanol C2H6O 15 phenol C6H6O

8 acetonitrile C2H3N

regularization parameters (λ, τ) := (10−4, 10−6) and the decreasing sequence of parameter

pairs in the continuation technique as (λk, τk) = (max{κλk−1, λ},max{κτk−1, τ}) with κ :=

0.96. Two key criteria to measure the performance of the solvers are the relative error (on

observation or solution) and the true positive rate of solution (on materials or misalignment).

In the numerical experiments, we compare the numerical performance on DOAS analysis of

the IMTC with several state-of-the-art solvers, including the sparse solvers: OMP, ISTA,

HardTA, HalfTA, the group sparse solvers: PGA (`2,1), PGA (`2,0), and the mix sparse

solver: PGASGL.

In the first experiment, we aim to show the spectrum reconstruction, the materials iden-

tification and quantification capability of the algorithms. Figure 8 exhibits the materials and

the misalignment predicted by algorithms, as well as their relative error of concentrations,

and Figure 9 displays the absorbtion spectra reconstructed by the algorithms, as well as their

relative error of spectra, at a random trial. It is illustrated from Figure 8 that the solutions

obtained by the sparse solvers have different misalignments and thus have no physical sense;

the solutions obtained by the group sparse solvers can exactly predict the misalignment but

cannot predict the involved materials; and the IMTC can exactly predict the misalignment

and the involved materials simultaneously (the relative error is quite small), and outperform

the PGASGL. It is revealed from Figure 9 the IMTC can exactly reconstruct the absorbtion

spectra and outperform other solvers.

In the second experiment, we aim to show the stability of the IMTC on predicting the

materials and misalignment, comparing with other algorithms. Figure 10 plots the true

positive rate (TPR) of the predicted materials and misalignment and the relative error of

solutions obtained by the algorithms along with the number of involved materials (from 1 to

15) at 500 random simulations. It is demonstrated from Figures 10(a) and 10(b) that the

IMTC has a much higher true positive rate than other algorithms and from Figure 10(c) that

the solution of the IMTC is much more precise than the ones obtained by other algorithms.

Moreover, the CPU time of the IMTC is less than 0.1 second. Therefore, the numerical

results show that the IMTC can quickly, stably, exactly and quantitatively predict the existing

materials and the factual wavelength misalignment simultaneously, which meets the demand

of improvement of the DOAS automatic analysis software proposed in [41, Chapter 8].
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Figure 7: For each material, the reference spectrum is plotted in blue, while four deformed

spectra are in orange.
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Figure 9: Spectrum reconstruction of algorithms at a trial.
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