On Error Bound Moduli for Locally
Lipschitz and Regular Functions

Xiaoqi Yang

Department of Applied Mathematics,
Hong Kong Polytechnic University
Email: mayangxq@polyu.edu.hk

Joint work with Minghua Li and Kaiwen Meng

Title Page



Outline

1. Existing results
2. Our contributions

3. Perspectives and Open questions

Contents



1. Existing results

Letg : R" = RU{4+o0}atz € [¢p < 0]".
Definition 1.1 ¢ has a local error bound for [¢ < 0] at some
T € [¢p < 0] if, there exist some T > 0 and € > 0 such that for all
xr € R" with ||z — Z|| < ¢,

Td(z,[¢p < 0]) < ¢(x). (1.1)

¢ is a global error bound for (¢ < 0] if (1.1) holds for all .

Closely related notions:
e calmness (variant of the Aubin property)
e subregularity (variant of metric regularity)

e (local) weak sharp minima

[ : :
: ; |

‘o < 0] := {x € R"|¢(x) < 0} denotes the level set.



The local error bound modulus of ¢ : R" — R U {+oo} at
T € [¢ < 0] is defined by

e d)
ebm(¢, 7)== i e <l

Clearly, 0 < ebm(¢, z) < 400.



e Case ebm(¢p, ) =0
For any 0 < 7, there is no V' € N () such that

Td(z,[¢ <0]) < ¢(z); Vz eV

In this case, we say that ¢ has no local error bound at T.

e Case ebm(¢p, z) > 0
For 0 < 7 < ebm(¢, T), there is some V, € N (Z) such that

rd(z,[¢ < 0]) < ¢(z), Vz eV, (1.2)

In this case, we say that ¢ has a local error bound at x.

Alternatively, we have

ebm(¢, T) = sup{r > 0| IV, € N () satisfying (1.2)}

“Here, sup () := 0 is used by convention.



The set
{7 > 0|3V, € N(x) satisfying (1.2)}

is an interval, either being (0, ebm(¢, )] or (0, ebm(¢, )).

For instance,

e in the case of ¢p(x) = x and T = 0, it is (0,1] with
ebm(p, T) = 1,

e in the case of ¢p(x) = sinx and T = 0, it is (0,1)* with
ebm(¢p, z) = 1.

“1 is not included because it is impossible that < sin z when x > 0 is near 0.



e 1/ ’sin (1.2) often depend on T;

e Let V*** be the maximal one among all possible V,’s in (1.2),
1.e.,

e — U{VT € N(z) | V; satisfies (1.2)}.
Then, V™ N as 7 .

e Outside the level set [¢ < 0], there may exist no common point
among all these neighborhoods V", i.e., one may have

N ve)\o<0=0

0<7<ebm(¢,7)



Take ¢(x) = /T and T = 0 for example.
o [0 <0l =—R;and d(0,[p <0]) = z,;
o /M = (—o0, %] for all 7 > 0;
® (1.2) can be written as 7z, < /T, Vo € (—00
e chm(p, ) = +0o0;

* (00<T<ebm<¢@> Vrmax) \[¢ <0]=0.
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As ebm(¢, ) = +00 whenever z € int([¢ < 0]), we assume in
what follows that z € bdry[¢ < 0].

A lower estimate via outer limiting subdifferential:

If o : R" — RU {£o0} is lower semicontinuous, we have
d(0,0”¢(z)) < ebm(g, ),

where
O~ () = {kl—lgloo v | dxp =4 T, d(zr) > O(T), vy € 8¢(xk)}

is the outer limiting subdifferential of ¢ at . See [

b b ]'



Smooth case

If ¢ is smooth, we have 0~ ¢(Z) = V¢(Z) and
d(0,07¢(1)) = ebm(¢, ).

Pointwise max of C!

If p(x) = max fi(z) with f;’s being smooth, we have

d(0,0”¢(x)) = ebm(o, ).

Convex and lower semicontinuous case

If ¢ is lower semicontinuous and convex, and z € bdry[¢p < 0],
we have

d(0,0”¢(x)) = ebm(o, ).



Polyhedral case

e ¢(r) = max ({a;,x) — b;) and T € bdry[¢p < 0].

1<i<m
o [(x) :={i]| ¢(x) = (a;, z) — b;} is the active index set.

It was shown in [ , Theorem 4.1] that,

0" ¢(x) = U conv{a;,i € D},

DeD(z)

where D € D(Z) if and only if D C I(Z) and there is some
d € R" such that



For a nonempty and convex set A C R”, the end set of A is defined
in [ , ] by

end(A) ;= {x € clA|tx € clAVt > 1}.

Sublinear case
It was shown by [ , Theorem 4.1] that, if ¢ is a
sublinear and lower semicontinuous function, then

ebm(¢, 0) = d(0,end(C")),

where (' is the unique closed and convex set such that ¢ = .
In this case, we also have

ebm(¢, 0) = d(0,97¢(0)) = d(0, 87 a¢(0)).



2. Our contributions
2.1. Support function of a compact convex set and its
outer limiting subdifferential

Let C' be a compact and convex subset of R". The support function
oc : R" — Rof C' is defined by

oc(w) == sup(x, w).
zeC

o C={veR"| (v,w) <oc(w) Vw}.

OJoc(w) = argmax(v,w) = CN{v € R" | (v, w) = oc(w)}.

velC

e [ is a nonempty exposed face of C'if and only if F' = Joc(w)
for some w # 0.



Throughout this section, we use the following notation:

S = U Joc(w).

Theorem 2.1 The following properties hold:

(a)
S Cend(C) C 970¢(0) =cl S,

entailing that cl(end(C')) = 97 o¢(0).
(b) If C is a polyhedral set, then
S =end(C) =070c(0) =cl S,

implying that the sets S and end(C') are both closed.
(¢) end(C) = 970¢(0) if and only if end(C') is closed.



Corollary 2.1 Assume that C' = conv A for a nonempty and com-
pact set A. In terms of

A = {arg max{a, w) | mehx(a w) > 0},

acA
we have
U conv A" C end(C) C 9”0¢(0) (U conv A’
AleA AleA

(2.3)
If A is a finite set, all the inclusions in (2.3) become equalities,
entailing that d(0,end(C)) > 0, see [ :
A

Remark: A" € A if and only if there is some w € R” such that
(a,w) =1Va € A, (a,w) < 1Va € A\A".

The latter construction was first introduced by [
] for the case when A is a finite set.



2.2. Lower and upper bounds of error bound moduli for
locally Lipschitz and regular functions

Theorem 2.2 Let ¢ : R — RU {+oo} and & € bdry|p < 0]. If
¢ is regular and locally Lipschitz ar &, then

d(0,0°$(7)) < ebm(g, z) < d(0, 8 7oy (0)) = d(0, endgigf))).



Example 2.1 [Studnariski and Ward (1999)] (underestimated
lower estimate).

0 if v <0,
i) = 27" if 271 < o < 27" with n being an odd integer,
T ) 3z — 27" if 27 < @ < 27" with n being an even integer,
T otherwise.
0.6
0.5}
0.4f
0.3f
0.2t




Let x = 0. It is clear to see that ¢ is Lipschitz continuous and
regular at * = 0. By some direct calculations, we have

06(z) = 7 6(z) = [0, 1]
07 005(z)(0) = end(9 ( ) = {1}
ebm(¢, T) =
It then follows that

= d(0,07¢(z)) < ebm(¢,7) = d (0,07 094z (0)) = 1.

That is, the lower estimate in (2.4) is underestimated.



Example 2.2 (overestimated upper estimate). Let T = (0,0)", and

let
¢(x) = max{fi(z), fo(2)},

where fi(z) = af + 23 + 3(x1 + 22) and fox) = x1 +
To. It is clear that ¢ is a convex function. Clearly, 0p(T) =
conv{(3,3)", (1,1)"}. From Corollary 2.1, it follows that

8 02412)(0) = end(9(2)) = {(1,1)"}.

But from Remark 3.6 (i) of [ [, we get
0”¢(z) = conv{(3, 3)", (1, 1)"}. Therefore,
V2 _

5 = d(0,07¢(z)) = ebm(¢, 3) < d(0, 07 004)(0)) = V2.

That is, the upper estimate in (2.4) is overestimated.



2.3. Sharp lower bound for lower-C' functions

let ¢ be lower-C! on an open subset O of R" (cf. [

, Definition 10.29]) and let x € O be a fixed point on
the boundary of the level set [¢ < 0]. Moreover, we assume that on
some open neighborhood V" of ¥ there is a representation

¢(z) = max f(z,y) (2.5)
yey
in which the functions f(-,y) are of class C* on V' and the index

set Y C R is a compact space such that f(z,y) and V. f(x,y)

depend continuously not just on x € V but jointly on (x,y) €
V xY.



Let the active index set mapping Y : V' = R" be defined by
Y(z):={y eY|f(z,y) = o(x)}.

We introduce two collections of index sets as follows:

V(@) = { lim Y (zy) | o — 7 and ¢(zy) > 0 Vk} |

k——+00

yeY (z) yeY (T)

y>(f) o {argmaX <fo(£,y),w> max (fo(:i,y),w> > 0

} |



Theorem 2.3 If ¢ is lower-C' on an open subset O of R" and T €
O is on the boundary of the level set (¢ < 0|, then

d(0, 8% $(%)) = ebm(e, 7) < d(0,end(dp(7))).

If, in addition, f has a representation by (2.5), we have

0" ¢(x) = U conv{V.f(Z,y)ly € Y'},

Y'e)Y(z)

and

end(0¢(z)) = U conv{V.f(Z,y)ly € Y'}.

Y'eY>(z)



2.4. Sharp upper bound for convex functions

Theorem 2.4 Assume that ¢ is finite and convex on some convex
neighborhood of . If there is a neighborhood V' of * such that

@ < 0[NV = (z +[do(z) < 0)) NV, (2.6)
then the following equalities hold:

4(0,8°$(z)) = ebm(@, 2) = d (0, 877250 (0))



Consider the linear system
(ag, ) < b VteT, (2.7)

where a; € R", b; € R, and ' is a compact space such that a; and
b; depend continuously ont € T

o O(x) = maxer{(as, r) — bs};
o I'(x) ={teT]| (a,z) — b = p(x)}.

According to [ 1, (2.7) 1s a locally polyhedral
linear system if

(posconvi{a, | t € T(x)})" = pos([¢p < 0]—z) Va € [p <0
(2.8)



Corollary 2.2 Consider the linear system (2.7). If one of the fol-
lowing equivalent properties is satisfied:

(a) The regularity condition (2.6) holds for all x in the solution set
(¢ <0
(b) The linear system (2.7) is locally polyhedral, i.e., (2.8) holds,

then,

ebm(¢p, x) =d | 0, U conv{a; |t € T'} | V€ lp <0,
T'eT ()
(2.9)

where

T(z) ={T"|3w : {a,w) =1Vt € T', {ay, w) < 1Vt € T'(x)\T"}.

Remark: As a finite linear system is naturally locally polyhedral,
our result below recovers [ , Theorem 4.1] for
the case of a finite linear system.



3. Perspectives and open questions

When ¢ is regular and locally Lipschitz continuous on some neigh-
borhood of Z € bdry([¢ < 0]), we obtained in Theorem 2.2 a
lower estimate and an upper estimate of the local error bound mod-
ulus ebm(¢, ) as follows:

4(0,87$(z)) < cbm(6,7) < d (0, Goun(0)) .

In particular, when ¢ is finite and convex on some convex neigh-
borhood of Z € bdry([¢ < 0]), we obtained in Theorem 2.4 under

the ACQ and ETA properties the following:
d(0,07¢(z)) = ebm(¢, ) = d (0,97 94(2)(0)) ,

and when ¢ is a lower C! functions, we obtained in Theorem 2.3
the following:

d (07 a>¢(j)) - ebm(¢7 3_7) <d (07 a>0—3¢(f)(0)) :

One open question is whether the inclusion
8>03¢(5)(0) C 07 ¢p(T) (3.10)

holds or not in the general case or in some particular settings.
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