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1. Existing results
Let φ : Rn → R ∪ {+∞} at x̄ ∈ [φ ≤ 0]a.

Definition 1.1 φ has a local error bound for [φ ≤ 0] at some
x̄ ∈ [φ ≤ 0] if, there exist some τ > 0 and ε > 0 such that for all
x ∈ Rn with ‖x− x̄‖ < ε,

τd(x, [φ ≤ 0]) ≤ φ(x). (1.1)

φ is a global error bound for [φ ≤ 0] if (1.1) holds for all x.

Closely related notions:

• calmness (variant of the Aubin property)

• subregularity (variant of metric regularity)

• (local) weak sharp minima

[Burke and Ferris (1993), Pang (1997), Dontchev and Rockafellar
(2004), Rockafellar and Wets (1998), Henrion and Outrata (2005)]
....

a[φ ≤ 0] := {x ∈ Rn|φ(x) ≤ 0} denotes the level set.
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The local error bound modulus of φ : Rn → R ∪ {+∞} at
x̄ ∈ [φ ≤ 0] is defined by

ebm(φ, x̄) := lim inf
x→x̄,φ(x)>0

φ(x)

d(x, [φ ≤ 0])
.

Clearly, 0 ≤ ebm(φ, x̄) ≤ +∞.
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• Case ebm(φ, x̄) = 0

For any 0 < τ , there is no V ∈ N (x̄) such that

τd(x, [φ ≤ 0]) ≤ φ(x)+ ∀x ∈ V.

In this case, we say that φ has no local error bound at x̄.

• Case ebm(φ, x̄) > 0

For 0 < τ < ebm(φ, x̄), there is some Vτ ∈ N (x̄) such that

τd(x, [φ ≤ 0]) ≤ φ(x)+ ∀x ∈ Vτ . (1.2)

In this case, we say that φ has a local error bound at x̄.

Alternatively, we have

ebm(φ, x̄) = sup{τ > 0 | ∃Vτ ∈ N (x̄) satisfying (1.2)}a

aHere, sup ∅ := 0 is used by convention.
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The set
{τ > 0 | ∃Vτ ∈ N (x̄) satisfying (1.2)}

is an interval, either being (0, ebm(φ, x̄)] or (0, ebm(φ, x̄)).

For instance,

• in the case of φ(x) = x and x̄ = 0, it is (0, 1] with
ebm(φ, x̄) = 1;

• in the case of φ(x) = sinx and x̄ = 0, it is (0, 1)a with
ebm(φ, x̄) = 1.

a1 is not included because it is impossible that x ≤ sinx when x > 0 is near 0.
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• Vτ ’s in (1.2) often depend on τ ;

• Let V max
τ be the maximal one among all possible Vτ ’s in (1.2),

i.e.,

V max
τ :=

⋃
{Vτ ∈ N (x̄) | Vτ satisfies (1.2)}.

Then, V max
τ ↘ as τ ↗.

• Outside the level set [φ ≤ 0], there may exist no common point
among all these neighborhoods V max

τ , i.e., one may have ⋂
0<τ<ebm(φ,x̄)

V max
τ

 \[φ ≤ 0] = ∅.
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Take φ(x) =
√
x+ and x̄ = 0 for example.

• [φ ≤ 0] = −R+ and d(0, [φ ≤ 0]) = x+;

• V max
τ = (−∞, 1

τ2
] for all τ > 0;

• (1.2) can be written as τx+ ≤
√
x+ ∀x ∈ (−∞, 1

τ2
];

• ebm(φ, x̄) = +∞;

•
(⋂

0<τ<ebm(φ,x̄) V
max
τ

)
\[φ ≤ 0] = ∅.
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As ebm(φ, x̄) = +∞ whenever x ∈ int([φ ≤ 0]), we assume in
what follows that x̄ ∈ bdry[φ ≤ 0].

A lower estimate via outer limiting subdifferential:

If φ : Rn → R ∪ {±∞} is lower semicontinuous, we have

d(0, ∂>φ(x̄)) ≤ ebm(φ, x̄),

where

∂>φ(x̄) :=

{
lim

k→+∞
vk | ∃xk →φ x̄, φ(xk) > φ(x̄), vk ∈ ∂φ(xk)

}
is the outer limiting subdifferential of φ at x̄. See [Kruger et al
(2010), Fabian et al (2010), Iofe (2015)].
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Smooth case

If φ is smooth, we have ∂>φ(x̄) = ∇φ(x̄) and

d(0, ∂>φ(x̄)) = ebm(φ, x̄).

Pointwise max of C1

If φ(x) = max
1≤i≤m

fi(x) with fi’s being smooth, we have

d(0, ∂>φ(x̄)) = ebm(φ, x̄).

Convex and lower semicontinuous case

If φ is lower semicontinuous and convex, and x̄ ∈ bdry[φ ≤ 0],
we have

d(0, ∂>φ(x̄)) = ebm(φ, x̄).



Home Page

Title Page

Contents

JJ II

J I

Page 11 of 29

Go Back

Full Screen

Close

Quit

Polyhedral case

• φ(x) = max
1≤i≤m

(〈ai, x〉 − bi) and x̄ ∈ bdry[φ ≤ 0].

• I(x) := {i | φ(x) = 〈ai, x〉 − bi} is the active index set.

It was shown in [Cánovas et al (2014), Theorem 4.1] that,

∂>φ(x̄) =
⋃

D∈D(x̄)

conv{ai, i ∈ D},

where D ∈ D(x̄) if and only if D ⊂ I(x̄) and there is some
d ∈ Rn such that

〈ai, d〉 = 1 ∀i ∈ D, 〈ai, d〉 < 1 ∀i ∈ I(x̄)\D.
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For a nonempty and convex setA ⊂ Rn, the end set ofA is defined
in [Hu (2005), Hu (2007)] by

end(A) := {x ∈ clA|tx 6∈ clA ∀t > 1}.

Sublinear case
It was shown by [Hu and Wang (2011), Theorem 4.1] that, if φ is a
sublinear and lower semicontinuous function, then

ebm(φ, 0) = d(0, end(C)),

where C is the unique closed and convex set such that φ = σC .
In this case, we also have

ebm(φ, 0) = d(0, ∂>φ(0)) = d(0, ∂>σC(0)).
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2. Our contributions
2.1. Support function of a compact convex set and its

outer limiting subdifferential

Let C be a compact and convex subset of Rn. The support function
σC : Rn → R of C is defined by

σC(w) := sup
x∈C
〈x,w〉.

• C = {v ∈ Rn | 〈v, w〉 ≤ σC(w) ∀w}.
•

∂σC(w) = arg max
v∈C

〈v, w〉 = C∩{v ∈ Rn | 〈v, w〉 = σC(w)}.

• F is a nonempty exposed face ofC if and only if F = ∂σC(w)
for some w 6= 0.
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Throughout this section, we use the following notation:

S :=
⋃

σC(w)>0

∂σC(w).

Theorem 2.1 The following properties hold:

(a)
S ⊂ end(C) ⊂ ∂>σC(0) = clS,

entailing that cl(end(C)) = ∂>σC(0).

(b) If C is a polyhedral set, then

S = end(C) = ∂>σC(0) = clS,

implying that the sets S and end(C) are both closed.

(c) end(C) = ∂>σC(0) if and only if end(C) is closed.
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Corollary 2.1 Assume that C = convA for a nonempty and com-
pact set A. In terms of

A = {arg max
a∈A

〈a, w〉 | max
a∈A
〈a, w〉 > 0},

we have⋃
A′∈A

convA′ ⊂ end(C) ⊂ ∂>σC(0) = cl

( ⋃
A′∈A

convA′
)
.

(2.3)
If A is a finite set, all the inclusions in (2.3) become equalities,
entailing that d(0, end(C)) > 0, see [Zheng and Ng (2004), Hu
(2005)].

Remark: A′ ∈ A if and only if there is some w ∈ Rn such that

〈a, w〉 = 1∀a ∈ A′, 〈a, w〉 < 1∀a ∈ A\A′.

The latter construction was first introduced by [Cánovas et al
(2016)] for the case when A is a finite set.



Home Page

Title Page

Contents

JJ II

J I

Page 16 of 29

Go Back

Full Screen

Close

Quit

2.2. Lower and upper bounds of error bound moduli for
locally Lipschitz and regular functions

Theorem 2.2 Let φ : Rn → R ∪ {+∞} and x̄ ∈ bdry[φ ≤ 0]. If
φ is regular and locally Lipschitz at x̄, then

d (0, ∂>φ(x̄)) ≤ ebm(φ, x̄) ≤ d(0, ∂>σ∂φ(x̄)(0)) ≡ d(0, end(∂φ(x̄))).
(2.4)
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Example 2.1 [Studnariski and Ward (1999)] (underestimated
lower estimate).

φ(x) =


0 if x ≤ 0,
2−n if 2−n−1 ≤ x ≤ 2−n with n being an odd integer,
3x− 2−n if 2−n−1 ≤ x ≤ 2−n with n being an even integer,
x otherwise.
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Let x̄ = 0. It is clear to see that φ is Lipschitz continuous and
regular at x̄ = 0. By some direct calculations, we have

∂φ(x̄) = ∂>φ(x̄) = [0, 1]

∂>σ∂φ(x̄)(0) = end(∂φ(x̄)) = {1}
ebm(φ, x̄) = 1.

It then follows that

0 = d (0, ∂>φ(x̄)) < ebm(φ, x̄) = d
(
0, ∂>σ∂φ(x̄)(0)

)
= 1.

That is, the lower estimate in (2.4) is underestimated.



Home Page

Title Page

Contents

JJ II

J I

Page 19 of 29

Go Back

Full Screen

Close

Quit

Example 2.2 (overestimated upper estimate). Let x̄ = (0, 0)T , and
let

φ(x) = max{f1(x), f2(x)},
where f1(x) = x2

1 + x2
2 + 1

2
(x1 + x2) and f2(x) = x1 +

x2. It is clear that φ is a convex function. Clearly, ∂φ(x̄) =
conv{(1

2
, 1

2
)T , (1, 1)T}. From Corollary 2.1, it follows that

∂>σ∂φ(x̄)(0) = end(∂φ(x̄)) = {(1, 1)T}.

But from Remark 3.6 (i) of [Cánovas et al (2016)], we get
∂>φ(x̄) = conv{(1

2
, 1

2
)T , (1, 1)T}. Therefore,

√
2

2
= d(0, ∂>φ(x̄)) = ebm(φ, x̄) < d(0, ∂>σ∂φ(x̄)(0)) =

√
2.

That is, the upper estimate in (2.4) is overestimated.
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2.3. Sharp lower bound for lower-C1 functions

let φ be lower-C1 on an open subset O of Rn (cf. [Rockafellar and
Wets (1998), Definition 10.29]) and let x̄ ∈ O be a fixed point on
the boundary of the level set [φ ≤ 0]. Moreover, we assume that on
some open neighborhood V of x̄ there is a representation

φ(x) = max
y∈Y

f (x, y) (2.5)

in which the functions f (·, y) are of class C1 on V and the index
set Y ⊂ Rm is a compact space such that f (x, y) and ∇xf (x, y)
depend continuously not just on x ∈ V but jointly on (x, y) ∈
V × Y .
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Let the active index set mapping Y : V ⇒ Rm be defined by

Y (x) := {y ∈ Y |f (x, y) = φ(x)}.

We introduce two collections of index sets as follows:

Y(x̄) :=

{
lim

k→+∞
Y (xk) | xk → x̄ and φ(xk) > 0 ∀k

}
,

Y>(x̄) :=

{
arg max
y∈Y (x̄)

〈∇xf (x̄, y), w〉
∣∣∣∣ max
y∈Y (x̄)

〈∇xf (x̄, y), w〉 > 0

}
.



Home Page

Title Page

Contents

JJ II

J I

Page 22 of 29

Go Back

Full Screen

Close

Quit

Theorem 2.3 If φ is lower-C1 on an open subset O of Rn and x̄ ∈
O is on the boundary of the level set [φ ≤ 0], then

d(0, ∂>φ(x̄)) = ebm(φ, x̄) ≤ d(0, end(∂φ(x̄))).

If, in addition, f has a representation by (2.5), we have

∂>φ(x̄) =
⋃

Y ′∈Y(x̄)

conv{∇xf (x̄, y)|y ∈ Y ′},

and

end(∂φ(x̄)) ∼=
⋃

Y ′∈Y>(x̄)

conv{∇xf (x̄, y)|y ∈ Y ′}.
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2.4. Sharp upper bound for convex functions

Theorem 2.4 Assume that φ is finite and convex on some convex
neighborhood of x̄. If there is a neighborhood V of x̄ such that

[φ ≤ 0] ∩ V = (x̄ + [dφ(x̄) ≤ 0]) ∩ V, (2.6)

then the following equalities hold:

d (0, ∂>φ(x̄)) = ebm(φ, x̄) = d
(
0, ∂>σ∂φ(x̄)(0)

)
.
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Consider the linear system

〈at, x〉 ≤ bt ∀t ∈ T, (2.7)

where at ∈ Rn, bt ∈ R, and T is a compact space such that at and
bt depend continuously on t ∈ T .

• φ(x) := maxt∈T{〈at, x〉 − bt};
• T (x) := {t ∈ T | 〈at, x〉 − bt = φ(x)}.

According to [Anderson et al (1998)], (2.7) is a locally polyhedral
linear system if

(pos conv{at | t ∈ T (x)})∗ = pos([φ ≤ 0]−x) ∀x ∈ [φ ≤ 0].
(2.8)
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Corollary 2.2 Consider the linear system (2.7). If one of the fol-
lowing equivalent properties is satisfied:

(a) The regularity condition (2.6) holds for all x in the solution set
[φ ≤ 0],

(b) The linear system (2.7) is locally polyhedral, i.e., (2.8) holds,

then,

ebm(φ, x) = d

0,
⋃

T ′∈T (x)

conv{at | t ∈ T ′}

 ∀x ∈ [φ ≤ 0],

(2.9)
where

T (x) := {T ′|∃w : 〈at, w〉 = 1∀t ∈ T ′, 〈at, w〉 < 1∀t ∈ T (x)\T ′}.

Remark: As a finite linear system is naturally locally polyhedral,
our result below recovers [Cánovas et al (2014), Theorem 4.1] for
the case of a finite linear system.
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3. Perspectives and open questions
When φ is regular and locally Lipschitz continuous on some neigh-
borhood of x̄ ∈ bdry([φ ≤ 0]), we obtained in Theorem 2.2 a
lower estimate and an upper estimate of the local error bound mod-
ulus ebm(φ, x̄) as follows:

d (0, ∂>φ(x̄)) ≤ ebm(φ, x̄) ≤ d
(
0, ∂>σ∂φ(x̄)(0)

)
.

In particular, when φ is finite and convex on some convex neigh-
borhood of x̄ ∈ bdry([φ ≤ 0]), we obtained in Theorem 2.4 under
the ACQ and ETA properties the following:

d (0, ∂>φ(x̄)) = ebm(φ, x̄) = d
(
0, ∂>σ∂φ(x̄)(0)

)
,

and when φ is a lower C1 functions, we obtained in Theorem 2.3
the following:

d (0, ∂>φ(x̄)) = ebm(φ, x̄) ≤ d
(
0, ∂>σ∂φ(x̄)(0)

)
.

One open question is whether the inclusion

∂>σ∂φ(x̄)(0) ⊂ ∂>φ(x̄) (3.10)

holds or not in the general case or in some particular settings.
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