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Abstract In this paper we study local error bound moduli for a locally Lipschitz and
regular function via outer limiting subdifferential sets. We show that the distance from
0 to the outer limiting subdifferential of the support function of the subdifferential set,
which is essentially the distance from 0 to the end set of the subdifferential set, is an
upper estimate of the local error bound modulus. This upper estimate becomes tight
for a convex function under some regularity conditions. We show that the distance
from 0 to the outer limiting subdifferential set of a lower C1 function is equal to the
local error bound modulus.
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1 Introduction

Error bounds play a key role in variational analysis. They are of great importance
for subdifferential calculus, stability and sensitivity analysis, exact penalty functions,
optimality conditions, and convergence of numerical methods, see the excellent survey
papers [2,19,24] for more details. It should be noticed that the notion of error bounds
is closely related to some other important concepts: weak sharp minima, calmness and
metric subregularity, see [3,4,7,14,16,23,26].

In this paper, we study local error bound moduli in finite dimensional spaces. We
say that a function φ : Rn → R := R∪ {+∞} has a local error bound at x̄ ∈ [φ ≤ 0]
if there exist some τ > 0 and some neighborhood U of x̄ such that

τd(x, [φ ≤ 0]) ≤ φ(x)+ ∀x ∈ U, (1)

where [φ ≤ 0] := {x ∈ R
n|φ(x) ≤ 0} and t+ := max{t, 0} for all t ∈ R. The

supremum of all possible constants τ in (1) (for some associatedU ) is called the local
error bound modulus of φ at x̄ , denoted by ebm(φ, x̄). We define ebm(φ, x̄) as 0 if φ

does not have a local error bound at x̄ . Clearly, the local error bound modulus of φ at
x̄ can be alternatively defined as

ebm(φ, x̄) = lim inf
x→x̄,φ(x)>0

φ(x)

d(x, [φ ≤ 0]) .

We know from the literature [9,15,17] that the distance from 0 to the outer limiting
subdifferential of a lower semicontinuous function φ at x̄ , is a lower estimate of
ebm(φ, x̄), which becomes tight when φ is convex.

In this paper we consider the local error bound modulus of a regular function φ and
establish that the distance from 0 to the outer limiting subdifferential of the support
function of the subdifferential ∂φ(x̄) at 0 is an upper estimate of ebm(φ, x̄). With
additional Lipschitzian continuity assumption on φ, we also investigate the geometric
structure of this outer limiting subdifferential and show that it is equal to the closure
of the end set of the subdifferential ∂φ(x̄), while the closure is surplus when the
subdifferential set is a polyhedron. Thus the upper estimate is essentially the distance
from 0 to the end set of ∂φ(x̄).

It is worth noting that the lower C1 functions and convex functions are two important
examples of regular and locally Lipschitz functions.We prove that, for convex function
φ, under the Abadie’s constraint qualification [20] and the assumption on exactness
of tangent approximations [22] (see Definition 3.1 for their definitions), the upper
estimate is tight, that is, ebm(φ, x̄) is equal to the distance from 0 to the end set of
∂φ(x̄). To the best of our knowledge, the first result of the kind is that Hu [13] proved
for sublinear function φ that, ebm(φ, 0) is equal to the distance from 0 to the end set of
∂φ(0). For lower C1 function φ, we show that the distance from 0 to the outer limiting
subdifferential of φ at x̄ is equal to ebm(φ, x̄). This generalizes the corresponding
results in [9,15,17] for convex function φ.

Throughout the paper we use the standard notations of variational analysis; see the
seminal book [26] by Rockafellar and Wets. Let A ⊂ R

n . We denote the interior, the
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closure, the boundary, the convex hull and the positive hull of A respectively by int A,
cl A, bdry A, conv A and posA := {0} ∪ {λx |x ∈ A and λ > 0}.

The Euclidean norm of a vector x is denoted by ‖x‖, and the inner product of
vectors x and y is denoted by 〈x, y〉. Let B(x, ε) be a closed ball centered at x with
the radius ε > 0. We say that A is locally closed at a point x ∈ A if A ∩ U is closed
for some closed neighborhood U of x . The polar cone of A is defined by

A∗ := {
v ∈ R

n|〈v, x〉 ≤ 0 ∀x ∈ A
}
.

The support function σA : Rn → R of A is defined by

σA(w) := sup
x∈A

〈x, w〉.

For a closed and convex set A with 0 ∈ A, the gauge of A is the function γA :
R
n → R defined by

γA(x) := inf{λ ≥ 0|x ∈ λA}.

The distance from x to A is defined by

d(x, A) := inf
y∈A

‖y − x‖.

For A = ∅, we define d(x, A) = +∞. The projection mapping PA is defined by

PA(x) := {y ∈ A|||y − x || = d(x, A)} .

Let x ∈ A. We use TA(x) to denote the tangent cone to A at x , i.e. w ∈ TA(x) if
there exist sequences tk ↓ 0 and {wk} ⊂ R

n with wk → w and x + tkwk ∈ A ∀k.
The regular normal cone N̂A(x) to A at x is the polar cone of TA(x). A vector v ∈ R

n

belongs to the normal cone NA(x) to A at x , if there exist sequences xk → x and
vk → v with xk ∈ A and vk ∈ N̂A(xk) for all k. The set A is said to be regular at x in
the sense of Clarke if it is locally closed at x and N̂A(x) = NA(x).

Let g : Rn → R be an extended real-valued function and x̄ a point with g(x̄) finite.
The epigraph of g is the set

epig := {
(x, α) ∈ R

n × R|g(x) ≤ α
}
.

It is well known that g is lower semicontinuous (lsc) if and only if epig is closed.
The vector v ∈ R

n is a regular subgradient of g at x̄ , written v ∈ ∂̂g(x̄), if

g(x) ≥ g(x̄) + 〈v, x − x̄〉 + o (‖x − x̄‖) .

The vector v ∈ R
n is a (general) subgradient of g at x̄ , written v ∈ ∂g(x̄), if there

exist sequences xk → x̄ and vk → v with g(xk) → g(x̄) and vk ∈ ∂̂g(xk). The outer
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limiting subdifferential of g at x̄ is defined in [9,15,17] by

∂>g(x̄) =
{

lim
k→+∞ vk | ∃xk −→

g
x̄, g(xk) > g(x̄), vk ∈ ∂g(xk)

}
.

The subderivative function dg(x̄) : Rn → R is defined by

dg(x̄)(w) := lim inf
t↓0,w′→w

g(x̄ + tw′) − g(x̄)

t
∀w ∈ R

n .

Note that the subderivative dg(x̄) is an lsc and positively homogeneous function and
that the regular subdifferential set can be derived from the subderivative as follows:

∂̂g(x̄) = {
v ∈ R

n|〈v,w〉 ≤ dg(x̄)(w) ∀w ∈ R
n} .

The function g is said to be (subdifferentially) regular at x̄ if epig is regular in the
sense of Clarke at (x̄, g(x̄)) as a subset of Rn × R.

For a sequence {Ak} of subsets of Rn , the outer limit lim supk→∞ Ak is the set
consisting of all possible cluster points of sequences xk with xk ∈ Ak for all k, whereas
the inner limit lim infk→∞ Ak is the set consisting of all possible limit points of such
sequences. {Ak} is said to converge to A ⊂ R

n in the sense of Painlevé–Kuratowski,
written Ak → A, if

lim sup
k→∞

Ak = lim inf
k→∞ Ak = A.

For a set-valued mapping S : Rn ⇒ R
m and a point x̄ ∈ R

n , the outer limit of S at x̄
is defined by

lim sup
x→x̄

S(x) := {
u ∈ R

m |∃xk → x̄, ∃uk → u with uk ∈ S(xk)
}
.

S is outer semicontinuous (osc, for short) at x̄ if and only if

lim sup
x→x̄

S(x) ⊂ S(x̄).

Let gphS denote the graph of S. We recall that S is said to be calm at (x̄, ȳ) ∈ gphS
if there exist a constant α > 0 and neighborhoods U of x̄ and V of ȳ such that

d (y, S(x̄)) ≤ α‖x − x̄‖ ∀x ∈ U and y ∈ S(x) ∩ V .

The infimum of all possible constants α (for some associated U and V ) is called the
calmness modulus of S at (x̄, ȳ), denoted as clmS(x̄, ȳ), defined as +∞ if S is not
calm at (x̄, ȳ).

A face of a convex set A is a convex subset A′ of A such that every closed line
segment in A with a relative interior point in A′ has both endpoints in A′. An exposed
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face of A is the intersection of A and a non-trivial supporting hyperplane to A. See
[25]. For a nonempty and convex set A ⊂ R

n , the end set of A is defined in [11,12]
by

end(A) := {x ∈ clA|t x /∈ clA ∀t > 1}.

2 Support function and its outer limiting subdifferential

In this section, we study the outer limiting subdifferential of the support function of a
general compact and convex set and show that it is the closure of the end set of this
compact and convex set. In the next section, we shall apply these results to study the
error bound modulus for a locally Lipschitz and regular function as its subdifferential
set is compact and convex. It is worth noting that the results presented in this section
have their own interest in the field of convex analysis and optimization.

Let C be a compact and convex subset of Rn . To begin with, we note from [26,
Theorem 8.24, Proposition 8.29, Corollary 8.25] that

C = {
v ∈ R

n | 〈v,w〉 ≤ σC (w) ∀w
}

(2)

and
∂σC (w) = argmaxv∈C 〈v,w〉 = C ∩ {

v ∈ R
n | 〈v,w〉 = σC (w)

}
. (3)

Since C is compact and convex, we have σC (w) < +∞ and ∂σC (w) �= ∅ for all
w ∈ R

n .
We first consider the case that 0 ∈ C and then the general case that C may not

contain 0. Some basic properties of the end set of C are listed in the following lemma.

Lemma 2.1 If C ⊂ R
n is compact and convex with 0 ∈ C, then the following prop-

erties hold:

(i) end(C) ∩ riC = ∅;
(ii) C = ⋃

v∈end(C)[0, v];
(iii) For a subset E ⊂ C, C = ⋃

v∈E [0, v] if and only if end(C) ⊂ E;
(iv) F is a nonempty exposed face of C if and only if F = ∂σC (w) for some w �= 0.

Proof (i) Suppose by contradiction that v ∈ end(C) ∩ riC . By the relative interior
criterion [26, Exercise 2.41], there must exist some v′ ∈ C such that v ∈ ri[0, v′],
which contradicts to the fact that v ∈ end(C).

(ii) This equality holds because C is convex and compact with 0 ∈ C .
(iii) The ‘if’ part is trivial due to (ii). As for the ‘only if’ part, we only need to show

end(C) ⊂ E . Let v ∈ end(C). Since C is compact, it is clear that v ∈ C . By
C = ⋃

v∈E [0, v], there exists some v′ ∈ E such that v ∈ [0, v′]. By the definition
of the end set, we have v = v′. This entails that end(C) ⊂ E .

(iv) Clearly, any ∂σC (w) with w �= 0 is an exposed face of C . Conversely, if F �= ∅
is exposed in C , then by definition there exist some w �= 0 and α ∈ R such
thatF = C ∩ {v ∈ R

n | 〈w, v〉 = α} and C ⊂ {v ∈ R
n | 〈w, v〉 ≤ α}. The latter

inclusion holds if and only if σC (w) ≤ α. In view of (2) and the fact that F ⊂ C ,

123



468 M. H. Li et al.

we have α = 〈w, v〉 ≤ σC (w) for each v ∈ F . This entails that α = σC (w). In
view of (3), we have F = ∂σC (w). The proof is completed. ��

Throughout this section, we use the following notation:

S :=
⋃

σC (w)>0

∂σC (w).

According to Lemma 2.1(iv), S is the union of all the exposed faces ∂σC (w) ofC with
σC (w) > 0.

In next lemma, we prove that end(C) is sandwiched between S and its closure, the
latter being exactly the same with the outer limiting subdifferential ∂>σC (0).

Lemma 2.2 If C ⊂ R
n is compact and convex with 0 ∈ C, then

S ⊂ end(C) = γ −1
C (1) ⊂ ∂>σC (0) = cl S,

entailing that

cl(end(C)) = cl(γ −1
C (1)) = ∂>σC (0).

Proof First, we show end(C) = γ −1
C (1) and cl S = ∂>σC (0). The first equality

follows from the definitions of the end set and the gauge function, while the second
equality follows readily from the positive homogeneity of σC and the definition of
outer limiting subdifferential.

Next, we show S ⊂ end(C). Let v ∈ S, i.e., v ∈ ∂σC (w) for some w ∈ R
n

with σC (w) > 0. In view of (3), we have v ∈ C and 〈v,w〉 = σC (w), implying
that 〈tv,w〉 > σC (w) for all t > 1. By (2), we have tv /∈ C for all t > 1. That is,
v ∈ end(C).

Finally we show end(C) ⊂ cl S. To begin with, we show that end(C) ⊂ S ∪ S0,
where

S0 =
⋃

σC (w)=0, ∂σC (w) �=C

∂σC (w). (4)

Let v ∈ end(C). By Lemma 2.1(i), v /∈ riC . It then follows from [25, Theorem 11.6]
that there exists a non-trivial supporting hyperplane H to C containing v. That is,
we can find an exposed face F := C ∩ H of C such that v ∈ F and F �= C . By
Lemma 2.1(iv), we can find some w �= 0 such that F = ∂σC (w). This entails that
v ∈ S ∪ S0. Therefore, we have end(C) ⊂ S ∪ S0 as expected. By Lemma 2.1(iii), we
haveC = ⋃

v∈S∪S0 [0, v]. Observing that 0 ∈ ∂σC (w) for allw ∈ R
n withσC (w) = 0,

we have
⋃

v∈S0 [0, v] = S0. This entails that C = A ∪ S0, where A := ⋃
v∈S[0, v].

Since each ∂σC (w) with σC (w) = 0 and ∂σC (w) �= C is a non-trivial exposed face
of C , we confirm that riC ∩ S0 = ∅ (implying that riC ⊂ A and hence C ⊂ cl A).
Clearly, we have A ⊂ C and hence cl A ⊂ C . That is, we have C = cl A. On the basis
of the fact that S ⊂ C is bounded, it’s easy to verify that cl A = ⋃

v∈cl S[0, v]. Thus,
we have C = ⋃

v∈cl S[0, v]. By Lemma 2.1(iii) again, we have end(C) ⊂ cl S.
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To sum up, we have shown S ⊂ end(C) = γ −1
C (1) ⊂ ∂>σC (0) = cl S, which

clearly implies that cl(end(C)) = cl(γ −1
C (1)) = ∂>σC (0). The proof is completed. ��

Remark 2.1 The closure operation in the equality ∂>σC (0) = cl(end(C)) cannot in
general be dropped, because ∂>σC (0) is always closed but end(C) may not be closed,
taking for example the simple set C = {x ∈ R

2 | 0 ≤ x1 ≤ 1, x21 ≤ x2 ≤ x1}.
Under some further conditions on the faces of C , we show that S coincides with

end(C).

Lemma 2.3 Assume that C ⊂ R
n is compact and convex with 0 ∈ C. If, for any

w ∈ R
n with σC (w) = 0 and ∂σC (w) �= C, all the faces of ∂σC (w) that do not

contain 0 are exposed in C, then

end(C) = S.

In particular, if C is a polyhedral set, then

S = end(C) = γ −1
C (1) = ∂>σC (0) = cl S,

implying that the sets S, end(C) and γ −1
C (1) are all closed.

Proof We first show the equality end(C) = S under the assumed conditions on the
faces of C . Let v ∈ end(C) ∩ S0, where S0 is given by (4). By the definition of S0,
there exists some w ∈ R

n with σC (w) = 0 and ∂σC (w) �= C such that v ∈ ∂σC (w).
By [25, Theorem 18.2], there exists a unique face F of C such that v ∈ ri F . By [25,
Theorem 18.1], we have F ⊂ ∂σC (w) ⊂ C . Clearly, F is also a face of ∂σC (w). We
claim that 0 /∈ F , for otherwise there must exist some v′ ∈ F such that v ∈ ri[0, v′] (so
that t0v ∈ F ⊂ C for some t0 > 1), contradicting to the assumption that v ∈ end(C).
That is, F is a face of ∂σC (w) containing no 0, which is assumed to be exposed in C .
It then follows from Lemma 2.1(iv) that F = ∂σC (w′) for some w′ �= 0. As 0 /∈ F ,
we have σC (w′) > 0, implying that F ⊂ S. Then, we have v ∈ S. This entails that
end(C)∩ S0 ⊂ S. As we have shown in the proof of Lemma 2.2 that end(C) ⊂ S∪ S0

and S ⊂ end(C), we get the equality end(C) = S.
To complete the proof, it suffices to note that any polyhedral set has only finitely

many faces and all non-trivial faces are exposed ones. The proof is completed. ��
Remark 2.2 Without the conditions imposed on faces ofC as in Lemma 2.3, the union
set S may not be closed as can be seen from Example 2.1 below, demonstrating that
the closure operation in the equality ∂>σC (0) = cl S cannot in general be dropped,
and that the equality end(C) = S does not hold in general.

Example 2.1 Let C = conv(0∪ {x ∈ R
2 | (x1 − 1)2 + (x2 − 1)2 ≤ 1}). Clearly, C is

a compact and convex set with 0 ∈ C . By some direct calculations, we have

end(C) =
{
x ∈ R

2 | (x1 − 1)2 + (x2 − 1)2 = 1, x1 + x2 ≥ 1
}
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and

S =
{
x ∈ R

2 | (x1 − 1)2 + (x2 − 1)2 = 1, x1 + x2 > 1
}

.

Let v = (0, 1)T and w = (−1, 0)T . Clearly, we have v ∈ end(C)\S, σC (w) = 0 and
∂σC (w) = {v ∈ R

2 | v1 = 0, 0 ≤ v2 ≤ 1}. Moreover, it is easy to verify that the
singleton set {v} is a face of ∂σC (w), but is not exposed in C .

In the following lemma, we present some equivalent conditions for the equality
end(C) = ∂>σC (0) to hold. To this end, we recall from the literature two notions:
relative continuity and a radiative set.We say that a function f : Rn → R is continuous
at a point x̄ with f (x̄) finite relative to a set A ⊂ R

n if, for each xk → x̄ with xk ∈ A
for all k, it holds that f (xk) → f (x̄). Let Q ⊂ R

n be a nonempty cone. Consider Q as
a topological space equipped with the natural topology of a subspace: a fundamental
system of neighborhoods of a point x ∈ Q is the family of sets Nε = {y ∈ Q |
‖y − x‖ < ε}(ε > 0). We denote by intQ X and bdryQ X the interior of a set X ⊂ Q
and its boundary in this topology, respectively. According to [27, Definition 4.1], we
say that a closed nonempty set A ⊂ Q is called a radiative subset of Q if 0 ∈ intQ A
and for each x ∈ Q, the open ray {λx | λ > 0} does not intersect the boundary
bdryQ A more than once.

Lemma 2.4 If C ⊂ R
n is compact and convex with 0 ∈ C, then the following prop-

erties are equivalent:

(i) end(C) = ∂>σC (0);
(ii) end(C) is closed;
(iii) γC is continuous at every x ∈ posC relative to posC;
(iv) C is a radiative subset of posC.

Proof The equivalence of (i) and (ii) follows directly from Lemma 2.2, while the
equivalence of (iii) and (iv) can be found in [27, Proposition 4.2]. It remains to show
the equivalence of (ii) and (iii).

[(ii)�⇒(iii)]: Since 0 /∈ end(C) and end(C) is closed, we have d(0, end(C)) > 0.
From [22, Theorem 4.1], it then follows that posC is closed, γC is continuous at
0 relative to posC , and there is no convergent sequence {xk} ⊂ posC such that
γC (xk) → +∞. Let x ∈ posC with x �= 0 and let xk → x with xk ∈ posC for all k.
Without loss of generality, we may assume that xk �= 0 for all k and that γC (xk) → β

(Note that the sequence γC (xk) is bounded). As γC is lower semi-continuous, we have
β ≥ γC (x) > 0. Since γC (xk/γC (xk)) = 1, we have xk/γC (xk) ∈ end(C). Since
end(C) is assumed to be closed, we have xk/γC (xk) → x/β ∈ end(C). Thus, we
have γC (x/β) = 1 or β = γC (x). This entails that γC is continuous at x relative to
posC . Therefore, we have (ii)�⇒(iii).

[(iii)�⇒(ii)]: From [22, Theorem 4.1], it follows that posC is closed and
d(0, end(C)) > 0. Let vk → v with vk ∈ end(C) (that is, γC (vk) = 1) for all
k. It’s easy to verify that vk ∈ posC for all k and v ∈ posC . Moreover, we have
v �= 0, for otherwise we have d(0, end(C)) = 0, a contradiction. By (iii), we have
γC (vk) → γC (v), implying that γC (v) = 1 or equivalently v ∈ end(C). This entails
the closedness of end(C). The proof is completed. �
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Now we present the results similar to the ones in Lemmas 2.2–2.4, for the case
when C may not contain 0 ∈ R

n .

Theorem 2.1 Let C ⊂ R
n be a compact and convex set not necessarily containing 0,

and let C ′ := conv(C ∪ {0}). Then the following properties hold:

(a) S ⊂ end(C) = γ −1
C ′ (1) ⊂ ∂>σC (0) = cl S, entailing that cl(end(C)) =

cl(γ −1
C ′ (1)) = ∂>σC (0).

(b) If, for any w ∈ R
n with σC (w) = 0 and ∂σC ′(w) �= C ′, all the faces of ∂σC ′(w)

that do not contain 0 are exposed in C ′, then end(C) = S. In particular, if C is
a polyhedral set, then S = end(C) = γ −1

C ′ (1) = ∂>σC (0) = cl S, implying that

the sets S, end(C) and γ −1
C ′ (1) are all closed.

(c) The following properties are equivalent:
(c1) end(C) = ∂>σC (0);
(c2) end(C) is closed;
(c3) γC ′ is continuous at every x ∈ posC ′ relative to posC ′;
(c4) C ′ is a radiative subset of posC ′.

Proof Clearly, C ′ = ∪0≤λ≤1λC is a compact and convex set with 0 ∈ C ′, and
C ′ is polyhedral if C is polyhedral. Moreover, it is easy to verify that σC ′(w) =
max{σC (w), 0} for all w ∈ R

n , and that

∂σC ′(w) =
⎧
⎨

⎩

∂σC (w) if σC (w) > 0,
∪0≤λ≤1λ∂σC (w) if σC (w) = 0,
{0} if σC (w) < 0.

This entails that S = ∪σC (w)>0∂σC (w) = ∪σC ′ (w)>0∂σC ′(w). By definition, we have
end(C ′) = end(C). All results then follow readily from Lemmas 2.2–2.4. ��

By applying Theorem 2.1, we can give some formulas for calculating ∂>σC (0)
when C is the convex hull of a compact subset of Rn .

Corollary 2.1 Let A be a nonempty compact subset of Rn such that C = conv A. In
terms of a collection of subsets of A defined by A := {A′ ⊂ A | ∃w ∈ R

n : A′ =
argmaxa∈A〈a, w〉 and maxa∈A〈a, w〉 > 0}, we have

⋃

A′∈A
conv A′ ⊂ end(C) = γ −1

C (1) ⊂ cl

(
⋃

A′∈A
conv A′

)

= ∂>σC (0). (5)

If A is a finite set, all the inclusions in (5) become equalities.

Proof It suffices to show that A′ ∈ A if and only if there is some w ∈ R
n such that

σC (w) > 0 and conv A′ = ∂σC (w), and then apply Theorem 2.1 in a straightforward
way. ��
Remark 2.3 It is easy to verify that A can be rewritten as

{
A′ ⊂ A | ∃w ∈ R

n such that 〈a, w〉 = 1∀a ∈ A′, 〈a, w〉 < 1∀a ∈ A\A′} ,
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which is in the spirit of the index collection defined in Cánovas et al. [6] for the case
that A is a finite set. On the other hand, when A is a finite set, the equalities in (5)
provide a complete characterization of the set end(C). From which, it is easy to see
that

d(0, end(C)) > 0. (6)

It is worth noting that (6) has been proved in [11,29].

3 Main results

In this section, for a given function φ : Rn → R, which is regular at x̄ , a point on
the boundary of the level set [φ ≤ 0], we shall conduct some variational analysis on
ebm(φ, x̄), the error boundmodulus of φ at x̄ . We first show that the distance from 0 to
∂>φ(x̄), the outer limiting subdifferential of φ at x̄ , is a lower estimate of ebm(φ, x̄),
while the distance from 0 to ∂>σ∂φ(x̄)(0), the outer limiting subdifferential of σ∂φ(x̄)

(the support function of ∂φ(x̄)) at 0, is an upper estimate of ebm(φ, x̄). We then show
that the lower estimate is tight for a lower C1 function and the upper estimate is tight
for a convex function under some regularity conditions.

To begin with, we recall that the inequality

ebm( f, x) ≥ d
(
0, ∂> f (x)

)
(7)

holds for a lsc function f on R
n and a point x with f (x) finite, and the equality

ebm( f, x) = d
(
0, ∂> f (x)

)
(8)

holds if, in addition, f is convex. See [9,15,17].

Theorem 3.1 Consider a function φ : Rn → R and a point x̄ on the boundary of the
level set [φ ≤ 0] with φ(x̄) = 0. If φ is regular at x̄ , then

d
(
0, ∂>φ(x̄)

) ≤ ebm(φ, x̄) ≤ d(0, ∂>σ∂φ(x̄)(0)). (9)

If in addition, ∂φ(x̄) is bounded as is true when φ is locally Lipschitz continuous at
x̄ , we have

∂>σ∂φ(x̄)(0) = cl(end ∂φ(x̄)) = cl

⎛

⎝
⋃

σ∂φ(x̄)(w)>0

∂σ∂φ(x̄)(w)

⎞

⎠ . (10)

Proof In view of (7) and the fact that both d (0, ∂>φ(x̄)) and ebm(φ, x̄) reflect only
local properties of φ near x̄ , we get the inequality d (0, ∂>φ(x̄)) ≤ ebm(φ, x̄) imme-
diately. If φ is regular at x̄ , then ∂φ(x̄) is closed and convex, and dφ(x̄) = σ∂φ(x̄)

is lsc and convex. In view of (8), we have ebm(dφ(x̄), 0) = d(0, ∂>σ∂φ(x̄)(0)). If in
addition ∂φ(x̄) is bounded, (10) can be deduced directly from Theorem 2.1.
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It remains to show the inequality ebm(φ, x̄) ≤ ebm(dφ(x̄), 0). This can be done
by verifying that if there exist some τ > 0 and some neighborhood O of x̄ such that

τd (x, [φ ≤ 0]) ≤ φ(x)+ ∀x ∈ O, (11)

then the following condition holds:

τd (w, [dφ(x̄) ≤ 0]) ≤ dφ(x̄)(w)+ ∀w ∈ R
n .

In what follows, let w ∈ R
n be arbitrarily given and let κ(x) := d(x, [φ ≤ 0]).

Assuming (11), we have

τdκ(x̄)(w) = τ lim inf
t↓0,w′→w

d(x̄ + tw′, [φ ≤ 0])
t

≤ lim inf
t↓0,w′→w

φ(x̄ + tw′)+
t

≤ dφ(x̄)(w)+,

where the second inequality follows from the definition of lower limit. By defini-
tion, it is easy to verify that T[φ≤0](x̄) ⊂ [dφ(x̄) ≤ 0] and hence d(w, [dφ(x̄) ≤
0]) ≤ d(w, T[φ≤0](x̄)). By [26, Example 8.53],we haved(w, T[φ≤0](x̄)) = dκ(x̄)(w).
Therefore, we have

τd(w, [dφ(x̄) ≤ 0]) ≤ dφ(x̄)(w)+.

This completes the proof. ��
In view of Theorem 3.1, when φ is regular and locally Lipschtiz continuous at x̄ ,

the upper estimate d
(
0, ∂>σ∂φ(x̄)(0)

)
in (9) is nothing else but the distance from 0

to the end set of ∂φ(x̄), or equivalently, the distance from 0 to the union of all the
exposed faces of ∂φ(x̄) having normal vectors at which the support function σ∂φ(x̄)

takes positive values.
However, the following examples show that, even if φ is regular and locally Lip-

schtiz continuous, the lower estimate and upper estimate in (9) may not be tight, where
the first example is taken from [28] (see also [21]) and the second one is taken from
[6, Remark 3.6].

Example 3.1 (underestimated lower estimate). Let x̄ = 0 and let φ : R → R+ be
defined by

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ 0,
2−n if 2−n−1 ≤ x ≤ 2−n with n being an odd integer,
3x − 2−n if 2−n−1 ≤ x ≤ 2−n with n being an even integer,
x otherwise.

It is clear to see that φ is Lipschitz continuous and regular at x̄ = 0. By some direct
calculations, we have ∂φ(x̄) = ∂>φ(x̄) = [0, 1], ∂>σ∂φ(x̄)(0) = end(∂φ(x̄)) = {1},
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and ebm(φ, x̄) = 1. It then follows that

0 = d
(
0, ∂>φ(x̄)

)
< ebm(φ, x̄) = d

(
0, ∂>σ∂φ(x̄)(0)

) = 1.

That is, the lower estimate in (9) is underestimated.

Example 3.2 (overestimated upper estimate). Let x̄ = (0, 0)T , and let

φ(x) = max{ f1(x), f2(x)},

where f1(x) = x21 + x22 + 1
2 (x1 + x2) and f2(x) = x1 + x2. It is clear that φ is

a convex function. Clearly, ∂φ(x̄) = conv{( 12 , 1
2 )

T , (1, 1)T }. From Corollary 2.1, it
follows that ∂>σ∂φ(x̄)(0) = end(∂φ(x̄)) = {(1, 1)T }. But from Remark 3.6 (i) of [6],
we get ∂>φ(x̄) = conv{( 12 , 1

2 )
T , (1, 1)T }. Therefore,

√
2

2
= d

(
0, ∂>φ(x̄)

) = ebm(φ, x̄) < d
(
0, ∂>σ∂φ(x̄)(0)

) = √
2.

That is, the upper estimate in (9) is overestimated.

3.1 Sharp lower estimation for lower C1 functions

Many functions expressed by pointwisemax of infinite collections of smooth functions
have the ‘subsmoothness’ property, which is between local Lipschitz continuity and
strict differentiability. Our aim in this subsection is to show that the lower estimate in
(9) is a tight one for lower C1 functions.

Throughout this subsection, let φ be lower C1 on an open subset O of Rn (cf. [26,
Definition 10.29]) and let x̄ ∈ O be a fixed point on the boundary of the level set
[φ ≤ 0]. Moreover, we assume that on some open neighborhood V of x̄ there is a
representation

φ(x) = max
y∈Y f (x, y) (12)

in which the functions f (·, y) are of class C1 on V and the index set Y ⊂ R
m is

a compact space such that f (x, y) and ∇x f (x, y) depend continuously not just on
x ∈ V but jointly on (x, y) ∈ V × Y . In what follows, we shall show that the lower
estimate d(0, ∂>φ(x̄)) in (9) is equal to the error bound modulus ebm(φ, x̄).

To beginwith,we list somenice properties ofφ as follows (cf. [26, Theorem10.31]).

(a) φ is locally Lipschitz continuous and regular on O .
(b) ∂φ(x) = conv{∇x f (x, y)|y ∈ Y (x)} for all x ∈ V , where Y : V ⇒ R

m is the
active index set mapping defined by

Y (x) := {y ∈ Y | f (x, y) = φ(x)} . (13)

(c) σ∂φ(x)(w) = dφ(x)(w) = max
y∈Y (x)

〈∇x f (x, y), w〉 for all x ∈ V and w ∈ R
n .
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(d) The set-valued mapping Y defined by (13) is outer semicontinuous at x̄ , i.e.,

lim sup
x→x̄

Y (x) ⊂ Y (x̄).

Next we obtain some equivalent properties for φ defined by (12) having a local
error bound.

Proposition 3.1 Let τ > 0 and let

Y(x̄) := {Y ′ ⊂ Y (x̄) | ∃ {xk} ⊂ [φ > 0] with xk → x̄ and Y (xk) → Y ′}. (14)

The following properties are equivalent:

(i) There exists some ε > 0 such that for all x ∈ R
n with ‖x − x̄‖ ≤ ε,

τd(x, [φ ≤ 0]) ≤ φ(x)+. (15)

(ii) For every Y ′ ∈ Y(x̄), there exists some u ∈ R
n with ‖u‖ = 1 such that

〈∇x f (x̄, y), u〉 ≥ τ ∀y ∈ Y ′.

(iii) For every Y ′ ∈ Y(x̄), d(0, conv{∇x f (x̄, y)|y ∈ Y ′}) ≥ τ .
(iv) There exists some δ > 0 such that the inequality d(0, ∂φ(x)) ≥ τ holds for all

x ∈ R
n with φ(x) > 0 and ‖x − x̄‖ ≤ δ.

Proof For the sake of notation simplicity, we use C to denote the level set [φ ≤ 0] in
what follows. We shall prove step by step that (i)�⇒(ii)�⇒(iii)�⇒(iv)�⇒(i).

[(i)�⇒(ii)]: Assume that there exists some ε > 0 such that (15) holds for all x ∈ R
n

with ‖x − x̄‖ ≤ ε. First, we show that for any x ∈ bdryC ∩ B(x̄, ε
2 ) and any proximal

normal vector u to C at x with ‖u‖ = 1, there exists some y ∈ Y (x) such that

〈∇x f (x, y), u〉 ≥ τ. (16)

By the definition of proximal normal vectors, there exist some x ′ ∈ R
n and β > 0

such that

u = β(x ′ − x) and x ∈ PC (x ′).

Take ρ := min{ ε
2 , ‖x ′ − x‖}. Then it is easy to verify that

x + tu ∈ B(x̄, ε) ∀t ∈ (0, ρ] and x ∈ PC (x + tu) ∀t ∈ (0, ρ].

In view of (15), we have

τ t = τ‖x + tu − x‖ = τd(x + tu,C) ≤ φ(x + tu)+ ∀t ∈ (0, ρ].
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Thus, we have τ ≤ lim inf t→0+
φ(x+tu)+−φ(x)+

t . From [26, Theorems 9.16 and 10.31],
it follows that φ(x)+ is locally Lipschitz continuous with

lim inf
t→0+

φ(x + tu)+ − φ(x)+
t

= dφ(x)(u)+ = max{ max
y∈Y (x)

〈∇x f (x, y), u〉, 0}.

Therefore, we have τ ≤ max{maxy∈Y (x)〈∇x f (x, y), u〉, 0}. In view of τ > 0, we have
τ ≤ maxy∈Y (x)〈∇x f (x, y), u〉. Since Y (x) is compact, there exists some y ∈ Y (x)
such that (16) holds.

Next, we show (ii) by virtue of the previous result. Let Y ′ ∈ Y(x̄). By definition,
there exists some sequence {x ′

k} ∈ R
n \C with x ′

k → x̄ and Y (x ′
k) → Y ′, entailing that

each y ∈ Y ′ corresponds to a sequence y′
k → y such that y′

k ∈ Y (x ′
k) for all k. SinceC

is a closed set, there exists some xk ∈ bdryC such that xk ∈ PC (x ′
k). Clearly, xk → x̄

and uk := x ′
k−xk

‖x ′
k−xk‖ is a proximal normal vector to C at xk . By taking a subsequence if

necessary, we can assume that uk → u, implying that ‖u‖ = 1. In what follows, let
y ∈ Y ′ be given arbitrarily. To show (ii), it suffices to show

〈∇x f (x̄, y), u〉 ≥ τ. (17)

According to the previous result, we can find some yk ∈ Y (xk) such that for all
sufficiently large k,

〈∇x f (xk, yk), uk〉 ≥ τ. (18)

Since all Y (xk) are subsets of the compact set Y , by taking a subsequence if necessary,
we can assume that yk → ȳ. By the mean value theorem, there is some θk ∈ [0, 1]
such that

f
(
x ′
k, y

′
k

) − f
(
xk, y

′
k

) = 〈∇x f
(
xk + θk(x

′
k − xk), y

′
k

)
, x ′

k − xk
〉
,

which, by the continuity of ∇x f , implies that

∣∣ f
(
x ′
k, y

′
k

) − f
(
xk, y′

k

) − 〈∇x f (xk, y′
k), x

′
k − xk

〉∣∣

‖x ′
k − xk‖

=
〈∇x f

(
xk + θk(x ′

k − xk), y′
k

) − ∇x f (xk, y′
k), x ′

k − xk
〉

‖x ′
k − xk‖

≤ ∥∥∇x f
(
xk + θk(x

′
k − xk), y

′
k

) − ∇x f (xk, y
′
k)

∥∥ → 0.

Thus, we have

lim
k→+∞

f
(
x ′
k, y

′
k

) − f
(
xk, y′

k

)

‖x ′
k − xk‖ = lim

k→+∞
〈∇x f (xk, y

′
k), uk

〉 = 〈∇x f (x̄, y), u〉 .

(19)
Similarly, we obtain

lim
k→+∞

f
(
x ′
k, yk

) − f (xk, yk)

‖x ′
k − xk‖ = lim

k→+∞ 〈∇x f (xk, yk), uk〉 ≥ τ, (20)
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where the inequality follows from (18). Observing that

f
(
x ′
k, y

′
k

) − f
(
xk, y

′
k

) ≥ φ(x ′
k) − φ(xk) ≥ f (x ′

k, yk) − f (xk, yk),

we get from (19) and (20) that (17) holds. This completes the proof for (i)�⇒(ii).
[(ii)�⇒(iii)]: Let Y ′ ∈ Y(x̄). By (ii), there exists some u ∈ R

n with ‖u‖ = 1 that

〈u, v〉 ≥ τ ≥ 〈u, w〉, ∀v ∈ conv{∇x f (x̄, y)|y ∈ Y ′},∀w ∈ B(0, τ ).

Then by a separation argument, we have

0 /∈ int
(
conv{∇x f (x̄, y)|y ∈ Y ′} − B(0, τ )

)
,

which clearly implies (iii).
[(iii)�⇒(iv)]: Let τ ′ ∈ (0, τ ) be given arbitrarily. First, we shall prove that, there

exists some δ > 0 such that for all x /∈ C with ‖x − x̄‖ ≤ δ,

d (0, conv {∇x f (x, y)|y ∈ Y (x)}) ≥ τ ′. (21)

Suppose by contradiction that (21) does not hold, i.e., there exists a sequence {xk} ⊂
R
n \ C with xk → x̄ and

d (0, conv {∇x f (xk, y)|y ∈ Y (xk)}) < τ ′.

It follows from theCarathéodory theorem that, there exist some t jk ≥ 0 and y j
k ∈ Y (xk)

with j = 1, 2, · · ·, n + 1 such that

�n+1
j=1 t

j
k = 1 and

∥∥∥�n+1
j=1 t

j
k ∇x f

(
xk, y

j
k

)∥∥∥ ≤ τ ′. (22)

Since Y (xk) ⊂ Y for all k and Y is compact, it follows from [26, Theorem 4.18] that
Y (xk) has a subsequence converging to Y ∗, a subset of Y . By taking a subsequence if
necessary, we assume that

Y (xk) → Y ∗, t jk → t j ≥ 0, and y j
k → y j ∈ Y ∗.

Since Y : V ⇒ R
m defined by (13) is osc at x̄ , it follows from [26, Exercise 5.3] that

Y ∗ ⊂ Y (x̄), entailing that Y ∗ ∈ Y(x̄). By (22) and the continuity of ∇x f , we have

n+1∑

j=1

t j = 1 and

∥∥∥∥∥∥

n+1∑

j=1

t j∇x f (x̄, y
j )

∥∥∥∥∥∥
≤ τ ′.

Thus, we have d(0, conv{∇x f (x̄, y)|y ∈ Y ∗}) ≤ τ ′, contradicting to (ii). This contra-
diction implies that (21) holds. Since τ ′ ∈ (0, τ ) is given arbitrarily, we confirm that
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there exists some δ > 0 such that the following inequality holds for all x /∈ C with
‖x − x̄‖ ≤ δ:

d (0, conv {∇x f (x, y)|y ∈ Y (x)}) ≥ τ. (23)

In view of (b), we can reformulate (23) as d(0, ∂φ(x)) ≥ τ .
[(iv)�⇒(i)]: This implication follows readily from [21, Proposition 2.1]. ��

Remark 3.1 When Y is a finite set, the results in Proposition 3.1 can be found in [21,
Theorem 2.1]. See also Kummer [18]. In the semi-infinite setting, Proposition 3.1
improves the corresponding results in Henrion and Outrata [10] and Zheng and Yang
[31].

Next theorem shows that the lower estimate in (9) is a tight one.

Theorem 3.2 The following equalities hold:

∂>φ(x̄) =
⋃

Y ′∈Y(x̄)

conv
{∇x f (x̄, y)|y ∈ Y ′} (24)

and

ebm(φ, x̄) = d(0, ∂>φ(x̄)).

Proof The equality (24) follows readily from the definition of outer limiting subdif-
ferential and the fact that all Y (x) are compact and convex subsets of Y (x̄) when x
is close enough to x̄ . The equality ebm(φ, x̄) = d(0, ∂>φ(x̄)) follows from (24) and
the equivalence of (i) and (iii) in Proposition 3.1.

The upper estimate d(0, ∂>σ∂φ(x̄)(0)) in (9) has an alternative expression in terms
of a collection of subsets of the index set Y (x̄) defined by

Y>(x̄) := {
Y ′ ⊂ Y (x̄)

∣∣ ∃w ∈ R
n : Y ′ = argmaxy∈Y (x̄) 〈∇x f (x̄, y), w〉 ,

max
y∈Y (x̄)

〈∇x f (x̄, y), w〉 > 0

}
.

(25)

By applying Corollary 2.1, we have

⋃

Y ′∈Y>(x̄)

conv
{∇x f (x̄, y)|y ∈ Y ′} ⊂ end(∂φ(x̄)) = γ −1

∂φ(x̄)(1)

⊂ cl

⎛

⎝
⋃

Y ′∈Y>(x̄)

conv
{∇x f (x̄, y)|y ∈ Y ′}

⎞

⎠ = ∂>σ∂φ(x̄)(0),
(26)

where each conv{∇x f (x̄, y)|y ∈ Y ′} is an exposed face of ∂φ(x̄), and all the inclusions
in (26) become equalities when the index set Y (x̄) is finite. Combining Theorems 3.1
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and 3.2, we have

ebm(φ, x̄) = d

⎛

⎝0,
⋃

Y ′∈Y(x̄)

conv
{∇x f (x̄, y)|y ∈ Y ′}

⎞

⎠

≤ d

⎛

⎝0,
⋃

Y ′∈Y>(x̄)

conv
{∇x f (x̄, y)|y ∈ Y ′}

⎞

⎠ . (27)

It should be noticed that the index collection Y>(x̄) has been used in [6] for the
study of the calmness modulus of a finite C1 system in the context of right-hand-side
perturbations. Taking our results presented in this subsection and [8, Corollary 2] into
account, the corresponding results in [6] for the calmness modulus can be slightly
improved, as can been seen from Corollary 3.1 below.

Corollary 3.1 Consider the parametrized C1 system

σ(b) := { fi (x) ≤ bi ∀i ∈ I := {1, . . . ,m}},

and its associated feasible set mapping F : Rm ⇒ R
n defined by

F(b) := {x ∈ R
n | fi (x) ≤ bi ∀i ∈ I },

where fi ∈ C1 and bi ∈ R for all i ∈ I . Let (b̄, x̄) ∈ gphF be given such that
x̄ ∈ bdryF(b̄). In terms ofφ(x) := maxi∈I { fi (x)−b̄i }, I (x) := {i ∈ I | fi (x)−b̄i =
φ(x)},

I>(x̄) := {
I ′ ⊂ I (x̄) | ∃w ∈ R

n : 〈∇ fi (x̄), w〉 = 1∀i ∈ I ′,
〈∇ fi (x̄), w〉 < 1∀i ∈ I (x̄)\I ′} , (28)

I=(x̄) := {
I ′ ⊂ I (x̄) | ∃w ∈ R

n\{0} : 〈∇ fi (x̄), w〉 = 0 ∀i ∈ I ′,
〈∇ fi (x̄), w〉 < 0 ∀i ∈ I (x̄)\I ′} (29)

and

I(x̄) := {I ′ ⊂ I (x̄) | ∃ {xk} ⊂ [φ > 0] with xk → x̄ and I (xk) ≡ I ′}, (30)

we have

⋃

I ′∈I>(x̄)

conv
{∇ fi (x̄)|i ∈ I ′} ⊆

⋃

I ′∈I(x̄)

conv
{∇ fi (x̄)|i ∈ I ′}

⊆
⋃

I ′∈I>(x̄)∪I=(x̄)

conv
{∇ fi (x̄)|i ∈ I ′} , (31)
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and

d

⎛

⎝0,
⋃

I ′∈I>(x̄)∪I=(x̄)

conv
{∇ fi (x̄)|i ∈ I ′}

⎞

⎠ ≤ ebm(φ, x̄)

= (clmF(b̄, x̄))−1

= d

⎛

⎝0,
⋃

I ′∈I(x̄)

conv
{∇ fi (x̄)|i ∈ I ′}

⎞

⎠

≤ d

⎛

⎝0,
⋃

I ′∈I>(x̄)

conv
{∇ fi (x̄)|i ∈ I ′}

⎞

⎠.

Proof Clearly, φ is a lower C1 function. (This is the case where Y in (12) is the index
set {1, . . . ,m} in the discrete topology, Y(x̄) defined by (14) is the index collection
I(x̄), and Y>(x̄) defined by (25) is the index collection I>(x̄).) Moreover, we have
x̄ ∈ bdry[φ ≤ 0] as x̄ ∈ bdryF(b̄). Therefore, Theorem 3.2 and (27) are applicable,
implying in particular that

ebm(φ, x̄) = d

⎛

⎝0,
⋃

I ′∈I(x̄)

conv
{∇ fi (x̄)|i ∈ I ′}

⎞

⎠

≤ d

⎛

⎝0,
⋃

I ′∈I>(x̄)

conv
{∇ fi (x̄)|i ∈ I ′}

⎞

⎠

and

∂>φ(x̄) =
⋃

I ′∈I(x̄)

conv
{∇ fi (x̄)|i ∈ I ′} .

In view of [6, Theorem 3.2(i), Corollary 3.1, (6)], we have

d

⎛

⎝0,
⋃

I ′∈I>(x̄)∪I=(x̄)

conv
{∇ fi (x̄)|i ∈ I ′}

⎞

⎠ ≤ (clmF(b̄, x̄))−1 = ebm(φ, x̄)

and

∂>φ(x̄) ⊆
⋃

I ′∈I>(x̄)∪I=(x̄)

conv{∇ fi (x̄)|i ∈ I ′}.

In view of [8, Corollary 2 ], we have
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⋃

I ′∈I>(x̄)

conv
{∇ fi (x̄)|i ∈ I ′} ⊆ ∂>φ(x̄).

This completes the proof. ��
Remark 3.2 Consider the functions fi ’s defined in Example 3.2, and set I = {1, 2},
b̄ = (0, 0)T and x̄ = (0, 0)T . Then, we have I>(x̄) = {{2}}, I=(x̄) = {{1, 2}} and
I(x̄) = {{1}, {2}, {1, 2}}. This example demonstrates that the first inclusion in (31)
cannot be an equality in the general case, and that the index collection I(x̄) may not
be included in the index collection I>(x̄) ∪ I=(x̄) even in the case that the second
inclusion in (31) becomes an equality.

3.2 Sharp upper estimation for convex functions

In the case of φ being finite and convex on some convex neighborhood of x̄ , entailing
that φ is regular and locally Lipschitz continuous on some open neighborhood of x̄
(cf. [26, Examples 7.27 and 9.14]), the lower estimate in (9) is tight, but the upper
estimate in (9) could be overestimated, as has been seen in Example 3.2.

In general, we cannot expect that the upper estimate in (9) is a tight one, unless
some regularity conditions are imposed as we have done in the theorem below.

Definition 3.1 [20,22] Let φ be finite and convex on some convex neighborhood of
x̄ ∈ [φ ≤ 0]. We say that (i) the Abadie’s constraint qualification (ACQ, for short)
holds for the level set [φ ≤ 0] at x̄ if

[dφ(x̄) ≤ 0] = T[φ≤0](x̄); (32)

(ii) the level set [φ ≤ 0] admits exactness of tangent approximation (ETA, for short)
at x̄ if there exists some neighborhood V of x̄ such that

[φ ≤ 0] ∩ V = (
x̄ + T[φ≤0](x̄)

) ∩ V . (33)

Let x̄ ∈ [φ ≤ 0]. By the definitions of tangent cone and subderivative, we can
easily verify that [φ ≤ 0] ⊂ x̄ + T[φ≤0](x̄) and T[φ≤0](x̄) ⊂ [dφ(x̄) ≤ 0]. Thus, the
ACQ and ETA properties amount to the following regularity condition:

[φ ≤ 0] ∩ V = (x̄ + [dφ(x̄) ≤ 0]) ∩ V . (34)

Theorem 3.3 Assume that φ is finite and convex on some convex neighborhood of
x̄ . If ACQ holds at x̄ and the level set [φ ≤ 0] admits ETA at x̄ , then the following
equalities hold:

d
(
0, ∂>φ(x̄)

) = ebm(φ, x̄) = d
(
0, ∂>σ∂φ(x̄)(0)

)
. (35)

Proof In view of (8) and the assumption that φ is finite and convex on some convex
neighborhood of x̄ , we get the first equality in (35) immediately. It remains to show
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that the second equality holds. Without loss of generality, we assume that there exists
an open ball O := {x ∈ R

n | ‖x‖ < δ} of radius δ > 0 such that φ is finite and convex
on x̄ + O and that V in (33) can be replaced by x̄ + O . As φ is assumed to be finite
and convex on some convex neighborhood of x̄ , it follows from [26, Examples 7.27
and 9.14, Theorem 9.16] that φ is regular and locally Lipschitz continuous on some
open neighborhood of x̄ , and hence that σ∂φ(x̄) = dφ(x̄) and

ebm(dφ(x̄), 0) = ebm(σ∂φ(x̄), 0) = d
(
0, ∂>σ∂φ(x̄)(0)

)
. (36)

Moreover, we get from Theorem 3.1 that ebm(φ, x̄) ≤ d
(
0, ∂>σ∂φ(x̄)(0)

)
. In the

case of d
(
0, ∂>σ∂φ(x̄)(0)

) = 0, the second equality in (35) holds trivially. So in what
follows we assume that d

(
0, ∂>σ∂φ(x̄)(0)

)
> 0.

Let 0 < τ < d
(
0, ∂>σ∂φ(x̄)(0)

)
. In view of (36) and the positive homogeneity of

dφ(x̄), the following condition holds:

τd(w, [dφ(x̄) ≤ 0]) ≤ dφ(x̄)(w)+ ∀w ∈ R
n . (37)

Let x ∈ x̄ + 1
2O be arbitrarily chosen. It is straightforward to verify that

d
(
x− x̄, T[φ≤0](x̄)

)= d
(
x− x̄, T[φ≤0](x̄) ∩ O

)= d
(
x,

(
x̄ +T[φ≤0](x̄)

) ∩ (x̄ +O)
)
,

and

d (x, [φ ≤ 0]) = d (x, [φ ≤ 0] ∩ (x̄ + O)) .

In view of (33), we have

d(x, [φ ≤ 0]) = d
(
x − x̄, T[φ≤0](x̄)

)
,

which implies by (32) that

d(x, [φ ≤ 0]) ≤ d (x − x̄, [dφ(x̄) ≤ 0]) .

By (37), we have
τd(x, [φ ≤ 0]) ≤ dφ(x̄)(x − x̄)+. (38)

Since φ is finite and convex on x̄ + O , we get from [26, Proposition 8.21] that

dφ(x̄)(x − x̄) ≤ φ(x) − φ(x̄) = φ(x). (39)

In view of (38) and (39), we have τd(x, [φ ≤ 0]) ≤ φ(x)+. Since x ∈ x̄ + 1
2O is

chosen arbitrarily, we thus have τ ≤ ebm(φ, x̄), entailing that d
(
0, ∂>σ∂φ(x̄)(0)

) ≤
ebm(φ, x̄). This completes the proof. ��
Remark 3.3 It turns out in the last section that, the outer limiting subdifferential set
∂>σ∂φ(x̄)(0), unlike the outer limiting subdifferential set ∂>φ(x̄), depends on the
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nominal point x̄ only and does not get the nearby points involved. As can be seen from
Theorem 3.3, it is the ETA property that makes it possible for d(0, ∂>σ∂φ(x̄)(0)) to
serve as the error boundmodulus ebm(φ, x̄)which normally depends on not only x̄ but
its nearby points. Note that the idea of using the ETA property has already appeared
in Zheng and Ng [30] and that various characterizations of the ETA property have
been presented in [22]. If the ETA property (33) does not hold, the upper estimate
d(0, ∂>σ∂φ(x̄)(0)) may be overestimated as can be seen from Example 3.2, in which
[φ ≤ 0] = {x ∈ R

2|x21 + x22 + 1
2 (x1 + x2) ≤ 0} and the ETA property does not hold

at any x ∈ [φ ≤ 0].
Remark 3.4 From [9,15,17], it is clear that the lower estimate in (9) is tight for convex
functionφ, which can also be obtained from the results for lowerC1 functions presented
in the last subsection as convex functions are lower C1 functions. In this paper, we
provide an upper estimate for ebm(φ, x̄) when φ is regular and show that this upper
estimate is tight for a convex function under some regularity conditions,which recovers
the corresponding results in [5] and [13], where φ is considered as, respectively, the
pointwise max of a finite collection of affine functions, and a sublinear function.

In the remainder of this subsection, we apply Theorem 3.3 to the linear system

〈at , x〉 ≤ bt ∀t ∈ T, (40)

where at ∈ R
n , bt ∈ R, and T is a compact space such that at and bt depend

continuously on t ∈ T . In what follows, let φ(x) := maxt∈T {〈at , x〉 − bt } and let
T (x) := {t ∈ T | 〈at , x〉−bt = φ(x)}. Clearly, the level set [φ ≤ 0] is the solution set
of the linear system (40), and the regularity condition (34) specified for x ∈ [φ ≤ 0]
can be reformulated as

{y | 〈at , y〉 ≤ bt ∀t ∈ T } ∩ V = (x + {w | 〈at , w〉 ≤ 0 ∀t ∈ T (x)}) ∩ V, (41)

where V is a neighborhood of x .
Our first result for the linear system (40) assumes the regularity condition (41) on

one nominal point in the solution set only.

Corollary 3.2 Consider a solution x to the linear system (40). If the regularity con-
dition (41) holds, then

d
(
0, ∂>φ(x)

) = ebm(φ, x) = d
(
0, ∂>σ∂φ(x)(0)

)

= d

⎛

⎝0,
⋃

T ′∈T (x)

conv
{
at | t ∈ T ′}

⎞

⎠ , (42)

where

T (x) := {T ′ ⊂ T (x) | ∃w ∈ R
n : 〈at , w〉 = 1∀t ∈ T ′, 〈at , w〉 < 1∀t ∈ T (x)\T ′}.
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Proof Applying Theorem 3.3, we get the first two equalities in (42). Applying Corol-
lary 2.1, we get the third equality in (42) by taking Remark 2.3 into account. This
completes the proof. ��

Our second result for the linear system (40) assumes the regularity condition (41)
on the whole solution set, leading to a locally polyhedral linear system as defined in
[1], which requires that

(pos conv{at | t ∈ T (x)})∗ = pos([φ ≤ 0] − x) ∀x ∈ [φ ≤ 0]. (43)

As a finite linear system is naturally locally polyhedral, our result below recovers [5,
Theorem 4.1] for the case of a finite linear system.

Corollary 3.3 Consider the linear system (40). The equalities in (42) hold for all
x ∈ [φ ≤ 0] if one of the following equivalent properties is satisfied:
(a) The regularity condition (41) holds for all x in the solution set [φ ≤ 0];
(b) The linear system (40) is locally polyhedral, i.e., (43) holds.

Proof It suffices to show the equivalence of (a) and (b). To begin with, we point out
that dφ(x)(w) = maxt∈T (x)〈at , w〉 as can be seen from [26, Theorem 10.31], and that
[φ ≤ 0] is convex (implying that T[φ≤0](x) = cl pos([φ ≤ 0] − x)). Moreover, we
have

[φ ≤ 0] − x ⊂ pos([φ ≤ 0] − x) ⊂ T[φ≤0](x) ⊂ [dφ(x) ≤ 0], (44)

and

(pos conv{at | t ∈ T (x)})∗ = {at | t ∈ T (x)}∗
= {w ∈ R

n | 〈at , w〉 ≤ 0 ∀t ∈ T (x)}
= [dφ(x) ≤ 0].

(45)

First, we show (b) �⇒ (a). Condition (43) implies that pos([φ ≤ 0]− x) is closed
for all x ∈ [φ ≤ 0]. In view of [22, Proposition 4.1], the level set [φ ≤ 0] admits the
ETA property (33) at every x ∈ [φ ≤ 0]. By (43) and (45), the ACQ (32) holds for all
x ∈ [φ ≤ 0]. Thus, the regularity condition (41) holds for all x ∈ [φ ≤ 0].

Now we show (a) �⇒ (b). Let x ∈ [φ ≤ 0]. Assume that the regularity condition
(41) holds at x . It then follows from (44) that

pos([φ ≤ 0] − x) = [dφ(x) ≤ 0],

which together with (45) implies (43). This completes the proof. ��
To end this subsection, we illustrate two examples selected from [5]. By Example

3.3, we demonstrate that (42) may not hold if the linear system (40) is not locally
polyhedral, and by Example 3.4, we demonstrate that (42) may still hold even if the
linear system (40) is not locally polyhedral.

Example 3.3 Let x̄ = (1, 0)T and φ(x) = maxt∈T {〈at , x〉 − bt }, where T = [0, 2π ],
at = (t cos t, t sin t)T and bt = t . Clearly, [φ ≤ 0] = {x ∈ R

n | ‖x‖ ≤ 1}. Thus,
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pos([φ ≤ 0] − x̄) is not closed, implying that (43) does not hold at x̄ and that the
linear system (40) cannot be locally polyhedral. From Example 1 of [5], it follows that
d (0, ∂>φ(x̄)) = ebm(φ, x̄) = 0.Observing that T (x̄) = {0, 2π} andT (x̄) = {{2π}},
we get

d
(
0, ∂>σ∂φ(x̄)(0)

) = d

⎛

⎝0,
⋃

T ′∈T (x̄)

conv
{
at | t ∈ T ′}

⎞

⎠ = 2π.

That is, the upper estimate d
(
0, ∂>σ∂φ(x̄)(0)

)
is overestimated.

Example 3.4 Let x̄ = (1, 0)T and φ(x) = maxt∈T {〈at , x〉 − bt }, where T = [0, 2π ],
at = (cos t, sin t)T and bt = 1. Clearly, [φ ≤ 0] = {x ∈ R

n | ‖x‖ ≤ 1}. Thus,
pos([φ ≤ 0] − x̄) is not closed, implying that (43) does not hold at x̄ and that the
linear system (40) cannot be locally polyhedral. By some direct calculations, we have
T (x̄) = {0, 2π}, T (x̄) = {{0, 2π}}, and

d
(
0, ∂>σ∂φ(x̄)(0)

) = d

⎛

⎝0,
⋃

T ′∈T (x̄)

conv
{
at | t ∈ T ′}

⎞

⎠ = 1.

Moreover, we have ∂φ(x̄) = conv{at | t ∈ T (x̄)} = (1, 0)T and hence ∂>φ(x̄) =
(1, 0)T , entailing that

d
(
0, ∂>φ(x̄)

) = ebm(φ, x̄) = 1.

That is, (42) still holds even when the linear system (40) is not locally polyhedral.

4 Conclusions and perspectives

When φ is regular at some x̄ with φ(x̄) = 0, we obtained in Theorem 3.1 a lower
estimate and an upper estimate of the local error boundmodulus ebm(φ, x̄) as follows:

d
(
0, ∂>φ(x̄)

) ≤ ebm(φ, x̄) ≤ d
(
0, ∂>σ∂φ(x̄)(0)

)
.

In particular, when φ is finite and convex on some convex neighborhood of x̄ , we
obtained in Theorem 3.3 under the ACQ and ETA properties the following:

d
(
0, ∂>φ(x̄)

) = ebm(φ, x̄) = d
(
0, ∂>σ∂φ(x̄)(0)

)
,

and when φ is a lower C1 function, we obtained in Theorem 3.2 the following:

d
(
0, ∂>φ(x̄)

) = ebm(φ, x̄) ≤ d
(
0, ∂>σ∂φ(x̄)(0)

)
.
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One open question is whether the inclusion

∂>σ∂φ(x̄)(0) ⊂ ∂>φ(x̄) (46)

holds or not when φ is regular at x̄ . By trying to find answers to this open question,
one may need to look into the differential structure of the functions in question and
need to apply some delicate modern variational tools. It is worth noting that [6, Theo-
rem 3.1] shows that (46) holds as an equality when φ is the pointwise max of a finite
collection of affine functions. Moreover, when φ is regular and locally Lipschitz on
some neighborhood of x̄ , this open question has affirmatively been answered in [8,
Remark 2].
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