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Abstract. We distinguish two kinds of piecewise linear functions and provide an interesting

representation for a piecewise linear function between infinite dimensional spaces. Based on such

a representation, we study a fully piecewise linear vector optimization (PLP) with the objective

and constraint functions being piecewise linear. We divide (PLP) into some linear subproblems

and establish a finite dimensional reduction method to solve (PLP). Under some mild assumptions,

we prove that the Pareto (resp. weak Pareto) solution set of (PLP) is the union of finitely many

generalized polyhedra (resp. polyhedra), each of which is or is contained in a Pareto (resp. weak

Pareto) face of some linear subproblem. Our main results are even new in the linear case and further

generalize Arrow, Barankin and Blackwell’s classical results on linear vector optimization problems

in the framework of finite dimensional spaces.
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1. Introduction. Though vector optimization is often encountered in theory

and practical application, the study of nonlinear vector optimization is far from deep

and systemic (possibly because the vector ordering is much more complicated than

the scalar one). On the other hand, linear vector optimization has been well stud-

ied (cf. [2, 4, 7, 8, 12, 13, 15, 21] and the references therein). In particular, in the

finite-dimensional case, Arrow, Barankin and Blackwell [3] established the structure

of the Pareto solution set and weak Pareto solution set of a linear vector optimization

problem. However the linearity assumption is quite restrictive in both theory and ap-

plication. To overcome the restriction of linearity, one sometimes adopts the piecewise

linear functions (cf. [6, 20, 22]). The family of all piecewise linear functions is much

larger than that of all linear functions and there exists a wide class of functions that

can be approximated by piecewise linear functions. Therefore, from the viewpoint of

theoretical interest as well as for applications, it is important to study piecewise linear

problems. Given two normed spaces X and Y , the following piecewise linearity of a

vector-valued function f : X → Y was adopted in the literature (cf. [20, 23]): there

exist finitely many polyhedra Λ1, · · · ,Λm in the product X × Y such that

gph(f) := {(x, f(x)) : x ∈ X} =

m⋃
i=1

Λi.(1.1)
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Throughout this paper, we will use P(Z) to denote the family of all polyhedra in a

normed space Z. Another kind of piecewise linearity for a function f is as follows:

there exist Ti ∈ L(X,Y ), Pi ∈ P(X) and bi ∈ Y (i = 1, · · · ,m) such that

X =

m⋃
i=1

Pi and f(x) = Ti(x) + bi ∀x ∈ Pi, i = 1, · · · ,m,(1.2)

where L(X,Y ) denotes the space of all continuous linear operators from X to Y . For

convenience, let PL1(X,Y ) (resp. PL(X,Y )) denote the family of all piecewise linear

functions from X to Y in the sense of (1.1) (resp. (1.2)). It is clear that L(X,Y )

is always contained in PL(X,Y ); however if Y is infinite dimensional then every

linear operator in L(X,Y ) must not be in PL1(X,Y ). This motivates us to study

the relationship between PL1(X,Y ) and PL(X,Y ). To do this, we first consider

polyhedra in infinite dimensional spaces. In Section 2, we provide several properties

on polyhedra in infinite dimensional spaces. In particular, with the help of the notion

of a prime generator group of a polyhedron (cf. [5, 18, 9]), we establish some results

on the maximal faces of a polyhedron, which not only play a key role in the proof

of the main theorem on piecewise linear functions but also should be valuable by

themselves. In Section 3, using the results obtained in Section 2, we prove that

dim(Y ) <∞⇔ PL1(X,Y ) = PL(X,Y ) and dim(Y ) =∞⇔ PL1(X,Y ) = ∅.

As one of the mains results, we prove that for each f ∈ PL(X,Y ) there exist two

closed subspaces X1 and X2 of X, a closed subspace Y2 of Y , T ∈ L(X1, Y ) and

g ∈ PL1(X2, Y2) such that X = X1 ⊕X2, dim(X2) <∞, dim(Y2) <∞ and

f(x1 + x2) = Tx1 + g(x2) ∀(x1, x2) ∈ X1 ×X2.

In Sections 4 and 5, we consider a fully piecewise linear vector optimization prob-

lem in the framework of infinite dimensional spaces. In the case when f ∈ PL(X,Y )

and ϕk ∈ PL(X,R) (k ∈ 1m := {1, · · · ,m}), we study the structure of the (weak)

Pareto solution set of the following fully piecewise linear vector optimization problem

(PLP) C −Minf(x) subject to ϕk(x) ≤ 0, i = 1, · · · ,m,

where C is a closed convex cone in Y . In the case of finite dimensional spaces, the

following well known result on the solution sets for linear vector optimization problems

is based on the poineering work by Arrow et al. [3] (also see [12, Theorem 3.3] and

[13, Theorems 4.1.20 and 4.3.8])

Theorem 1.1. Let X = Rp, Y = Rq, C = Rq+, f(x) = T (x) + b and ϕk(x) =

〈x∗k, x〉+rk for some T ∈ L(X,Y ), x∗k ∈ X∗ = L(X,R) and (b, rk) ∈ Y ×R (k ∈ 1m).

Then the Pareto solution set and weak Pareto solution set of (PLP) are the union

of finitely many faces of A, where A := {x ∈ X : ϕk(x) ≤ 0, k = 1, · · · ,m} is the

feasible set of (PLP).
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In the case when the objective f is further piecewise linear, several authors studied

the structure of the Pareto solution set and weak Pareto soluiton set and proved that

if the objective f is restricted in PL1(X,Y ) and each ϕk is linear then the weak

Pareto solution set of the corresponding piecewise linear problem (PLP) is the union

of finitely many polyhedra, while its Pareto solution set is the union of generalized

polyhedra (cf. [23, 20, 21, 6] and the references therein). Noting that PL1(X,Y ) = ∅
when dim(Y ) = ∞, in the case when f ∈ PL(X,Y ) with dim(Y ) = ∞ and each

ϕi ∈ PL(X,R), we will establish the structure of the Pareto solution set and weak

Pareto solution set for fully piecewise linear vector oprimization problem (PLP). To

the best of our knowledge, these results are new even in the case when each ϕk is

linear.

2. Polyhedra in an infinite dimensional space. Let Z be a normed space

with the dual space Z∗. Recall (cf.[1, 16]) that a subset P of Z is a (convex) polyhedron

if there exist u∗1, · · · , u∗m ∈ Z∗ and s1, · · · , sm ∈ R such that

P = {x ∈ Z : 〈u∗i , x〉 ≤ si, i = 1, · · · ,m}.

An exposed face of P is a set F such that

F = {u ∈ P : 〈x∗, u〉 = sup
x∈P
〈x∗, x〉}

for some x∗ ∈ Z∗ (cf. [16, P.162]). It is known that each polyhedron has finitely many

exposed faces. We say that a subset P̃ of Z is a generalized polyhedron if there exist

a polyhedron P in Z, v∗1 , · · · , v∗k ∈ Z∗ and t1, · · · , tk ∈ R such that

P̃ = P ∩ {z ∈ Z : 〈v∗i , z〉 < ti, 1 ≤ i ≤ k}.

Given z∗ ∈ Z∗ \ {0}, let N (z∗) denote the null space of z∗, that is,

N (z∗) := {z ∈ Z : 〈z∗, z〉 = 0}.

Then N (z∗) is a closed subspace of Z with codimension codim(N (z∗)) = 1.

Recall that a normed space Z is a direct sum of its two closed subspaces Z1 and

Z2, denoted by Z = Z1 ⊕ Z2, if Z1 ∩ Z2 = {0} and Z = Z1 + Z2. It is easy to verify

that if Z = Z1 ⊕Z2 then for each z ∈ Z there exists a unique (z1, z2) ∈ Z1 ×Z2 such

that z = z1 +z2 and the projection mapping ΠZ2 : Z = Z1⊕Z2 → Z2 is linear, where

ΠZ2
(z1 + z2) := z2 ∀(z1, z2) ∈ Z1 × Z2.(2.1)

It is known that if Q is a polyhedron in Z1 ⊕ Z2 then ΠZ2
(Q) is a polyhedron in Z2

(cf. [16, Theorem 19.3] and the following Proposition 2.1).

For a convex set C in Z, let int(C) (resp. rint(C)) denote the interior (relative

interior) of C. It is known that if dim(Z) < ∞ and C 6= ∅ then rint(C) 6= ∅.
Throughout, let N denote the set of all natural numbers and

1m := {1, · · · ,m} ∀m ∈ N.
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Now we provide some results on polyhedra which are useful for our analysis later.

Proposition 2.1. Let (z∗1 , s1), · · · , (z∗m, sm) ∈ Z∗ × R and P := {z ∈ Z :

〈z∗i , z〉 ≤ si ∀i ∈ 1m}. Let Z1 and Z2 be two closed subspaces of Z such that

Z1 ⊂
m⋂
i=1

N (z∗i ), dim(Z2) = codim(Z1) <∞ and Z = Z1 ⊕ Z2.(2.2)

Then

P = Z1 + P̂ and rint(P ) = Z1 + rint(P̂ ),(2.3)

where P̂ := {z ∈ Z2 : 〈z∗i , z〉 ≤ si, i = 1, · · · ,m}.
The first equality in (2.3) is a slight variant of [22, Lemma 2.1] and can be

proved similar to the proof of [22, Lemma 2.1], while the second equality in (2.3)

is immediate from the following observation: there exists L ∈ (0, +∞) such that

L(‖z1‖+‖z2‖) ≤ ‖z1+z2‖ for all (z1, z2) ∈ Z1×Z2 and the affine subspace aff(Z1+P̂ )

is equal to Z1 + aff(P̂ ) (thanks to (2.2) and the definition of P̂ ).

From Proposition 2.1, one can see that many properties on polyhedra established

in the finite dimension case also hold in the infinite dimension one. In particular, the

following corollaries are consequences of Proposition 2.1 and [16, Corollary 6.5.1].

Corollary 2.1. Let {(u∗1, s1), · · · , (u∗n, sn)} and P be as in Proposition 2.1.

Then

rint(P ) = {z ∈ Z : 〈u∗i , z〉 < si, i ∈ 1n \ ĪP } ∩
⋂
i∈ĪP

Fi,(2.4)

where ĪP := {i ∈ 1n : 〈u∗i , z〉 = si for all z ∈ P} and Fi := {z ∈ Z : 〈u∗i , z〉 = si}.
Corollary 2.2. Let Z1 and Z2 be two closed subspaces of Z such that

Z = Z1 + Z2, Z1 ∩ Z2 = {0} and dim(Z2) <∞.(2.5)

Let P̂ be a polyhedron in Z2 and F̂ be a subset of P̂ . Then F̂ is an exposed face of P̂

if and only if Z1 + F̂ is an exposed face of the polyhedron Z1 + P̂ in Z.

The following proposition is known and useful for us (cf. [22, Lemma 2.2]).

Proposition 2.2. Let P1 and P2 be two polyhedra (resp. generalized polyhedra)

in Z. Then P1 + P2 and P1 ∩ P2 are polyhedra (resp. generalized polyhedra).

Note that a closed subspace of Z is not necessarily a polyhedron in Z. In fact,

it is easy to verify that a closed subspace E of Z is a polyhedron in Z if and only

if its codimension codim(E) is finite. Note that if E is a closed subspace of Z with

codim(E) < +∞ and if H is a subspace of E then E + H is a closed subspace of Z

with codim(E +H) < +∞. The following proposition can be easily proved.

Proposition 2.3. Let Z be a normed space, E be a closed subspace of Z with

codim(E) < +∞, and let H be a subspace of Z. Then the following statements hold:

(i) E +H + P̂ is a polyhedron in Z for each polyhedron P̂ in some finite dimensional
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subspace of Z.

(ii) H + P is a polyhedron for each polyhedron P in Z.

The following lemma is useful in the proofs of some main results.

Lemma 2.1. Let C1, · · · , Cm be closed sets in a normed space Z such that

B(x0, r0) ⊂
m⋃
i=1

Ci for some x0 ∈ Z and r0 > 0. Then there exists i0 ∈ 1m such

that B(x0, r0) ∩ int(Ci0) 6= ∅.

Proof. By the assumption, B(x0, r0) \
m−1⋃
i=1

Ci is open, and B(x0, r0) \
m−1⋃
i=1

Ci ⊂

B(x0, r0) ∩ int(Cm). Hence either B(x0, r0) ∩ int(Cm) 6= ∅ or B(x0, r0) ⊂
m−1⋃
i=1

Ci,

which implies clearly that the conclusion holds. The proof is complete.

With the help of Lemma 2.1, we can prove the following interesting proposition.

Proposition 2.4. Let C be a convex set in a normed space Z and let F1, · · · , Fν
be exposed faces of a polyhedron P in Z such that C ⊂

ν⋃
j=1

Fj. Then there exists

j0 ∈ 1ν such that C ⊂ Fj0 .

Proof. By Proposition 2.1, take two closed subspaces Z1 and Z2 of Z and a

polyhedron P̂ in Z2 such that (2.2) and (2.3) hold. Thus, by Corollary 2.2, there

exists an exposed face F̂j of P̂ such that Fj = Z1 + F̂j (j ∈ 1ν). Hence C ⊂
ν⋃
j=1

Fj =

ν⋃
j=1

(Z1 + F̂j). Noting that Ĉ := ΠZ2(C) is a convex subset of P̂ and C ⊂ Z1 + Ĉ,

where ΠZ2
is the projection mapping from Z to Z2 (see (2.1)), it follows from (2.2)

that Ĉ ⊂
ν⋃
j=1

F̂j . Thus, it suffices to show that Ĉ ⊂ F̂j0 for some j0 ∈ 1ν. To prove

this, take (û∗j , αj) ∈ Z∗2 × R such that

αj = sup
x2∈P̂
〈û∗j , x2〉 and F̂j = {x2 ∈ P̂ : 〈û∗j , x2〉 = αj} ∀j ∈ 1ν.(2.6)

Since Z2 is finite dimensional (cf.(2.2)), there exist x̂ ∈ X2, a subspace Z3 of Z2 and

δ > 0 such that Ĉ ⊂ x̂ + Z3 and x̂ + BZ3(0, δ) ⊂ Ĉ ⊂
ν⋃
j=1

F̂j . Thus, by Lemma 2.1,

there exist û ∈ x̂+BZ3
(0, δ), ε ∈ (0, +∞) and j0 ∈ 1ν such that û+BZ3

(0, ε) ⊂ F̂j0 .

This and (2.6) imply that 〈û∗j0 , v̂〉 = 0 for all v̂ ∈ BZ3
(0, ε) and so 〈û∗j0 , v̂〉 = 0 for all

v̂ ∈ Z3. Hence, Ĉ ⊂ x̂ + Z3 = û + Z3 ⊂ {x2 ∈ Z2 : 〈û∗j0 , x2〉 = αj0}. Since Ĉ ⊂ P̂ ,

Ĉ ⊂ P̂ ∩ {x2 ∈ Z2 : 〈û∗j0 , x2〉 = αj0} = F̂j0 . The proof is complete.

We also need the following proposition.

Proposition 2.5. Let Pi be polyhedra in a normed space Z such that int(Pi) 6= ∅
(i = 1, · · · ,m). Then there exist polyhedra Qj in Z with int(Qj) 6= ∅ (j = 1, · · · , ν)

such that
m⋃
i=1

Pi =
ν⋃
j=1

Qj and int(Qj) ∩Qj′ = ∅ for all j, j′ ∈ 1ν with j 6= j′.

Proof. The conclusion holds clearly when m = 1. Given a natural number n,

suppose that the conclusion holds when m = n. Let P1, · · · , Pn, Pn+1 be arbitrary

n + 1 polyhedra in Z such that each int(Pi) is nonempty. Then, by induction, it
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suffices to show that there exist polyhedra Qj in Z with int(Qj) 6= ∅ (j = 1, · · · , ν)

such that
n+1⋃
i=1

Pi =
ν⋃
j=1

Qj and int(Qj) ∩Qj′ = ∅ for all j, j′ ∈ 1ν with j 6= j′. To do

this, take polyhedra H1, · · · , Hl in Z such that

n⋃
i=1

Pi =

l⋃
i=1

Hi, int(Hi) 6= ∅ and Hi ∩ int(Hi′) = ∅ ∀i, i′ ∈ 1l with i 6= i′.(2.7)

If int(Pn+1) ⊂
l⋃
i=1

Hi, then Pn+1 ⊂
l⋃
i=1

Hi and so
n+1⋃
i=1

Pi =
l⋃
i=1

Hi; hence the conclusion

is trivially true. Next suppose that int(Pn+1) *
l⋃
i=1

Hi. Let i ∈ 1l, and take (x∗ij , tij) ∈

(Z∗ \ {0})× R (j = 1, · · · , κi) such that Hi =
κi⋂
j=1

Hij , where

Hij := {x ∈ Z : 〈x∗ij , x〉 ≤ tij} ∀j ∈ 1κi.

Let Λik :=
k−1⋂
j=1

Hij . Then Z \Hi =
κi⋃
k=1

(Z \Hik) =
κi⋃
k=1

Λik ∩ (Z \Hik), and so

int(Pn+1) \Hi = int(Pn+1) ∩ (Z \Hi) =

κi⋃
k=1

int(Pn+1) ∩ Λik ∩ (Z \Hik).

Clearly, each Qik := Pn+1∩Λik∩cl(Z \Hik) is a polyhedron in Z. Hence, by Corollary

(2.1), int(Qik) = int(Pn+1) ∩ int(Λik) ∩ {z ∈ Z : 〈x∗ik, z〉 > tik},

Qik ∩ int(Qik′) = ∅ ∀k, k′ ∈ Ii with k 6= k′(2.8)

and ⋃
k∈Ii

int(Qik) ⊂ int(Pn+1) \Hi ⊂
κi⋃
k=1

Qik,(2.9)

where Ii := {k ∈ 1κi : int(Qik) 6= ∅}. Let

Q(k1,···,kl) :=

l⋂
i=1

Qiki ∀(k1, · · · , kl) ∈ I1 × · · · × Il

and Γ :=

{
(k1, · · · , kl) ∈ I1 × · · · × Il :

l⋂
i=1

int(Qiki) 6= ∅
}

. Then, each Q(k1,···,kl) is

a polyhedron in Z with int(Q(k1,···,kl)) =
l⋂
i=1

int(Qiki) (thanks to Corollary 2.1).

Hence, by (2.9) and (2.8), one has Pn+1 \
l⋃
i=1

Hi ⊂
⋃

(k1,···,kl)∈Γ

Q(k1,···,kl) ⊂ Pn+1

and Q(k1,···,kl) ∩ int(Q(k′1,···,k′l)) = ∅ whenever (k1, · · · , kl) 6= (k′1, · · · , k′l). It follows

from (2.7) that
n+1⋃
i=1

Pi =
l⋃
i=1

Hi∪
⋃

(k1,···,kl)∈Γ

Q(k1,···,kl). This shows that the conclusion

also holds when m = n+ 1. The proof is complete.
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For (u∗1, s1), · · · , (u∗n, sn) ∈ Z∗×R and P = {z ∈ Z : 〈u∗i , z〉 ≤ si, i ∈ 1n}, we say

that (u∗i , si) is a redundant generator of P if P =
{
z ∈ Z : 〈u∗j , z〉 ≤ sj , j ∈ 1n \ {i}

}
(cf. [18, 9]). For convenience, we adopt the following notion.

Definition 2.1 We say that {(u∗1, s1), · · · , (u∗n, sn)} ⊂ Z∗×R is a prime generator

group of a polyhedron P in a normed space Z if

P = {z ∈ Z : 〈u∗i , z〉 ≤ si, i ∈ 1n}(2.10)

and (u∗i , si) is not a redundant generator of P for all i ∈ 1n.

Every polyhedron has a prime generator group (cf. [5, 18]). It is clear that if

{(u∗1, s1), · · · , (u∗n, sn)} ⊂ Z∗ × R is a prime generator group of P then

P 6= {z ∈ Z : 〈u∗i , z〉 ≤ si, i ∈ 1n \ {j}} ∀j ∈ 1n.(2.11)

In the remainder of this paper, we assume that every polyhedron P of Z is not equal

to Z. So, it is clear that u∗i 6= 0 for all i ∈ 1n whenever {(u∗1, s1), · · · , (u∗n, sn)} is a

prime generator group of P .

The following lemma is immediate from Definition 2.1.

Lemma 2.2. Let {(u∗1, s1), · · · , (u∗n, sn)} be a prime generator group of a polyhe-

dron P in a normed space Z. Then, for each j ∈ 1n,

Fj(P ) := P ∩ {x ∈ Z : 〈u∗j , x〉 = sj} 6= ∅.(2.12)

The following two lemmas will play an important role in the proof of our main

result.

Lemma 2.3. Let {(u∗1, s1), · · · , (u∗n, sn)} be a prime generator group of a polyhe-

dron P in a normed space Z. Let Fj(P ) be as in (2.12) and

F ◦j (P ) := {z ∈ Z : 〈u∗j , z〉 = sj and 〈u∗i , z〉 < si, i ∈ 1n \ {j}}(2.13)

for all j ∈ 1n. Then the following statements are equivalent:

(i) int(P ) 6= ∅.
(ii) Fj(P ) = cl(F ◦j (P )) for all j ∈ 1n.

(iii) F ◦j (P ) 6= ∅ for all j ∈ 1n.

(iv) F ◦j0(P ) 6= ∅ for some j0 ∈ 1n.

Proof. First suppose that (i) holds. Then, by Corollary 2.1, there exists x0 ∈ Z
such that 〈u∗i , x0〉 < si for all i ∈ 1n. For each j ∈ 1n, by (2.11), there exists v ∈ Z
such that 〈u∗j , v〉 > sj and 〈u∗i , v〉 ≤ si for all i ∈ 1n \ {j}. It follows that there exists

λ0 ∈ (0, 1) such that

〈u∗j , λ0x0 + (1− λ0)v〉 = sj and 〈u∗i , λ0x0 + (1− λ0)v〉〉 < si ∀i ∈ 1n \ {j}.

Therefore, kx
1+k + λ0x0+(1−λ0)v

k+1 ∈ F ◦j (P ) for all (x, k) ∈ Fj(P )×N. Letting k →∞, it

follows that x ∈ cl(F ◦j (P )) for all x ∈ Fj(P ), that is, Fj(P ) ⊂ cl(F ◦j (P )). Since the
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converse inclusion holds trivially, this shows implication (i)⇒(ii). Since (ii)⇒(iii) is

immediate from Lemma 2.2 and (iii)⇒(iv) is trivial, it suffices to show (iv)⇒(i). To

prove this, let x̄ ∈ F ◦j0(P ), that is, 〈u∗j0 , x̄〉 = sj0 and 〈u∗i , x̄〉 < si for all i ∈ 1n \ {j0}.
Taking h ∈ Z with 〈u∗j0 , h〉 < 0 (thanks to u∗j0 6= 0), it follows that there exists

t > 0 sufficiently small such that 〈u∗k, x̄ + th〉 < sk for all k ∈ 1n. This shows that

x̄+ th ∈ int(P ), and hence (iv)⇒(i) holds. The proof is complete.

Lemma 2.4. Let P1 and P2 be two polyhedra in a normed space Z such that

int(P1) ∩ P2 = ∅, and let {(u∗i1, si1), · · · , (u∗ini , sini)} ⊂ Z∗ × R be a prime generator

group of Pi (i = 1, 2). Then for any (j1, j2) ∈ 1n1 × 1n2 and x0 ∈ F ◦j1(P1) ∩ F ◦j2(P2)

there exists r > 0 such that N (u∗1j1) = N (u∗2j2) and

F ◦j1(P1) ∩BZ(x0, r) = F ◦j2(P2) ∩BZ(x0, r) = (x0 +N (u∗1j1)) ∩BZ(x0, r),(2.14)

where BZ(x0, r) := {x ∈ Z : ‖x− x0‖ < r} and F ◦j1(P1) is as in (2.13).

Proof. Let (j1, j2) ∈ 1n1 × 1n2 and x0 ∈ F ◦j1(P1) ∩ F ◦j2(P2). Then x0 ∈ P1 ∩ P2.

Since int(P1)∩P2 = ∅, the separation theorem implies that there exists v∗ ∈ Z∗ \ {0}
such that 〈v∗, x0〉 = inf

x∈P1

〈v∗, x〉 = sup
x∈P2

〈v∗, x〉. Noting that

F ◦j1(P1) ∩BZ(x0, r) = (x0 +N (u∗1j1)) ∩BZ(x0, r) ⊂ P1(2.15)

and

F ◦j2(P2) ∩BZ(x0, r) = (x0 +N (u∗2j2)) ∩BZ(x0, r) ⊂ P2(2.16)

for some r > 0 (thanks to the definitions of F ◦j1(P1) and F ◦j2(P2)), it follows that

〈v∗, x0〉 = inf
x∈(x0+N (u∗1j1

))∩BZ(x0,r)
〈v∗, x〉 = sup

x∈(x0+N (u∗2j2
))∩BZ(x0,r)

〈v∗, x〉.

Hence inf
x∈N (u∗1j1

)∩BZ(0,r)
〈v∗, x〉 = sup

x∈N (u∗2j2
)∩BZ(0,r)

〈v∗, x〉 = 0, and so

N (v∗) = N (u∗1j1) = N (u∗2j2)

because v∗ is linear and both N (u∗1j1) and N (u∗2j2) are maximal linear subspaces of

Z. This, together with (2.15) and (2.16), implies that (2.14) holds.

3. Piecewise linear vector-valued functions. In this section, we will dis-

tinguish PL1(X,Y ) and PL(X,Y ) and consider the structure of a piecewise linear

function.

Proposition 3.1. Let X and Y be normed spaces. Then the following statements

hold.

(i) L(X,Y ) is always contained in PL(X,Y ).

(ii) PL1(X,Y ) 6= ∅ if and only if dim(Y ) <∞.

(iii) PL1(X,Y ) = PL(X,Y ) when dim(Y ) <∞.

Proof. Since (i) is trivial and the sufficiency part of (ii) is a straightforward

consequence of (i) and (iii), it suffices to show (iii) and the necessity part of (ii). First
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suppose that PL1(X,Y ) 6= ∅, and let g be an element in PL1(X,Y ). Then there exist

finitely many polyhedra Λ1, · · · ,Λk in the product X × Y such that

gph(g) =

k⋃
i=1

Λi and X =

k⋃
i=1

Λi|X ,(3.1)

where Λi|X := {x ∈ X : there exists y ∈ Y such that (x, y) ∈ Λi} is the projection of

Λi to X. Given an i ∈ 1k, by Proposition 2.1, there exist two closed subspaces Xi, X̃i

of X and two closed subspaces Yi, Ỹi of Y such that

X × Y = (Xi × Yi)⊕ (X̃i × Ỹi), codim(Xi × Yi) = dim(X̃i × Ỹi) ≤ ∞,(3.2)

Λi = Xi × Yi + Λ̃i,(3.3)

where Λ̃i is a polyhedron in X̃i × Ỹi. Thus, Λi|X = Xi + Λ̃i|X̃i and so Λi|X is a

polyhedron in X (thanks to Proposition 2.1). Since g is a single-valued function, it

follows from (3.1) that Yi = {0} and Ỹi = Y . Hence Y is finite-dimensional, and the

necessity part of (ii) is proved. Next we prove g ∈ PL(X,Y ). To prove this, we only

need to show that there exist Ti ∈ L(X,Y ) and bi ∈ Y such that

g(x) = Ti(x) + bi ∀x ∈ Λi|X .(3.4)

Since every convex set in a finite-dimensional space has a nonempty relative interior,

rint(Λ̃i) 6= ∅. Take a point (ãi, b̃i) in rint(Λ̃i). Thus, ãi ∈ rint(Λ̃i|X̃i), and Ei :=

R+(Λ̃i|X̃i − ãi) and Zi := R+(Λ̃i − (ãi, b̃i)) are linear subspaces of X̃i and X̃i × Ỹi,
respectively. Noting that Λ̃i ⊂ gph(g), define T̂i : Λ̃i|X̃i − ãi → Ỹi such that

T̂i(ui) := g(ui + ãi)− g(ãi) = g(ui + ãi)− b̃i ∀ui ∈ Λ̃i|X̃i − ãi.(3.5)

Then gph(T̂i) = Λ̃i − (ãi, b̃i). Let T̃i : Ei → Ỹi be such that

T̃i(tui) := tT̂i(ui) ∀(t, ui) ∈ R+ × (Λ̃i|X̃i − ãi).

It is easy to verify that T̃i is well-defined and its graph is just the linear subspace

Zi = R+(Λ̃i − (ãi, b̃i)), and so T̃i is linear. Hence there exist ej ∈ Y and e∗ij ∈ E∗i
(j = 1, · · · , p) such that e1, · · · , ep are linearly independent and

T̃i(x) =

p∑
j=1

〈e∗ij , x〉ej ∀x ∈ Ei.

For each j ∈ 1p, let ẽ∗ij : Xi + Ei → R be such that

〈ẽ∗ij , u+ v〉 = 〈e∗ij , v〉 ∀(u, v) ∈ Xi × Ei.

Then, by (3.2) and Ei ⊂ X̃i, ẽ
∗
ij is a linear functional on Xi + Ei, and its null space

N (ẽ∗ij) := {x ∈ Xi + Ei : 〈ẽ∗ij , x〉 = 0} = Xi + {v ∈ Ei : 〈e∗ij , v〉 = 0}.
9



Since Xi is a closed subspace of X and dim(Ei) < ∞, it follows that N (ẽ∗ij) is a

closed subspace of X. Hence ẽ∗ij is a continuous linear functional on Xi +Ei (thanks

to [17, Theorem 1.18]). By the Hahn-Banach theorem, there exists x∗ij ∈ X∗ such

that x∗ij |Xi+Ei = ẽ∗ij . Let Ti : X → Y be such that

Ti(x) =

p∑
j=1

〈x∗ij , x〉ej ∀x ∈ X.

Then Ti ∈ L(X,Y ),

N (Ti) ⊃
p⋂
j=1

N (x∗ij) ⊃ Xi and Ti|Λ̃i|X̃i−ãi
= T̃i|Λ̃i|X̃i−ãi

= T̂i.(3.6)

Let x be an arbitrary element in Λi|X and take y ∈ Y such that (x, y) ∈ Λi. Then,

by (3.2) and (3.3), there exist xi ∈ Xi and x̃i ∈ Λ̃i|X̃i such that (x̃i, y) ∈ Λ̃i and

(x, y) = (xi + x̃i, y) (because Yi = {0}). Hence, by (3.5) and (3.6), one has

g(x) = g(x̃i) = y = T̂i(x̃i − ãi) + b̃i = Ti(x̃i − ãi) + b̃i = Ti(x)− Ti(ãi) + b̃i.

This shows that (3.4) holds with bi = −Ti(ãi) + b̃i and so g ∈ PL(X,Y ). Therefore,

PL1(X,Y ) ⊂ PL(X,Y ).

Now suppose that dim(Y ) < ∞. To prove the converse inclusion PL1(X,Y ) ⊃
PL(X,Y ), let g ∈ PL(X,Y ). Then there exist Pi ∈ P(X), Ti ∈ L(X,Y ) and bi ∈ Y
(i = 1, · · · , n) such that

X =

n⋃
i=1

Pi and g(x) = Ti(x) + bi ∀x ∈ Pi and ∀i ∈ 1n.(3.7)

By dim(Y ) < ∞, there exist y∗1 , · · · , y∗q ∈ Y ∗ such that Y ∗ = span{y∗1 , · · · , y∗q}. For

any x ∈ X, since

Ti(x) = y ⇔ [〈y∗, Ti(x)〉 = 〈y∗, y〉 ∀y∗ ∈ Y ∗]⇔ [〈y∗j , Ti(x)〉 = 〈y∗j , y〉, j = 1, · · · , q],

Ti(x) = y ⇐⇒ [〈T ∗i (y∗j ), x〉 = 〈y∗j , y〉, j = 1, · · · , q].

Hence gph(Ti) = {(x, y) ∈ X × Y : 〈T ∗i (y∗j ), x〉 − 〈y∗j , y〉 = 0, j = 1, · · · , q}, and so

gph(Ti) is a polyhedron of X × Y . Noting (by (3.7)) that

gph(g) =

n⋃
i=1

(gph(Ti) + (0, bi)) ∩ (Pi × Y ),

it follows that gph(g) is the union of finitely many polyhedra in X × Y . Therefore,

g ∈ PL1(X,Y ). The proof of (iii) is complete.

Given f ∈ PL(X,Y ), there exist (P1, T1, b1), · · · , (Pm, Tm, bm) in the product

P(X) × L(X,Y ) × Y such that (1.2) holds. For i ∈ 1m, since each polyhedron
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is closed, the first equality of (1.2) implies that int(Pi) ⊃ X \
⋃

j∈1m\{i}
Pj and so

X =
⋃

j∈1m\{i}
Pj whenever int(Pi) = ∅. Hence, without loss of generality, we can

assume that each Pi in (1.2) has a nonempty interior. Moreover, we assume without

loss of generality that there exists k ∈ 1m satisfying the following property:

(Ti, bi) 6= (Ti′ , bi′) ∀i, i′ ∈ 1k with i 6= i′(3.8)

and for each j ∈ 1m there exists i ∈ 1k such that (Tj , bj) = (Ti, bi). For each i ∈ 1k,

let

Ii := {j ∈ 1m : (Tj , bj) = (Ti, bi)} and Qi :=
⋃
j∈Ii

Pj .(3.9)

Then X =
⋃
i∈1k

Qi, X 6=
⋃

i∈1k,i 6=j
Qi and f |Qj = Tj |Qj + bj for all j ∈ 1k. We claim

that

int(Qi) ∩ int(Qi′) = ∅ ∀i, i′ ∈ 1k with i 6= i′.(3.10)

Indeed, if this is not the case, there exist i, i′ ∈ 1k with i 6= i′, x ∈ X and r > 0 such

that B(x, r) ⊂ Qi ∩Qi′ , and so

f(x) = Ti(u) + bi = Ti′(u) + bi′ ∀u ∈ B(x, r).

Since Ti and Ti′ are linear, it follows that (Ti, bi) = (Ti′ , bi′), contradicting (3.8).

Hence (3.10) holds. Since each Qi is closed, (3.10) can be rewritten as

Qi ∩ int(Qi′) = ∅ ∀i, i′ ∈ 1k with i 6= i′.

Therefore, by Proposition 2.5, we have the following result.

Proposition 3.2. For each f ∈ PL(X,Y ) there exist (Pi, Ti, bi) ∈ P(X) ×
L(X,Y )× Y (i = 1, · · · ,m) such that

X =

m⋃
i=1

Pi, int(Pi) 6= ∅, Pi ∩ int(Pj) = ∅ ∀i, j ∈ 1m with i 6= j,(3.11)

and

f |Pi = Ti|Pi + bi ∀i ∈ 1m,(3.12)

that is, f(x) = Tix+ bi for all x ∈ Pi and i ∈ 1m.

Now we are ready to establish the main result in this section, which shows that

any piecewise linear function defined on an infinite dimensional space X can be de-

composed into the sum of a linear function on an infinite dimensional closed subspace

of X and a piecewise linear function on a finite dimensional subspace of X.
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Theorem 3.1. Let f ∈ PL(X,Y ). Then there exist two closed subspaces X1 and

X2 of X, (P̂i, Ti, bi) ∈ P(X2) × L(X,Y ) × Y (i = 1, · · · ,m) and T̂ ∈ L(X1, Y ) such

that

X = X1 ⊕X2, codim(X1) = dim(X2) <∞, X2 =

m⋃
i=1

P̂i,(3.13)

intX2
(P̂i) 6= ∅, P̂i ∩ intX2

(P̂j) = ∅ ∀i, j ∈ 1m with i 6= j,(3.14)

Ti|X1
= T̂ and f |X1+P̂i

= Ti|X1+P̂i
+ bi ∀i ∈ 1m.(3.15)

Consequently, there exist a finite dimensional subspace Y2 of Y and a piecewise linear

function g between the finite dimensional spaces X2 and Y2 such that

f(x1 + x2) = T̂ (x1) + g(x2) ∀(x1, x2) ∈ X1 ×X2.

Proof. Since f is in PL(X,Y ), Proposition 3.2 implies that there exist (Pi, Ti, bi) ∈
P(X)×L(X,Y )×Y (i = 1, · · · ,m) such that (3.11) and (3.12) hold. For each i ∈ 1m,

take a prime generator group {(x∗i1, ti1), · · · , (x∗iνi , tiνi)} of Pi, that is,

Pi = {x ∈ X : 〈x∗ij , x〉 ≤ tij , j ∈ 1νi}(3.16)

and

Pi 6= {x ∈ X : 〈x∗ij , x〉 ≤ tij , j ∈ 1νi \ {j′}} ∀j′ ∈ 1νi.(3.17)

Let X1 :=
⋂

i∈1m

⋂
j∈1νi

N (x∗ij). Then X1 is a closed subspace of X with codim(X1) ≤

m∑
i=1

νi and so there exists a closed subspace X2 of X such that

X = X1 ⊕X2 and codim(X1) = dim(X2) <∞.(3.18)

Let

P̂i := {x ∈ X2 : 〈x∗ij , x〉 ≤ tij , j ∈ 1νi}.(3.19)

By (3.16) and the definition of X1, one has Pi = X1 +P̂i. It follows from (3.11), (3.18)

and Proposition 2.1 that (3.13) holds, int(Pi) = X1 + intX2(P̂i) for all i ∈ 1m, and so

(3.14) also holds. Thus, by (3.12), it remains to show the first equality of (3.15). For

any i ∈ 1m and j ∈ 1νi, let

F ◦j (Pi) :=
{
x ∈ X : 〈x∗ij , x〉 = tij and 〈x∗il, x〉 < til for all l ∈ 1νi \ {j}

}
and

F ◦j (P̂i) := {x ∈ X2 : 〈x∗ij , x〉 = tij and 〈x∗il, x〉 < til for all l ∈ 1νi \ {j}}.(3.20)
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Then, F ◦j (Pi) = X1 +F ◦j (P̂i) and F ◦j (P̂i) 6= ∅ (thanks to Lemma 2.3). Let i and i′ be

two arbitrary indices in 1m such that i 6= i′. Then, to prove the first equality of (3.15),

we only need to show Ti|X1 = Ti′ |X1 . To do this, take (ū, ū′) ∈ int(P̂i)× int(P̂i′) and

u∗ ∈ X∗2 \ {0} such that 〈u∗, ū′ − ū〉 6= 0. Then there exists δ > 0 such that

ū+BX3
(0, δ) ⊂ intX2

(P̂i) and ū′ +BX3
(0, δ) ⊂ intX2

(P̂i′),(3.21)

where X3 := N (u∗) = {x ∈ X2 : 〈u∗, x〉 = 0}. Hence

dim(X3) = dim(X2)− 1, X2 = X3 ⊕ R(ū′ − ū)(3.22)

and

intX2

(
[ū, ū′] +BX3

(0, δ)
)

= (ū, ū) +BX3
(0, δ) 6= ∅,(3.23)

where [ū, ū′] := {ū+ t(ū′− ū) : 0 ≤ t ≤ 1} and (ū, ū′) := {ū+ t(ū′− ū) : 0 < t < 1}.
For each z ∈ BX3(0, δ), let

Iz := {i ∈ 1m : {x} 6= P̂i ∩ (z + [ū, ū′]) 6= ∅ for all x ∈ X2}

and

I◦z := {i ∈ 1m : intX2
(P̂i) ∩ (z + [ū, ū′]) 6= ∅}.

Then I◦z ⊂ Iz, and P̂i ∩ (z + [ū, ū′]) contains at most an element for all i ∈ 1m \ Iz.
Noting that X2 =

⋃
i∈1m

P̂i (thanks to (3.13)), it follows that

z + [ū, ū′] =
⋃
i∈Iz

P̂i ∩ (z + [ū, ū′]) ∀z ∈ BX3(0, δ).(3.24)

Regarding X2 as the Euclidean space Rdim(X2) (without loss of generality), let µX2

and µX3
denote the Lebesgue measures on X2 and X3, respectively. Setting E0 :=

{z ∈ BX3
(0, δ) : I◦z 6= Iz}, we claim that µX3

(E0) = 0. To prove this, let z be an

arbitrary element in E0. Then there exists iz ∈ Iz such that iz 6∈ I◦z . This implies

that P̂iz ∩ (z + [ū, ū′]) ⊂ P̂iz \ intX2(P̂iz ). Noting that P̂iz \ intX2(P̂iz ) is the union

of finitely many faces of P̂iz , it follows from Proposition 2.4 that there exists a face

of P̂iz containing the convex set P̂iz ∩ (z + [ū, ū′]). Since P̂iz ∩ (z + [ū, ū′]) is a

segment containing at least two points (thanks to the definition of Iz) and each P̂i

(as a polyhedron in X2) has finitely many faces, there exist v∗1 , · · · , v∗q ∈ X∗2 \ {0}

and v1, · · · , vq ∈ X2 such that z + [ū, ū′] ⊂
q⋃

k=1

(vk + N (v∗k)) for all z ∈ E0, that

is, E0 + [ū, ū′] ⊂
q⋃

k=1

(vk + N (v∗k)). Since each N (v∗k) is of dimension dim(X2) − 1,

µX2(E0 + [ū, ū′]) ≤ µX2

(
q⋃

k=1

(vk +N (v∗k))

)
≤

q∑
k=1

µX2(vk + N (v∗k)) = 0. This and

(3.22) show that µX3
(E0) = 0. Next, let

z ∈ BX3(0, δ) \ E0.
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Then Iz = I◦z . Thus, by (3.24) and the definition of I◦z ,

z + [ū, ū′] =
⋃
κ∈I◦z

P̂κ ∩ (z + [ū, ū′]) and intX2(P̂κ) ∩ (z + [ū, ū′]) 6= ∅ ∀κ ∈ I◦z .

Noting that P̂κ ∩ intX2
(P̂κ′) = ∅ for any κ, κ′ ∈ I◦z with κ 6= κ′, it follows from (3.21)

that there exist ιz0, ι
z
1, · · · , ιzγz ∈ 1m and λz0, λ

z
1, · · · , λzγz ∈ [0, 1) such that

Iz = I◦z = {ιz0, ιz1, · · · , ιzγz}, ι
z
0 = i, ιzγz = i′, λz0 = 0, λzk−1 < λzk,(3.25)

z + ū+ [0, λz1)(ū′ − ū) = (z + [ū, ū′]) ∩ intX2(P̂i),

z + ū+ (λzγz , 1](ū′ − ū) = (z + [ū, ū′]) ∩ intX2
(P̂i′),

z + ū+ [λzk−1, λ
z
k](ū′ − ū) = (z + [ū, ū′]) ∩ P̂ιzk−1

and

z + ū+ (λzk−1, λ
z
k)(ū′ − ū) = (z + [ū, ū′]) ∩ intX2

(P̂ιzk−1
)

for all k ∈ 1γz. Therefore

z + ū+ λzk(ū′ − ū) ∈ P̂ιzk−1
∩ P̂ιzk ∀k ∈ 1γz.(3.26)

This and (3.14) imply that z + ū + λzk(ū′ − ū) 6∈ intX2
(P̂ιzk−1

) ∪ intX2
(P̂ιzk) for all

k ∈ 1γz. Letting

J−(z,k) := {j ∈ 1νιzk−1
: 〈x∗ιzk−1j

, z + ū+ λzk(ū′ − ū)〉 = tιzk−1j
}(3.27)

and

J(z,k) := {j ∈ 1νιzk : 〈x∗ιzkj , z + ū+ λzk(ū′ − ū)〉 = tιzkj},(3.28)

it follows from (3.19) and Corollary 2.1 that J−(z,k) 6= ∅ and J(z,k) 6= ∅ for all k ∈ 1γz.

We claim that there exist z̄ ∈ BX3
(0, δ) \ E0 and (j−k , jk) ∈ 1νιz̄k−1

× 1νιz̄k such that

J−(z̄,k) = {j−k } and J(z̄,k) = {jk} ∀k ∈ 1γz̄.(3.29)

Indeed, if this is not the case, for each z ∈ BX3
(0, δ) \ E0 there exists k ∈ 1γz such

that either J−(z,k) or J(z,k) contains at least two elements; we assume without loss of

generality that there exist k ∈ 1γz and j1, j2 ∈ J(z,k) such that j1 6= j2. Then, by

(3.26) and (3.28),

z + ū+ λzk(ū′ − ū) ∈
{
x ∈ P̂ιzk : 〈x∗ιzkj1 , x〉 = tιzkj1 and 〈x∗ιzkj2 , x2〉 = tιzkj2

}
.(3.30)

Since
{

(x∗ιzk1, tιzk1), (x∗ιzk2, tιzk2), · · · , (x∗ιzkνιzk , tι
z
kνιzk

)
}

is a prime generator group of Pιzk
and int(Pιzk) is nonempty, it is easy to verify that x∗ιzkj1

and x∗ιzkj2
are linearly inde-

pendent. Hence codim(N (x∗ιzkj1
) ∩ N (x∗ιzkj2

)) = 2. Noting that X1 is a subspace of
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N (x∗ιzkj1
)∩N (x∗ιzkj2

), it follows from (3.13) that X2 ∩N (x∗ιzkj1
)∩N (x∗ιzkj2

), as a linear

subspace of X2, is of codimension 2. This and (3.30) imply that there exists a face F̂

of P̂ιzk such that dim(F̂ ) ≤ dim(X2)− 2, z + ū+ λzk(ū′ − ū) ∈ F̂ , and so

z + [ū, ū′] ⊂ F̂ − (ū+ λzk′(ū
′ − ū)) + [ū, ū′] ⊂ F̂ + [ū′ − ū, ū− ū′].

Since each polyhedron has finitely many faces (cf. [11, 16]) , there exist finitely many

linear subspaces S1, · · · , Sl of X2 and ω1, · · · , ωl ∈ X2 such that dim(Sj) ≤ dom(X2)−

2 (j = 1, · · · , l) and z+[ū, ū′] ⊂
l⋃

j=1

(Sj+ωj+[ū′−ū, ū−ū′]) for all z ∈ BX3
(0, δ)\E0.

This means that (BX3
(0, δ) \ E0) + [ū, ū′] ⊂

l⋃
j=1

(Sj + ωj + [ū′ − ū, ū− ū′]) and so

µX2((BX3(0, δ) \ E0) + [ū, ū′]) ≤
l∑

j=1

µX2(Sj + ωj + [ū′ − ū, ū− ū′]) = 0.

Thus, by (3.22), µX3
(BX3

(0, δ) \ E0) = 0. Hence µX3
(E0) ≥ µX3

(BX3
(0, δ)) > 0,

contradicting µX3(E0) = 0. This shows that (3.29) holds, that is, there exist z̄ ∈
BX3(0, δ) \ E0 and (j−k , jk) ∈ 1νιz̄k−1

× 1νιz̄k such that

x̄k := z̄ + ū+ λz̄k(ū′ − ū) ∈ F ◦
j−k

(P̂ιz̄k−1
) ∩ F ◦jk(P̂ιz̄k) ∀k ∈ 1γz̄.

Noting that F ◦
j−k

(Pιz̄k−1
) = X1 + F ◦

j−k
(P̂ιz̄k−1

) and F ◦jk(Pιz̄k) = X1 + F ◦jk(P̂ιz̄k), one has

x̄k ∈ F ◦j−k (Pιz̄k−1
) ∩ F ◦jk(Pιz̄k) ∀k ∈ 1γz̄.

It follows from Lemma 2.4 that for each k ∈ 1γz̄,

Nk := N (x∗
ιz̄k−1j

−
k

) = N (x∗ιz̄kjk
)

and

F ◦
j−k

(Pιz̄k−1
) ∩BX(x̄k, rk) = F ◦jk(Pιz̄k) ∩BX(x̄k, rk) = (x̄k +Nk) ∩BX(x̄k, rk)

for some rk > 0. Thus, by (3.12), one has

Tιz̄k−1
|(x̄k+Nk)∩BX(x̄k,rk) + bιz̄k−1

= Tιz̄k |(x̄k+Nk)∩BX(x̄k,rk) + bιz̄k ∀k ∈ 1γz̄.

Since Nk is a maximal subspace of X and both Tιz̄k−1
and Tιz̄k are linear,

Tιz̄k−1
|Nk = Tιz̄k |Nk ∀k ∈ 1γz̄.

Noting that X1 ⊂ Nk (thanks to the definitions of Nk and X1), it follows that

Tιz̄k−1
|X1

= Tιz̄k |X1
for all k ∈ 1γz̄, and so Ti|X1

= Tιz̄0 |X1
= Tιz̄γz̄ |X1

= Ti′ |X1
(thanks

to (3.25)). This shows that the first equality of (3.15) holds. The proof is complete.
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The following corollary is a consequence of Theorem 3.1 and Propositions 2.1 and

2.5.

Corollary 3.1. For any two f, f ′ ∈ PL(X,Y ) there exist two closed subspaces

X1 and X2 of X and (P̂i, Ti, T
′
i , bi, b

′
i) ∈ P(X2)×L(X,Y )2 × Y 2 (i = 1, · · · ,m) such

that codim(X1) = dim(X2) <∞,

X = X1 ⊕X2, X2 =

m⋃
i=1

P̂i, intX2(P̂i) 6= ∅, intX2(P̂i) ∩ P̂j = ∅,

Ti|X1 = Tj |X1 , T
′
i |X1 = T ′j |X1 , f |X1+P̂i

= Ti|X1+P̂i
+bi and f ′|X1+P̂i

= T ′i |X1+P̂i
+b′i

for all i, j ∈ 1m with i 6= j.

4. Fully piecewise linear vector optimization problem (PLP). Let Y be

a normed linear space and C be a nontrivial convex cone in Y . Let ≤C denote the

preorder induced by C in Y , that is, for y1, y2 ∈ Y , y1 ≤C y2 ⇔ y2 − y1 ∈ C. When

the interior int(C) of C is nonempty, y1 <C y2 is defined as y2 − y1 ∈ int(C).

For a subset Ω of Y and a point ω in Ω, we say that ω is a Pareto efficient point

of Ω (with respect to C), denoted by ω ∈ E(Ω, C), if there is no element v ∈ Ω \ {ω}
such that v ≤C ω. In the case when int(C) 6= ∅, we say that ω is a weak Pareto

efficient point of Ω, denoted by ω ∈WE(Ω, C), if there is no element v ∈ Ω such that

v <C ω. Clearly,

a ∈ E(Ω, C)⇔ (ω − C) ∩ Ω = {ω} and a ∈WE(Ω, C)⇔ (ω − int(C)) ∩ Ω = ∅.

In the remainder, let X and Y be normed spaces, C ⊂ Y be a nontrivial convex

cone such that int(C) 6= ∅, and let (f, ϕi) ∈ PL(X,Y )× PL(X,R) (i = 1, · · · , l). We

consider the following fully piecewise linear vector optimization problem:

(PLP) C −min f(x) subject to ϕ1(x) ≤ 0, · · · , ϕl(x) ≤ 0.

Let A denote the feasible set of (PLP), that is,

A := {x ∈ X : ϕ1(x) ≤ 0, · · · , ϕl(x) ≤ 0}.

We say that x̄ ∈ A is a Pareto (resp. weak Pareto) solution of (PLP) if f(x̄) ∈
E(f(A), C) (resp. f(x̄) ∈ WE(f(A), C)). Let S (resp. Sw) denote the set of all

Pareto (resp. weak Pareto) solutions of (PLP).

Since the objective f and each ϕi in problem (PLP) are piecewise linear, Corollary

3.1 implies that there exist (Pi, Ti, bi, x
∗
ij , cij) ∈ P(X)× L(X,Y )× Y ×X∗ × R (i =

1, · · · ,m and j = 1, · · · , l) such that

X =

m⋃
i=1

Pi, int(Pi) 6= ∅, Pi ∩ int(Pi′) = ∅ ∀i, i′ ∈ 1m with i 6= i′,(4.1)

f |Pi = Ti|Pi + bi and ϕj |Pi = x∗ij |Pi − cij ∀(i, j) ∈ 1m× 1l.(4.2)
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For each i ∈ 1m, let

Ai := {x ∈ Pi : 〈x∗ij , x〉 ≤ cij ∀j ∈ 1l}.(4.3)

Then each Ai is a polyhedron in X and

A =
⋃
i∈1m

Ai.(4.4)

Take a prime generator group {(u∗ik, tik) ∈ X∗ ×R : k = 1, · · · , qi} of Pi (where Pi is

as in (4.1) and (4.2)). Then

Pi = {x ∈ X : 〈u∗ik, x〉 ≤ tik ∀k ∈ 1qi} 6= {x ∈ X : 〈u∗ik, x〉 ≤ tik, k ∈ 1qi \ {k′}}

for all k′ ∈ 1qi. It follows from (4.3) that

Ai =
⋂

(j,k)∈1l×1qi

{x ∈ X : 〈x∗ij , x〉 ≤ cij} ∩ {x ∈ X : 〈u∗ik, x〉 ≤ tik} ∀i ∈ 1m.(4.5)

Let

X1 :=

m⋂
i=1

⋂
(j,k)∈1l×1qi

N (x∗ij) ∩N (u∗ik).(4.6)

Then X1 is a closed subspace of X such that codim(X1) < ∞. Thus, one can take

another closed subspace X2 of X such that

X = X1 ⊕X2 and dim(X2) = codim(X1) <∞.(4.7)

By Theorem 3.1 and its proof, there exists T̂ ∈ L(X1, Y ) such that

Ti|X1
= T̂ ∀i ∈ 1m.(4.8)

For each i ∈ 1m, let

Âi :=
⋂

(j,k)∈1l×1qi

{x ∈ X2 : 〈x∗ij , x〉 ≤ cij} ∩ {x ∈ X2 : 〈u∗ik, x〉 ≤ tik}(4.9)

Then each Âi is a polyhedron in the finite dimensional space X2 and

Ai = X1 + Âi ∀i ∈ 1m.(4.10)

Hence, by (4.4), the feasible set A of piecewise linear problem (PLP) can be rewritten

as

A = X1 +
⋃
i∈1m

Âi.(4.11)

To study piecewise linear problem (PLP), we consider the following linear sub-

problems

(LP)i C −minTix+ bi subject to x ∈ Ai,
17



where i ∈ 1m. Recall that a weak Pareto face (resp. Pareto face) F of linear problem

(LP)i is a face of Ai such that each point in F is a weak Pareto solution (resp. Pareto

solution) of (LP)i.

Theorem 4.1. Let C be a convex cone in Y such that f(A) is C-convex, that is,

f(A) +C is a convex subset of Y . Then there exist finitely many polyhedra F1, · · · , Fp
in X satisfying the following properties:

(i) Sw =
p⋃
k=1

Fk.

(ii) For each k there exists i ∈ Ī such that Fk is a face of Ai and Fk ⊂ Swi , where

Ī := {i ∈ 1m : Ai 6= ∅} and Swi is the weak Pareto solution set of linear subproblem

(LP)i.

Consequently each Fk is just a weak Pareto face of linear subproblem (LP)i for some

i ∈ Ī.

Proof. Let x ∈ A. Then x ∈ Sw if and only if f(A) ∩ (f(x)− int(C)) = ∅, which

is equivalent to (f(A) + C) ∩ (f(x) − int(C)) = ∅. Thus, by the separation theorem

and the convexity of f(A) + C, x ∈ Sw if and only if there exists c∗ ∈ C+ \ {0} such

that 〈c∗, f(x)〉 = inf
u∈A
〈c∗, f(u)〉. Let Sw(c∗) := {x ∈ A : 〈c∗, f(x)〉 = inf

u∈A
〈c∗, f(u)〉}

for each c∗ ∈ C+ \ {0}, and C+(f,A) := {c∗ ∈ C∗ \ {0} : Sw(c∗) 6= ∅}. Then,

by (4.4), one has Sw =
⋃

c∗∈C+(f,A)

Sw(c∗) =
⋃

c∗∈C+(f,A)

⋃
i∈Λ(c∗)

Sw(c∗) ∩ Ai, where

Λ(c∗) := {i ∈ Ī : Sw(c∗) ∩ Ai 6= ∅}. On the other hand, for c∗ ∈ C+(f,A) and

i ∈ Λ(c∗),

Sw(c∗) ∩Ai = {x ∈ Ai : 〈c∗, f(x) = min
u∈Ai
〈c∗, f(u)〉}

= {x ∈ Ai : 〈c∗, Tix+ bi〉 = min
u∈Ai
〈c∗, Tiu+ bi〉}

= {x ∈ Ai : 〈c∗, Tix〉 = min
u∈Ai
〈c∗, Tiu〉}

= {x ∈ Ai : 〈T ∗i (c∗), x〉 = min
u∈Ai
〈T ∗i (c∗), u〉}

(thanks to (4.2) and (4.3)) is a face of Ai and a subset of the weak Pareto solution set

of linear subproblem (LP)i. Therefore, since every polyhedron only has finitely many

faces, there exist c∗1, · · · , c∗p ∈ C+(f,A) such that

Sw =
⋃

c∗∈C+(f,A)

⋃
i∈Λ(c∗)

Sw(c∗) ∩Ai =

p⋃
k=1

⋃
i∈Λ(c∗k)

Sw(c∗k) ∩Ai.

The proof is complete.

Remark. If Y = R and C = R+, then each set in Y is trivially C-convex.

Moreover, if f is C-convex (i.e. epiC(f) = {(x, y) : y ∈ f(x) + C} is convex) then

f(A) is C-convex.

Dropping the C-convexity assumption on f(A) but imposing the polyhedral as-

sumption on the ordering cone C, the following theorems show that the weak Pareto

solution set (resp. Pareto solution set) of (PLP) is the union of finitely many poly-
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hedra (resp. generalized polyhedra), each of which is contained in a face of some

Ai.

Theorem 4.2. Let Sw be the set of all weak Pareto solutions of piecewise lin-

ear problem (PLP). Suppose that the ordering cone C is polyhedral. Then there exist

finitely many polyhedra F1, · · · , Fp in X such that Sw =
p⋃
k=1

Fk and each Fk is con-

tained in a weak Pareto face of some linear subproblem (LP)i.

Theorem 4.3. Let S be the set of all Pareto solutions of piecewise linear problem

(PLP). Suppose that the ordering cone C is polyhedral. Then there exist finitely many

generalized polyhedra F1, · · · , Fp in X such that S =
p⋃
k=1

Fk and Fk is contained in a

Pareto face of some linear subproblem (LP)i.

Remark. In the special case when the feasible set A of (PLP) is a polyhedron in

X (i.e., each function ϕk is linear in the constraint system of (PLP)), Luan [10] proved

that the weak Pareto solution set (resp. Pareto solution set) of (PLP) is the union of

finitely many polyhedra (resp. generalized polyhedra) in X; in contrast, Theorem 4.2

(resp. Theorem 4.3) implies that the weak Pareto solution set (resp. Pareto solution

set) of (PLP) is the union of finitely many polyhedra (resp. generalized polyhedra)

in X with each of these polyhedra (resp. generalized polyhedra) contained in some

face of A.

We postpone the proofs of Theorems 4.2 and 4.3 to the next section which estab-

lish a kind of finite dimensional reduction method to solve (PLP).

5. Finite dimension reduction method to solve (PLP). In this section,

with the help of Theorem 3.1, we reduce fully piecewise linear problem (PLP) and

linear subproblem (LP)i in the general normed space framework to the corresponding

ones in the finite-dimensional space framework.

Throughout this section, we assume that the objective function f and all con-

straint functions ϕj in (PLP) are completely known, that is, Ti ∈ L(X,Y ), bi ∈ Y ,

u∗ik, x
∗
ij ∈ X∗, bi ∈ Y and tik, cij ∈ R are known data such that

X =

m⋃
i=1

Pi, int(Pi) 6= ∅, Pi ∩ int(Pi′) = ∅ ∀i, i′ ∈ 1m with i 6= i′,(5.1)

f |Pi = Ti|Pi + bi and ϕj |Pi = x∗ij |Pi − cij ∀(i, j) ∈ 1m× 1l(5.2)

where

Pi = {x ∈ X : 〈u∗ik, x〉 ≤ tik, k = 1, · · · , qi}, i ∈ 1m.(5.3)

We first provide a procedure to obtain exact formulas for optimal value sets and

solution sets of (PLP):

Step 1 (Decomposing the space X): Let

X1 :=

m⋂
i=1

⋂
(j,k)∈1l×1qi

N (x∗ij) ∩N (u∗ik),
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namely, X1 is the solution space of the following system of homogeneous linear equa-

tions

〈u∗ik, x〉 = 〈x∗ij , x〉 = 0, i = 1, · · · ,m, j = 1, · · · , l, k = 1, · · · , qi.

Take a maximal linearly independent subset {e∗1, · · · , e∗ν} of the finite set {u∗ik, x∗ij :

i ∈ 1m, j ∈ 1l, k ∈ 1qi}. For each ι ∈ 1ν, let hι be a solution of the following system

of linear equations

〈e∗ι , x〉 = 1 and 〈e∗ι′ , x〉 = 0 ∀ι′ ∈ 1ν \ {ι}.

In particular, in the case that X is a Hilbert space, hι = x∗ι . Let

X2 := span{h1, · · · , hν} =

{
ν∑
ι=1

tιhι : t1, · · · , tν ∈ R

}
.

Then

X = X1 +X2 and X1 ∩X2 = {0}.(5.4)

Step 2 (Constructing finite dimensional subspace Z of Y ): Thanks to Corollary 3.1

and (5.4),

T̂ := T1|X1
= T2|X1

= · · · = Tm|X1
.(5.5)

Let D denote the finite set
m⋃
i=1

{Ti(h1), · · · , Ti(hν), bi} and take u1, · · · , uς in D with

ς being the maximal integer such that u1 ∈ D \ T̂ (X1),

u2 ∈ D \ (T̂ (X1) + span{u1}), · · · , uς ∈ D \ (T̂ (X1) + span{u1, · · · , uς−1}),

where X1 and h1, · · · , hν are as in Step 1. Let Z := span{u1, · · · , uς}. Clearly, Z is a

subspace of Y such that dim(Z) = ς,

T̂ (X1) ∩ Z = {0} and f(X) =

m⋃
i=1

(T̂ (X1) + Ti(P̂i) + bi)) ⊂ T̂ (X1)⊕ Z,(5.6)

where P̂i := {x2 ∈ X2 : 〈u∗ik, x2〉 ≤ tik ∀k ∈ 1qi}. Let ΠZ denote the projection from

T̂ (X1)⊕ Z onto Z, that is,

ΠZ(y + z) := z ∀(y, z) ∈ T̂ (X1)× Z,(5.7)

and let CZ be a convex cone in the finite dimensional space Z defined by

CZ := ΠZ((T̂ (X1)⊕ Z) ∩ C).(5.8)

Step 3 (Exact formulas for weak Pareto optimal value set and weak Pareto set of

(PLP)): For each i ∈ 1m, let

Âi := {x2 ∈ P̂i : 〈x∗ij , x2〉 ≤ cij ∀j ∈ 1l}
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and let Â :=
m⋃
i=1

Âi. The weak Pareto optimal value set WE(f(A), C) and weak

Pareto solution set Sw of (PLP) can be formulized as follows:

(i) If (T̂ (X1)⊕ Z) ∩ int(C) = ∅ then WE(f(A), C) = f(A) and Sw = A.

(ii) If (T̂ (X1)⊕ Z) ∩ int(C) 6= ∅ then

WE(f(A), C) = T̂ (X1) +

m⋃
i=1

V̂ wi and Sw = X1 +

m⋃
i=1

Âi ∩ (ΠZ ◦ Ti)−1(V̂ wi −ΠZ(bi)),

where V̂ wi := ΠZ

(
Ti(Âi) + bi

)
\ (f̂(Â) + intZ(CZ)).

Formulas (i) and (ii) are immediate from Theorems 5.1 and 5.3. Similarly, with The-

orems 5.1 and 5.3 being replaced by Corollary 5.1, Propositions 5.2 and their proofs,

we can also obtain the formulas for the Pareto optimal value set and Pareto solution

set of (PLP).

To establish the main results in this section, we need the following lemma.

Lemma 5.1. Suppose that (T̂ (X1)⊕ Z) ∩ int(C) is nonempty. Then

intZ(CZ) = ΠZ((T̂ (X1)⊕ Z) ∩ int(C)).(5.9)

Proof. By the assumption, take (x̄1, z̄) ∈ X1 × Z and r > 0 such that

T̂ (x̄1) + z̄ + rBT̂ (X1)⊕Z ⊂ C.(5.10)

Noting that the projection ΠZ is an open mapping from T̂ (X1) ⊕ Z to Z, (5.8)

implies that intZ(CZ) ⊃ ΠZ((T̂ (X1) ⊕ Z) ∩ int(C)). Hence it suffices to show the

converse inclusion. To do this, let z ∈ intZ(CZ). Then there exists σ > 0 such that

z + σ(z − z̄) ∈ CZ , that is, T̂ (x1) + z + σ(z − z̄) ∈ C for some x1 ∈ X1. It follows

from (5.10) and the convexity of C that

T̂
(x1 + σx̄1

1 + σ

)
+ z +

σrBT̂ (X1)⊕Z

1 + σ
=
T̂ (x1) + z + σ(z − z̄)

1 + σ
+
σ(T̂ (x̄1) + z̄ + rBT̂ (X1)⊕Z)

1 + σ

⊂ (T̂ (X1)⊕ Z) ∩ C.

Hence z + σrBZ
1+σ ⊂ CZ (thanks to (5.8)). This shows that z ∈ intZ(CZ).

Define f̂ : X2 → Z as follows

f̂(x2) := (ΠZ ◦ f)(x2) = ΠZ(f(x2)) ∀x2 ∈ X2.

Then, f̂ is a piecewise linear function between the two finite dimensional spaces X2

and Z. To solve the original piecewise linear vector optimization problem (PLP),

consider the following piecewise linear problem in the framework of finite dimensional

spaces:

(P̂LP) CZ −min f̂(x2) subject to x2 ∈ X2 and ϕ1(x2) ≤ 0, · · · , ϕl(x2) ≤ 0.
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Then the feasible set of (P̂LP) is Â and the feasible set A of (PLP) is equal to X1 + Â.

Next we establish the relationship between the weak Pareto optimal value set and

weak Pareto solution set (resp. the Pareto solution set) of (PLP) and that of (P̂LP).

Theorem 5.1. Let Sw and Ŝw denote the weak Pareto solution sets of piecewise

linear problems (PLP) and (P̂LP), respectively. The following statements hold:

(i) If (T̂ (X1)⊕ Z) ∩ int(C) = ∅ then WE(f(A), C) = f(A) and Sw = A.

(ii) If (T̂ (X1)⊕ Z) ∩ int(C) 6= ∅ then

WE(f(A), C) = T̂ (X1) + WE(f̂(Â), CZ) and Sw = X1 + Ŝw.(5.11)

Proof. First suppose that (T̂ (X1)⊕ Z) ∩ int(C) = ∅. Then, since T̂ (X1)⊕ Z is a

linear subspace of Y , (T̂ (X1)⊕ Z) ∩ ((T̂ (X1)⊕ Z)− int(C)) = ∅. Noting that

f(x2) ∈ T̂ (X1) + f̂(x2) and f(x1 + x2) = T̂ (x1) + f(x2) ∀(x1, x2) ∈ X1 ×X2(5.12)

(thanks to (5.1), (5.2) and (5.6)), one has

f(A) = T̂ (X1) + f(Â) = T̂ (X1) + f̂(Â) ⊂ T̂ (X1)⊕ Z,

and so f(A) ∩ (f(A) − int(C)) = ∅. This shows that WE(f(A), C) = f(A) and

Sw = A. Next suppose that (T̂ (X1) ⊕ Z) ∩ int(C) 6= ∅. Then, by Lemma 5.1,

intZ(CZ) = ΠZ(T̂ (X1)⊕Z)∩ int(C)). Since ΠZ is the projection from T̂ (X1)⊕Z to

Z,

T̂ (X1) + (T̂ (X1)⊕ Z) ∩ int(C) = T̂ (X1) + ΠZ((T̂ (X1)⊕ Z) ∩ int(C))

= T̂ (X1) + intZ(CZ).

Hence

WE(f(A), C) = f(A) \ (f(A) + int(C))

= (T̂ (X1) + f̂(Â)) \ (T̂ (X1) + f̂(Â) + int(C))

= (T̂ (X1) + f̂(Â)) \ (T̂ (X1) + f̂(Â) + (T̂ (X1)⊕ Z) ∩ int(C))

= (T̂ (X1) + f̂(Â)) \ (T̂ (X1) + f̂(Â) + intZ(CZ)).

Noting that f̂(Â) ⊂ Z and T̂ (X1) ∩ Z = {0}, it follows that

WE(f(A), C) = T̂ (X1) + f̂(Â) \ (f̂(Â) + intZ(CZ)) = T̂ (X1) + WE(f̂(Â), CZ).

This shows the first equality of (5.11). To prove the second equality of (5.11), let

x2 ∈ Ŝw. Then x2 ∈ Â and f̂(x2) ∈WE(f̂(Â), CZ). Hence,

X1 + x2 ⊂ X1 + Â = A and f(X1 + x2) = T̂ (X1) + f̂(x2) ⊂WE(f(A), C)

(thanks to (5.12) and the first equality of (5.11)). It follows that X1 + x2 ⊂ Sw and

so X1 + Ŝw ⊂ Sw. Conversely, let x ∈ Sw. Then there exists (x1, x2) ∈ X1 × Â such
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that x = x1 + x2 and f(x1 + x2) ∈WE(f(A), C) = T̂ (X1) + WE(f̂(Â), CZ). Noting

that f(x1 + x2) ∈ f(X1 + x2) = T̂ (X1) + f̂(x2), one has f̂(x2) ∈ WE(f̂(Â), CZ). It

follows that x2 ∈ Ŝw and x = x1 + x2 ∈ X1 + Ŝw. This shows that Sw ⊂ X1 + Ŝw.

Hence the second equality of (5.11) holds. The proof is complete.

Theorem 5.2. Let (x1, x2) ∈ X1× Â. Then f(x1 +x2) ∈ E(f(A), C) if and only

if f̂(x2) ∈ E(f̂(Â), CZ) and CZ = C ∩ (T̂ (X1)⊕ Z).

Proof. By (5.12), f(x1 + x2) ∈ T̂ (X1) + f̂(x2) and f(A) = T̂ (X1) + f̂(Â). Hence

f(A)− f(x1 + x2) = T̂ (X1) + f̂(Â)− f̂(x2).

Noting that f̂(Â)− f̂(x2) ⊂ Z, it follows that

(f(A)− f(x1 + x2)) ∩ −C = (T̂ (X1) + f̂(Â)− f̂(x2)) ∩ −(C ∩ (T̂ (X1)⊕ Z)).

Thus, from the definitions of the projection ΠZ : T̂ (X1) ⊕ Z → Z (see (5.7)), it is

easy to verify that

(f(A)− f(x1 + x2)) ∩ −C = Π1(C ∩ (T̂ (X1)⊕ Z)) + (f̂(Â)− f̂(x2)) ∩ −CZ ,

where Π1(y + z) = y for all (y, z) ∈ T̂ (X1)⊕ Z. Therefore, f(x1 + x2) ∈ E(f(A), C)

is equivalent to

Π1(C ∩ (T̂ (X1)⊕ Z)) + (f̂(Â)− f̂(x2)) ∩ −CZ = {0}.

Since T̂ (X1) ∩ Z = {0}, it follows that f(x1 + x2) ∈ E(f(A), C) if and only if

Π1(C ∩ (T̂ (X1)⊕ Z)) = (f̂(Â)− f̂(x2)) ∩ −CZ = {0},

namely CZ = C ∩ (T̂ (X1)⊕ Z) and f̂(x2) ∈ E(f̂(Â), CZ). The proof is complete.

The following corollary is a consequence of Theorems 3.1 and 5.2.

Corollary 5.1. Let Ŝ denote the Pareto solution set of piecewise linear problem

(P̂LP). The following statements hold:

(i) If CZ 6= C ∩ (T̂ (X1)⊕ Z) then S = ∅.
(ii) If CZ = C ∩ (T̂ (X1)⊕ Z) then

S = X1 + Ŝ and E(f(A), C) = T̂ (X1) + E(f̂(Â), CZ).

Remark. By Corollary 5.1(i) and Theorem 5.1(i), piecewise linear problem

(PLP) has no Pareto solution when CZ 6= C∩(T̂ (X1)⊕Z), and the weak Pareto solu-

tion set of (PLP) is just the entire feasible set A of (PLP) when (T̂ (X1)⊕Z)∩int(C) =

∅. Therefore, we only need to consider the Pareto solution set and the weak Pareto

solution of (PLP) when CZ = C ∩ (T̂ (X1) ⊕ Z) and (T̂ (X1) ⊕ Z) ∩ int(C) 6= ∅,
respectively.

In the framework of finite dimensional spaces, for i ∈ 1m, we consider the following

linear subproblem

(L̂P)i CZ −min ΠZ(Tix+ bi) subject to x ∈ Âi.
23



By Theorem 5.1 and Corollary 5.1 (with linear problems (LP)i and (L̂P)i replacing

respectively piecewise linear problems (PLP) and (P̂LP)), we have the following result

(thanks to (4.10)).

Proposition 5.1. For each i ∈ 1m, let Si (resp. Swi ) and Ŝi (resp. Ŝwi ) denote

the Pareto solution sets (resp. weak Pareto solution sets) of linear problem (LP)i and

(L̂P)i, respectively. The following statements hold:

(i) Si = ∅ if CZ 6= C ∩ (T̂ (X1)⊕ Z).

(ii) Si = X1 + Ŝi if CZ = C ∩ (T̂ (X1)⊕ Z).

(iii) Swi = Ai if (T̂ (X1)⊕ Z) ∩ int(C) = ∅.
(iv) Swi = X1 + Ŝwi if (T̂ (X1)⊕ Z) ∩ int(C) 6= ∅.

The following theorem establishes the structure of the weak Pareto solution set

for piecewise linear problem (P̂LP).

Theorem 5.3. For each i ∈ 1m, let

V̂ wi := ΠZ

(
Ti(Âi) + bi

)
\ (f̂(Â) + intZ(CZ)),(5.13)

S̆i := Âi ∩ (ΠZ ◦ Ti)−1(V̂ wi −ΠZ(bi))(5.14)

and suppose that (T̂ (X1)⊕ Z) ∩ int(C) 6= ∅. Then the following statements hold:

(i) Ŝw =
⋃
i∈Ī

S̆i and WE(f̂(Â), CZ) =
⋃
i∈Ī

V̂ wi , where I := {i ∈ 1m : Âi 6= ∅}.

(ii) If, in addition, the ordering cone C in Y is assumed to be polyhedral, then for each

i ∈ Ī there exist finitely many polyhedra P̂i1, · · · , P̂iqi in X2 and faces F̂i1, · · · , F̂iqi of

Âi such that S̆i =
qi⋃
j=1

P̂ij and P̂ij ⊂ F̂ij ⊂ Ŝwi for all j ∈ 1qi. Consequently, Ŝw is

the union of finitely many polyhedra in X2, each one of which is contained in a weak

Pareto face of some linear subproblem (L̂P)i.

Proof. Let i be an arbitrary element in Ī. Since f̂(x̂) = ΠZ(Ti(x̂)) + ΠZ(bi) for

all x̂ ∈ Âi, (ΠZ ◦ Ti)−1(V̂ wi −ΠZ(bi)) = f̂−1(V̂ wi ). Hence, by (5.13) and (5.14),

S̆i = Âi ∩ f̂−1(V̂ wi ) and V̂ wi = f̂(S̆i).(5.15)

Thus, to prove (i), it suffices to show that S̆i = Ŝw ∩ Âi (because Â =
⋃
i∈Ī

Âi and

f̂(Ŝw) = WE(f̂(Â), CZ)). To do this, let âi ∈ Âi ∩ Ŝw. Then f̂(âi) ∈WE(f̂(Â), CZ),

that is, f̂(âi) 6∈ f̂(Â) + intZ(CZ). Since

f̂(âi) = ΠZ(Ti(âi) + bi) ∈ ΠZ(Ti(Âi) + bi),

this and (5.13) imply that f̂(âi) ∈ V̂ wi . Hence âi ∈ S̆i (thanks to (5.15)). This shows

that Âi∩ Ŝw ⊂ S̆i. Conversely, let âi ∈ S̆i. Then, by (5.14), ΠZ(Tiâi) ∈ V̂ wi −ΠZ(bi),

namely, f̂(âi) ∈ V̂ wi . Hence, by (5.13), f̂(âi) 6∈ f̂(Â) + intZ(CZ). Noting that âi ∈
Âi ⊂ Â, it follows that f̂(âi) ∈WE(f̂(Â), CZ), and so âi ∈ Âi∩f̂−1(WE(f̂(Â), CZ)) =

Âi ∩ Ŝw. This shows that S̆i ⊂ Âi ∩ Ŝw. Therefore, S̆i = Âi ∩ Ŝw. The proof of (i) is

complete.
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To prove (ii), suppose that the ordering cone C is polyhedral. Then, since the pro-

jection mapping ΠZ : T̂ (X1)⊕Z → Z is a linear operator and Z is finite dimensional,

CZ = ΠZ((T̂ (X1)⊕Z)∩C) is a polyhedral cone in Z (thanks to [16, Theorem 19.3] and

Proposition 2.1). On the other hand, by the assumption that (T̂ (X1)⊕Z)∩ int(C) 6=
∅, Lemma 5.1 implies that intZ(CZ) = ΠZ((T̂ (X1) ⊕ Z) ∩ int(C)) 6= ∅. Since

ΠZ(Tj(Âj) + bj) and CZ are polyhedra in the finite dimensional space Z, their sum

ΠZ(Tj(Âj) + bj) + CZ is a polyhedron in Z and so is closed. Hence

ΠZ(Tj(Âj) + bj) + CZ = cl(ΠZ(Tj(Âj) + bj) + intZ(CZ)).

Noting that ΠZ(Tj(Âj) + bj) + intZ(CZ) is open in Z, it follows that

intZ(ΠZ(Tj(Âj) + bj) + CZ) = ΠZ(Tj(Âj) + bj) + intZ(CZ).

Thus, by Proposition 2.1, there exist (z∗j1, rj1), · · · , (z∗jqj , rjqj ) in Z∗ × R such that

ΠZ(Tj(Âj) + bj) + intZ(CZ) = {z ∈ Z : 〈z∗jk, z〉 < rjk, k = 1 · · · , qj}.(5.16)

Since Â =
⋃
j∈Ī

Âj , it follows from (5.13) that

V̂ wi = ΠZ(Ti(Âi) + bi) \

⋃
j∈Ī

(f̂(Âj) + intZ(CZ)


= ΠZ(Ti(Âi) + bi) \

⋃
j∈Ī

(ΠZ(Tj(Âj) + bj) + intZ(CZ)


= ΠZ(Ti(Âi) + bi) \

⋃
j∈Ī

qj⋂
k=1

{z ∈ Z : 〈z∗jk, z〉 < rjk}


=
⋂
j∈Ī

qj⋃
k=1

(
ΠZ(Ti(Âi) + bi) \ {z ∈ Z : 〈z∗jk, z〉 < rjk}

)

=
⋂
j∈Ī

qj⋃
k=1

(
ΠZ(Ti(Âi) + bi) ∩ {z ∈ Z : 〈z∗jk, z〉 ≥ rjk}

)
.

Since Ī is a subset of 1m, we assume without loss of generality that there exists n ∈ 1m

such that Ī = 1n. For any (k1, · · · , kn) ∈ 1q1 × · · · × 1qn, let

Qi(k1,···,kn) :=

n⋂
j=1

(
ΠZ(Ti(Âi) + bi) ∩ {z ∈ Z : 〈z∗jkj , z〉 ≥ rjkj}

)
.

Then, each Qi(k1,···,kn) is a polyhedron in Z and

V̂ wi =
⋃

(k1,···,kn)∈Πi

Qi(k1,···,kn),(5.17)
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where Πi :=
{

(k1, · · · , kn) ∈ 1q1 × · · · × 1qn : Qi(k1,···,kn) 6= ∅
}

. Let

P̂ i(k1,···,kn) := Âi ∩ (ΠZ ◦ Ti)−1(Qi(k1,···,kn) −ΠZ(bi)) ∀(k1, · · · , kn) ∈ Πi.

Then each P̂ i(k1,···,kn) is a polyhedron in the finite dimensional space X2 and

S̆i = Âi ∩ (ΠZ ◦ Ti)−1(V̂ wi −ΠZ(bi)) =
⋃

(k1,···,kn)∈Πi

P̂ i(k1,···,kn).(5.18)

Thus, to prove (ii), it suffices to show that for each (k1, · · · , kn) ∈ Πi there exists a face

F̂ of Âi such that P̂ i(k1,···,kn) ⊂ F̂ ⊂ Ŝ
w
i . By Theorem ABB (applied to linear problem

(L̂P)i), there exist finitely many faces F̂i1 · · · , F̂iνi of Âi such that Ŝwi =
νi⋃
j=1

F̂ij .

Noting that each P̂ i(k1,···,kn) is contained in Ŝwi (thanks to (i) and (5.18)), it follows

from Proposition 2.4 that P̂ i(k1,···,kn) ⊂ F̂ij′ for some j′ ∈ 1νi. The proof is complete.

Theorem 4.2 is immediate from Theorem 5.1 and 5.3. To prove the structure

theorem (Theorem 4.3) of the Pareto solution set of (PLP), we need the following

lemma, which is a variant of a formula appearing in the proof of [22, Theorem 3.4].

Lemma 5.2. Let B1, · · · , Bm be subsets of Y . Then

E
( ⋃
i∈1m

Bi, C
)

=
⋃
i∈1m

⋂
j∈1m

(E(Bi, C) \ ((Bj + C) \ E(Bj , C))).

Proof. Let B :=
⋃

i∈1m

Bi and Ei :=
⋂

j∈1m

(E(Bi, C) \ ((Bj + C) \ E(Bj , C))) for

all i ∈ 1m. We need to show E(B,C) =
m⋃
i=1

Ei. For each y′ ∈ E(B,C), there exists

i′ ∈ 1m such that y′ ∈ Bi′ and so y′ ∈ E(Bi′ , C). Since (Bj+C)∩E(B,C) ⊂ E(Bj , C)

for all j ∈ 1m, y′ ∈ E(Bj , C) for all j ∈ 1m with y′ ∈ Bj + C. It follows that

y′ 6∈ (Bj +C) \E(Bj , C) for all j ∈ 1m. Hence y′ ∈ E(Bi′ , C) \ ((Bj +C) \E(Bj , C)))

for all j ∈ 1m, that is, y′ ∈ Ei′ . This shows that E(B,C) ⊂
⋃

i∈1m

Ei. Conversely, let

y ∈
m⋃
i=1

Ei. Then there exists i0 ∈ 1m such that y ∈ Ei0 . Let z ∈ B∩(y−C). We only

need to show z = y. Take j ∈ 1m such that z ∈ Bj . It follows that z ∈ Bj ∩ (y −C).

Noting that Ei0 ⊂ E(Bi0 , C), it is clear that z = y if j = i0. Now suppose that

j 6= i0. By the definition of Ei0 , one has y ∈ E(Bi0 , C) \ ((Bj + C) \ E(Bj , C)),

and so y 6∈ (Bj + C) \ E(Bj , C). Since y ∈ z + C ⊂ Bj + C, y ∈ E(Bj , C), and so

{y} = Bj ∩ (y − C) 3 z. This shows that y = z. The proof is complete.

Proposition 5.2. Let Ŝ and Ŝi (i ∈ Ī := {i ∈ 1m : Âi 6= ∅}) denote the

Pareto solution set of piecewise linear problem (P̂LP) and linear subproblem (L̂P)i,

respectively. Suppose that the ordering cone C is polyhedral. Then there exist finitely

many generalized polyhedra F̂1, · · · , F̂p in X2 such that the following statements hold:

(i) Ŝ =
p⋃
k=1

F̂k.

(ii) For each k ∈ 1p there exist i ∈ Ī and a face F̂ of Âi such that F̂k ⊂ F̂ ⊂ Ŝi.
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Proof. For each i ∈ Ī, let S̃i := Âi ∩ Ŝ. Then Ŝ =
⋃
i∈Ī

S̃i, and S̃i is clearly

contained in the Pareto solution set Ŝi of linear subproblem (L̂P)i. Thus, by Theorem

ABB and Proposition 2.4, it suffices to show that there exist finitely many generalized

polyhedra Ĝi1, · · · , Ĝiνi in X2 such that S̃i =
νi⋃
k=1

Ĝik. Noting that f̂ |Âi = ΠZ ◦f |Âi =

ΠZ ◦ Ti|Âi + ΠZ(bi), one has

S̃i = Âi ∩ f̂−1(E(f̂(Â), CZ)) = Âi ∩ (ΠZ ◦ Ti)−1(E(f̂(Â), CZ)−ΠZ(bi)).(5.19)

Since C is a polyhedral cone in Y , C∩(T̂ (X1)⊕Z) is a polyhedral cone in T̂ (X1)⊕Z.

Hence CZ = ΠZ(C∩ (T̂ (X1)⊕Z)) is a polyhedral cone in the finite dimensional space

Z. It follows that Bj +CZ is a polyhedron in Z and E(Bj , CZ) = E(Bj +CZ , CZ) is

the union of finitely many polyhedra in Z for each j ∈ Ī (thanks to Theorem ABB),

where Bj := ΠZ(Tj(Âj) + bj). Hence Ei :=
⋂
j∈Ī

E(Bi, CZ) \
(
Bj +CZ) \E(Bj , CZ)

)
is

the union of finitely many generalized polehedra in Z for all i ∈ Ī. Since

f̂(Â) =
⋃
i∈Ī

f̂(Âi) =
⋃
i∈Ī

Bi,

This and Lemma 5.2 imply that E(f̂(Â), CZ) =
⋃
i∈Ī

Ei and so E(f̂(Â), CZ) is the union

of finitely many generalized polyhedra in Z. Thus, by (5.19), for each i ∈ Ī there

exist finitely many generalized polyhedra Ĝi1, · · · , Ĝiνi in X2 such that S̃i =
νi⋃
k=1

Ĝik.

The proof is complete.

Clearly, Theorem 4.3 follows from Corollary 5.1 and Propositions 5.2 and 2.2.
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