FULLY PIECEWISE LINEAR VECTOR OPTIMIZATION PROBLEM *
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Abstract. We distinguish two kinds of piecewise linear functions and provide an interesting
representation for a piecewise linear function between infinite dimensional spaces. Based on such
a representation, we study a fully piecewise linear vector optimization (PLP) with the objective
and constraint functions being piecewise linear. We divide (PLP) into some linear subproblems
and establish a finite dimensional reduction method to solve (PLP). Under some mild assumptions,
we prove that the Pareto (resp. weak Pareto) solution set of (PLP) is the union of finitely many
generalized polyhedra (resp. polyhedra), each of which is or is contained in a Pareto (resp. weak
Pareto) face of some linear subproblem. Our main results are even new in the linear case and further
generalize Arrow, Barankin and Blackwell’s classical results on linear vector optimization problems

in the framework of finite dimensional spaces.
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1. Introduction. Though vector optimization is often encountered in theory
and practical application, the study of nonlinear vector optimization is far from deep
and systemic (possibly because the vector ordering is much more complicated than
the scalar one). On the other hand, linear vector optimization has been well stud-
ied (cf. [2, 4, 7,8, 12, 13, 15, 21] and the references therein). In particular, in the
finite-dimensional case, Arrow, Barankin and Blackwell [3] established the structure
of the Pareto solution set and weak Pareto solution set of a linear vector optimization
problem. However the linearity assumption is quite restrictive in both theory and ap-
plication. To overcome the restriction of linearity, one sometimes adopts the piecewise
linear functions (cf. [6, 20, 22]). The family of all piecewise linear functions is much
larger than that of all linear functions and there exists a wide class of functions that
can be approximated by piecewise linear functions. Therefore, from the viewpoint of
theoretical interest as well as for applications, it is important to study piecewise linear
problems. Given two normed spaces X and Y, the following piecewise linearity of a
vector-valued function f : X — Y was adopted in the literature (cf. [20, 23]): there
exist finitely many polyhedra Ay, - -+, A, in the product X XY such that

(1.1) gph(f) == {(z, f(x)) : w € X} = U A;.
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Throughout this paper, we will use P(Z) to denote the family of all polyhedra in a
normed space Z. Another kind of piecewise linearity for a function f is as follows:
there exist T; € L(X,Y), P, e P(X) and b; €Y (i=1,---,m) such that

(1.2) X=JP and f(x)=Ti(z)+b Vo eP,i=1,---,m,
i=1

where £(X,Y") denotes the space of all continuous linear operators from X to Y. For
convenience, let PL1(X,Y) (resp. PL(X,Y)) denote the family of all piecewise linear
functions from X to Y in the sense of (1.1) (resp. (1.2)). It is clear that £(X,Y)
is always contained in PL(X,Y); however if YV is infinite dimensional then every
linear operator in £(X,Y) must not be in PL;(X,Y). This motivates us to study
the relationship between PL1(X,Y) and PL(X,Y). To do this, we first consider
polyhedra in infinite dimensional spaces. In Section 2, we provide several properties
on polyhedra in infinite dimensional spaces. In particular, with the help of the notion
of a prime generator group of a polyhedron (cf. [5, 18, 9]), we establish some results
on the maximal faces of a polyhedron, which not only play a key role in the proof
of the main theorem on piecewise linear functions but also should be valuable by

themselves. In Section 3, using the results obtained in Section 2, we prove that
dim(Y) <oo e PL1(X,Y)=PL(X,Y) and dim(Y) =00 < PL(X,Y) = 0.

As one of the mains results, we prove that for each f € PL(X,Y) there exist two
closed subspaces X7 and X» of X, a closed subspace Ys of Y, T' € L(X;,Y) and
g € PL1(X2,Y3) such that X = X; @ X, dim(X3) < oo, dim(Y2) < co and

flezr +x2) =Tx1 + g(azg) V(x1,x2) € X7 X Xo.

In Sections 4 and 5, we consider a fully piecewise linear vector optimization prob-
lem in the framework of infinite dimensional spaces. In the case when f € PL(X,Y)
and ¢, € PL(X,R) (k € Im := {1,---,m}), we study the structure of the (weak)
Pareto solution set of the following fully piecewise linear vector optimization problem

(PLP) C — Minf(z) subject to pg(x) <0,i=1,---,m,

where C' is a closed convex cone in Y. In the case of finite dimensional spaces, the
following well known result on the solution sets for linear vector optimization problems
is based on the poineering work by Arrow et al. [3] (also see [12, Theorem 3.3] and
[13, Theorems 4.1.20 and 4.3.8])

THEOREM 1.1. Let X =RP, Y =R?, C =RY, f(z) = T(z) + b and pi(x) =
(z},x)+ 1K for someT € L(X,Y), 2} € X* = LIX,R) and (b,r;) €Y XR (k € Im)).
Then the Pareto solution set and weak Pareto solution set of (PLP) are the union
of finitely many faces of A, where A := {x € X : pi(z) <0, k =1,---,m} is the
feasible set of (PLP).



In the case when the objective f is further piecewise linear, several authors studied
the structure of the Pareto solution set and weak Pareto soluiton set and proved that
if the objective f is restricted in PLy(X,Y) and each ¢ is linear then the weak
Pareto solution set of the corresponding piecewise linear problem (PLP) is the union
of finitely many polyhedra, while its Pareto solution set is the union of generalized
polyhedra (cf. [23, 20, 21, 6] and the references therein). Noting that PL(X,Y) =0
when dim(Y’) = oo, in the case when f € PL(X,Y) with dim(Y) = oo and each
i € PL(X,R), we will establish the structure of the Pareto solution set and weak
Pareto solution set for fully piecewise linear vector oprimization problem (PLP). To
the best of our knowledge, these results are new even in the case when each py is

linear.

2. Polyhedra in an infinite dimensional space. Let Z be a normed space
with the dual space Z*. Recall (cf.[1, 16]) that a subset P of Z is a (convex) polyhedron

if there exist uj, --,u), € Z* and s, -, s, € R such that
P={zeZ: (ul,z) <s,i=1,---,m}.
An exposed face of P is a set F' such that

F={ueP: (" u)=supl{z™,z)}
zeP

for some z* € Z* (cf. [16, P.162]). It is known that each polyhedron has finitely many

exposed faces. We say that a subset P of Z is a generalized polyhedron if there exist
a polyhedron P in Z, vi,---,vf € Z* and t1,---,t; € R such that

P=Pn{zeZ: (v},2) <t;, 1 <i<k}.
Given z* € Z* \ {0}, let N'(z*) denote the null space of z*, that is,
NG ={ze€Z:(z"z2) =0}

Then N (z*) is a closed subspace of Z with codimension codim(N(z*)) = 1.

Recall that a normed space Z is a direct sum of its two closed subspaces Z; and
Zs, denoted by Z = Z1 & Zo, if Z1 N Zy = {0} and Z = Z; + Z5. It is easy to verify
that if Z = Z; @ Z, then for each z € Z there exists a unique (21, 22) € Z1 X Zs such
that z = 21 + 22 and the projection mapping Ilz, : Z = Z; ® Zy — Z, is linear, where

(21) I_IZ2 (Zl + 22) =29 v(21722) € Z1 X L.

It is known that if @ is a polyhedron in Z; @ Zs then IIz,(Q) is a polyhedron in Z
(cf. [16, Theorem 19.3] and the following Proposition 2.1).

For a convex set C' in Z, let int(C') (resp. rint(C')) denote the interior (relative
interior) of C. It is known that if dim(Z) < oo and C' # @ then rint(C') # 0.

Throughout, let N denote the set of all natural numbers and

Im:={1,---,m} VmeN.
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Now we provide some results on polyhedra which are useful for our analysis later.
PROPOSITION 2.1. Let (25,81), - ,(25.8m) € Z* xR and P := {z € Z :
(zf,2) <s; Vi€ lm}. Let Zy and Zy be two closed subspaces of Z such that

(2.2) Zy C (\N(2), dim(Z,) = codim(Z) < 00 and Z = Zy & Z».

i=1

Then
(2.3) P =27+ P and rint(P) = Z; + rint(P),

where P := {z€Zy: (2F,2) <s;,i=1,---,m}.

The first equality in (2.3) is a slight variant of [22, Lemma 2.1] and can be
proved similar to the proof of [22, Lemma 2.1], while the second equality in (2.3)
is immediate from the following observation: there exists L € (0, +o00) such that
L(||z1 ]|+l z2]l) < |lz1+ 22| for all (21, z5) € Z) x Zy and the affine subspace aff(Z; + P)
is equal to Z; + aff(P) (thanks to (2.2) and the definition of P).

From Proposition 2.1, one can see that many properties on polyhedra established
in the finite dimension case also hold in the infinite dimension one. In particular, the

following corollaries are consequences of Proposition 2.1 and [16, Corollary 6.5.1].

COROLLARY 2.1. Let {(u},s1), -, (uk,sn)} and P be as in Proposition 2.1.
Then
(2.4) rint(P) ={z € Z: (u],2) <s;, i € In\Ip}n [ F,
i€lp

where Ip :={i € In: (u},z) =s;forallz € P} and F; :=={z € Z: (u},2) = s;}.
COROLLARY 2.2. Let Z1 and Zy be two closed subspaces of Z such that

(25) =714+ "Zy, ZyNZy = {O} and dlm(ZQ) < 00.

Let P be a polyhedron in Zs and F be a subset of P. Then F is an exposed face off3
if and only if Z1 + Fis an exposed face of the polyhedron Z; + PinZ.

The following proposition is known and useful for us (cf. [22, Lemma 2.2]).

PROPOSITION 2.2. Let Py and Py be two polyhedra (resp. generalized polyhedra)
in Z. Then Py + Py and Py N Py are polyhedra (resp. generalized polyhedra).

Note that a closed subspace of Z is not necessarily a polyhedron in Z. In fact,
it is easy to verify that a closed subspace E of Z is a polyhedron in Z if and only
if its codimension codim(FE) is finite. Note that if E is a closed subspace of Z with
codim(FE) < 400 and if H is a subspace of E then E + H is a closed subspace of Z
with codim(E + H) < +o0o. The following proposition can be easily proved.

PROPOSITION 2.3. Let Z be a normed space, E be a closed subspace of Z with
codim(E) < +o0, and let H be a subspace of Z. Then the following statements hold:
(i) E+H+ Pisa polyhedron in Z for each polyhedron P in some finite dimensional
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subspace of Z.
(ii) H + P is a polyhedron for each polyhedron P in Z.
The following lemma is useful in the proofs of some main results.

LemMA 2.1. Let Cy,---,C,, be closed sets in a normed space Z such that
B(zo,m0) C U Ci for some zg € Z and ro > 0. Then there exists iy € 1m such

1=

1
that B(zo,r0) Nint(C;,) # 0.
m—1 m—1
Proof. By the assumption, B(zg,r) \ | C; is open, and B(zg,ro) \ U C; C
i=1 i=1

B(zg,70) Nint(Cy,). Hence either B(zg,79) N int(Cy) # O or B(xg,r9) C mulci,

which implies clearly that the conclusion holds. The proof is complete. O =
With the help of Lemma 2.1, we can prove the following interesting proposition.
PROPOSITION 2.4. Let C be a convex set in a normed space Z and let Fy,---,F,

be exposed faces of a polyhedron P in Z such that C C |J F;. Then there exists
j=1
Jo € v such that C C Fj,.
Proof. By Proposition 2.1, take two closed subspaces Z; and Zs of Z and a

polyhedron P in Z, such that (2.2) and (2.3) hold. Thus, by Corollary 2.2, there
exists an exposed face Fj of P such that F; = Z; 4+ F; (j € Tv). Hence C € |J Fj =
j=1

U (Z1 + F}). Noting that C := T, (C) is a convex subset of P and C' C Z; + C,
=1
where Iz, is the projection mapping from Z to Zy (see (2.1)), it follows from (2.2)

that C' C U Fj. Thus, it suffices to show that Cc Fjo for some jg € 1v. To prove
1

j=
this, take (4}, ;) € Z3 x R such that

(2.6) aj = sup (i}, x9) and Fj={x,eP: (U, 29) = a;} Vjelv.
ZEQGP

Since Z3 is finite dimensional (cf.(2.2)), there exist & € X5, a subspace Z3 of Z3 and

§ > 0 such that ' C & + Z3 and & + By,(0,8) ¢ C ¢ |J Fj. Thus, by Lemma 2.1,
j=1

there exist @ € &+ Bz, (0,0), e € (0, +00) and jo € 1v such that @+ By, (0,¢) C Fj,.
This and (2.6) imply that (@} ,9) = 0 for all & € Bz,(0,¢) and so (i} ,9) = 0 for all
0 € Zs. Hence, C C &+ Z3 =0+ Z3 C {x2 € Zy : (U, 72) = a,}. Since C' C P,
CcPn{ry € Zy: (U, r2) = aj,} = Fj,. The proof is complete. O

We also need the following proposition.

PROPOSITION 2.5. Let P; be polyhedra in a normed space Z such that int(P;) # )
(i =1,---,m). Then there exist polyhedra Q; in Z with int(Q;) #0 (j =1,---,v)
such that G P, = LVJ Q; and int(Q;) N Qy =0 for all j,j' € Tv with j # j'.

Pmof.l '11’ he cojncllusion holds clearly when m = 1. Given a natural number n,
suppose that the conclusion holds when m = n. Let Py,---, P,, P,+1 be arbitrary
n + 1 polyhedra in Z such that each int(P;) is nonempty. Then, by induction, it
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suffices to show that there exist polyhedra @; in Z with int(Q;) #0 (j = 1,---,v)
n+1

such that |J P; = U Q; and int(Q;) N Q; = 0 for all j,j' € 1v with j # j'. To do
i=1

i=
this, take polyhedra Hh .-+, H; in Z such that

n

(2.7) UPZ- UHZ,mt ) # 0 and H; Nint(Hy) =0 Vi, € 11 withi # 7.

n+1
Ifint(Pp41) C U H;, then P11 C U H; and so U P, = U H;; hence the conclusion

1= 1= 1=

is trivially true. Next suppose that int(P,11) € U H;. Let i € 11, and take (z};,t;;) €

(Z*\{0}) xR (j =1, --,k;) such that H; = ﬂ H;;, where

R
j=1

Hij = {.’E ez <.’E;}-,£IJ> < tij} V] Gm.

. k—1 K Ki X
Let Az = ~ﬂl H” Then Z \ Hl = kul(Z \ Hik:) = kul A?C N (Z \ Hik)a and so
j= = =

Ki

int(P, 1)\ H; = int(Poy1) N (Z\ Hy) Umt 1) NAL N (Z\ Hy).

Clearly, each Q% := P, 1NALNcl(Z\ Hix) is a polyhedron in Z. Hence, by Corollary
(2.1), int(Q%) = int(Pryr) Nint(AL) N{z € Z: (zf,2) > tir},

(2.8) QL Nint(QL) =0 Vk, k' €I with k # K

and

(2.9) U int(Q4) € int(Poia) \ Hi C | Qi
kel; k=1

where I; := {k € 1r; : int(Q%) # 0}. Let

l
Qi) = [ @k Wl k) €Iy x - x Iy

i=1

!
and I' := {(k17~-~,kl) el x---xI: (int(Q}) # @}. Then, each Q, ... x,) is

i=1
l )
a polyhedron in Z with int(Q,,...x,)) = () int(Qj},) (thanks to Corollary 2.1).

i:

Hence, by (2.9) and (2.8), one has P11 \ U H;, C U Qky k) € Pata
=1 (k1,-,k;)€l
and Qg ,....k) N int(Q(k/ k) = 0 whenever (ki,---, k) # (k1,---, k). It follows

from (2. 7) that U P, = U H;U U Q(ky - k) This shows that the conclusion
i=1 i=1 (k1,-+, k)€
also holds when m = n + 1. The proof is complete. O
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For (uf,s1), -, (uf,sp) € Z*xRand P={z € Z : (u},z) < s;, i € In}, we say
that (u], s;) is a redundant generator of P if P = {z € Z : (uf, 2) <sj, j€In\ {i}}
(cf. [18, 9]). For convenience, we adopt the following notion.

Definition 2.1 We say that {(u},s1), -, (ul, sn)} C Z* xR is a prime generator

group of a polyhedron P in a normed space Z if
(2.10) P={ze€Z: (uf,z) <s;, i €ln}

and (u},s;) is not a redundant generator of P for all i € 1n.
Every polyhedron has a prime generator group (cf. [5, 18]). It is clear that if
{(uf,81), -+, (uk,s,)} C Z* x R is a prime generator group of P then

(2.11) P#{zeZ: (u},z) <s;, i €ln\{j}} Vjeln.

In the remainder of this paper, we assume that every polyhedron P of Z is not equal
to Z. So, it is clear that u} # 0 for all ¢ € In whenever {(u},s1), -, (u},s,)} is a
prime generator group of P.

The following lemma is immediate from Definition 2.1.

LEMMA 2.2. Let {(uf,s1), -, (uk,sn)} be a prime generator group of a polyhe-
dron P in a normed space Z. Then, for each j € 1n,

(2.12) Fi(P):=Pn{zeZ: (u},z)=s;} #0.

77

The following two lemmas will play an important role in the proof of our main
result.

LEMMA 2.3. Let {(uf,s1), -, (uk,sn)} be a prime generator group of a polyhe-
dron P in a normed space Z. Let F;(P) be as in (2.12) and
(2.13) F2(P):={z€Z: (u},z) =sjand (u},z) <s;, 1 € In\ {j}}

J 77

for all j € In. Then the following statements are equivalent:
(i) int(P) # 0.

(i) Fj(P) = cl(F} (P)) for all j € In.

(ii) F§(P) # 0 for all j € 1n.

() F5, (P) # 0 for some jo € 1n.

Proof. First suppose that (i) holds. Then, by Corollary 2.1, there exists zop € Z
such that (u},zo) < s; for all i € In. For each j € 1n, by (2.11), there exists v € Z
such that (u},v) > s; and (uj,v) <s; for all i € In\ {j}. It follows that there exists
Ao € (0, 1) such that

(uj, Mozo + (1 = Ao)v) = s; and (uj, Aozo + (1 = Ao)v)) < s; Vi€ In)\{j}.

Therefore, 1%@ + %W € F7(P) for all (z,k) € F;(P) x N. Letting k — oo, it
follows that = € cl(F7(P)) for all x € F;(P), that is, F;j(P) C cl(F}(P)). Since the
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converse inclusion holds trivially, this shows implication (i)=-(ii). Since (ii)=>(iii) is
immediate from Lemma 2.2 and (iii)=-(iv) is trivial, it suffices to show (iv)=-(i). To
prove this, let z € F, (P), that is, (u} , %) = sj, and (u},7) < s; for all i € In\ {jo}.
Taking h € Z with (u} ,h) < 0 (thanks to uj # 0), it follows that there exists
t > 0 sufficiently small such that (u},Z + th) < s for all k¥ € In. This shows that
Z + th € int(P), and hence (iv)=-(i) holds. The proof is complete. O

LEMMA 2.4. Let P; and Py be two polyhedra in a normed space Z such that
int(Py) NPy =0, and let {(ufy, 8i1),- -, (uf,,, Sin,)} € Z* X R be a prime generator
group of P; (i =1,2). Then for any (j1,j2) € In1 x Ing and xo € F5 (Py) N FS (Py)
there exists r > 0 such that N (uj;,) = N(u3;,) and

(2.14) Fji (Pl) N Bz(l‘o, ’I“) = F;; (PQ) n Bz(iEo, ’I“) = (.’170 —&—N(ufh)) n Bz(l‘o,T),

where Bz (zo,7) :={z € Z: [z — a0l <r} and F} (P1) is as in (2.15).

Proof. Let (j1,j2) € In1 X 1Ing and xg € F}, (P)N F7 (Pz). Then zg € P1 N Py,
Since int(P;) N Py = @, the separation theorem implies that there exists v* € Z*\ {0}
such that (v*, z¢) = miél}£1<11*,213> = sup (v*, z). Noting that

€ Ps
(215) FJ('31 (Pl) n Bz(xo,’l") = ([L‘Q —|—N(UL1)) n Bz(l'(),’r') Cc P
and
(2.16) F2 (Py) 1 Bz (w0, 7) = (20 + N(ul;,)) O B (xo,7) C P,

for some 7 > 0 (thanks to the definitions of F} (P1) and F},(F%)), it follows that

(v*, z0) = inf (v* ) = sup (v*, x).
z€(zo+N (uj;, ))NBz(zo,7) w€(wo+N (uz;,))NBz(zo,r)
Hence inf (v*,x) = sup (v*,x2) =0, and so
€N (ut; )NBz(0,r) TN (u3;, )NBz(0,r)

N@") = N(uiy,) = N(uyy,)

because v* is linear and both N (uj;,) and N (u3;,) are maximal linear subspaces of
Z. This, together with (2.15) and (2.16), implies that (2.14) holds. O

3. Piecewise linear vector-valued functions. In this section, we will dis-
tinguish PL;(X,Y) and PL(X,Y) and consider the structure of a piecewise linear
function.

ProproSITION 3.1. Let X andY be normed spaces. Then the following statements
hold.

(i) L(X,Y) is always contained in PL(X,Y).
(1) PL1(X,Y) # 0 if and only if dim(Y) < co.
(iii) PL1(X,Y) =PL(X,Y) when dim(Y) < oo.

Proof. Since (i) is trivial and the sufficiency part of (ii) is a straightforward

consequence of (i) and (iii), it suffices to show (iii) and the necessity part of (ii). First
8



suppose that PL1(X,Y) # (), and let g be an element in PL;(X,Y). Then there exist
finitely many polyhedra Aq,---, Ag in the product X x Y such that

k k
(3.1) gph(g) = U A; and X = U Ailx,
i=1 i=1

where A;|x := {x € X : there exists y € Y such that (z,y) € A;} is the projection of
A; to X. Given an i € 1k, by Proposition 2.1, there exist two closed subspaces X;, X;
of X and two closed subspaces Y;,Y; of Y such that

(32) XxY =(X;xY)®(X;xY;), codim(X; x Y;) = dim(X; x ¥;) < 00

(3.3) A =X; xY; + A,

where A; is a polyhedron in X; x Y;. Thus, Alx = Xi + ]~\z|)~( and so Aj|x is a
polyhedron in X (thanks to Proposition 2.1). Since g is a single-valued function, it
follows from (3.1) that ¥; = {0} and Y; = Y. Hence Y is finite-dimensional, and the
necessity part of (ii) is proved. Next we prove g € PL(X,Y’). To prove this, we only
need to show that there exist T; € £(X,Y) and b; € Y such that

(3.4) g(x) =Ti(x) +b; Vrelx.

Since every convex set in a finite-dimensional space has a nonempty relative interior,
rint(A;) # 0. Take a point (a;,b;) in rint(A;). Thus, @; € rint([\i\jﬂ), and E; :=
R+(/~\i|)3i —a;) and Z; = R+(/~\i - (di,l;i)) are linear subspaces of X; and X; x f’i,
respectively. Noting that A; C gph(g), define Ty : /NX1| X, — G — Y; such that

Then gph(T;) = A; — (a;,b;). Let T; : E; — Y; be such that

ﬂ(tuﬁ = tTl(uz) V(t,ui) S R+ X (]\z

<, — ).

It is easy to verify that T; is well-defined and its graph is just the linear subspace
Z; = R+(/~Xi — (di,l;i)), and so T} is linear. Hence there exist ej €Y and ej; € Ef

(j=1,---,p) such that e, -, e, are linearly independent and
} P
Ti(x) = Z(efj,xﬁj Yz € E;.
j=1
For each j € 1p, let &}, : X; + E; — R be such that
(éfj,quU} = (e;‘j,v> V(u,v) € X; x E;.
Then, by (3.2) and E; C X;, €;; is a linear functional on X; 4+ E;, and its null space

N(é;‘j) ={re X+ E;i: (&,r) =0} =X;+{ve L (ev) =0}
9



Since X; is a closed subspace of X and dim(F;) < oo, it follows that N(€};) is a
closed subspace of X. Hence é;‘j is a continuous linear functional on X; + E; (thanks
to [17, Theorem 1.18]). By the Hahn-Banach theorem, there exists z}; € X* such
that @};|x,+5, = €. Let T; : X — Y be such that

Ti(x) = Z(m* z)e; Vo e X.

177
j=1

Then T; € L(X,Y),

Ai‘f(i*&i =t

p
(3.6) N(T) > (N(=};) O X; and Tj A, = T
j=1

Let = be an arbitrary element in A;|x and take y € Y such that (z,y) € A;. Then,
by (3.2) and (3.3), there exist z; € X; and Z; € ]\7|5<L such that (Z;,y) € A; and
(z,y) = (z; + &i,y) (because Y; = {0}). Hence, by (3.5) and (3.6), one has

9(z) = g(@;) =y = Ti(%; — &) + by = Ty(&; — a;) + b; = Ty(x) — T;(a) + b;.
This shows that (3.4) holds with b; = —Tj(d;) 4 b; and so g € PL(X,Y). Therefore,
PLI(X,)Y) CPLX,Y).

Now suppose that dim(Y) < oco. To prove the converse inclusion PL;(X,Y) D
PL(X,Y), let g € PL(X,Y). Then there exist P, € P(X), T; € L(X,Y) and b; € Y
(i=1,---,n) such that

n
(3.7) X = U P, and g(r) =Ti(z) +b; Vz € P;and Vi € 1n.
i=1
By dim(Y") < oo, there exist y7,---,y; € Y™ such that Y* = span{yj,---,y;}. For

any = € X, since

Ti(z) =y < [(y", Ti(x)) = (y",y) V" €Y' < [(y;, Ti(2)) = (y;,v), =14,

Ti(x) =y = [T (yj), ) = (y;,v), 5 =1,---,4l.

Hence gph(T;) = {(z,y) € X x Y : (T7(y;),2) — (yj,y) =0, j =1,---,q}, and so
gph(T;) is a polyhedron of X x Y. Noting (by (3.7)) that

n

gph(g) = [ J(gph(Ty) + (0,0:)) N (P x Y),
i=1
it follows that gph(g) is the union of finitely many polyhedra in X x Y. Therefore,
g € PL1(X,Y). The proof of (iii) is complete. O
Given f € PL(X,Y), there exist (P1,T1,b1), -+, (Pm,Tm,bm) in the product
P(X) x L(X,Y) x Y such that (1.2) holds. For i € 1m, since each polyhedron
10



is closed, the first equality of (1.2) implies that int(P;) > X\ |J P, and so
jeIm\{i}
X = U P, whenever int(P;) = (. Hence, without loss of generality, we can
jeIm\{i}
assume that each P; in (1.2) has a nonempty interior. Moreover, we assume without

loss of generality that there exists k € 1m satisfying the following property:

and for each j € Tm there exists i € 1k such that (T},b;) = (T;,b;). For each i € 1k,
let

(3.9) L= {j € Im: (T},b;) = (T;,b;)} and Q;:= U p;.
JEL;

Then X = |J Qi, X # U Qs and flg, = Tjlg, +b; for all j € 1k. We claim
i€lk i€1k,i#]
that

(3.10) int(Q;) Nint(Qu) = 0 Vi, € Tk with i # ',

Indeed, if this is not the case, there exist 4,4’ € 1k with i # ¢/, x € X and r > 0 such
that B(z,r) C @Q; N Qy, and so

f(@)=T;(u) +b; =Ty (u) + by Yu € B(z,r).

Since T; and T; are linear, it follows that (7;,b;) = (Ti,b;r), contradicting (3.8).
Hence (3.10) holds. Since each Q; is closed, (3.10) can be rewritten as

QiNint(Qy) =0 Vi,i' € 1k with i # 7.

Therefore, by Proposition 2.5, we have the following result.
PROPOSITION 3.2. For each f € PL(X,Y) there exist (P;,T;,b;) € P(X) x
LIX,Y)XY (i=1,---,m) such that

(3.11) X =[] P, int(P) # 0, P,nint(P;) =0 Vi, j € Tm with i # j,

=1

and
(312) f‘pl ZTz|p1 +b; Vi Em,

that is, f(z) = Tyz + b; for all x € P; and i € 1m.

Now we are ready to establish the main result in this section, which shows that
any piecewise linear function defined on an infinite dimensional space X can be de-
composed into the sum of a linear function on an infinite dimensional closed subspace
of X and a piecewise linear function on a finite dimensional subspace of X.

11



THEOREM 3.1. Let f € PL(X,Y). Then there exist two closed subspaces X1 and
Xy of X, (P, T, b;) € P(Xo) X L(X,Y) XY (i=1,---,m) and T € L(X1,Y) such
that

(3.13) X = X1 ® Xa, codim(X;) = dim(X3) < oo, Xy = U B,
(3.14) intx,(P) # 0, PiNintx,(P;) =0 Vi,j € Tm withi # j,
(3.15) Tilx, =T and fly,,p =Tilx,4p +bi VieIm.

Consequently, there exist a finite dimensional subspace Yo of Y and a piecewise linear

function g between the finite dimensional spaces Xo and Ys such that

fl +x9) = T(x1) + g(22) V(x1,22) € X1 X X,

Proof. Since f isin PL(X,Y), Proposition 3.2 implies that there exist (P;, T}, b;) €
PX)xL(X,Y)xY (i=1,---,m) such that (3.11) and (3.12) hold. For each i € 1m,

take a prime generator group {(xj},ti1), -, (¥}, tiv,)} of P;, that is,
(3.16) Pi={xeX: (zj;,x) <ti, j € v}

and

(3.17) Pi#{re X (xfj,x) <ty, jely\{j'}} Vi ely.

Let X1 := () () N(zj;). Then X is a closed subspace of X with codim(X;) <

i€lm jE€1v;

m
> v; and so there exists a closed subspace X5 of X such that

i=1
(3.18) X =X;® X and codim(X;) = dim(X3) < o0
Let

(3.19) Pi={x € Xy: (2};,2) < ty, j€ v}

By (3.16) and the definition of X7, one has P, = X, +P;. Tt follows from (3.11), (3.18)
and Proposition 2.1 that (3.13) holds, int(P;) = X + intx, (?;) for all i € Tm, and so
(3.14) also holds. Thus, by (3.12), it remains to show the first equality of (3.15). For
any i € Im and j € 1y;, let

F2(P):={z e X: (z};,x) =t;; and (z},x) <ty foralll € Tp; \ {j}}

J 1]’

and

(3.20) F°( ) ={x e Xo: (x]

YR

z) = t;; and (x, ) <ty foralll € 1y; \ {j}}.
12



Then, F7(P;) = X1 + F7(P;) and F7(P;) # 0 (thanks to Lemma 2.3). Let i and ' be
two arbitrary indices in 1m such that ¢ # i’. Then, to prove the first equality of (3.15),

we only need to show T;|x, = Ty/|x,. To do this, take (@,a’) € int(P;) x int(P;) and
u* € X5\ {0} such that (u*,a’ — @) # 0. Then there exists 6 > 0 such that

(3.21) i+ Bx,(0,8) C intx,(P;) and @’ + Bx,(0,6) C intx,(Py),

where X3 := NM(v*) = {z € Xy : (u*,z) =0}. Hence

(322) dlm(Xg) = dlm(XQ) - ]., X2 = X3 D R(l_l,/ — 1_1,)
and
(3.23) intx, ([a, @] + Bx,(0,6)) = (4, @) + Bx,(0,8) # 0,

where [, @] :={a+t(@' —a): 0<t<1}and (g, @):={a+t(@ —-a): 0<t<1}.
For each z € Bx,(0, ), let

L:={iclm: {z} # PN (z+u, @]) # 0 forall z € X5}
and
I°:={ieIm: intx,(P,) N (z+ [a, @]) #0}.

Then I? C I, and P; N (z + [G, @']) contains at most an element for all i € Tm \ I..
Noting that X, = |J P; (thanks to (3.13)), it follows that
i€Tm
(3.24) s+ 1w, @)= |J Pin(z+[a @]) Vze Bx,(0,9).
i€l

Regarding X5 as the Euclidean space RY™(X2) (without loss of generality), let px,
and px, denote the Lebesgue measures on Xy and X3, respectively. Setting Ej :=
{#z € Bx,(0,0) : I? # I,}, we claim that ux,(Ep) = 0. To prove this, let z be an
arbitrary element in Ey. Then there exists i, € I, such that ¢, ¢ IJ. This implies
that P;. N (z + [, @/]) C P, \ intx,(P;.). Noting that P;_\ intx,(P;.) is the union
of finitely many faces of piz, it follows from Proposition 2.4 that there exists a face
of P;, containing the convex set P, N (z 4 [@, @']). Since P;. N (z + [4, @]) is a
segment containing at least two points (thanks to the definition of I,) and each P,

(as a polyhedron in X3) has finitely many faces, there exist vy,---,v; € X5\ {0}
q

and vy, --,v, € Xp such that z + [u, @] C U (vx + N(v})) for all z € Ey, that
k=1

is, By + [u, u'] C

TCe

(vg + N (v})). Since each N (v}) is of dimension dim(X5) — 1,
1

q q
s (Bo + [, @) < pixs ( 0 (o +N<v;;>>) < 3" (v + N(v)) = 0. This and
k=1 k=1
(3.22) show that px,(Ep) = 0. Next, let
z € BX3(075) \ Ey.
13



Then I, = I3. Thus, by (3.24) and the definition of I,

z+[u, @)= ) Pan(z+ @, @) and intx,(Pe) N (2 + [u, @]) #0 k€IS

Kel?

Noting that P, Nintx,(Py) = 0 for any x, s’ € I with k # &/, it follows from (3.21)

that there exist ¢, f,---,¢Z. € Im and A\, Af,---, A% € [0, 1) such that
(3.25) Lo=17 = {4§, 05,15}, g =i, 15, =14, \§ =0, \i_y <Af,

240+ [0, X)) (@ —a) = (z+ [, @']) Nintx,(P;),

2 a4 (N, 1@ —a) = (z+ (g, @]) Nintx, (Py),

z+a+ Ny, M@ —a)=(z+[u, W])NP:_|
and

24 a4 (A, M@ — 1) = (2 + [a, @]) Nintx, (P )
for all k € 17,. Therefore
(3.26) s+u+ (@ —u) € P:  NP: Vkelr,.

This and (3.14) imply that z + a + X\ (¢’ — a) ¢ 1ntX2(Pz U intx, (P, =) for all
k € 1v,. Letting

(3.27) Jow=i€lvg  + (2l jz+u+ A (@ —q)=t; ;}
and
(3.28) Jiwy =1 € vz ¢ (a7: J,z+u—|—)\k(u — 1)) =tz;},

it follows from (3.19) and Corollary 2.1 that J _ ,, # 0 and Ji, ) # 0 for all k € 1r..
We claim that there exist z € Bx,(0,0) \ Eo and (j,,,jx) € 1v,z X 1v,z such that

(3.29) T =Lk} and Jegy = Gk} ¥k €T

Indeed, if this is not the case, for each z € Bx,(0,d) \ Ey there exists k € 1, such
that either J(; k) OT J(z,k) contains at least two elements; we assume without loss of
generality that there exist k¥ € 17, and ji,js € J(zk) such that j; # ja. Then, by
(3.26) and (3.28),

(3.30) 2+ a+ Aj(a' —u) € {w € Pz : (a:;,,7) = tizj, and (2], @2) = L1z, }.

Lz

Since {(x;"il,h;l), (xfzg,tLiz), (a:Lzuz,tL;yLi)} is a prime generator group of P,:
and int(PL;) is nonempty, it is easy to verify that xfz j, and xfi j, are linearly inde-
pendent. Hence codim(N(z}:;,) NN (27:;,)) = 2. Noting that X; is a subspace of
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Nz}, ) NN (27 ,), it follows from (3.13) that Xp NN (z:
subspace of X, is of codimension 2. This and (3.30) imply that there exists a face a
of sz such that dim(F) < dim(Xy) — 2, z 4 @+ M\; (@’ — @) € F, and so

YNN(z . ), as a linear

L]l L]2 tpd2

24 (@, @) C F— (a4 Mo (@ —a) + [, @) C F+[a —a, a—a)
Since each polyhedron has finitely many faces (cf. [11, 16]) , there exist finitely many
linear subspaces S1, - - -, S of Xo and wy, - - -, w; € Xy such that dim(S;) < dom(Xs)—
l
2(j=1,---,0)and z+[u, @] C U (Sj+w;+[&' —1u, u—u]) for all z € Bx,(0,6)\ Ep.

j=1

This means that (Bx,(0,6) \ Eo) + [a, @] C U (S; +w; + [@ — 4, @ —u']) and so

x, ((Bx, (0,6) \ Eo) + Z (S) oy + [ — 0, @) = 0,

Thus, by (3.22), px,(Bx,(0,0) \ Ey) = 0. Hence px,(Fo) > px;(Bx,(0,0)) > 0
contradicting px,(Fo) = 0. This shows that (3.29) holds, that is, there exist Z €
Bx,(0,6) \ Ep and (j; ,jx) € v,z x 1v,z such that

Le—1

=), one has

It follows from Lemma 2.4 that for each k € 17z,

Ne =Nz )=N(x,)

z
te—1Jk

and
F;; (PLi—l) N Bx (Zk, 1) = ka (PLi) N Bx (Tg, 1) = (Tg, —|—Nk) N Bx (T, k)
for some ry > 0. Thus, by (3.12), one has

TLi_lkikJrNk)mBX(fk’m) + bLi I =T |(Ik+Nk)ﬂBx(mk ) T 00 z Vk € 17;.
Since N is a maximal subspace of X and both T,z and T}: are linear,
Tz v =Tzlv, VkeTrz

Noting that X; C N (thanks to the definitions of N} and X;), it follows that
T‘i 1|X = TLi|X1 for all k € 17’)/5, and so T;|x, = TL§|X1 = T@JX1 = Ty |x, (thanks

0 (3.25)). This shows that the first equality of (3.15) holds. The proof is complete.
0

15



The following corollary is a consequence of Theorem 3.1 and Propositions 2.1 and
2.5.

COROLLARY 3.1. For any two f, f' € PL(X,Y) there exist two closed subspaces
X, and Xy of X and (P, Ty, T/, b, b)) € P(Xy) x L(X,Y)2 x Y2 (i =1,---,m) such
that codim(X;) = dim(Xa) < oo,

X=X1®Xs, Xo=|JP, intx,(P)#0, intx,(P)NP; =0,
i=1

Ti|X1 :Tj|X1’ Ti/|X1 = TJ{|X1’ f‘Xl-s-Pi = Ti|X1+I5,;+bi and f/|X1+15i = Ti/|X1+157:+bg
for alli,j € Im with i # j.

4. Fully piecewise linear vector optimization problem (PLP). Let Y be
a normed linear space and C be a nontrivial convex cone in Y. Let <¢ denote the
preorder induced by C' in Y, that is, for y1,y2 € Y, y1 <¢ y2 < y2 —y1 € C. When
the interior int(C') of C' is nonempty, y; <¢ yo is defined as yo — y; € int(C).

For a subset Q2 of Y and a point w in €2, we say that w is a Pareto efficient point
of Q (with respect to C), denoted by w € E(Q,C), if there is no element v € Q \ {w}
such that v <¢ w. In the case when int(C) # ), we say that w is a weak Pareto
efficient point of 2, denoted by w € WE(Q, C), if there is no element v €  such that
v <¢ w. Clearly,

a€EBEQ,C0)e (w-0)N2={w} and a€ WE(Q,C) & (w—int(C)) NQ = 0.

In the remainder, let X and Y be normed spaces, C C Y be a nontrivial convex
cone such that int(C') # 0, and let (f,¢;) € PL(X,Y) x PL(X,R) (i=1,---,1). We
consider the following fully piecewise linear vector optimization problem:

(PLP) C —min f(x) subject to 1(z) <0,---,¢i(x) <O0.
Let A denote the feasible set of (PLP), that is,
A={reX: p1(x) <0, -, p(z) <0}.

We say that £ € A is a Pareto (resp. weak Pareto) solution of (PLP) if f(z) €
E(f(A),C) (resp. f(z) € WE(f(A),C)). Let S (resp. S™) denote the set of all
Pareto (resp. weak Pareto) solutions of (PLP).

Since the objective f and each ; in problem (PLP) are piecewise linear, Corollary
3.1 implies that there exist (P, T3, b;, 2}, ¢cij) € P(X) x L(X,Y) x Y x X* xR (i =
1,---,mand j=1,---,1) such that

41) X =|JP, int(P)#0, P,Nnint(Py) =0 Vi,i' € Im with i # i/,
i=1

P, — Cij V(’L,]) € 1m x 1.

(42)  f

p =1

*
P+ and pj|p, = aj;
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For each i € 1m, let
(4.3) Ai={xeP: (zf;,z) <cy Vjell}
Then each A; is a polyhedron in X and
(4.4) A= A
Take a prime generator group {(ujy,tix) € X* xR: k=1,---,¢;} of P; (where P; is
as in (4.1) and (4.2)). Then
Pi={zeX: (uj,x) <ty Yk €lqi} #{w € X (ujy, @) < ti, k€ 1g; \ {K'}}

for all k¥’ € 1¢;. It follows from (4.3) that

45) A= [ A{zeX: (a,2)<cy}n{zeX: (u),z)<ty} VieIm.
(G:k)€TixTq

Let

(4.6) Xi=( (] NNy

%

1 (j,k)elix1q;

Then X; is a closed subspace of X such that codim(X;) < co. Thus, one can take
another closed subspace X5 of X such that

(4.7 X =X & X, and dim(X3) = codim(X;) < oo.
By Theorem 3.1 and its proof, there exists 7' € £(X1,Y) such that
(4.8) Tilx, =T Vielm.

For each i € 1m, let

49 A= (] {zeXo: (af2) <cytn{zeXo: (uf,z) <ty
(G:k)€TixTg

Then each A; is a polyhedron in the finite dimensional space X5 and
(4.10) Ai=X1+A; Vielm.

Hence, by (4.4), the feasible set A of piecewise linear problem (PLP) can be rewritten

as
(4.11) A=Xx+ | 4.
i€elm
To study piecewise linear problem (PLP), we consider the following linear sub-
problems
(LP), C —minT;z 4+ b; subject to z € A;,
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where 7 € Im. Recall that a weak Pareto face (resp. Pareto face) F of linear problem
(LP); is a face of A; such that each point in F' is a weak Pareto solution (resp. Pareto
solution) of (LP);.

THEOREM 4.1. Let C be a convex cone in'Y such that f(A) is C-convez, that is,
f(A)+C is a convex subset of Y. Then there exist finitely many polyhedra Fy, - -, F,
in X satisfying the following properties:

(i) §v = kf]l F.

(ii) For each k there exists i € I such that F}, is a face of A; and Fj, C S*, where
I'={icTm: A; # 0} and S¥ is the weak Pareto solution set of linear subproblem
(LP),.

Consequently each Fy, is just a weak Pareto face of linear subproblem (LP); for some
i€l

Proof. Let x € A. Then x € S* if and only if f(A) N (f(x) — int(C)) = 0, which
is equivalent to (f(A4) + C) N (f(xz) — int(C)) = @. Thus, by the separation theorem
and the convexity of f(A) + C, x € S™ if and only if there exists ¢* € CT \ {0} such
that (", f(2)) = inf (", f(u). Tet §°(c") = {a € A= {¢*, f(x)) = inf {c*, ()}
for each ¢* € C*T\ {0}, and CF(f,A) := {c* € C*\ {0} : S“(c*) # 0}. Then,

by (4.4), one has S¥ = U SY(c*) = U U S%(c*) N A;, where
B c*eCt(f,A) c*€C+(f,A)ieA(c*)
Ac*) ={ieI: S“c*)NA; # 0} On the other hand, for ¢* € C*(f, A) and

i€ A(c*),

)N A= fr € A (e, (@) = min (¢, f(w))
={zxed;: ("Tix+b)= gé%(c*,Tiu—i— bi)}
= {l‘ S Ai : <

(

={zxeA,:

* T — : * T
", Tix) ggﬁ(c, ju) }

T (e7),z) = min (T3 (c"), u)}

(thanks to (4.2) and (4.3)) is a face of A; and a subset of the weak Pareto solution set
of linear subproblem (LP);. Therefore, since every polyhedron only has finitely many
faces, there exist cf,---, ¢, € CT(f, A) such that

s = UJ U sU)na=U
k=

U s“(c)na.
c*€CH(f,A)i€A(c¥) LieA(cy)

The proof is complete. O

Remark. If Y = R and C = R,, then each set in Y is trivially C-convex.
Moreover, if f is C-convex (i.e. epia(f) = {(z,y) : y € f(x) 4+ C} is convex) then
f(A) is C-convex.

Dropping the C-convexity assumption on f(A) but imposing the polyhedral as-
sumption on the ordering cone C', the following theorems show that the weak Pareto
solution set (resp. Pareto solution set) of (PLP) is the union of finitely many poly-
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hedra (resp. generalized polyhedra), each of which is contained in a face of some
Ai.
THEOREM 4.2. Let S* be the set of all weak Pareto solutions of piecewise lin-
ear problem (PLP). Suppose that the ordering cone C' is polyhedral. Then there exist
P

finitely many polyhedra Fi,---,F, in X such that S* = |J Fy and each Fy, is con-
k=1
tained in a weak Pareto face of some linear subproblem (LP);.

THEOREM 4.3. Let S be the set of all Pareto solutions of piecewise linear problem
(PLP). Suppose that the ordering cone C' is polyhedral. Then there exist finitely many

P
generalized polyhedra Fy,---,F, in X such that S = |J Fy and Fy is contained in a
k=1
Pareto face of some linear subproblem (LP);.

Remark. In the special case when the feasible set A of (PLP) is a polyhedron in
X (i.e., each function ¢y is linear in the constraint system of (PLP)), Luan [10] proved
that the weak Pareto solution set (resp. Pareto solution set) of (PLP) is the union of
finitely many polyhedra (resp. generalized polyhedra) in X; in contrast, Theorem 4.2
(resp. Theorem 4.3) implies that the weak Pareto solution set (resp. Pareto solution
set) of (PLP) is the union of finitely many polyhedra (resp. generalized polyhedra)
in X with each of these polyhedra (resp. generalized polyhedra) contained in some
face of A.

We postpone the proofs of Theorems 4.2 and 4.3 to the next section which estab-

lish a kind of finite dimensional reduction method to solve (PLP).

5. Finite dimension reduction method to solve (PLP). In this section,
with the help of Theorem 3.1, we reduce fully piecewise linear problem (PLP) and
linear subproblem (LP); in the general normed space framework to the corresponding
ones in the finite-dimensional space framework.

Throughout this section, we assume that the objective function f and all con-
straint functions ¢; in (PLP) are completely known, that is, T; € £(X,Y), b; € Y,
U, x;‘j € X*, b; €Y and t;;, ¢;; € R are known data such that

(5.1) X =|JP, int(P)#0, P,Nnint(Py) =0 Vi,i' € Tm with i # i/,

i=1
(52) f P, = T, P; + b; and wilp, = Lt;kj P, — Cij V(Z,j) € 1lm x 11
where
(5.3) Po={zeX: (uj,z) <tig, k=1,---,¢;}, i € 1Im.

We first provide a procedure to obtain exact formulas for optimal value sets and
solution sets of (PLP):
Step 1 (Decomposing the space X): Let

Xxi=() () NN,
i=1(j,k)ellxTq;
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namely, X is the solution space of the following system of homogeneous linear equa-
tions

<U;:kk,$>:<13:<j7l’>:0, i=1-m, j=1,-- 1, k=1--,¢.

Take a maximal linearly independent subset {e,---,e;} of the finite set {uj,x}; :
i €Im, j €11, k € 1g;}. For each ¢ € Tv, let h, be a solution of the following system
of linear equations

(ef,zy =1 and (e, z)=0 V. € 1w\ {L}.

In particular, in the case that X is a Hilbert space, h, = z}. Let

X2 = Spa‘n{hh"'vhl/} = {ZtLhL : tla"'aty ER} .
=1
Then
(54) X = X1 +X2 and X1 ng = {0}

Step 2 (Constructing finite dimensional subspace Z of Y'): Thanks to Corollary 3.1
and (5.4),

(55) T = Tl‘Xl = T2|X1 == Tm|X1-

Let D denote the finite set |J {T;(h1), -, T;(hy), b;} and take uq,- -, uc in D with
i=1

¢ being the maximal integer such that uy € D \ T(Xl),

us € D\ (T(Xl) + span{u1}), -, uc € D\ (T(Xl) + span{uy, -+, uc—1}),
where X; and hq,---,h, are as in Step 1. Let Z := span{uq,---,uc}. Clearly, Z is a
subspace of Y such that dim(Z) =g,
(5.6) T(X1)NZ={0} and f(X)=|J(T(X1)+Ti(P,) + b)) C T(X1) @ Z,
i=1
where P; 1= {z2 € Xo: (ufy,,2) < tir Vk € 1¢;}. Let II; denote the projection from

T(X1) ® Z onto Z, that is,

(5.7) Mz(y+2) =2 VY(y,2)eT(Xy)x Z,

and let C'; be a convex cone in the finite dimensional space Z defined by

(5.8) Cy =Mz((T(X1)® Z)NCO).

Step 3 (Exact formulas for weak Pareto optimal value set and weak Pareto set of
(PLP)): For each i € Im, let

A; = {{L‘Q eP: <1‘;<j,l‘2> < Cij V] € ﬂ}
20



and let A := (J A;. The weak Pareto optimal value set WE(f(A),C) and weak

i=1
Pareto solution set S* of (PLP) can be formulized as follows:
(i) It (T (Xl) ® Z)Nint(C) = @ then WE(f(A),C) = f(A) and SV = A
(i) If (T(X1) & Z) Nint(C) # 0 then

WE(f(4),C) = T(X1) + [ J Vi and 8 = Xy + | JAin (T 0 T) 7' (V" ~TLz(by)),
i=1 i=1
where V;* := Tz (Ti(A;) + b;) \ (f(A) + intz(Cz)).

Formulas (i) and (ii) are immediate from Theorems 5.1 and 5.3. Similarly, with The-
orems 5.1 and 5.3 being replaced by Corollary 5.1, Propositions 5.2 and their proofs,

we can also obtain the formulas for the Pareto optimal value set and Pareto solution
set of (PLP).

To establish the main results in this section, we need the following lemma.
LEMMA 5.1. Suppose that (T(X1) ® Z) Nint(C) is nonempty. Then

(5.9) int(Cy) =z((T(X1) ® Z) Nint(C)).

Proof. By the assumption, take (Z1,2) € X1 x Z and r > 0 such that
(5.10) T(Z1)+z+ rBixyoz C C.

Noting that the projection I is an open mapping from 7'(X1) & Z to Z, (5.8)
implies that intz(Cz) D Mz ((T(X1) @ Z) Nint(C)). Hence it suffices to show the
converse inclusion. To do this, let z € intz(Cz). Then there exists o > 0 such that
z+0(z— %) € Cg, that is, T(x1) + z + 0(z — 2) € C for some z; € X;. It follows
from (5.10) and the convexity of C' that

PP oI orBpixyez  T(v1)+z+0(z—2) N o(T(Z1) + 2+ rBpx,)07)

( 1+o ) 1+o 1+o l1+o
C (T(Xl)@Z)ﬂC

Hence z + "ﬁ—Bf C Cz (thanks to (5.8)). This shows that z € intz(Cz). O
Define f : Xo — Z as follows

flaxg) = (Tlz o f)(x2) = Hz(f(x2)) Vaa € Xo.

Then, f is a piecewise linear function between the two finite dimensional spaces X5
and Z. To solve the original piecewise linear vector optimization problem (PLP),
consider the following piecewise linear problem in the framework of finite dimensional

spaces:

(ﬁ) Cz —min f(x3) subject to 2o € Xy and @1 (22) <0, - -+, () < 0.
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Then the feasible set of (PLP) is A and the feasible set A of (PLP) is equal to X+ A.
Next we establish the relationship between the weak Pareto optimal value set and

weak Pareto solution set (resp. the Pareto solution set) of (PLP) and that of (P/L\P)
THEOREM 5.1. Let S* and S¥ denote the weak Pareto solution sets of piecewise

linear problems (PLP) and (ﬁ), respectively. The following statements hold:

(i) If (T’ (Xl) ® Z)Nint(C) = 0 then WE(f(A),C) = f(A) and S¥ = A.

(i) If (T(X1) ® Z) Nint(C) # O then

(5.11) WE(f(A),C) =T(X,) + WE(f(4),Cz) and S¥ = X, + S“.

Proof. First suppose that (T(X,) @ Z) Nint(C) = §. Then, since T(X;) @ Z is a
linear subspace of Y, (T(X1) ® Z) N ((T'(X1) ® Z) — int(C)) = 0. Noting that

(5.12) f(w2) € T(X1) + f(w2) and f(@1 +22) = T(21) + f(22) V(21,72) € X1 x X
(thanks to (5.1), (5.2) and (5.6)), one has
FA) =T(X1) + f(A) = T(X) + f(A) c T(X1) @ Z,

and so f(A) N (f(A) — int(C)) = 0. This shows that WE(f(A),C) = f(A) and
Sw = A. Next suppose that (7(X;) & Z) Nint(C) # 0. Then, by Lemma 5.1,
int;(Cy) =Tz (T(X,) & Z)Nint(C)). Since II is the projection from T'(X;) & Z to
Z7
T(X1) 4+ (T(X1) @ Z) Nint(C) = T(X1) + Lz (T(X1) & Z) Nint(C))
= T(Xl) +intz(Cz).

Hence

= (T(X1) + FA)\ (T(X3) + f(A) + int(C))
= (T(X1) + f(AD)) \ (T(X1) + f(A) + (T(X1) © Z) nint(C))
(T(X1) + FA)\ (T(X1) + f(A) + intz(C2)).

Noting that f(A) C Z and T(X1) N Z = {0}, it follows that
WE(f(A),0) = T(X1) + f(A) \ (f(A) + intz(Cz)) = T(X1) + WE(f(4), Cz).

This shows the first equality of (5.11). To prove the second equality of (5.11), let
zg € 5. Then xy € A and f(x2) € WE(f(A),Cz). Hence,

Xi4xC Xy +A=Aand f(X) +x2) = T(X1) + f(z2) € WE(f(A),C)

(thanks to (5.12) and the first equality of (5.11)). It follows that Xy + 2 C S™ and
so X1+ Sv C Sv. Conversely, let € S™. Then there exists (z1,22) € X X A such
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that © = z1 + z2 and f(z1 + x2) € WE(f(A),C) = T(X1) + WE(f(A),Cz). Noting
that f(z1 + x2) € f(X1 +x2) = T(X1) + f(2), one has f(z) € WE(f(A),Cz). Tt
follows that z5 € S and = = 1 + 22 € X; + S*. This shows that S* C X; + Sw.
Hence the second equality of (5.11) holds. The proof is complete. 0

THEOREM 5.2. Let (z1,22) € X1 X A. Then f(z1+22) € E(f(A),C) if and only
if f(x2) € B(f(A),Cz) and Cz = C N (T(X1) & Z).

Proof. By (5.12), f(z1 + x2) € T(X1) + f(22) and f(A)

F(A) = flar +22) = T(X1) + f(A) — f(z2).

Noting that f(A) — f(z3) C Z, it follows that

T(X1) 4 f(A). Hence

(f(A) = f(z1 +22)) N =C = (T(X1) + f(A) = f(22)) N =(C N (T(X1) & Z)).

Thus, from the definitions of the projection Iy : T(X,) & Z — Z (see (5.7)), it is
easy to verify that

(f(A) = f(z1+22)) N —C =IL(CN(T(X1) & Z)) + (f(A) — f(22)) N —C7,

where IT; (y + z) = y for all (y,z) € T(X,) @ Z. Therefore, f(z1 + z2) € E(f(A),C)

is equivalent to
i (C N (T(X1) @ Z)) + (f(A) = f(w2)) N —=Cz = {0}.

Since T'(X1) N Z = {0}, it follows that f(z1 + 2) € B(f(A),C) if and only if
L(C N (T(X1) @ Z)) = (f(A) = f(z2)) N =C7 = {0},

namely C; = C N (T(X,) @ Z) and f(x2) € E(f(A),Cy). The proof is complete. 0
The following corollary is a consequence of Theorems 3.1 and 5.2.
COROLLARY 5.1. Let S denote the Pareto solution set of piecewise linear problem
(ﬁ) The following statements hold:
(i) If Cz # C N (T(X,) ® Z) then S = 0.

(1) If Cz = CN(T(X1) ® Z) then
S =X, +58 and E(f(A),C)=T(X1)+E(f(A),Cz).

Remark. By Corollary 5.1(i) and Theorem 5.1(i), piecewise linear problem

(PLP) has no Pareto solution when Cz # CN(T(X1)®Z), and the weak Pareto solu-
tion set of (PLP) is just the entire feasible set A of (PLP) when (T'(X1)®Z)Nint(C) =
(). Therefore, we only need to consider the Pareto solution set and the weak Pareto
solution of (PLP) when Cz = C N (T(X1) & Z) and (T(X,) & Z) Nint(C) # 0,
respectively.

In the framework of finite dimensional spaces, for i € 1m, we consider the following

linear subproblem

(I/E’)Z Cz —minllz(T;x 4+ b;) subject to x € A;.
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By Theorem 5.1 and Corollary 5.1 (with linear problems (LP); and (ﬁ’) ; replacing
respectively piecewise linear problems (PLP) and (ﬁ\P)), we have the following result
(thanks to (4.10)).

PROPOSITION 5.1. For each i € Im, let S; (resp. S¥) and S; (resp. S¥) denote
the Pareto solution sets (resp. weak Pareto solution sets) of linear problem (LP); and
(1/41\3)1, respectively. The following statements hold:

(i) i =0 if Cz # C N (T(X1) ® 2).

(i) Si = X1 + S; szZ—C’ﬂ( [(X1) @ Z).
(iii) S® = A; if (T(X,) @ Z)Nint(C) = 0.

() S = Xy + 8% if (T(X1) ® Z) Nint(C) # 0.

The following theorem establishes the structure of the weak Pareto solution set
for piecewise linear problem (PTL\P)

THEOREM 5.3. For each i € 1m, let

(5.13) Vi =Tz (Ti(As) + bi) \ (f(A) + intz(Cz)),

(5.14) Si= AN (7 o T) " (Vi —TIz(b))

and suppose that (T(X1) @ Z) Nint(C) # 0. Then the following statements hold:
(i) S = U S; and WE(f(A),Cz) = U V;*, where I := {i € Tm : A; # 0}

iel iel
(i) If, in addition, the ordering cone C in'Y is assumed to be polyhedral, then for each
i € I there exist ﬁmtely many polyhedra Pll, e [:’w in Xo and faces Fil, e 7Fiqi of

A; such that S; = U PU and PZJ C FZJ C S“’ for all j € 1q;. Consequently, Sw s

the union of ﬁmtely many polyhedra in Xo, each one of which is contained in a weak
Pareto face of some linear subproblem (I:f’)l

Proof. Let i be an arbitrary element in I. Since f(i) = I (T}(&)) + Mz (b;) for
all & € A;, (Il o T;) =1 (V;* — Tl (b)) = f~1(V;*). Hence, by (5.13) and (5.14),

(5.15) = A fUTe) and V= f(S).

Thus, to prove (i), it suffices to show that S; = $¥ N A; (because A = |J A4; and
iel

f(8¥) = WE(f(A),C2)). To do this, let a; € A;NS™. Then f(a;) € WE(f(A),Cz),

that is, f(az) ¢ f(A) +intz(Cz). Since
flai) = Tz (Ti(as) + bi) € Tg(Ti(A) + b)),

this and (5.13) imply that f(a;) € V. Hence a; € S; (thanks to (5.15)). This shows
that A, NS c S,. Conversely, let a; € S;. Then, by (5.14), Uz (T;a;) € f/iw Tz (),
namely, f(a;) € V. Hence, by (5.13), f(a;) € f(A) + intz(Cz). Noting that a; €
A; C A, it follows that f(a;) € WE(f(A),Cz), and so a; € A,Nf~L(WE(f(A),Cz)) =
A; N S*. This shows that S; ¢ A; N Sv. Therefore, S; = A; N S¥. The proof of (i) is
complete.
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To prove (ii), suppose that the ordering cone C'is polyhedral. Then, since the pro-
jection mapping 117 : T (X1)® Z — Z is a linear operator and Z is finite dimensional,

Cz =1z ((T(X1)®Z)NC) is a polyhedral cone in Z (thanks to [16, Theorem 19.3] and

Proposition 2.1). On the other hand, by the assumption that (T'(X7) ® Z) Nint(C') #

), Lemma 5.1 implies that intz(Cz) = Hz((T(X1) ® Z) N int(C)) # O. Since

II;(T;(Aj) + b;) and Cz are polyhedra in the finite dimensional space Z, their sum

I17(T;(A;) +b;) + Cz is a polyhedron in Z and so is closed. Hence
2 (T;(A;) +b;) + Cz = Iz (T;(A;) + bs) + intz(Cz)).
Noting that Tz (T;(A;) + b;) + intz(Cz) is open in Z, it follows that

thZ(HZ(Tj(Aj) + b]) + CZ) = HZ(TJ'(AJ') + b]) + intz(CZ).

* *

Thus, by Proposition 2.1, there exist (27, i), (z]qj ,Tjq;) in Z* x R such that
(5.16) HZ(Tj(Aj) +bj) +intz(Cz) ={2 € Z: (z},2) <rj, k=1---,¢;}.

Since A = |J A, it follows from (5.13) that
jel

Vi =T5(Ty(A) + b;) \ U(f(/lj) +intz(Cz)

jerl
=Tz (Ti(A) + )\ | | JM2(T;(A;) + b)) + intz(Cz)
jel

=I5 (Ty(A;) + b;) \ U h{z €Z: (2jk,2) <Tjr}

jelk=1
-N U (M2 (T As) + b\ {2 € 2 (251,2) < rin})
jeT k=1
= m U (HZ(T'L(Al) +b2) N {Z IS <Z;k,z> > rjk}) .
jel k=1

Since I is a subset of I, we assume without loss of generality that there exists n € Im
such that I = Tn. For any (ki,---,kn) € 1q1 X - -+ X 1gqy, let

Qi = (HZ(Ti(Ai) )N {z €2  (h,,2) = i, }) .
j=1

Then, each Ql('kl ..k, 18 @ polyhedron in Z and

(5.17) vie=" U Qs
(k1,+,kn)€EIL;
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where II; := {(k1,- -+, ky) € Tqr x -+ X 1y, Eklf“ykn) #0}. Let
Pl gy = AN Mz 0 T) Qe opy — Tz(bi)) (k- k) € 11,
Then each p(ik1,~~-,kn) is a polyhedron in the finite dimensional space X5 and

(5.18) S;= ANz oT) " (V¥ —Tz(b;)) = U Pin)
(k1,+,kn)€Il;
Thus, to prove (ii), it suffices to show that for each (ky,- - -, ky) € II; there exists a face
F of A; such that P(ikh___’kn) cFc 5*;” By Theorem ABB (applied to linear problem
(I/Jl\j‘)z), there exist finitely many faces Fq-- ,FM of A; such that 5‘;" = U Fw
j=1
Noting that each I:’(ikl’,_’kn) is contained in S (thanks to (i) and (5.18)), it follows
from Proposition 2.4 that P(ikl,~~-,kn) - F‘ij/ for some j' € 1v;. The proof is complete.
0
Theorem 4.2 is immediate from Theorem 5.1 and 5.3. To prove the structure
theorem (Theorem 4.3) of the Pareto solution set of (PLP), we need the following
lemma, which is a variant of a formula appearing in the proof of [22, Theorem 3.4].
LEMMA 5.2. Let By,---,B,, be subsets of Y. Then

B B.C) = J () (B(B:.C)\ (B, +C) \ E(B;, C)).

iclm i€elmjelm
Proof. Let B := |J B; and E; := () (E(B;,C)\ ((B; + C)\ E(B;,())) for
i€lm jEIm
all i € Tm. We need to show E(B,C) = |J E;. For each y' € E(B,C), there exists
i=1

i’ € Im such that y' € By and soy’ € E(By,C). Since (B;+C)NE(B,C) C E(B;,C)
for all j € Im, v € E(B;,C) forall j € Im with y € B; + C. It follows that
y' & (B;+C)\E(B;,C) for all j € Im. Hence y' € E(B;,C)\ ((B; +C)\ E(B;,()))
for all j € 1m, that is, ¢’ € E;;. This shows that E(B,C) C |J E;. Conversely, let
iclm
y € (nj E;. Then there exists ig € Im such that y € E;,. Let z € BN (y—C). We only
needz ti) show z = y. Take j € Im such that z € B;. It follows that z € B; N (y — C).
Noting that E;, C E(B;,,C), it is clear that z = y if j = ip. Now suppose that
j # io. By the definition of E;;, one has y € E(B;,,C) \ ((B; + C) \ E(B;,C)),
and soy ¢ (B; + C) \ E(B;,C). Sincey € z+C C Bj +C, y € E(B;,C), and so
{y} = B; N (y — C) > z. This shows that y = z. The proof is complete. O
PROPOSITION 5.2. Let S and S; (i € T := {i € Tm : A; # 0}) denote the
Pareto solution set of piecewise linear problem (P/L\P) and linear subproblem (ﬁ’)i,
respectively. Suppose that the ordering cone C is polyhedral. Then there exist finitely
many generalized polyhedra By, ,Fp in Xo such that the following statements hold:

. P
(i) S= U Fk.
k=1
(ii) For each k € 1p there existi € I and a face F of A; such that Fy, C F C S;.
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Proof. For each i € I, let S; = /1,» NS. Then S = U 5‘1, and S, is clearly
iel
contained in the Pareto solution set S; of linear subproblem (LP),. Thus, by Theorem

ABB and Proposition 2.4, it suffices to show that there exist finitely many generalized

polyhedra Gy, - -, ém in X, such that S; = U Gir. Noting that JE|Ai _ HZ°f|Ai _
k=1

7 o Ti| 4, + Hz(bi), one has

(5.19) Si = Ain fTHE(f(A),C2)) = A0 (T 0 T,) N (E(f(A), Oz) — T1z(by)).

Since C is a polyhedral cone in Y, CN(T(X1) @ Z) is a polyhedral cone in T'(X,)& Z.

Hence C; = Iz (C'N(T(X,)® Z)) is a polyhedral cone in the finite dimensional space

Z. 1t follows that Bj 4+ Cy is a polyhedron in Z and E(B;,Cz) = E(B; + Cz,Cz) is

the union of finitely many polyhedra in Z for each j € I (thanks to Theorem ABB),

where B; := Il (T;(A;) +b;). Hence E; := () B(B;,Cz)\ (B; + Cz) \E(B;,Cz)) is
jel

the union of finitely many generalized poleh]eedra in Z for all i € I. Since

f(A):Uf(Ai):UBi,

icl iel

This and Lemma 5.2 imply that E(f(A), Cz) = | E; and so E(f(A), C) is the union
iel
of finitely many generalized polyhedra in Z. Thus, by (5.19), for each i € I there
exist finitely many generalized polyhedra G'ﬂ, S G’w in X9 such that 5‘1 = U sz
k=1
The proof is complete. O

Clearly, Theorem 4.3 follows from Corollary 5.1 and Propositions 5.2 and 2.2.
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