# Piecewise Multicriteria Programs with Applications in Finance 

Xiaoqi Yang<br>Department of Applied Mathematics<br>The Hong Kong Polytechnic University<br>Email: mayangxq@polyu.edu.hk

The outline of the lecture:

1. Portfolio Selection Models
2. Multicriteria Piecewise Linear Programs
3. Bicriteria Linear Portfolio Optimization Programs
4. Conclusions

## 1. Portfolio Selection Models

Sharpe (1971) has remarked that "if the essence of the portfolio analysis problem could be adequately captured in a form suitable for linear programming methods, the prospect for practical application would be greatly enhanced."

Harry Markowitz (1952) used the following variance ( $l_{2}$ risk) of the random rate of return of the portfolio as the risk measure

$$
\sigma_{2}(x)=E\left(\left[\sum_{j=1}^{n} x_{j} r_{j}-\sum_{j=1}^{n} x_{j} \bar{r}_{j}\right]^{2}\right)=\sum_{i, j=1}^{n} \sigma_{i j} x_{i} x_{j}
$$

where $\sigma_{i j}=E\left(\left[r_{i}-\bar{r}_{i}\right]\left[r_{j}-\bar{r}_{j}\right]\right)$ is the correlation and formulated the meanvariance model:

$$
\begin{aligned}
\min & \frac{1}{2} \sum_{i, j=1}^{n} \sigma_{i j} x_{i} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} \bar{r}_{j} x_{j} \geq \bar{r}, \sum_{j=1}^{n} x_{j}=M_{0} .
\end{aligned}
$$

This model has been the foundation of modern financial theory in last 60 years!
Assumption: $\left(r_{1}, \cdots, r_{n}\right)$ is multivariate normally distributed.

## Konno and Yamazaki (1991)

- observed that most of the stock prices in Tokyo Stock Market are not normally nor even symmetrically distributed
- introduced the following $l_{1}$ risk (the Mean-Absolute Deviation (MAD)) of the portfolio as the risk measure

$$
\sigma_{1}(x)=E\left(\left|\sum_{j=1}^{n} r_{j} x_{j}-\sum_{j=1}^{n} \bar{r}_{j} x_{j}\right|\right) .
$$

Let $\bar{r}_{j}=\sum_{t=1}^{T} \bar{r}_{j t} / T$. They formulated the mean- $l_{1}$ risk model:

$$
\begin{array}{ll}
\qquad \min _{x \geq 0} & \frac{1}{T} \sum_{t=1}^{T}\left|\sum_{j=1}^{n} a_{j t} x_{j}\right|, \\
\text { subject to } & \sum_{j=1}^{n} \bar{r}_{j} x_{j} \geq \bar{r}, \sum_{j=1}^{n} x_{j}=M_{0},
\end{array}
$$

where $a_{j t}=\bar{r}_{j t}-\bar{r}_{j}$ and $\bar{r}_{j t}$ is the expectation of random variable $r_{j}$ during period $t, t=1, \cdots, T$.

Using the criterion of maximizing the minimum return or minimizing the maximum loss in decision analysis, Young (1998) introduced the following the minimax model:

$$
\begin{aligned}
\max _{x \geq 0} & M_{p}, \\
\text { subject to } & \sum_{j=1}^{n} \bar{r}_{j t} x_{j} \geq M_{p}, t=1, \cdots, T, \\
& \sum_{j=1}^{n} \bar{r}_{j} x_{j} \geq \bar{r}, \sum_{j=1}^{n} x_{j}=M_{0},
\end{aligned}
$$

where $\bar{r}_{j}=\sum_{t=1}^{T} y_{j t} / T$ is the average return on stock $j$.
The method may also have logical advantages:

- when the returns are not normally distributed,
- when the investor has a strong form of risk aversion.

Motivated by $H^{\infty}$ optimal control or the worst case analysis, Cai, Teo, Y. and Zhou (2000) introduced the following $l_{\infty}$ risk measure:

$$
\sigma_{\infty}(x)=\max _{1 \leq j \leq n} E\left(\left|r_{j} x_{j}-\bar{r}_{j} x_{j}\right|\right)
$$

Let $q_{j}=E\left(\left|r_{j}-\bar{r}_{j}\right|\right)$ and assume $x_{j} \geq 0$. Then

$$
\sigma_{\infty}(x)=\max _{1 \leq j \leq n} q_{j} x_{j} .
$$

## The mean- $l_{\infty}$ risk model is

$$
\begin{aligned}
& \min _{x \geq 0} \quad\left(\max _{1 \leq j \leq n} q_{j} x_{j},-\sum_{j=1}^{n} \bar{r}_{j} x_{j}\right) \\
& \text { subject to } \quad \sum_{j=1}^{n} x_{j}=M_{0} .
\end{aligned}
$$

When the transaction cost is considered, Fang, Meng and Y. (2012) studied the problem

$$
\begin{aligned}
& \min _{x \geq 0}\left(\max _{1 \leq j \leq n} q_{j} x_{j},-\sum_{j=1}^{n} r_{j} x_{j}+\sum_{j=1}^{n} c_{j}^{0}\left(x_{j}\right)\right) \\
& \text { subject to } \quad \sum_{j=1}^{n}\left[x_{j}+c_{j}^{0}\left(x_{j}\right)\right]=M_{0}
\end{aligned}
$$

where the transaction $\operatorname{cost} c_{j}^{0}\left(x_{j}\right)$ is plotted as:


## 2. Multicriteria Piecewise Linear Programs

Definition 2.1 A subset $P$ of $R^{n}$ is called a polyhedron if it is the intersection of finitely many closed half-spaces, i.e., $\exists\left\{x_{1}^{*}, x_{2}^{*}, \cdots, x_{p}^{*}\right\} \subset R^{n}$, $\left\{c_{1}, c_{2}, \cdots, c_{p}\right\} \subset R$ such that

$$
P=\left\{x \in R^{n}:\left\langle x_{i}^{*}, x\right\rangle \leq c_{i}, 1 \leq i \leq p\right\} .
$$

Definition 2.2 A subset $C$ of $R^{n}$ is called a semi-closed polyhedron if it is the intersection of finitely many closed and/or open half-spaces, i.e., $\exists\left\{x_{1}^{*}, x_{2}^{*}, \cdots, x_{q}^{*}\right\} \subset R^{n},\left\{c_{1}, c_{2}, \cdots, c_{q}\right\} \subset R$ and $0 \leq p \leq q$ such that
$C=\left\{x \in R^{n}:\left\langle x_{i}^{*}, x\right\rangle \leq c_{i}, 1 \leq i \leq p\right\} \cap\left\{x \in R^{n}:\left\langle x_{i}^{*}, x\right\rangle<c_{i}, p<i \leq q\right\}$.


Definition 2.3 (i) A function $F: R^{n} \rightarrow R^{m}$ is said to be piecewise linear if $\exists$ semi-closed polyhedra $C_{1}, C_{2}, \cdots, C_{l}$ in $R^{n}$, matrices $T_{1}, T_{2}, \cdots, T_{l}$ in $R^{m \times n}$ and vectors $b_{1}, b_{2}, \cdots, b_{l}$ in $R^{m}$ such that

$$
R^{n}=\cup_{i=1}^{l} C_{i} \quad \text { and } \quad F(x)=T_{i} x+b_{i}, \quad \forall x \in C_{i} \text { and } 1 \leq i \leq l .
$$

(ii) If furthermore $F$ is continuous, then $F$ is called a continuous piecewise linear function.
(iii) Otherwise $F$ is called a discontinuous piecewise linear function.


Consider the following multicriteria piecewise linear program

$$
\text { (MPLP) } \quad \min F(x) \quad \text { subject to } \quad x \in X,
$$

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a piecewise linear function, and $X \subset \mathbb{R}^{n}$ is a polyhedron.

$S:=\{$ Pareto solutions $\}, \quad E:=F(S)=\{$ Pareto points $\}$ (lower envelope)

## Solution Set Structures of (MPLP)

Consider the following multicriteria linear program

$$
\min \left(c_{1}^{\top} x, \cdots, c_{l}^{\top} x\right)^{\top} \quad \text { subject to } A x \leq b, x \geq 0
$$

Arrow, Barankin and Blackwell (1953):
Then the set $S$ of all Pareto solutions of (MPLP) is the union of finitely many polyhedra and connected by line segments.

Zheng and Y. (2008), Y. and Yen (2010) and Fang, Meng and Y. (2012):
Let $F(x)$ be piecewise linear. Then the set $S$ of all Pareto solutions of (MPLP) is the union of finitely many semi-closed polyhedra.

## 3. Bicriteria Portfolio Optimization with the $l_{\infty}$ Risk and Transaction Cost

Let $R_{j}$ be the random return rate of the stock $S_{j}$. Define

$$
\bar{r}_{j}=E\left(r_{j}\right), q_{j}=E\left(\left|r_{j}-\bar{r}_{j}\right|\right),
$$

as the expected rate of return of the stock $S_{j}$ and the expected absolute deviation of $R_{j}$ from its mean, respectively.

Let $x_{j} \geq 0$ be the allocation to $S_{j}$ from the initial wealth $M_{0}, j=1, \cdots, n$. The $l_{\infty}$ risk measure is defined as

$$
l_{\infty}(x)=\max _{1 \leq j \leq n} E\left(\left|r_{j} x_{j}-\bar{r}_{j} x_{j}\right|\right)=\max _{1 \leq j \leq n} q_{j} x_{j}
$$

### 3.1. The mean- $l_{\infty}$ risk model without transaction cost

The model is

$$
\begin{array}{ll}
\min & \left(\max _{1 \leq j \leq n} q_{j} x_{j},-\sum_{j=1}^{n} \bar{r}_{j} x_{j}\right) \\
\text { subject to } \quad & \sum_{j=1}^{n} x_{j}=M_{0} \\
& x_{j} \geq 0, j=1, \cdots, n .
\end{array}
$$

Let $0 \leq \lambda<1$ be the investor's weight on the risk. Then we have

$$
\begin{array}{ll}
\min & \lambda \max _{1 \leq j \leq n} q_{j} x_{j}-(1-\lambda) \sum_{j=1}^{n} \bar{r}_{j} x_{j} \\
\text { subject to } \quad \sum_{j=1}^{n} x_{j}=M_{0}, \\
& x_{j} \geq 0, j=1, \cdots, n .
\end{array}
$$

Assume that

$$
\bar{r}_{1} \leq \bar{r}_{2} \leq \cdots \leq \bar{r}_{n}
$$

Let $\beta_{k}:=\frac{\bar{r}_{n}-\bar{r}_{n-k}}{q_{n}}+\frac{\bar{r}_{n-1}-\bar{r}_{n-k}}{q_{n-1}}+\cdots+\frac{\bar{r}_{n-k+1}-\bar{r}_{n-k}}{q_{n-k+1}}, \quad(k=1,2, \cdots, n-1)$, an increasing sequence.

Choose $k$ such that

$$
\beta_{k}<\frac{\lambda}{1-\lambda} \leq \beta_{k+1}
$$

Then an optimal investment strategy is:

$$
x_{j}^{*}= \begin{cases}\frac{M_{0}}{q_{j}}\left(\sum_{n-k}^{n} \frac{1}{q_{l}}\right)^{-1}, & \text { if } j \geq n-k, \\ 0, & \text { otherwise. }\end{cases}
$$

## Comparison between analytic aolutions:

$$
\begin{aligned}
\min & \lambda\left(\sigma_{1}^{2} x_{1}^{2}+\sigma_{2}^{2} x_{2}^{2}+2 \sigma_{12} x_{1} x_{2}\right)-(1-\lambda)\left(\bar{r}_{1} x_{1}+\bar{r}_{2} x_{2}\right) \\
\text { subject to } & x_{1}+x_{2}=M_{0}, x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

Let $\sigma_{12}=0$, namely, assume that the two assets are not correlated. Then

$$
\begin{aligned}
& \hat{x}_{1}=\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} M_{0}+\left(\frac{1-\lambda}{2 \lambda}\right)\left(\frac{\bar{r}_{1}-\bar{r}_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}},\right. \\
& \hat{x}_{2}=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} M_{0}+\left(\frac{1-\lambda}{2 \lambda}\right)\left(\frac{\bar{r}_{2}-\bar{r}_{1}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right) .
\end{aligned}
$$

On the other hand, it is easy to see from the analytic solution of the mean- $l_{\infty}$ risk model that

$$
\begin{aligned}
& x_{1}^{*}=\frac{q_{2}}{q_{1}+q_{2}} M_{0}, \\
& x_{2}^{*}=\frac{q_{1}}{q_{1}+q_{2}} M_{0} .
\end{aligned}
$$

- The role of $q_{i}$ is similar to that of $\sigma_{i}^{2}$.
- The term $\left(\frac{1-\lambda}{2 \lambda}\right)\left(\frac{r_{1}-r_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)$ for $\hat{x}_{1}$ can be regarded as a compensative term.


### 3.2. The mean- $l_{\infty}$ risk model with transaction cost

For each stock $S_{j}$, the transaction cost is defined as

$$
c_{j}^{0}\left(x_{j}\right)= \begin{cases}c_{j} x_{j}+d_{j}, & \text { if } x_{j}>0, \\ 0, & \text { if } x_{j}=0,\end{cases}
$$

where $c_{j}>0$ is the ratio of the transaction cost, and $d_{j}>0$ is the minimum charge.

The bicriteria portfolio optimization problem with the $l_{\infty}$ risk measure and transaction cost is formulated:

$$
\begin{array}{ll}
\min & \left(\max _{1 \leq j \leq n} q_{j} x_{j},-\sum_{j=1}^{n} \bar{r}_{j} x_{j}+\sum_{j=1}^{n} c_{j}^{0}\left(x_{j}\right)\right) \\
\text { subject to } & \sum_{j=1}^{n}\left[x_{j}+c_{j}^{0}\left(x_{j}\right)\right]=M_{0} \\
& x_{j} \geq 0, j=1, \cdots, n .
\end{array}
$$

Denote by $E$ the set of Pareto points of $(P)$.

Let $J \subset I=\{1,2, \cdots, n\}$. There are $2^{n}-1$ such indexes of $J^{\prime} s$.
Let $x_{j}>0$ if $j \in J$ and $x_{j}=0$ if $j \notin J$.
Consider the following subproblems:

$$
\begin{array}{ll}
(P)^{J} \quad \min & \left(y,-\sum_{j \in J}\left(\bar{r}_{j}-c_{j}\right) x_{j}\right)+\left(0, \sum_{j \in J} d_{j}\right) \\
\text { subject to } \quad q_{j} x_{j} \leq y, j \in J \\
& x_{j}>0, j \in J, \sum_{j \in J}\left(1+c_{j}\right) x_{j}=M_{0}-\sum_{j \in J} d_{j}
\end{array}
$$

denote by $E_{J}$ the set of Pareto points of $(P)^{J}$,

$$
\begin{array}{rll}
(A P)^{J} \quad \min & \left(y,-\sum_{j \in J}\left(\bar{r}_{j}-c_{j}\right) x_{j}\right)+\left(0, \sum_{j \in J} d_{j}\right) \\
\text { subject to } & q_{j} x_{j} \leq y, j \in J \\
& x_{j} \geq 0, j \in J, \sum_{j \in J}\left(1+c_{j}\right) x_{j}=M_{0}-\sum_{j \in J} d_{j},
\end{array}
$$

denote by $\Lambda_{A J}$ the set of Pareto points of $(A P)^{J}$.

Then we have

$$
E \subset \cup_{J \subset I} E_{J} \subset \cup_{J \subset I} \Lambda_{A J} .
$$

When there are 4 subproblems:


Then the following algorithm locates the set of all the Pareto points.

## Algorithm 3.1

Procedure A. Compute all the auxiliary bicriteria linear programs $(A P)^{J}$.
Procedure B. Find all the break points and the lower envelopes.
Procedure C. Identify the set $E$ of Pareto points.

## Implementation of Algorithm 3.1:

- The number of subproblems with $n$ stocks is $2^{n}-1$.
- Data from Hong Kong stock market is used.
- Time in seconds.
- Computing time of Algorithm 3.1:

| $n$ | Procedure A | Procedure B | Procedure C | Total time |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 0.2891 | 0.0859 | 0.3375 | 0.7125 |
| 7 | 0.7109 | 0.3547 | 0.8547 | 1.9203 |
| 8 | 1.7500 | 1.7047 | 1.9891 | 5.4437 |
| 9 | 4.2797 | 8.8281 | 4.3750 | 17.4828 |
| 10 | 10.2828 | 52.2813 | 10.9828 | 73.5469 |
| 11 | 23.9906 | 399.8297 | 23.4812 | 447.3016 |

- Procedure B takes most of the computing time.


## Improving Algorithm 3.1:

- Adapt the techniques of ideal points to exclude Pareto point sets of some subproblems from entering Procedure B.
- Computing time of improved Algorithm 3.1:

| $n$ | Procedure A | Procedure B | Procedure C | Total time |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 0 | 0.0563 | 0.2875 | 0.3438 |
| 7 | 0.0016 | 0.2437 | 0.7312 | 0.9766 |
| 8 | 0.0047 | 1.2625 | 1.7578 | 3.0250 |
| 9 | 0.0078 | 6.4891 | 3.9031 | 10.4000 |
| 10 | 0.0203 | 40.3000 | 10.0500 | 50.3703 |
| 11 | 0.0453 | 306.9844 | 21.7484 | 328.7781 |

- The total computing time is saved by $25 \%$.


## 4. Conclusions

- Semi-closed polyhedron has practical applications.
- One can find the whole set of Pareto points for bicriteria piecewise linear programs.
- Application was given to a portfolio optimization problem with $l_{\infty}$ risk measure and transaction cost, but not efficiently.
- Open question: How to find the set of Pareto points for tri-criteria piecewise linear programs?
- Open question: How to solve bicriteria piecewise linear programs with sparse constraints?


## References

1. Cai, X.Q., Teo, K.L. Yang, X.Q. and Zhou, X.Y., Portfolio optimization under a minimax rule. Management Sci., 46(7) (2000), pp. 957-972.
2. Fang, Y.P., Meng, K.W. and Yang, X.Q., Piecewise linear multi-criteria programs: the continuous case and its discontinuous generalization, Operations Research Vol. 60, (2012) pp. 398-409.
