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The outline of the lecture:

1. Portfolio Selection Models

2. Multicriteria Piecewise Linear Programs

3. Bicriteria Linear Portfolio Optimization Programs

4. Conclusions
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1. Portfolio Selection Models
Sharpe (1971) has remarked that “if the essence of the portfolio analysis prob-
lem could be adequately captured in a form suitable for linear programming
methods, the prospect for practical application would be greatly enhanced.”
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Harry Markowitz (1952) used the following variance (l2 risk) of the random rate
of return of the portfolio as the risk measure

σ2(x) = E

[ n∑
j=1

xjrj −
n∑
j=1

xjr̄j

]2
 =

n∑
i,j=1

σijxixj,

where σij = E([ri − r̄i][rj − r̄j]) is the correlation and formulated the mean-
variance model:

min
1

2

n∑
i,j=1

σijxixj

subject to
n∑
j=1

r̄jxj ≥ r̄,
n∑
j=1

xj = M0.

This model has been the foundation of modern financial theory in last 60 years!

Assumption: (r1, · · · , rn) is multivariate normally distributed.
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Konno and Yamazaki (1991)

• observed that most of the stock prices in Tokyo Stock Market are not normally
nor even symmetrically distributed

• introduced the following l1 risk (the Mean-Absolute Deviation (MAD)) of the
portfolio as the risk measure

σ1(x) = E

(∣∣∣∣∣
n∑
j=1

rjxj −
n∑
j=1

r̄jxj

∣∣∣∣∣
)
.

Let r̄j =
∑T

t=1 r̄jt/T . They formulated the mean-l1 risk model:

min
x≥0

1

T

T∑
t=1

∣∣∣∣∣
n∑
j=1

ajtxj

∣∣∣∣∣ ,
subject to

n∑
j=1

r̄jxj ≥ r̄,
n∑
j=1

xj = M0,

where ajt = r̄jt − r̄j and r̄jt is the expectation of random variable rj during
period t, t = 1, · · · , T .
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Using the criterion of maximizing the minimum return or minimizing the maxi-
mum loss in decision analysis, Young (1998) introduced the following the min-
imax model:

max
x≥0

Mp,

subject to
n∑
j=1

r̄jtxj ≥Mp, t = 1, · · · , T,
n∑
j=1

r̄jxj ≥ r̄,
n∑
j=1

xj = M0,

where r̄j =
∑T

t=1 yjt/T is the average return on stock j.

The method may also have logical advantages:

• when the returns are not normally distributed,

• when the investor has a strong form of risk aversion.
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Motivated by H∞ optimal control or the worst case analysis, Cai, Teo, Y. and
Zhou (2000) introduced the following l∞ risk measure:

σ∞(x) = max
1≤j≤n

E(|rjxj − r̄jxj|)

Let qj = E(|rj − r̄j|) and assume xj ≥ 0. Then

σ∞(x) = max
1≤j≤n

qjxj.

The mean-l∞ risk model is

minx≥0 ( max
1≤j≤n

qjxj,−
n∑
j=1

r̄jxj)

subject to
∑n

j=1 xj = M0.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

When the transaction cost is considered, Fang, Meng and Y. (2012) studied the
problem

minx≥0 (max1≤j≤n qjxj,−
n∑
j=1

rjxj +
n∑
j=1

c0
j(xj))

subject to
n∑
j=1

[xj + c0
j(xj)] = M0.

where the transaction cost c0
j(xj) is plotted as:
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2. Multicriteria Piecewise Linear Programs

Definition 2.1 A subset P of Rn is called a polyhedron if it is the inter-
section of finitely many closed half-spaces, i.e., ∃{x∗1, x∗2, · · · , x∗p} ⊂ Rn,
{c1, c2, · · · , cp} ⊂ R such that

P = {x ∈ Rn : 〈x∗i , x〉 ≤ ci, 1 ≤ i ≤ p}.
Definition 2.2 A subset C of Rn is called a semi-closed polyhedron if it
is the intersection of finitely many closed and/or open half-spaces, i.e.,
∃{x∗1, x∗2, · · · , x∗q} ⊂ Rn, {c1, c2, · · · , cq} ⊂ R and 0 ≤ p ≤ q such that

C = {x ∈ Rn : 〈x∗i , x〉 ≤ ci, 1 ≤ i ≤ p}∩{x ∈ Rn : 〈x∗i , x〉 < ci, p < i ≤ q}.
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Definition 2.3 (i) A function F : Rn → Rm is said to be piecewise linear if ∃
semi-closed polyhedraC1, C2, · · · , Cl inRn, matrices T1, T2, · · · , Tl inRm×n

and vectors b1, b2, · · · , bl in Rm such that

Rn = ∪li=1Ci and F (x) = Tix + bi, ∀x ∈ Ci and 1 ≤ i ≤ l.

(ii) If furthermore F is continuous, then F is called a continuous piecewise
linear function.

(iii) Otherwise F is called a discontinuous piecewise linear function.
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Consider the following multicriteria piecewise linear program

(MPLP) min F (x) subject to x ∈ X,
F : Rn → Rm is a piecewise linear function, and X ⊂ Rn is a polyhedron.
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S := { Pareto solutions}, E := F (S) = { Pareto points} (lower envelope)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Solution Set Structures of (MPLP)

Consider the following multicriteria linear program

min (c>1 x, · · · , c>l x)> subject to Ax ≤ b, x ≥ 0.

Arrow, Barankin and Blackwell (1953):

Then the set S of all Pareto solutions of (MPLP) is the union of finitely many
polyhedra and connected by line segments.
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Zheng and Y. (2008), Y. and Yen (2010) and Fang, Meng and Y. (2012):

Let F (x) be piecewise linear. Then the set S of all Pareto solutions of (MPLP)
is the union of finitely many semi-closed polyhedra.
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3. Bicriteria Portfolio Optimization with the
l∞ Risk and Transaction Cost

Let Rj be the random return rate of the stock Sj. Define

r̄j = E(rj), qj = E(|rj − r̄j|),
as the expected rate of return of the stock Sj and the expected absolute deviation
of Rj from its mean, respectively.

Let xj ≥ 0 be the allocation to Sj from the initial wealth M0, j = 1, · · · , n.
The l∞ risk measure is defined as

l∞(x) = max
1≤j≤n

E(|rjxj − r̄jxj|) = max
1≤j≤n

qjxj.
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3.1. The mean-l∞ risk model without transaction cost

The model is

min (max1≤j≤n qjxj,−
n∑
j=1

r̄jxj)

subject to
∑n

j=1 xj = M0,
xj ≥ 0, j = 1, · · · , n.

Let 0 ≤ λ < 1 be the investor’s weight on the risk. Then we have

min λmax1≤j≤n qjxj − (1− λ)
n∑
j=1

r̄jxj

subject to
∑n

j=1 xj = M0,
xj ≥ 0, j = 1, · · · , n.
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Assume that
r̄1 ≤ r̄2 ≤ · · · ≤ r̄n.

Let βk := r̄n−r̄n−k

qn
+ r̄n−1−r̄n−k

qn−1
+ · · · + r̄n−k+1−r̄n−k

qn−k+1
, (k = 1, 2, · · · , n− 1), an

increasing sequence.

Choose k such that

βk <
λ

1− λ ≤ βk+1.

Then an optimal investment strategy is:

x∗j =

{
M0

qj

(∑n
n−k

1
ql

)−1

, if j ≥ n− k,
0, otherwise.
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Comparison between analytic aolutions:

min λ(σ2
1x

2
1 + σ2

2x
2
2 + 2σ12x1x2)− (1− λ)(r̄1x1 + r̄2x2)

subject to x1 + x2 = M0, x1 ≥ 0, x2 ≥ 0.

Let σ12 = 0, namely, assume that the two assets are not correlated. Then

x̂1 =
σ2

2

σ2
1 + σ2

2

M0 +
(1− λ

2λ

)
(
r̄1 − r̄2

σ2
1 + σ2

2

),

x̂2 =
σ2

1

σ2
1 + σ2

2

M0 +
(1− λ

2λ

)
(
r̄2 − r̄1

σ2
1 + σ2

2

).

On the other hand, it is easy to see from the analytic solution of the mean-l∞
risk model that

x∗1 =
q2

q1 + q2

M0,

x∗2 =
q1

q1 + q2

M0.

• The role of qi is similar to that of σ2
i .

• The term
(

1−λ
2λ

)(
r1−r2
σ21+σ22

)
for x̂1 can be regarded as a compensative term.
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3.2. The mean-l∞ risk model with transaction cost

For each stock Sj, the transaction cost is defined as

c0
j(xj) =

{
cjxj + dj, if xj > 0,
0, if xj = 0,

where cj > 0 is the ratio of the transaction cost, and dj > 0 is the minimum
charge.

The bicriteria portfolio optimization problem with the l∞ risk measure and
transaction cost is formulated:

min ( max
1≤j≤n

qjxj,−
n∑
j=1

r̄jxj +
n∑
j=1

c0
j(xj))

subject to
n∑
j=1

[xj + c0
j(xj)] = M0,

xj ≥ 0, j = 1, · · · , n.

Denote by E the set of Pareto points of (P ).
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Let J ⊂ I = {1, 2, · · · , n}. There are 2n − 1 such indexes of J ′s.

Let xj > 0 if j ∈ J and xj = 0 if j 6∈ J .

Consider the following subproblems:

(P )J min (y,−
∑
j∈J

(r̄j − cj)xj) + (0,
∑
j∈J

dj)

subject to qjxj ≤ y, j ∈ J
xj > 0, j ∈ J,

∑
j∈J

(1 + cj)xj = M0 −
∑
j∈J

dj,

denote by EJ the set of Pareto points of (P )J ,

(AP )J min (y,−
∑
j∈J

(r̄j − cj)xj) + (0,
∑
j∈J

dj)

subject to qjxj ≤ y, j ∈ J
xj ≥ 0, j ∈ J,

∑
j∈J

(1 + cj)xj = M0 −
∑
j∈J

dj,

denote by ΛAJ the set of Pareto points of (AP )J .
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Then we have
E ⊂ ∪J⊂IEJ ⊂ ∪J⊂IΛAJ .

When there are 4 subproblems:

z

Λw
1 \Λ1 = (z21 , z]

Λw
2 = Λ2

Λw
3 = Λ3

Λw
4 = Λ4

Ew
1 = Λw

1 \{z21}

E2 = Λ2

E3 = Λ3\{z41}

E4 = Λ4\[z̃, z53 ]

δ1 δ2 δ3 δ4 δ5 δ6 δ7

z12

z21

z32

z41

z52z
5
2

z53 = z61

z̃
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Then the following algorithm locates the set of all the Pareto points.

Algorithm 3.1

Procedure A. Compute all the auxiliary bicriteria linear programs (AP )J .

Procedure B. Find all the break points and the lower envelopes.

Procedure C. Identify the set E of Pareto points.
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Implementation of Algorithm 3.1:

• The number of subproblems with n stocks is 2n − 1.

• Data from Hong Kong stock market is used.

• Time in seconds.

• Computing time of Algorithm 3.1:

n Procedure A Procedure B Procedure C Total time
6 0.2891 0.0859 0.3375 0.7125
7 0.7109 0.3547 0.8547 1.9203
8 1.7500 1.7047 1.9891 5.4437
9 4.2797 8.8281 4.3750 17.4828
10 10.2828 52.2813 10.9828 73.5469
11 23.9906 399.8297 23.4812 447.3016

• Procedure B takes most of the computing time.
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Improving Algorithm 3.1:

• Adapt the techniques of ideal points to exclude Pareto point sets of some
subproblems from entering Procedure B.

• Computing time of improved Algorithm 3.1:

n Procedure A Procedure B Procedure C Total time
6 0 0.0563 0.2875 0.3438
7 0.0016 0.2437 0.7312 0.9766
8 0.0047 1.2625 1.7578 3.0250
9 0.0078 6.4891 3.9031 10.4000
10 0.0203 40.3000 10.0500 50.3703
11 0.0453 306.9844 21.7484 328.7781

• The total computing time is saved by 25%.
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4. Conclusions
• Semi-closed polyhedron has practical applications.

• One can find the whole set of Pareto points for bicriteria piecewise linear
programs.

• Application was given to a portfolio optimization problem with l∞ risk
measure and transaction cost, but not efficiently.

• Open question: How to find the set of Pareto points for tri-criteria piecewise
linear programs?

• Open question: How to solve bicriteria piecewise linear programs with sparse
constraints?
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