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1. Introduction. Let U ⊆ Rl be an open set, and let F : U → Rm be a twice contin-

uously differentiable function. In the present paper, we consider the following multiobjective

optimization problem:

min
x∈U

F (x). (1.1)

This type of problems has been widely studied by [3, 6, 21, 23] and extensively applied in various

areas such as engineering [7, 11, 25], management science [2, 22, 33, 39] and environmental

analysis [5, 17, 27].

Motivated by its extensive applications, a great amount of attention has been attracted to
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2 EXTENDED NEWTON METHODS FOR MULTIOBJECTIVE OPTIMIZATION

the development of optimization algorithms, and many iterative methods have been proposed to

approach a Pareto optimum of multiobjective optimization; see [3, 4, 8, 9, 10, 18, 19, 20, 35, 41]

and references therein. Among them, one of the most important methods is the extended

Newton method (with Armijo line-search scheme) introduced by Fliege et al. [19], which is an

extension of the classical Newton method for solving nonlinear equations (see [40]). Comparing

with other iterative methods for multiobjective optimization, it was pointed out in [19] that the

extended Newton method enjoys several advantages: (a) it has a fast convergence rate under

some mild conditions; (b) its subproblems can be solved effectively; and (c) it does not use

a priori weighting factor or any other priori information for the objective functions. Due to

these benefits, there is a great demand for further investigating the convergence theory of the

extended Newton method, which is formally stated as follows (for undefined notations in the

sequel, one can refer to section 2).

Algorithm 1.1.

Step 1. (Initialization) Choose x0 ∈ U and σ ∈ (0, 1), and set n := 0.

Step 2. (Direction search) Solve the direction search problem (2.3) at xn to obtain the search

direction s(xn) and the associated value θ(xn).

Step 3. (Stopping criterion) If θ(xn) = 0, then stop; otherwise, proceed to Step 4.

Step 4. (Armijo line-search) Choose αn as the maximal value of {2−s : s ∈ N} such that

xk + αks(xn) ∈ U and Fj(xn + αks(xn)) ≤ Fj(xn) + σαnθ(xn) for all j = 1, . . . ,m.

Step 5. (Update) Define xn+1 = xn + αns(xn) and set n := n+ 1. Go back to Step 2.

Under the assumption that each ∇2Fj(·) is positive definite and Lipschitz continuous on a

convex subset of U (with a nonempty interior), the authors studied in [19] the convergence issue

of Algorithm 1.1 for problem (1.1)and established the quadratic convergence results, which are

in particular concerned with three types. The first one is the semi-local convergence theorem,

in which the quadratic convergence to a local Pareto optimum is established under the assump-

tions, depending on a lot of parameters, at the initial point; see [19, Theorem 6.1] for details.

The second one is the local convergence theorem (i.e., [19, Corollary 6.2]) that, for each local

Pareto optimum x∗, there exists r > 0 such that the generated sequence converges to a local

Pareto optimum at a quadratic rate whenever the initial point falls in B(x∗, r). The last one is

the global convergence theorem (i.e., [19, Corollary 6.3]), in which the sequence starting from

any initial point is shown to converge to a local Pareto optimum at a quadratic rate.

The purpose of the present paper is to continue the theoretical study of the extended Newton

method for multiobjective optimization problems. We focus on the case when each ∇2Fj(·)
is Lipschitz continuous and develop a new approach to provide the quantitative convergence

analysis for the extended Newton methods, not only Algorithm 1.1 but also the one without the

line-search scheme (see Algorithm 3.1). Under the classical Lipschitz continuity assumption for

the second derivatives ∇2Fj(·), our main results, concerning also the three types of convergence

properties mentioned above, are described as follows:

• Our theorem (i.e., Theorem 4.1) regarding the semi-local convergence property provides

some explicit convergence criteria, which are only based on the data at an initial point
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and the Lipschitz constants of the second derivatives ∇2Fj(·) around the initial point,

for ensuring the convergence (to a local Pareto optimum) of Algorithms 3.1 and 1.1.

• Our theorem (i.e., Theorem 4.2) regarding the local convergence property provides

some explicit estimates, which only depend on the data of a given local Pareto optimum

and the Lipschitz constants of the second derivatives ∇2Fj(·) around the local Pareto

optimum, for the radii of the convergence balls of Algorithms 3.1 and 1.1.

• Our theorem (i.e., Theorem 4.5) regarding the global convergence property provides

some sufficient conditions made on the cluster point for ensuring the global convergence

of the extended Newton method not only with the Armijo line-search scheme (i.e.,

Algorithm 1.1) but also with Goldstein/Wolf line-search schemes (i.e., Algorithm 3.2).

• The results obtained in the present paper, containing the local, semi-local and the

global types, provide explicit error estimates for any sequence generated by Algorithm

3.1 or 3.2 (and so Algorithm 1.1) in terms of the corresponding parameters/modulus,

which improve the corresponding ones in [19]; see Theorem 6.1 and Corollaries 6.2, 6.3

therein.

Most of results (such as Theorems 3.4, 3.5, 3.8, 3.9 and so on) in the paper are new, and some

of them (i.e., Theorems 4.1, 4.2 and 4.5), where less data is required, extend/improve partially

the corresponding ones in [19, Theorem 6.1 and Corollaries 6.2, 6.3] as explained in Remark

4.1; in particular, an example is provided to show the case where the convergence result in the

present paper (Theorem 4.1) is available but not the one in [19, Theorem 6.1]; see Example 4.1

for details.

Another important extension of the present paper is that the L-average Lipschitz condition

is involved to the consideration of the convergence analysis of the extended Newton method.

The L-average Lipschitz condition, which includes the classical Lipschitz condition and the γ-

condition as special cases, was introduced by Wang [36] to unify and develop the convergence

theory of the Newton method for solving an equation in a Banach space; this idea has been used

extensively in numerical analysis and optimization problems; see [12, 28, 29, 30] and references

therein, but not been found to be applied to study the multiobjective optimization problems.

Note that the L-average Lipschitz condition implies the classical Lipschitz condition, but as

shown in the theorems (see Theorems 4.1 and 4.2) in the present paper, the convergence criteria

and/or the radius of the convergence ball of the extended Newton method depend heavily on

the value of the Lipschitz constant on the involved balls. Indeed, as we will see in Example

4.2, one of the main advantages of adopting the L-average Lipschitz condition is that, in the

case when the theorem under the classical Lipschitz condition is not available, it provides the

possibility to choose a suitable non-negative and monotonically increasing function L such that

the convergence theorem, which we established for the general L-average Lipschitz condition,

is applicable to guarantee the convergence of the extended Newton method.

It should be remarked that the analysis tool used in the present paper is the majorizing

function technique, which deviates significantly from that of [19]. The majorizing function

technique has been widely used in the convergence analysis of Newton method for nonlinear

equations [12, 13, 14, 16, 36, 37] and scalar optimization [15, 28], which enables us to establish

an explicit convergence criterion and provides a precise estimation of the convergence radius.
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To the best of our knowledge, this is the first work to develop the majorizing function technique

for the convergence analysis of the extended Newton method for multiobjective optimization.

The paper is organized as follows. In section 2, we present the notations and preliminary

results to be used in the present paper. The quadratic convergence criterion and the estimation

of radius of convergence ball of the extended Newton method for multiobjective optimization

problems are provided in section 3, under the L-average Lipschitz condition. In section 4,

theorems under the classical Lipschitz condition, the global quadratic convergence results of the

extended Newton method and theorems under the γ-condition are presented for multiobjective

optimization problems.

2. Notation and preliminary results. The notations used in the present paper are

standard in Euclidean spaces. As usual, for x ∈ Rl and r > 0, letB(x, r) andB[x, r] respectively

denote the open and closed balls in Rl, and let Rm
+ and Rm

++ denote the non-negative orthant

and positive orthant of Rm, respectively. The standard simplex in Rm is denoted by ∆m, i.e.,

∆m := {λ ∈ Rm
+ :

m∑
i=1

λi = 1}.

Let Rm×l denote the space of all m× l matrices, and let I denote the identical matrix in Rl×l.

For M ∈ Rm×l, the range of M is denoted by R(M). The following lemma regarding the

inverses of the perturbations of nonsingular matrix is well-known; see for example [32, p.45].

Lemma 2.1. Let A,B ∈ Rl×l be such that A is invertible and ∥A−1∥∥A−B∥ < 1. Then B

is invertible and

∥B−1∥ ≤ ∥A−1∥
1− ∥A−1∥∥A−B∥

.

If A,B ∈ Rn×n are additionally symmetric, then B is positive definite.

2.1. Preliminary results about multiobjective optimization. In the present paper,

we consider the multiobjective optimization problem (1.1) with U ⊆ Rl being an open (not

necessarily convex) set and F : U → Rm being a vector-valued function, denoted by

F := (F1, . . . , Fm)T , (2.1)

where each Fi : U → R is a twice continuously differentiable and real-valued function. For a

convex subset V ⊆ U , F is said to be Rm-convex on V if Fi is convex on V for each i = 1, . . . ,m.

The following notions are about the Pareto optimum (also named efficient point).

Definition 2.2. A point x∗ ∈ U is said to be

(a) a (global) Pareto optimum of F on U if there does not exist y ∈ U such that F (x∗)−F (y) ∈
Rm

+ and F (y) ̸= F (x∗);

(b) a weak Pareto optimum of F on U if there does not exist y ∈ U such that F (x∗)− F (y) ∈
Rm

++;

(c) a local Pareto optimum (resp. local weak Pareto optimum) if there exists a neighborhood

V ⊆ U of x∗ such that x∗ is a Pareto optimum (resp. weak Pareto optimum) of F on V .
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Obviously, every Pareto optimum is also a weak Pareto optimum, and each local Pareto

optimum is a (global) Pareto optimum if U is convex and F is Rm-convex on U .

For each i ∈ N := {1, 2, . . . }, Ci(U,Rm) denotes the set of i-th continuously differentiable

functions from U to Rm. Let x ∈ U , f ∈ C2(U,R) and F ∈ C2(U,Rm) given by (2.1). We

use ∇f(x) ∈ Rn and ∇2f(x) ∈ Rn×n to denote the gradient of f and the Hessian of f at x,

respectively; while, the Jacobian of F and the second derivative of F at x are denoted by DF (x)

and D2F (x), respectively, that is,

DF (x) = (∇F1(x), . . . ,∇Fm(x))T and D2F (x) = (∇2F1(x), . . . ,∇2Fm(x))T .

We say that D2F (x) is positive definite if so is each ∇2Fi(x).

The notion of a critical point is recalled in the following definition, which characterizes

a necessary (but in general not sufficient) condition for Pareto optimality and was used in

[20] and [19] to investigate a steepest descent algorithm and an extended Newton method for

multiobjective optimization, respectively.

Definition 2.3. A point x̄ ∈ U is said to be a critical point of F if R(DF (x̄))∩(−Rm
++) =

∅.

Note that, in the case when m = 1, R(DF (x̄)) ∩ (−Rm
++) = ∅ is reduced to the classical

optimality condition of scalar optimization. It follows from [19, Theorem 3.1] that, if F ∈
C2(U,Rm) and x∗ ∈ U is such that D2F (x∗) is positive definite, then

x∗ is a critical point of F ⇔ x∗ is a local Pareto optimum of F . (2.2)

Following [19], associated to (1.1), we consider, for a point x ∈ U such that D2F (x) is

positive definite, the following optimization problem:

min
s∈Rn

max
j=1,...,m

∇Fj(x)
T s+

1

2
sT∇2Fj(x)s, (2.3)

the solution of which is the Newton direction of the extended Newton method. Clearly, the

function s 7→ ∇Fj(x)
T s + 1

2s
T∇2Fj(x)s is strongly convex for each j = 1, . . . ,m, and so,

problem (2.3) has a unique minimizer. Since problem (2.3) can be framed as a convex quadratic

optimization problem, it can be solved effectively. Let V ⊆ U be convex such that D2F (x) is

positive definite for each x ∈ V . We use the functions s : V → Rn and θ : V → R to denote the

unique minimizer and the minimal value of problem (2.3), respectively, that is, for each x ∈ V ,

s(x) := arg min
s∈Rn

max
j=1,...,m

∇Fj(x)
T s+

1

2
sT∇2Fj(x)s, (2.4)

θ(x) := min
s∈Rn

max
j=1,...,m

∇Fj(x)
T s+

1

2
sT∇2Fj(x)s. (2.5)

By the KKT optimality condition for problem (2.3), for each x ∈ V , there exist parameters

λ(:= λ(x)) ∈ ∆m such that (see [19] for details)

s(x) = −

 m∑
j=1

λj(x)∇2Fj(x)

−1
m∑
j=1

λj(x)∇Fj(x). (2.6)
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We end this subsection by recalling in the following lemmas some useful properties of the

functions s(x) and θ(x). Lemma 2.4 is taken from [19, Lemma 3.2].

Lemma 2.4. Let V ⊆ U be convex and let x̄ ∈ V . Suppose that D2F (x̄) is positive definite.

Then the following statements are true.

(i) θ(x̄) ≤ 0.

(ii) x̄ is not a critical point ⇔ [θ(x̄) < 0] ⇔ [s(x̄) ̸= 0].

(iii) If D2F (x) is positive definite for each x ∈ V , then s is bounded on any compact subset of

V and θ is continuous on V .

Let F := (F1, . . . , Fm)T ∈ C2(U,Rm). Throughout the whole paper, we define

Fλ(·) :=
m∑
j=1

λjFj(·) for each λ := (λ1, . . . , λm)T ∈ ∆m. (2.7)

Let λ ∈ ∆m and x ∈ U , and let ρmin(λ, x) and ρmax(λ, x) denote the minimum and maximum

eigenvalues of the matrix ∇2Fλ(x), respectively, that is,

ρmin(λ, x) := min{zT∇2Fλ(x)z| ∥z∥ = 1} = ∥∇2Fλ(x)
−1∥−1

and

ρmax(λ, x) := max{zT∇2Fλ(x)z| ∥z∥ = 1} = ∥∇2Fλ(x)∥. (2.8)

Relation (2.9) and the first inequality of (2.10) in the following lemma are known in [19, Lemmas

4.2 and 4.3]; while the second inequality of (2.10) is a direct consequence of the first inequality

of (2.9) and the first inequality of (2.10).

Lemma 2.5. Let x ∈ U and let λ ∈ ∆m be such that ∇2Fλ(x) is positive definite. Then

the following relations hold:

ρmin(λ, x)

2
∥s(x)∥2 ≤ |θ(x)| ≤ ρmax(λ, x)

2
∥s(x)∥2, (2.9)

|θ(x)| ≤ 1

2
∥∇2Fλ(x)

−1∥∥∇Fλ(x)∥2 and ∥s(x)∥ ≤ ∥∇2Fλ(x)
−1∥∥∇Fλ(x)∥. (2.10)

2.2. Preliminary results about majorizing function. To study the convergence prop-

erties of the extended Newton method for multiobjective optimization, we first recall some aux-

iliary results of a majorizing function. The majorizing function, originally introduced by Wang

[36], is a powerful tool for the study of convergence criteria of the Newton method. Let R > 0

and let L : [0, R) → R+ be a nondecreasing and integrable function. Let a > 0 satisfy

1

R

∫ R

0

L(u)(R− u)du >
1

a
. (2.11)
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Associated to the triple (a, β;L), we define the pair of positive constants (ra, ba) and the

majorizing function ha : [0, R) → R by

a

∫ ra

0

L(u)du = 1, ba = a

∫ ra

0

L(u)udu. (2.12)

and

ha(t) := β − t+ a

∫ t

0

L(u)(t− u)du for each t ∈ [0, R], (2.13)

respectively. Clearly, ba < ra < R and ha is twice differentiable on [0, R) with its derivatives

being given by

h′
a(t) = a

∫ t

0

L(u)du− 1 and h′′
a(t) = aL(t) for each t ∈ [0, R), (2.14)

where and throughout the whole paper, h′
a(0) means the right derivative of ha at 0.

Let {ta,n} denote a sequence generated by the classical Newton method for approaching

the zeros of the majorizing function ha with the initial value ta,0 = 0. That is,

ta,n+1 := ta,n − h′
a(ta,n)

−1ha(ta,n) for each n ∈ N. (2.15)

Some useful properties of the majorizing function ha and the sequence {ta,n} are presented in

the following proposition, in which (i) is taken from [36, Lemma 1.2], while (ii) is well-known

in the literature of the Newton method (cf. [36]).

Proposition 2.6. Suppose that 0 ≤ β ≤ ba. Then, the following assertions are true.

(i) ha is strictly decreasing on [0, ra] and strictly increasing on [ra, R] with

ha(β) > 0, ha(ra) = β − ba ≤ 0 and ha(R) > β > 0.

Moreover, if β < ba, then ha has two zeros r∗a and r∗∗a such that

β < r∗a <
ra
ba

β < ra < r∗∗a ; (2.16)

if β = ba, then ha has a unique zero r∗a ∈ (β,R) (in fact, r∗a = ra).

(ii) {ta,n} is monotonically increasing and converges to r∗a.

(iii) If β < bα, then

lim
n→∞

2ta,n+1 − ta,n − r∗a
ta,n+1 − ta,n

= 1 and limn→∞
r∗a − ta,n+1

(2ta,n+1 − ta,n − r∗a)
2
≤ − aL(r∗a)

2h′(r∗a)
. (2.17)

Proof. To complete the proof, we only need to show assertion (iii). For simplicity, we omit

the first subscript a in the sequence {ta,n}, namely, write {tn} for {ta,n}. Then, one has by

(2.15) and assertion (ii) of this proposition that

lim
n→∞

2tn+1 − tn − r∗a
tn+1 − tn

= 2 + lim
n→∞

1

−h′
a(tn)

−1 ha(tn)−ha(r∗a)
tn−r∗a

= 1,
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that is, the equality of (2.17) holds. On the other hand, note again by (2.15) that

r∗a − tn+1 = r∗a − tn + h′
a(tn)

−1ha(tn)

= −h′
a(tn)

−1
∫ 1

0
[h′

a(tn + t(r∗a − tn))− h′
a(tn)](r

∗
a − tn)dt

= −h′
a(tn)

−1
∫ 1

0

∫ 1

0
h′′
a(tn + τt(r∗a − tn))t(r

∗
a − tn)dτ(r

∗
a − tn)dt

≤ −h′
a(tn)

−1 aL(r∗a)
2 (r∗a − tn)

2,

where the inequality holds because h′
a(tn) < 0 (cf. (2.12) and (2.14)), h′′

a(·) = aL(·) (cf. (2.14))
and L(·) is nondecreasing. Then, we obtain

r∗a − tn+1

(2tn+1 − tn − r∗a)
2
≤

−h′
a(tn)

−1 aL(r∗a)
2 (r∗a − tn)

2

(−2h′
a(tn)

−1ha(tn) + tn − r∗a)
2
=

−h′
a(tn)

−1 aL(r∗a)
2

(−2h′
a(tn)

−1 ha(tn)−ha(r∗a)
tn−r∗a

+ 1)2
,

and thus, the inequality of (2.17) is seen to hold. The proof is complete.

The following lemma is useful for the convergence analysis of Newton method and is taken

from [36, pp. 175]. Recall that R > 0 and L : [0, R) → R+ is a nondecreasing and integrable

function.

Lemma 2.7. Let 0 ≤ ζ < R, and let φ : (0, R− ζ) → R+ be defined by

φ(t) :=
1

t2

∫ t

0

L(ζ + u)(t− u)du for each 0 < t < R− ζ.

Then, φ is increasing on (0, R− ζ).

3. Convergence analysis of the extended Newton method. This section aims to

establish the quadratic convergence criterion of the extended Newton method (without or with

line-search scheme) for multiobjective optimization under an L-average Lipschitz condition. The

extended Newton method without line-search scheme for solving the multiobjective optimization

problem (1.1) is formally stated as follows.

Algorithm 3.1.

Step 1. Choose x0 ∈ U and set n := 0.

Step 2. Solve problem (2.3) at xn to obtain s(xn) as in (2.4).

Step 3. Update xn+1 := xn + s(xn) and set n := n+ 1. Go back to Step 2.

Below, we propose the extended Newton method with line-search scheme. For this purpose,

three kinds of the typical line-search rule for selecting the stepsize sequence {αn} for Algorithm

3.2 are stated below, which have been widely used for optimization algorithms in the literature;

see, e.g., [1, 26, 31].

Definition 3.1. Let σ ∈ (0, 1) and let β1, β2 ∈ (σ, 1). Given n ≥ 0 and xn. Let s(xn)

and θ(xn) be given by (2.4) and (2.5), respectively. A stepsize αn ∈ (0,+∞) such that xn +

αns(xn) ∈ U is said to satisfy

(i) the Armijo rule if

Fj(xn + αns(xn)) ≤ Fj(xn) + σαnθ(xn) for all j = 1, . . . ,m, (3.1)
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and

αn := max{2−i : i ∈ N, (3.1) holds with 2−i in place of αn};

(ii) the Goldstein rule if (3.1) holds and

Fj(xn + αns(xn)) ≥ Fj(xn) + β1αnθ(xn) for all j = 1, . . . ,m;

(iii) the Wolf rule if (3.1) holds and

∇Fj(xn + αns(xn))
T s(xn) ≥ β2θ(xn) for all j = 1, . . . ,m.

The extended Newton method with line-search scheme for solving the multiobjective opti-

mization problem (1.1) is formally stated as follows.

Algorithm 3.2.

Step 1. Choose x0 ∈ U , σ ∈ (0, 1), β1, β2 ∈ (σ, 1) and set n := 0.

Step 2. Solve problem (2.3) at xn to obtain s(xn) and θ(xn) as in (2.4) and (2.5), respectively.

Step 3. If θ(xn) = 0, then stop. Otherwise, proceed to Step 4.

Step 4. If xn + s(xn) ∈ U and

Fj(xn + s(xn)) ≤ Fj(xn) + σθ(xn) for all j = 1, . . . ,m,

then set xn+1 := xn + s(xn), and go to Step 6. Otherwise, go to Step 5.

Step 5. (Line search) Choose a stepsize αn ∈ (0,+∞) satisfying the Armijo rule, or the Gold-

stein rule, or the Wolf rule. Set xn+1 := xn + αns(xn).

Step 6. Set n := n+ 1. Go back to Step 2.

Obviously, a sequence generated by Algorithm 1.1 can be regarded as the one generated by

Algorithm 3.2 with Step 5 using just the Armijo rule.

The notion of the L-average Lipschitz condition was introduced by Wang in [36] (but using

the terminology “the center Lipschitz condition in the inscribed sphere with L-average”) and

has been widely used to analyze the convergence properties of the Newton method; see [28, 30]

and references therein. We extend in the following definition the notion of the L-average

Lipschitz condition to the setting of vector valued functions. Recall that F := (F1, . . . , Fm)T ∈
C2(U,Rm), and that L : [0, R) → R+ is nondecreasing and integrable.

Definition 3.2. Let x0 ∈ U and r ∈ (0, R) be such that B(x0, r) ⊆ U . D2F is said

to satisfy the L-average Lipschitz condition on B(x0, r) if, for each i = 1, . . . ,m and any

x, y ∈ B(x0, r) with ∥x− x0∥+ ∥y − x∥ < r, the following inequality holds:

∥∇2Fi(y)−∇2Fi(x)∥ ≤
∫ ∥x−x0∥+∥y−x∥

∥x−x0∥
L(u)du.

By definition, we can check that on B(x0, r) with r ∈ (0, R), the L-average Lipschitz condi-

tion implies the classical Lipschitz condition with Lipschitz constant being L(r). The introduc-

tion of the L-average Lipschitz condition is beneficial to provide the more precise convergence

criterion and estimation of convergence radius for the Newton method.
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Fixing the triple (x; a, r) with x ∈ U and (a, r) ∈ R2
+, we consider the following assumption

for F ∈ C2(U,Rm) associated to the triple (x; a, r) and L:

• L : [0, R) → R+ is nondecreasing and integrable;

• a satifies (2.11), and D2F (x) is positive definite with each ∥∇2Fi(x)
−1∥ ≤ a;

• D2F (·) satisfies the L-average Lipschitz condition on B(x, r) ⊆ U.

(3.2)

Lemma 3.3. Suppose that F satisfies assumption (3.2) associated to (x0; a, r) and L, and

that r ≤ ra. Let x ∈ B(x0, r), λ ∈ ∆m and Fλ be defined by (2.7). Then ∇2Fλ(x) is positive

definite, and

∥∇2Fλ(x)
−1∥ ≤ ∥∇2Fλ(x0)

−1∥
1− a

∫ ∥x0−x∥
0

L(u)du
≤ a

1− a
∫ ∥x0−x∥
0

L(u)du
.

Proof. By assumption, one has that

∥∇2Fλ(x0)
−1∥∥∇2Fλ(x)−∇2Fλ(x0)∥ ≤ a

∫ ∥x0−x∥

0

L(u)du < a

∫ ra

0

L(u)du = 1

(by (2.12)). Hence, Lemma 2.1 is applicable and the conclusions hold.

3.1. Convergence criterion. One of the main results of this subsection is presented in

the following theorem, in which we provide a quadratic convergence criterion of the extended

Newton method for multiobjective optimization under the assumption that the Hessians of

objective functions satisfy the L-average Lipschitz condition. Theorem 3.4 not only extends [19,

Theorem 6.1] under a weaker condition, but also improves it in the sense that the quantitative

convergence result is provided here (see (3.6) below).

Theorem 3.4. Suppose that F satisfies assumption (3.2) associated to (x0; a, r
∗
a) and L,

and

∥s(x0)∥ ≤ β ≤ ba. (3.3)

Then, the sequence {xn} generated by Algorithm 3.1 with initial point x0 is well-defined, stays

in B(x0, r
∗
a), and converges to a local Pareto optimum x̄ ∈ B[x0, r

∗
a]. Moreover, the following

error estimations hold for each n ≥ 0:

∥xn+1 − xn∥ = ∥s(xn)∥ ≤ ta,n+1 − ta,n, (3.4)

and

∥xn − x̄∥ ≤ r∗a − ta,n. (3.5)

Moreover, if β < ba, then there exists N ∈ N such that

∥xn+1 − x̄∥ ≤ r∗a − ta,n+1

(2ta,n+1 − ta,n − r∗a)
2
∥xn − x̄∥2 for each n ≥ N, (3.6)
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and so {xn} converges quadratically to x̄.

Proof. Since r∗a ≤ ra (cf. Proposition 2.6(i)), Lemma 3.3 is applicable to concluding that

∇2Fλ(x) is positive definite for any x ∈ B(x0, r
∗
a) and λ ∈ ∆m. (3.7)

Furthermore, by assumption (3.2), it is easy to see that there exists a constant c > 0 such that

sup
λ∈∆m,x∈B(x0,r∗a)

ρmax(λ, x) ≤ c, (3.8)

where ρmax(λ, x) is given by (2.8). We first show that {xn} is well-defined and (3.4). For

simplicity, we, as before, omit the first subscript a in the sequence {ta,k}, write {tk} for {ta,k}.
Thus, in view of Algorithm 3.1, (3.7) and (3.3), one has that x1 is well-defined and ∥x1−x0∥ =

∥s(x0)∥ ≤ β = t1− t0 (due to (2.15)), namely (3.4) holds for n = 0. Fix k ∈ N. Below, we show
the following implication:

[xn is well-defined for all n = 0, 1, . . . , k + 1 and (3.4) holds for all n = 0, . . . , k]

⇒ xk+2 is well-defined and ∥s(xk+1)∥ ≤ (tk+2 − tk+1)
(

∥s(xk)∥
tk+1−tk

)2

.
(3.9)

Granting this, {xn} is well-defined and (3.4) is shown by mathematical induction. To proceed,

suppose that xn is well-defined for all n = 0, 1, . . . , k + 1 and (3.4) holds for all n = 0, . . . , k.

Recall from (2.6) that there exists λ = (λ1, . . . , λm)T ∈ ∆m such that

s(xk) = −

 m∑
j=1

λj∇2Fj(xk)

−1
m∑
j=1

λj∇Fj(xk) = −∇2Fλ(xk)
−1∇Fλ(xk). (3.10)

Note by the induction assumption that

∥xk+1 − x0∥ ≤
k∑

i=0

∥xi+1 − xi∥ ≤
k∑

i=0

(ti+1 − ti) = tk+1 < r∗a (3.11)

(by Proposition 2.6(ii)). Consequently, xk+1 ∈ B(x0, r
∗
a). Thus, in view of Algorithm 3.1,

(3.7) and (3.3), one has that xk+2 is well-defined. Furthermore, Lemma 3.3 is applicable to

concluding that

∥∇2Fλ(xk+1)
−1∥ ≤ a

1− a
∫ ∥xk+1−x0∥
0

L(u)du
≤ −a ha

′(tk+1)
−1, (3.12)

because, by (2.14),

−ha
′(tk+1)

−1 =
1

1− a
∫ tk+1

0
L(u)du

.

Observe further from (3.10) that

∇2Fλ(xk)s(xk) +∇Fλ(xk) = 0.
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Thus, by L-average Lipschitz condition assumption, we obtain

∥∇Fλ(xk+1)∥ = ∥∇Fλ(xk + s(xk))− (∇2Fλ(xk)s(xk) +∇Fλ(xk))∥
≤

∫ 1

0
∥∇2Fλ(xk + ts(xk))−∇2Fλ(xk)∥∥s(xk)∥dt

≤
∫ 1

0

∫ ∥xk−x0∥+t∥s(xk)∥
∥xk−x0∥ L(u)du∥s(xk)∥dt

=
∫ ∥s(xk)∥
0

L(∥xk − x0∥+ u)(∥s(xk)∥ − u)du.

(3.13)

Since by inductive assumption that ∥s(xk)∥ ≤ tk+1 − tk, it follows from Lemma 2.7 and (3.11)

(with k in place of k + 1) that∫ ∥s(xk)∥

0

L(∥xk − x0∥+ u)(∥s(xk)∥ − u)du ≤ ∥s(xk)∥2

(tk+1 − tk)2

∫ tk+1−tk

0

L(tk + u)(tk+1 − tk − u)du.

Note by (2.13)-(2.15) that

a

∫ tk+1−tk

0

L(tk+u)(tk+1−tk−u)du = ha(tk+1)−ha(tk)−ha
′(tk)(tk+1−tk) = ha(tk+1). (3.14)

Hence, we have from (3.13)-(3.14) that

a∥∇Fλ(xk+1)∥ ≤ ∥s(xk)∥2

(tk+1 − tk)2
ha(tk+1).

Note by (2.10) that ∥s(xk+1)∥ ≤ ∥∇2Fλ(xk+1)
−1∥∥∇Fλ(xk+1)∥. It follows from (3.12) that

∥s(xk+1)∥ ≤ −ha
′(tk+1)

−1ha(tk+1)
∥s(xk)∥2

(tk+1 − tk)2
= (tk+2 − tk+1)

(
∥s(xk)∥
tk+1 − tk

)2

.

Thus, implication (3.9) is proved.

Now, we show the convergence of {xn} to a local Pareto optimum. Since {tn} is monotoni-

cally increasing and converges to r∗a (by Proposition 2.6(ii)), (3.4) shows that {xn} is a Cauchy

sequence, and so, there exists x̄ ∈ B[x0, r
∗
a] such that limn→∞ xn = x̄. Furthermore, (3.4) says

that limn→∞ ∥s(xn)∥ = 0. Observe further from (2.9) and (3.8) that |θ(xn)| ≤ c
2∥s(xn)∥2 for

each n ∈ N, and then, passing to the limits, we get that limn→∞ |θ(xn)| = 0. Note by Lemma

2.4(iii) that θ is continuous and so θ(x̄) = 0. Then, by Lemma 2.4(ii), one has that x̄ is a

critical point, and thus, it is a local Pareto optimum (by (2.2)). Fix n ∈ N. One has by (3.4)

that ∥xn+l−xn∥ ≤ tn+l− tn for each l ∈ N, and so (3.5) is seen to hold by passing to the limits

(as l → ∞).

Finally, we prove the quadratic convergence rate of {xn} to x̄. Fix n ∈ N, and note from

(3.4) and implication (3.9) that

∥s(xn+j)∥ ≤ (tn+j+1 − tn+j)

(
∥s(xn)∥
tn+1 − tn

)2

for each j ∈ N. (3.15)

In view of Algorithm 3.1, one sees that ∥xi − xn+1∥ ≤
∑i−1

j=n+1 ∥s(xj)∥ for each i > n + 1.

Letting i → ∞, one has by the convergence of {xn} to x̄ and by (3.15) that

∥x̄− xn+1∥ ≤
∞∑

j=n+1

∥s(xj)∥ ≤ (r∗a − tn+1)

(
∥s(xn)∥
tn+1 − tn

)2

≤ r∗a − tn+1

tn+1 − tn
∥s(xn)∥ (3.16)
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(by (3.4)). Then, it follows that

∥x̄− xn∥ ≥ ∥xn+1 − xn∥ − ∥x̄− xn+1∥ ≥ 2tn+1 − tn − r∗a
tn+1 − tn

∥s(xn)∥. (3.17)

By assumption that β < ba, Proposition 2.6(iii) is applicable, and then we have by the equality

of (2.17) that there exists N ∈ N such that

2tn+1 − tn − r∗a
tn+1 − tn

> 0 for each n ≥ N.

Therefore, combining (3.16) and (3.17), we obtain (3.6). This, together with the inequality of

(2.17), ensures the quadratic convergence rate of {xn} to x̄. The proof is complete.

Theorem 3.5 below shows that under almost the same conditions as in Theorem 3.4, a

sequence {xn} generated by Algorithm 1.1 or 3.2 with initial point x0 is the one generated by

Algorithm 3.1 with the same initial point x0. Hence, all the conclusions of Theorem 3.4 hold

for Algorithm 1.1 or 3.2.

Theorem 3.5. Suppose that F satisfies assumption (3.2) associated to (x0; a, ra) and L,

and

∥s(x0)∥ ≤ β ≤ −3(1− σ)h′
a(r

∗
a)

aL(r∗a)
. (3.18)

Then, with initial point x0, any sequence {xn} generated by Algorithm 3.2 coincides with the

one generated by Algorithm 3.1; consequently, the conclusions of Theorem 3.4 hold.

Proof. Below, we only show the case when {xn} is a sequence generated by Algorithm 1.1

with initial point x0 because the proof is similar for Algorithm 3.2. To furniture the proof of

this theorem, fix i ∈ N. First, we show the following implication:

[∥s(xi)∥ ≤ ti+1 − ti, ∥xi − x0∥+ ∥s(xi)∥ ≤ r∗a] ⇒ [xi+1 = xi + s(xi)]. (3.19)

For this purpose, we assume that

∥s(xi)∥ ≤ ti+1 − ti and ∥xi − x0∥+ ∥s(xi)∥ ≤ r∗a. (3.20)

Noting by Proposition 2.6 that r∗a ≤ ra, we have xi ∈ B(x0, ra), and then obtain from Lemma

3.3 that for each λ ∈ ∆m, ∇2Fλ(xi) is positive definite and

∥∇2Fλ(xi)
−1∥ ≤ −ah′

a(∥xi − x0∥)−1. (3.21)

By assumption (3.20), one has xi + s(xi) ∈ B(x0, ra). Fix j ∈ {1, . . . ,m}. By the Taylor

formula, one has that

Fj(xi + s(xi))

= Fj(xi) +∇Fj(xi)
T s(xi) +

1
2s(xi)

T∇2Fj(xi)s(xi)

+
∫ 1

0
s(xi)

T (∇2Fj(xi + ts(xi))−∇2Fj(xi))s(xi)(1− t)dt

≤ Fj(xi) +∇Fj(xi)
T s(xi) +

1
2s(xi)

T∇2Fj(xi)s(xi) +
L(r∗a)

6 ∥s(xi)∥3,
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where the inequality holds because

∥∇2Fj(xi + ts(xi))−∇2Fj(xi)∥ ≤
∫ ∥xi−x0∥+t∥s(xi)∥

∥xi−x0∥
L(u)du ≤ L(r∗a)∥s(xi)∥t

(due to assumption (3.2) and the fact that L(·) is nondecreasing and positive). By the definition

of θ (cf. (2.5)), this implies that

Fj(xi + s(xi)) ≤ Fj(xi) + θ(xi) +
L(r∗a)

6 ∥s(xi)∥3

= Fj(xi) + σθ(xi) + (1− σ)θ(xi) +
L(r∗a)

6 ∥s(xi)∥3,
(3.22)

where σ ∈ (0, 1) is the parameter in Algorithm 1.1. Recall from (2.9) and Lemma 2.4(i) that

θ(xi) ≤ −ρmin(λ, xi)

2
∥s(xi)∥2. (3.23)

Recalling by (2.8) that ρmin(λ, xi) = ∥∇2Fλ(xi)
−1∥−1, it follows from (3.21) and (3.23) that

θ(xi) ≤
1

2a
h′
a(∥xi − x0∥)∥s(xi)∥2 ≤ 1

2a
h′
a(r

∗
a)∥s(xi)∥2, (3.24)

where the last inequality holds because that h′(·) is monotonically increasing on [0, r∗a]. Note

that {ti+1 − ti} is monotonically decreasing (cf [28, Lemma 2.4]), and so, for each i ∈ N,
ti+1 − ti ≤ t1 − t0 = β (by (2.15)). This, together with (3.20), implies that

∥s(xi)∥ ≤ ti+1 − ti ≤ t1 − t0 = β ≤ −3(1− σ)h′
a(r

∗
a)

aL(r∗a)

(due to (3.18)). Combining this with (3.24) yields that

(1− σ)θ(xi) +
L(r∗a)∥s(xi)∥

6
∥s(xi)∥2 ≤

(
L(r∗a)∥s(xi)∥

3
+

(1− σ)h′
a(r

∗
a)

a

)
∥s(xi)∥2

2
≤ 0;

then, (3.22) implies that

Fj(xi + s(xi)) ≤ Fj(xi) + σθ(xi) for all j = 1, . . . ,m.

Thus, in view of Algorithm 1.1, we have xi+1 = xi + s(xi) and so (3.19) is seen to hold.

Below, we show by induction that {xn} coincides with the sequence generated by Algorithm

3.1 with the same initial point x0, namely the following assertion holds for each n ∈ {0} ∪ N:

xn+1 = xn + s(xn) (3.25)

Since ∥s(x0)∥ ≤ β = t1 − t0 ≤ r∗a by (3.18) and Proposition 2.6(i), it follows from (3.19) that

(3.25) holds for n = 0. Suppose that x1, . . . , xk are the same points as generated by Algorithm

3.1. Then, by Theorem 3.4, we have that xi ∈ B(x0, r
∗
a) and ∥s(xi)∥ ≤ ti+1− ti for i = 1, . . . , k,

and

∥xk − x0∥+ ∥s(xk)∥ ≤ ∥xk − xk−1∥+ · · ·+ ∥x1 − x0∥+ ∥s(xk)∥ ≤ tk+1 < r∗a.

This implies that the assumptions of implication (3.19) hold when i = k. Then, it follows from

implication (3.19) that αk = 1, and so, (3.25) holds for n = k. Thus, xk+1 is the same point

as generated by Algorithm 3.1. Then, we obtain inductively that {xn} is same as the sequence

generated by Algorithm 3.1 with same initial point x0. Therefore, the conclusions of Theorem

3.4 hold and the proof is complete.
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3.2. Estimation of convergence radius. This subsection is devoted to providing an

estimate of the radius of the convergence ball of the extended Newton method (without or with

line-search scheme) for multiobjective optimization under an L-average Lipschitz condition. For

this purpose, let a∗ > 0 be such that (2.11) is reduced to

1

R

∫ R

0

L(u)(R− u)du >
1

a∗
. (3.26)

Let (ra∗ , ba∗) be the pair of positive constants given by (2.12) with a∗ in place of a. Let x∗ ∈ U

be a local Pareto optimum of F , and assume that F satisfies assumption (3.2) associated

to (x∗; a∗, ra∗) and L. Throughout this subsection, we always assume that L(·) is left-hand

continuous. Write

ξa∗ := a∗ max{∥∇2Fi(x
∗)∥ : i = 1, . . . ,m}. (3.27)

Let t ∈ (0, ra∗), and set

Rt := R− t, at :=
a∗

1− a∗
∫ t

0
L(u)du

and

βt :=
a∗

∫ t

0
L(u)(t− u)du+ ξa∗t

1− a∗
∫ t

0
L(u)du

.

Define the function Lt : [0, Rt) → R by

Lt(u) := L(u+ t) for each u ∈ [0, Rt). (3.28)

Let r̄at , b̄at , r̄
∗
at

denote the corresponding positive constants given by (2.12) and (2.16) with

βt, at, Lt in place of β, a, L.

Lemma 3.6. There holds that r̄at + t = ra∗ and βt < b̄at for each 0 < t < ba∗
1+ξa∗ , and there

exists 0 < r < ba∗
1+ξa∗ such that

βt ≤
−3(1− σ)h′

at
(r̄∗at

)

atLt(r̄∗at
)

for each t ∈ (0, r). (3.29)

Proof. Let 0 < t < ba∗
1+ξa∗ . By definition, it is easy to verify that 0 < r̄at ≤ ra∗ because

at ≥ a∗ and Lt(u) ≥ L(u) for each u ∈ R+. Observing further from the definition of ra∗ and

r̄at
, we have that

a∗
∫ r̄at

0

Lt(u)du = 1− a∗
∫ t

0

L(u)du = a∗
∫ ra∗

0

L(u)du− a∗
∫ t

0

L(u)du = a∗
∫ ra∗

t

L(u)du.

This gives that ∫ r̄at+t

t

L(u)du =

∫ ra∗

t

L(u)du. (3.30)
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As L(·) is a nondecreasing and positive integrable function, one has from (3.30) that r̄at+t = ra∗ .

This, together with the definitions of b̄at , at, Lt, implies that

b̄at = at

∫ r̄at

0

Lt(u)udu = at

∫ ra∗−t

0

Lt(u)udu =
a∗

∫ ra∗

t
L(u)(u− t)du

1− a∗
∫ t

0
L(u)du

.

Then, by elementary calculus and noting that a∗
∫ ra∗

0
L(u)du = 1, ba∗ = a∗

∫ ra∗

0
L(u)udu and

0 < t < ba∗
1+ξa∗ , one checks that

a∗
∫ t

0

L(u)(t− u)du+ ξa∗t < a∗
∫ ra∗

t

L(u)(u− t)du,

or equivalently, βt < b̄at . Thus the first assertion is shown.

To verify the second assertion, we note first by the first assertion that r̄∗at
is well-defined for

each t ∈ (0, ba∗
1+ξa∗ ). Furthermore, by definition, one can check that limt→0+ βt = 0, limt→0+ at =

a∗, limt→0+ r̄at = ra∗ and limt→0+ b̄at = ba∗ . Hence, limt→0+ r̄∗at
= 0 thanks to (2.16) (applied

to βt, at, Lt in place of β, a, L) and so limt→0+ h′
at
(r̄∗at

) = −1. Thus it follows from the left-hand

continuity assumption for L that

lim
t→0+

−3(1− σ)h′
at
(r̄∗at

)

atLt(r̄∗at
)

≥ 3(1− σ)

a∗L(r∗a)
> 0.

Since limt→0+ βt = 0 and the function t 7→ βt is monotonically increasing on [0, ra∗), it follows

that there exists 0 < r ≤ ba∗
1+ξa∗ to satisfy (3.29), and the proof is complete.

Another useful proposition is as follows.

Proposition 3.7. Suppose that F satisfies assumption (3.2) associated to (x∗; a∗, ra∗) and

L. Let x0 ∈ B
(
x∗, ba∗

1+ξa∗

)
and t := ∥x0 − x∗∥. Then, the following assertions hold:

(i) F satisfies assumption (3.2) associated to (x0; at, r̄at) and Lt.

(ii) ∥s(x0)∥ ≤ βt < b̄at .

Proof. (i) We first show (2.11) holds with at, Rt, Lt in place of a,R,L, or equivalently,∫ R

t

L(u)(R− u)du ≥ (R− t)

∫ ra∗

t

L(u)du, (3.31)

thanks to the first equality in (2.12) (applied to a∗ in place of a) and the definitions of at, Rt, Lt.

By (3.26) and the first equality in (2.12) (applied to a∗ in place of a), one checks that∫ R

t
L(u)(R− u)du ≥ R

a∗ −
∫ t

0
L(u)(R− u)du = R

∫ ra∗

t
L(u)du+

∫ t

0
L(u)udu.

This implies trivially (3.31), showing (2.11) (with at, Rt, Lt in place of a,R,L), namely the

first assumption in (3.2) (associated to (x0; at, r̄at) and Lt). To show the second assumption

in (3.2), note first that ∥x0 − x∗∥ < ba∗
1+ξa∗ < ba∗ < ra∗ , Lemma 3.3 is applicable to concluding

that, for each j = 1, . . . ,m, ∇2Fj(x0) is positive definite, and

∥∇2Fj(x0)
−1∥ ≤ ∥∇2Fj(x

∗)−1∥
1− a∗

∫ ∥x0−x∗∥
0

L(u)du
≤ a∗

1− a∗
∫ t

0
L(u)du

= at;
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consequently, the second assumption in (3.2) (associated to (x0; at, r̄at) and Lt) is checked. Now

let us verify the last assumption. To do this, let x, y ∈ B(x0, r̄at) be such that ∥x−x0∥+∥y−x∥ <

r̄at , and fix j. Then, as t = ∥x0−x∗∥ ∈
(
0, ba∗

1+ξa∗

)
, the first assertion of Lemma 3.6 is applicable

to concluding that

∥x− x∗∥+ ∥y − x∥ ≤ ∥x0 − x∗∥+ ∥x− x0∥+ ∥y − x∥ ≤ t+ r̄at = ra∗ .

Thus it follows from the last assumption in (3.2) (associated to (x∗; a∗, ra∗) and L) that

∥∇2Fj(y)−∇2Fj(x)∥ ≤
∫ t+∥x0−x∥+∥x−y∥

t+∥x0−x∥
L(u)du =

∫ ∥x0−x∥+∥x−y∥

∥x0−x∥
Lt(u)du.

This shows the third assumption in (3.2) (associated to (x0; at, r̄at
) and Lt) and the proof for

assertion (i) is complete.

(ii) By Lemma 3.6, we only need to show ∥s(x0)∥ ≤ βt. Noting that x∗ is a local Pareto

optimum of F , we obtain from (2.2) that x∗ is a critical point of F . Therefore, it follows from

Lemma 2.4 that s(x∗) = 0. Note by definition that there exists λ(:= λ(x∗)) ∈ ∆m (the KKT

multipliers of problem (2.3)) such that

s(x∗) = −

 m∑
j=1

λj(x
∗)∇2Fj(x

∗)

−1
m∑
j=1

λj(x
∗)∇Fj(x

∗) = −∇2Fλ(x
∗)−1∇Fλ(x

∗).

Hence ∇Fλ(x
∗) = 0, and

∥∇Fλ(x0)−∇2Fλ(x
∗)(x0 − x∗)∥ = ∥

∫ 1

0
(∇2Fλ(x

∗ + τ(x0 − x∗))−∇2Fλ(x
∗))(x0 − x∗)dτ∥

≤
∫ 1

0

∫ tτ

0

L(u)tdudτ =

∫ t

0

L(u)(t− u)du,

thanks to the third assumption in (3.2) (associated to (x∗; a∗, ra∗)). Therefore,

a∗∥∇Fλ(x0)∥ ≤ a∗∥∇Fλ(x0)−∇2Fλ(x
∗)(x0 − x∗)∥+ a∗∥∇2Fλ(x

∗)∥t

≤ a∗
∫ t

0

L(u)(t− u)du+ ξa∗t.
(3.32)

Furthermore, by Lemma 3.3 one has that

∥∇2Fλ(x0)
−1∥ ≤ ∥∇2Fλ(x

∗)−1∥
1− a∗

∫ ∥x0−x∗∥
0

L(u)du
≤ a∗

1− a∗
∫ t

0
L(u)du

.

This, together with (3.32) and (2.10), implies that that

∥s(x0)∥ ≤ ∥∇2Fλ(x0)
−1∥∥∇Fλ(x0)∥ ≤

a∗
∫ t

0
L(u)(t− u)du+ ξa∗t

1− a∗
∫ t

0
L(u)du

= βt.

The proof is complete.

Theorem 3.8. Suppose that F satisfies assumption (3.2) associated to (x∗; a∗, ra∗) and L.

Let x0 ∈ B(x∗, ba∗
1+ξa∗ ). Then, the sequence {xn} generated by Algorithm 3.1 with initial point

x0 is well-defined and converges quadratically to a local Pareto optimum of F .
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Proof. Let x0 ∈ B(x∗, ba∗
1+ξa∗ ) and t = ∥x0−x∗∥. By Proposition 3.7, F satisfies assumption

(3.2) associated to (x0; at, r̄at) and Lt, and (3.3) holds (with βt, b̄at in place of β, ba). Hence,

Theorem 3.4 is applicable (with βt, at, Lt, b̄at in place of β, a, L, ba) and the conclusion follows.

This completes the proof.

Theorem 3.9 below shows that if F satisfies assumption (3.2) associated to (x∗; a∗, ra∗) and

L, then there exists r > 0 such that any sequence {xn} generated by Algorithm 1.1 or 3.2 with

initial point x0 ∈ B(x∗, r) converges quadratically to a local Pareto optimum of F . In the next

section, we provide an explicitly estimate for the radius r because there L(·) ≡ L.

Theorem 3.9. Suppose that F satisfies assumption (3.2) associated to (x∗; a∗, ra∗) and L.

Let r ∈
(
0, ba∗

1+ξa∗

)
satisfy (3.29). Then, for any x0 ∈ B(x∗, r), any sequence {xn} generated by

Algorithms 3.2 with initial point x0 converges quadratically to a local Pareto optimum of F .

Proof. Let x0 ∈ B(x∗, r) and t = ∥x0−x∗∥. Then x0 ∈ B
(
x∗, ba∗

1+ξa∗

)
, and Proposition 3.7

is applicable to concluding that assertions (i) and (ii) there hold, namely F satisfies assumption

(3.2) associated to (x0; at, r̄at) and Lt, and ∥s(x0)∥ ≤ βt. Furthermore, by (3.29), (3.18) holds

with βt, at, Lt, r̄
∗
at

in place of β, a, L, r∗a. Thus, the conclusion follows from Theorem 3.5 (applied

to βt, at, Lt, r̄
∗
at

in place of β, a, L, r∗a), and the proof is complete.

4. Applications. By virtue of the results established in the preceding section, this section

is devoted to establishing convergence analysis theorems under the classical Lipschitz condition

or the γ-condition to multiobjective optimization. In particular, a global version of the extended

Newton method is proposed and its global convergence is established.

4.1. Theorems under the classical Lipschitz condition and global version of the

extended Newton method with its convergence.

4.1.1. Theorems under the classical Lipschitz condition. Kantorovich’s theorem

[24] is one of the famous results on the Newton method, which provides a criterion for ensuring

its quadratic convergence under the classical Lipschitz condition. The main point of Kan-

torovich’s type premise is to let L mentioned in the preceding section be a constant function.

In this case, the L-average Lipschitz condition of ∇2Fj is reduced to the classical Lipschitz

condition of ∇2Fj for each j = 1, . . . ,m. That is, there are L > 0 and r > 0 such that

∥∇2Fj(x)−∇2Fj(y)∥ ≤ L∥x− y∥ for each x, y ∈ B(x0, r).

Then the function Lt defined in (3.28) is independent of the choice of t and coincides with L,

that is, L(·) = Lt(·) = L on R+. Thus, for any a > 0, one has that

ba =
1

2aL
, ra =

1

aL
,

and the majorizing functions ha defined by (2.13) is reduced to

ha(t) = β − t+
aL

2
t2 for each t ∈ R.
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Therefore, if β ≤ 1
2aL , one has by (2.12), (2.15) and (2.16) (see also [36]) that

r̄∗a = r∗a =
1−

√
1− 2aLβ

aL
, (4.1)

ta,n =
1− q2

n−1
a

1− q2na
r∗a and ta,n+1 − ta,n =

1− qa
1− q2n+1

a

q2
n−1

a r∗a for each n ∈ N,

where

qa :=
1−

√
1− 2aLβ

1 +
√
1− 2aLβ

, (4.2)

and we adopt the convention that
1−q2

n−1
a

1−q2na
:= 1− ( 12 )

n and 1−qa
1−q2n+1

a

:=
(
1
2

)n+1
if qa = 1.

Theorem 4.1 follows directly from Theorems 3.4 and 3.5, and establishes a quantitative

convergence criterion of the extended Newton method for multiobjective optimization under

the classical Lipschitz condition.

Theorem 4.1. Suppose that F satisfies assumption (3.2) associated to (x0; a, r
∗
a) and

L(·) ≡ L, and ∥s(x0)∥ ≤ β. Let qa be given by (4.2). Then, with initial point x0, we have the

following assertions:

(i) If β ≤ 1
2aL , then the sequence {xn} generated by Algorithm 3.1 is well-defined, stays

in B(x0, r
∗
a), and converges to a local Pareto optimum x̄ ∈ B[x0, r

∗
a] with the following error

estimations:

∥xn+1 − xn∥ ≤ 1− qa
1− q2n+1

a

q2
n−1

a r∗a and ∥xn − x̄∥ ≤ 1− qa
1− q2na

q2
n−1

a r∗a for each n ∈ N. (4.3)

(ii) If β < 1
2aL , then {xn} in (i) converges quadratically to x̄ with the following error

estimation for some N ∈ N:

∥xn+1 − x̄∥ ≤ qa(1− q2
n+1

a )

(1− qa)(1− q2na )2r∗a
∥xn − x̄∥2 for each n ≥ N. (4.4)

(iii) If β ≤ −9(1−σ)2+3(1−σ)
√

1+9(1−σ)2

aL , then β < 1
2aL , and any sequence {xn} generated by

Algorithm 3.2 coincides with the one generated by Algorithm 3.1, and satisfies (4.3) and (4.4).

Proof. Assertions (i) and (ii) follow directly from Theorem 3.4. Then, it remains to

show assertion (iii). In fact, assume that β ≤ −9(1−σ)2+3(1−σ)
√

1+9(1−σ)2

aL . Then β < 1
2aL

because −9(1 − σ)2 + 3(1 − σ)
√
1 + 9(1− σ)2 < 1

2 . Since L(·) ≡ L, it follows from (4.1)

that
−3(1−σ)h′

a(r
∗
a)

aL(r∗a)
= 3(1−σ)

√
1−2aLβ

aL . Thus, (3.18) holds because it is equivalent that aLβ ≤
3(1− σ)

√
1− 2aLβ, which is true by assumption. Hence, the conclusion follows from Theorem

3.5.

Remark 4.1. Under the assumption made in Theorem 4.1, we see that there exist V ⊆
B(x0, r

∗
a), ā := 1

a and b̄ > 0 such that āI ≤ ∇2Fj(x) ≤ b̄I for all x ∈ V and all j = 1, . . . ,m,
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where, for A, B ∈ Rn×n, A ≥ B means that A−B is positive semi-definite. Thus [19, Theorem

6.1] could apply. However, Theorem 4.1 cannot be derived via a direct application of [19,

Theorem 6.1]. In fact, Example 4.1 below illustrates the case where Theorem 4.1 is applicable

but not [19, Theorem 6.1].

Example 4.1. Let σ ∈ ( 12 , 1) and let τ satisfy

(1− σ)σ < τ ≤ −9(1− σ)2 + 3(1− σ)
√
1 + 9(1− σ)2. (4.5)

Consider problem (1.1) with m = l = 1 and F : R → R defined by

F (x) := −τx+
1

2
x2 − 1

6
x3 for each x ∈ R.

Then

F ′′(x) = 1− x for each x ∈ R. (4.6)

Let x0 = 0. Then, one checks that

a := ∥F ′′(x0)
−1∥ = 1, ∥s(x0)∥ = ∥ − (F ′′(x0))

−1F ′(x0)∥ = τ, (4.7)

and F ′′ satisfies the Lipschitz condition with modulus L = 1 on [−1, 1]. By (4.5), we see that

Theorem 4.1(iii) is applicable to concluding that any sequence {xn} generated by Algorithm 3.2

(and so Algorithm 1.1) with initial point x0 converges to a local Pareto optimum. We below

show that [19, Theorem 6.1] is not applicable. To do this, suppose on the contrary that [19,

Theorem 6.1] is applicable. Then, there exist 0 < r < 1 and positive numbers ar, br, δ, ε such

that

ε

ar
≤ 1− σ, ∥s(x0)∥ ≤ min

{
δ, r(1− ε

ar
)

}
, ar ≤ F ′′(x) ≤ br for all x ∈ (−r, r), (4.8)

and ∥F ′′(x) − F ′′(y)∥ ≤ ε for all x, y ∈ (−r, r) with ∥x− y∥ ≤ δ. Then, by (4.6), without loss

of generality, we take ar = 1 − r and δ = ε ≤ (1 − r)(1 − σ). Thus, if r ≥ 1 − σ, one has

that ∥s(x0)∥ ≤ δ ≤ σ(1 − σ). Below we shows that this is also true if r ≤ 1 − σ. Granting

this, one has from (4.7) that τ ≤ σ(1 − σ), which is a contradiction to (4.5). To proceed,

assume r ≤ 1 − σ, and note that the function t 7→ min{t, r(1 − t
1−r )} attains its maximum t0

on [0, (1 − r)(1 − σ)] at t0 satisfying t0 = r(1 − t0
1−r ), i.e., t0 = r(1 − r). Since σ ∈ ( 12 , 1) by

assumption, it follows that r ≤ 1−σ ≤ 1
2 and so min{δ, r(1− δ

1−r )} ≤ t0 = r(1− r) ≤ σ(1−σ).

Thus we have by (4.8) that ∥s(x0)∥ ≤ min{δ, r(1− δ
1−r )} ≤ σ(1− σ), as desired to show.

Theorem 4.2 below follows directly from Theorems 3.8 and 3.9, and provides explicit esti-

mates of the convergence radius of the extended Newton method for multiobjective optimization

under the classical Lipschitz condition. In particular, assertions (ii) improves the corresponding

result in [19, Corollary 6.21], which only asserts the existence of such convergence radius under

the stronger assumption than that for assertions (ii). Recall that x∗ is a local Pareto optimum

of F and ξa∗ is defined by (3.27).

Theorem 4.2. Suppose that F satisfies assumption (3.2) associated to (x∗; a∗, 1
a∗L ) with

L(·) ≡ L. Let x0 ∈ B(x∗, 1
2(1+ξa∗ )a∗L ). Then, with initial point x0, we have the following

assertions:
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(i) The sequence {xn} generated by Algorithm 3.1 is well-defined and converges quadratically

to a local Pareto optimum of F .

(ii) If ∥x0 − x∗∥ ≤ −9(1−σ)2+3(1−σ)
√

1+9(1−σ)2

(1+4ξa∗ )a∗L , then any sequence {xn} generated by Al-

gorithm 3.2 with initial point x0 is well-defined and converges quadratically to a local Pareto

optimum of F .

Proof. Assertion (i) follows directly from Theorem 3.8. Then, it remains to verify assertion

(ii). To do this, write r :=
−9(1−σ)2+3(1−σ)

√
1+9(1−σ)2

(1+4ξa∗ )a∗L . Then r < 1
2(1+ξa∗ )a∗L (due to the fact

−9(1 − σ)2 + 3(1 − σ)
√

1 + 9(1− σ)2 < 1
2 ), and, La

∗t < 1
2(1+ξa∗ ) < 1

2 for each t ∈ (0, r). As

L(·) ≡ L, one checks that, for each t ∈ (0, r),

βt =
a∗

∫ t

0
L(u)(t− u)du+ ξa∗t

1− a∗
∫ t

0
L(u)du

=
L
2 a

∗t2 + ξa∗t

1− La∗t
< (

1

2
+ 2ξa∗)t ≤ (

1

2
+ 2ξa∗)r.

Moreover, since atL = a∗L
1−a∗Lt < 2a∗L, it follows that, for each t ∈ (0, r),

−3(1− σ)h′
at
(r̄∗at

)

atL(r̄∗at
))

=
3(1− σ)

√
1− 2atLβt

atL
≥

3(1− σ)
√

1− 2(1 + 4ξa∗)a∗Lr

2a∗L
= (

1

2
+ 2ξa∗)r,

where the last equality holds by the definition of r. Thus, one checks that r ∈ (0, ba∗
1+ξa∗ ) satisfies

(3.29), and the conclusion follows from Theorem 3.9.

4.1.2. Global convergence of Algorithm 3.2. This subsection aims to establish global

convergence of Algorithm 3.2 under the classical Lipschitz condition.

The following proposition shows that any accumulation point of a sequence {xn} generated

by Algorithm 3.2, where the stepsize {αn} satisfies the Armijo rule, or the Goldstein rule, or

the Wolf rule, is a critical point of F .

Proposition 4.3. Let {xn} be a sequence generated by Algorithm 3.2. Then, any accumu-

lation point x∗ of {xn} such that D2F (x∗) is positive definite and D2F is Lipschitz continuous

around x∗, is a local Pareto optimum of F .

Proof. Let x∗ be an accumulation point of {xn} such that D2F (x∗) is positive definite

and D2F is Lipschitz continuous around x∗. Then, it’s easy to show that D2F (·) is positive

definite around x∗. By (2.2), we only need to verify that x∗ is a critical point of F . As x∗ is an

accumulation point of {xn}, there exists a subsequence {xni} such that limi→∞ xni = x∗. Let

j ∈ {1, . . . ,m}. Noting that {Fj(xn)} is monotonically nonincreasing (by Algorithm 3.2) and

Fj is continuous, it follows that

lim
n→∞

Fj(xn) = lim
i→∞

Fj(xni) = Fj(x
∗). (4.9)

By (i) and (ii) of Lemma 2.4, to complete the proof, it suffices to verify that θ(x∗) ≥ 0. To do

this, let

K1 := {i : Fj(xni
+ s(xni

)) ≤ Fj(xni
) + σθ(xni

) for all j = 1, . . . ,m}.
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Then, we divide the proof into two cases.

Case 1. K1 is infinite. Then, there exists a subsequence of {xni}, denoted it by itself, such

that

Fj(xni + s(xni)) ≤ Fj(xni) + σθ(xni) for all i ∈ N and j = 1, . . . ,m. (4.10)

In view of Step 4 of Algorithm 3.2, one has that xni+1 = xni + s(xni). Passing to the limit as

i → ∞ in (4.10), we get from (4.9) that θ(x∗) ≥ 0 and the proof is complete in this case.

Case 2. K1 is finite. Then, there exist j0 ∈ {1, . . . ,m} and a subsequence of {xni}, denoted
it by itself, such that

Fj0(xni + s(xni)) > Fj0(xni) + σθ(xni) for all i ∈ N.

Thus, in view of Step 5 in Algorithm 3.2 (cf. (3.1)) and Lemma 2.4(i), we have

Fj0(xni)− Fj0(xni+1) ≥ −σαniθ(xni) ≥ 0,

where each αni ∈ (0,+∞) satisfies the Armijo rule, or the Goldstein rule, or the Wolf rule.

This, together with (4.9), implies that limi→∞ αniθ(xni) = 0. Recall that θ is continuous around

x∗ (due to Lemma 2.4) and that limi→∞ xni = x∗. We only need to consider the case when

limi→∞ αni = 0 because, otherwise, one has that limi→∞αni > 0 and thus

θ(x∗)limi→∞αni ≥ lim
i→∞

αniθ(xni) = 0;

this implies θ(x∗) ≥ 0. To proceed, let ζ := max{σ, β1, β2}, and define for each ni

Θ(xni) := max
k=1,2

{
Fj0(xni + kαnis(xni))− Fj0(xni)

kαni

,∇Fj0(xni + αnis(xni))
T s(xni)

}
.

Then, ζ ∈ (0, 1). Below we show that

lim sup
i→∞

Θ(xni
) ≤ θ(x∗) and ζθ(xni

) ≤ Θ(xni
) for each ni. (4.11)

Granting this and noting limi→∞ θ(xni) = θ(x∗), one checks that θ(x∗) ≥ ζθ(x∗) and so θ(x∗) ≥
0 (as ζ ∈ (0, 1)), completing the proof.

The second relation in (4.11) holds by the choice of the stepsize αni in Step 5 of Algorithm

3.2. To show the first one in (4.11), we first note θ is continuous around x∗ and {s(xni)}
is bounded (due to Lemma 2.4(iii)). Note further that ∇Fj0 is continuous. It follows from

limi→∞ αni = 0 and the inequality ∇Fj0(xni)
T s(xni) ≤ θ(xni) (due to the definition of θ) that

lim supi→∞ ∇Fj0(xni + αnis(xni))
T s(xni)

≤ lim supi→∞((∇Fj0(xni + αnis(xni))−∇Fj0(xni))
T s(xni) + θ(xni))

= lim supi→∞ θ(xni) = θ(x∗).

Thus it remains to verify that

lim sup
i→∞

Fj0(xni + kαnis(xni))− Fj0(xni)

kαni

≤ θ(x∗) for k = 1, 2. (4.12)
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To do this, consider a sequence {tni} ⊆ (0,+∞) converging to zero. Then we have that

lim
i→∞

∫ 1

0

(∇Fj0(xni + τtnis(xni))−∇Fj0(xni))
T s(xni)dτ = 0 (4.13)

as ∇Fj0 is continuous and {s(xni)} is bounded. Note for each i ∈ N that

Fj0(xni + tnis(xni))− Fj0(xni)

tni

=

∫ 1

0

(∇Fj0(xni + τtnis(xni))−∇Fj0(xni))
T s(xni)dτ

+∇Fj0(xni)
T s(xni).

Hence, thanks again to the inequality ∇Fj0(xni)
T s(xni) ≤ θ(xni) (due to the definition of θ)

and using again the continuity of θ, we conclude from (4.13) that

lim sup
i→∞

Fj0(xni + tnis(xni))− Fj0(xni)

tni

≤ lim sup
i→∞

θ(xni) = θ(x∗).

Applying this fact to {αni} and {2αni} in place of {tni}, one sees that (4.12) holds, and the

proof is complete.

Corollary 4.4. Let {xn} be a sequence generated by Algorithm 3.2. Suppose that the

set
∩

j=1,...,m{x ∈ U : Fj(x) ≤ Fj(x0)} is bounded. Then, there exists an accumulation point

x∗ of {xn}. Furthermore, if x∗ satisfies that D2F (x∗) is positive definite and D2F is Lipschitz

continuous around x∗, then x∗ is a local Pareto optimum of F .

Proof. Note by Algorithm 3.2 that {Fj(xn)} is monotonically nonincreasing for each j =

1, . . . ,m. Hence, by assumption, we have that {xn} ⊆
∩

j=1,...,m{x ∈ U : Fj(x) ≤ Fj(x0)} and

so {xn} is bounded. Thus, there exists an accumulation point of {xn}. Then, the conclusion

follows from Proposition 4.3.

Now we are ready to establish the global quadratic convergence of a sequence generated by

Algorithm 3.2.

Theorem 4.5. Let {xn} be a sequence generated by Algorithm 3.2. Suppose that {xn} has

an accumulation point x∗ such that D2F (x∗) is positive definite and D2F is Lipschitz continuous

around x∗. Then, x∗ is a local Pareto optimum of F and {xn} converges quadratically to x∗.

Proof. In view of Proposition 4.3, it suffices to show that {xn} converges quadratically to

x∗. For this purpose, note by the Lipschitz continuity assumption that there exists a pair of

positive numbers (r, L) such that each D2F satisfies the Lipschitz condition with modulus L on

B(x∗, r). Since each ∇2Fj(x
∗) is positive definite by assumption, we can take

a∗ > max
j=1,...,m

{
1

rL
, ∥∇2Fj(x

∗)−1∥
}
.

Then, F satisfies assumption (3.2) associated to (x∗; a∗, 1
a∗L ) and L(·) ≡ L. Let

r̂ =
−9(1− σ)2 + 3(1− σ)

√
1 + 9(1− σ)2

(1 + 4ξa∗)a∗L
,

and let {xni} ⊆ {xn} be a subsequence such that limi→∞ xni = x∗. Then there exists i0 ∈ N
such that ∥xni0

−x∗∥ ≤ r̂. Thus, Theorem 4.2(ii) is applicable to concluding that the sequence
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{xn}∞n=ni0
converges quadratically to a local Pareto optimum of F . This completes the proof.

4.2. Theorems under the γ-condition. Wang [36] introduced the γ-condition and com-

pletely improved Smale’s results (cf. [34]) by using the technique of a majorizing function.

Below, we present an analogue of γ-condition (with a slight difference) inspired by the one

introduced in [36]. Let r > 0 and γ > 0 be such that rγ ≤ 1.

Definition 4.6. Let x0 ∈ U and r > 0 be such that B(x0, r) ⊆ U . DF is said to satisfy

the γ-condition on B(x0, r) if,

∥∇3Fi(x)∥ ≤ 2γ

(1− γ∥x− x0∥)3
for each i ∈ {1, . . . ,m} and x ∈ B(x0, r).

Remark 4.2. As in [38, Lemma 3], one checks by definition that if F is analytic at x0, then

DF satisfies the γ-condition on B(x0,
1
γ ), where γ := max

i=1,...,m
{supk≥2 ∥ 1

k!F
(k+1)
i (x0)∥

1
k−1 }.

The following proposition shows that the γ-condition of DF implies the L-average Lipschitz

condition of D2F , the proof of which is easy and so is omitted here.

Proposition 4.7. Suppose that DF satisfies the γ-condition on B(x0, r). Then, D2F

satisfies the L-average Lipschitz condition on B(x0,
1
γ ) with the function L : [0, 1

γ ) → R+

defined by

L(u) :=
2γ

(1− γu)
3 for each u ∈ [0,

1

γ
). (4.14)

Let a > 0 and β ≥ 0. For L(·) given by (4.14), the majoring function ha defined in (2.13)

is reduced to

ha(t) = β − t+
aγt2

1− γt
for each 0 ≤ t <

1

γ
.

Then, it follows from (2.12) that

ra =

(
1−

√
a

1 + a

)
1

γ
and ba =

(
1 + 2a− 2

√
a(1 + a)

) 1

γ
.

Let {ta,n} denote a sequence generated by the classical Newton method for approaching the

zeros of ha with the initial value t0 = 0, and assume

γβ ≤ 1 + 2a− 2
√
a(1 + a).

Then, by [36, P.180], the smaller zero r∗a of ha and the Newton sequence {ta,n} have the following
closed forms:

r∗a =
1 + γβ −

√
τ

2(1 + a)γ
, and ta,n =

1− µ2n−1

1− µ2n−1η
r∗a for each n ∈ N, (4.15)
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where τ := (1 + γβ)2 − 4(1 + a)γβ ≥ 0,

µ :=
1− γβ −

√
τ

1− γβ +
√
τ

and η :=
1 + γβ −

√
τ

1 + γβ +
√
τ
. (4.16)

Fixing the triple (x; a, r) with x ∈ U and (a, r) ∈ R2
+, we consider the following assumption

for F ∈ C3(U,Rm) associated to the triple (x; a, r):

• D2F (x) is positive definite with each ∥∇2Fi(x)
−1∥ ≤ a;

• DF satisfies the γ-condition on B(x, r) ⊆ U.
(4.17)

Then, we have the following theorem about the quadratic convergence criterion of the

extended Newton method under the γ-condition.

Theorem 4.8. Suppose that F satisfies assumption (4.17) associated to (x0; a, r
∗
a), and

∥s(x0)∥ ≤ β . Let µ and η be given by (4.16). Then, with initial point x0, we have the following

assertions:

(i) If β ≤
(
1 + 2a− 2

√
a(1 + a)

)
1
γ , then the sequence {xn} generated by Algorithm 3.1 is

well-defined, stays in B(x0, r
∗
a), and converges to a local Pareto optimum x̄ ∈ B[x0, r

∗
a] with the

following error estimation for each n ∈ N:

∥xn − x̄∥ ≤ (1− η)µ2n−1

1− µ2n−1η
r∗a. (4.18)

(ii) If β <
(
1 + 2a− 2

√
a(1 + a)

)
1
γ , then {xn} converges quadratically to x̄ with the fol-

lowing error estimation for some N ∈ N:

∥xn+1 − x̄∥ ≤ µ(1− µ2n+1−1η)(1− µ2n−1η)2

(1− η)(1− µ2n(2− µ2n−1η))2r∗a
∥xn − x̄∥2 for each n ≥ N. (4.19)

(iii) If β ≤ 3(1−σ)(1−γβ)(1−2γβ(1+2a)+γ2β2)
2aγ(1+γβ)3 , then any sequence {xn} generated by Algorithm

3.2 coincides with the one generated by Algorithm 3.1, and satisfies (4.18) and (4.19).

Proof. Assertions (i) and (ii) follow directly from Theorem 3.4 in combination with Propo-

sition 4.7. Then, it remains to show assertion (iii). In fact, as L(·) is given by (4.14), it follows

that

−3(1− σ)h′
a(r

∗
a)

aL(r∗a)
=

3(1− σ)(1− r∗aγ)((1 + a)(1− r∗aγ)
2 − a)

2aγ
. (4.20)

Note further by (4.15) that

r∗aγ =
1 + γβ −

√
τ

2(1 + a)
=

(1 + γβ)2 − τ

2(1 + a)(1 + γβ +
√
τ)

≤ 2γβ

1 + γβ
.

Combing this with (4.20) gives that

3(1− σ)(1− γβ)(1− 2γβ(1 + 2a) + γ2β2)

2aγ(1 + γβ)3
≤ −3(1− σ)h′

a(r
∗
a)

aL(r∗a)
.
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Thus, if β ≤ 3(1−σ)(1−γβ)(1−2γβ(1+2a)+γ2β2)
2aγ(1+γβ)3 , then (3.18) holds. Hence, the conclusion follows

from Proposition 4.7 and Theorem 3.5.

Similarly, we have the following results by using Theorem 3.8 in combination with Propo-

sition 4.7, regarding estimation of the radius of the convergence ball of the extended Newton

method for multiobjective optimization under the γ-condition. Recall that x∗ is a local Pareto

optimum of F and ξa∗ is defined by (3.27).

Theorem 4.9. Suppose that F satisfies assumption (4.17) associated to (x∗; a∗, ra∗). Let

x0 ∈ B

(
x∗,

1+2a∗−2
√

a∗(1+a∗)

(1+ξa∗ )γ

)
. Then, with initial point x0, we have the following assertions:

(i) The sequence {xn} generated by Algorithm 3.1 is well-defined and converges quadratically

to a local Pareto optimum of F .

(ii) Let 0 < r <
1+2a∗−2

√
a∗(1+a∗)

(1+ξa∗ )γ satisfy (3.29). Then for any x0 ∈ B(x∗, r), any sequence

{xn} generated by Algorithms 3.2 with initial point x0 converges quadratically to a local Pareto

optimum of F .

The advantage of considering the L-average Lipschitz condition rather than the classical

Lipschitz condition is shown in the following example, for which Theorem 4.8 is applicable but

not Theorem 4.1.

Example 4.2. Consider problem (1.1) with m = l = 1 and F : R → R defined by

F (x) :=

{
(τ − 1)x− ln(1− x), x ≤ 1

2 ,

(τ + 1)x− 2x2 + 8
3x

3 − 5
6 + ln 2, x ≥ 1

2 .

where τ ∈ (10
√
2− 14, 3− 2

√
2). Then one checks that

F ′′(x) =

{
1

(1−x)2 , x ≤ 1
2 ,

−4 + 16x, x ≥ 1
2 ,

and F
′′′
(x) =

{
2

(1−x)3 , x ≤ 1
2 ,

16, x ≥ 1
2 .

Let x0 := 0 and γ := 1. It follows that a := ∥F ′′(x0)
−1∥ = 1, and that F ′ satisfies the

γ-condition on B(x0, 1). Note that

β := ∥s(x0)∥ = ∥ − (F ′′(x0))
−1F ′(x0)∥ = τ < 3− 2

√
2.

Therefore, Theorem 4.8 is applicable to concluding that the sequence {xn} generated by Algo-

rithm 3.1 with initial point x0 converges to a local Pareto optimum of F . We below show that

Theorem 4.1 is not applicable. To do this, we first note that F ′′ is also Lipschitz continuous on

B(x0, r) with the (least) Lipschitz constant Kr given by

Kr :=

{
2

(1−r)3 , r ≤ 1
2 ,

16, r ≥ 1
2 .

(4.21)

Now suppose on the contrary that Theorem 4.1 is applicable. Then there exists a positive

constant L such that

L ≥ Kr, r ≥ 1−
√
1− 2Lτ

L
and τ ≤ 1

2L
≤ 1

2Kr
, (4.22)
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as a = 1 and β = τ . Recalling τ > 10
√
2− 14 > 1

32 , we have that Kr < 16, and then it follows

from (4.21) that r < 1
2 . Hence L ≥ Kr = 2

(1−r)3 ≥ 2. Consequently, by the second inequality

in (4.22), we have that τ ≤ r − Lr2

2 and so τ ≤ r − r2. Combining this and the last inequaliity

in (4.22), and (4.21), we have that τ ≤ min{ (1−r)3

4 , r − r2}. Since the function r 7→ (1−r)3

4 is

decreasing and r 7→ r − r2 increasing on [0, 1
2 ], it follows that, for each r ∈ (0, 1

2 ),

min

{
(1− r)3

4
, r − r2

}
≤ s0 − s20 = 10

√
2− 14,

where s0 := 3 − 2
√
2 is the least positive root of equation (1−s)3

4 = s − s2. Therefore, τ ≤
10
√
2− 14, which contradicts the choice of τ , and thus Theorem 4.1 is not applicable.
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