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1. Lagrange-type Functions
Consider the following problem P (f, g):

min f (x) subject to x ∈ X, g(x) = (g1(x), · · · , gm(x)) ≤ 0,

where X is a metric space, f and gi are real-valued functions defined on
X . We assume that

• the set X0 = {x ∈ X : g(x) ≤ 0} is nonempty;
• the objective function f is bounded from below on X .

Let Ω be a set of parameters and h : R×Rm×Ω→ R be a function. Let
η ∈ R. Then the Lagrange-type function is defined by

L(x, ω) = h(f (x)− η, g(x);ω) + η, x ∈ X,ω ∈ Ω, (1.1)

where h is called a convolution function.
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• If h is linear with respect to the first variable, more specifically:

h(u, v;ω) = u + χ(v;ω),

where χ : Rm × Ω→ R is a real-valued function, then the parameter η can be
omitted. Indeed, we have

L(x, ω) = f (x) + χ(g(x);ω).

• One of the possible choices of the number η is η = f (x∗) where x∗ is a
reference point, in particular x∗ is a solution of P (f, g). Then the Lagrange-
type function has the form

L(x, ω) = h(f (x)− f (x∗), g(x);ω) + f (x∗), x ∈ X,ω ∈ Ω.
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The Lagrange-type function (1.1) includes linear Lagrange functions, classical
penalty functions, nonlinear Lagrangian functions and augmented Lagrange
functions as special cases:

1) Let h(u, v;ω) = p(u, ω1v1, · · · , ωmvm). If p(u, v) = u+
∑m

i=1 vi, then we
obtain the linear Lagrange function

L(x, ω) = p(f (x)− η, ω1g1(x), · · · , ωmgm(x)) + η = f (x) +
m∑
i=1

ωigi(x).

2) Let h(u, v;ω) = p(u, ω1v1, · · · , ωmvm), p(u, v) = u +
∑m

i=1 v
+
i where

v+ = max(v, 0). Then we obtain the classical (linear) penalty function

L(x, ω) = f (x) +
m∑
i=1

ωigi(x)+

If p(u, v) = u +
∑m

i=1(v
+
i )2, then we obtain the quadratic penalty function

L(x, ω) = f (x) +
m∑
i=1

ωi(gi(x)+)2.
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3) Let Ω = Rm
+ and p : R1+m → R be an increasing function bounded from

below satisfy the following two properties:

(A) there are numbers a1 > 0, · · · , am > 0 such that

p(u, v1, · · · , vm) ≥ max(u, a1v1, · · · , amvm), u ≥ 0, v ∈ Rm;

(B) Let b ≥ 0. p(u, 0, · · · , 0) ≤ u, for all u ≥ b.

Define
h(u, v;ω) = p(u, ω1v1, · · · , ωmvm).

We obtain nonlinear Lagrange functions:

L(x, ω) = p(f (x)− η, ω1g1(x), · · · , ωmgm(x)) + η.

For example:

pk(y0, y1, · · · , ym) =
(
yk0 + yk1 + · · · + ykm

) 1
k , 0 < k,

p+∞(y0, y1, . . . , ym) = max
0≤i≤m

yi.
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4) Augmented Lagrangians

Let
• σ : Rm → R be an augmenting function, i.e., σ(0) = 0 and σ(z) > 0, for
z 6= 0,;
• Ω ⊂ {(y, r) : y ∈ Rm, r ≥ 0} be a set of parameters satisfying (0, 0) ∈ Ω
and (y, r) ∈ Ω implying (y, r′) ∈ Ω, for all r′ ≥ r.

Let h : R×Rm × Ω→ R be the convolution function defined by

h(u, v; (y, r)) = inf
z+v≤0

(u− [y, z] + rσ(z))

= u + inf
z+v≤0

(−[y, z] + rσ(z)).

Then the Lagrange-type function, corresponding to η = 0, coincides with the
augmented Lagrangian, that is,

L(x, (y, r)) = h(f (x), g(x); (y, r))

= f (x) + inf
z+g(x)≤0

(−[y, z] + rσ(z)),

where x ∈ X, (y, r) ∈ Rm × Ω.
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Three special cases of augmenting function σ:

(i). Convex augmenting function (Rockafellar and Wets (1998)): σ is lower
semi-continuous and convex, i.e.,

σ(tz1 + (1− t)z2) ≤ tσ(z1) + (1− t)σ(z2), t ∈ (0, 1);

(ii). Level-bounded augmenting function (Huang and Yang (2003)): σ is a
level-bounded function, i.e., for any α > 0, the set {x|σ(z) ≤ α} is bounded;

(iii). Peak-at-zero augmenting function (Rubinov, Huang and Yang (2002)): σ
is a peak-at-zero function, i.e., if

(i) σ(z) ≤ 0 = σ(0) for all z ∈ Z;

(ii) for each λ > 0, sup‖z‖≥λ σ(z) < 0.

It is clear that Convexity =⇒ Level-boundedness =⇒ Peak-at-zero.
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Remarks

• Augmented Lagrangian scheme with convex augmenting functions guarantee
the existence of a zero duality gap without any convex or generalized convex
assumption on the data, see Rockafellar and Wets (1998).

• Augmented Lagrangian scheme with level-bounded augmenting functions in-
clude the following lower order (non-Lipschitz) penalty functions in Luo, Pang
and Ralph (1986) and Pang (1997) as special cases (γ > 0):

f (x) + r

(
m∑
j=1

g+
j (x)

)γ

, f (x) + r [max{g+
1 (x), · · · , g+

m(x)}]γ .

With 1 > γ > 0,
� these penalty functions are exact under weaker conditions than that required
for the classical l1 exact penalty functions

� they have been intensively studied through so-called error bounds and suc-
cessfully applied to the study of mathematical programs with equilibrium con-
straints.
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2. Zero Duality Gaps
Consider problem P (f, g):

min f (x) subject to x ∈ X, g(x) = (g1(x), · · · , gm(x)) ≤ 0,

whereX is a metric space, f and gi are real-valued functions defined onX , and
a convolution function h : R1+m × Ω → R and the corresponding Lagrange-
type function

L(x, ω) = h(f (x)− η, g(x);ω) + η.

The dual function q : Ω → R̄ = R ∪ {−∞,+∞} of P (f, g) with respect to
h and η is defined by

q(ω) = inf
x∈X

h(f (x)− η, g(x);ω) + η, ω ∈ Ω.

Consider the dual problem to P (f, g) with respect to h and η:

max q(ω), subject to ω ∈ Ω.
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Theorem 2.1 Assume that, for any ε ∈ (0, b), there exists δ > 0 such that

sup
ω∈Ω

h(u, v;ω) ≤ u, ∀(u, v) ∈ [b,+∞)×Rm
− ;

inf
ω∈Ω

h(u, v;ω) ≥ u− ε, ∀u ≥ b, s(v) ≤ δ;

and that, for each c > 0, there exists ω̄ ∈ Ω such that

h(u, v; ω̄) ≥ cs(v), ∀u ≥ b, v ∈ Rm,

where s : Rm → R is such that s(v) ≤ 0⇐⇒ v ∈ Rm
− . Assume further that

(f1) The function f is uniformly positive on X0;
(f2) The function f is uniformly continuous on an open set containing X0;
(g) The mapping g is continuous and the set-valued mapping

D(δ) = {x ∈ X : s(g(x)) ≤ δ}

is upper semi-continuous at the point δ = 0.

Then the following zero duality gap property holds:

inf
x∈X0

f (x) = sup
ω∈Ω

inf
x∈X

h(f (x), g(x);ω).
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Examples that the conditions on h are satisfied:

Nonlinear Lagrangian functions:
Let an increasing function p : R1+m → R bounded from below satisfy the
following two properties:

(A) there are numbers a1 > 0, · · · , am > 0 such that

p(u, v1, · · · , vm) ≥ max(u, a1v1, · · · , amvm), u ≥ 0, v ∈ Rm;

(B) Let b ≥ 0. p(u, 0, · · · , 0) ≤ u, for all u ≥ b.

Define h : [b,+∞)×Rm × Ω→ R by

h(u, v;ω) = p(u, ω1v1, · · · , ωmvm).

Then h satisfies all conditions in Theorem 2.1 with

r(v) = max
i=1,··· ,m

(0, a1v1, · · · , amvm).
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Zero duality gap and l.s.c. of perturbation function

Let b ≥ 0. Define a convolution function h : [b,+∞)×Rm × Ω→ R by

h(u, v;ω) = p(u, ω1v1, · · · , ωmvm),

where p : R+ ×Rm → R is an increasing function.

Consider the P (f, g) with uniformly positive objective function f onX . Let L
be the Lagrange-type function defined by

L(x, ω) = p(f (x), ω1g1(x), · · · , ωmgm(x)).

The zero duality gap means that

inf
x∈X0

= sup
ω∈Ω

inf
x∈X

L(x, ω).

Define the perturbation function β(y) of P (f, g) by

β(y) = inf{f (x) : x ∈ X, g(x) ≤ y}, y ∈ Rm.
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p(u, 0m) ≤ u, for all u ≥ 0. (2.2)

Theorem 2.2 Let p be a continuous increasing function satisfying (2.2). Let the
zero duality gap property with respect to p hold. Then the perturbation function
β is lower semi-continuous at the origin.

Further assume that p satisfies the following property: there exist positive num-
bers a1, · · · , am such that, for all u > 0, (v1, · · · , vm) ∈ Rm, we have

p(u, v1, · · · , vm) ≥ max(u, a1v1, · · · , amvm). (2.3)

Theorem 2.3 Assume that p is an increasing convolution function that pos-
sesses property (2.3), in addition to (2.2). Let perturbation function β of prob-
lem P (f, g) be lower semi-continuous at the origin. Then the zero duality gap
property with respect to p holds.
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Equivalences among zero duality gaps

Recall that two properties (A) and (B) of p are:

(A) there are numbers a1 > 0, · · · , am > 0 such that

p(u, v1, · · · , vm) ≥ max(u, a1v1, · · · , amvm), u ≥ 0, v ∈ Rm;

(B) Let b ≥ 0. p(u, 0, · · · , 0) ≤ u, for all u ≥ b.

Let p be an increasing function with properties (A) and (B), and

F (x, ω) = (f (x), ω1g1(x), · · · , ωmgm(x)),

where ω = (ω1, · · · , ωm) ∈ Rm
+ and x ∈ X.

The nonlinear Lagrangian dual function corresponding to c is defined as

φ(ω) = infx∈Xp(F (x, ω)), ω ∈ Rm
+ .
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Recall that the augmented Lagrangian function is

L(x, (y, r)) = f (x) + inf
z+g(x)≤0

(−[y, z] + rσ(z)).

Theorem 2.4 Consider the constrained program (P(f,g)).

If the augmenting function σ is continuous at 0 ∈ Rm and the increasing
function p defining the nonlinear Lagrangian dual function φ(d) is continuous,

then the following two statements are equivalent:

(i) Augmented Lagrangian zero duality gap with a level-bounded augmenting
function holds:

inf
x∈X0

f (x) = sup
(y,r)∈Rm×(0,+∞)

inf
x∈X

L(x, (y, r)).

(ii) Nonlinear Lagrangian zero duality gap holds:

inf
x∈X0

f (x) = supω∈Rm
+

infx∈Xp(F (x, ω)).
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3. Exact Penalty Representations
Let X = Rn. Recall that the augmented Lagrangian function is

L(x, (y, r)) = f (x) + inf
z+g(x)≤0

(−[y, z] + rσ(z)).

Definition 3.1 Consider the constrained program (P (f, g)) and the associated
augmented Lagrangian L(x, (y, r)). A vector ȳ ∈ Rm is said to support an
exact penalty representation if there exists r̄ > 0 such that

inf
x∈X0

f (x) = inf {L(x, (ȳ, r)) : x ∈ Rn}, ∀r ≥ r̄

and
argmin (P(f,g)) = argminxL(x, (ȳ, r)), ∀r ≥ r̄,

where ”argmin (P(f,g))” denotes the set of optimal solutions.

Recall the perturbation function β(y) of P (f, g) by

β(y) = inf{f (x) : x ∈ X, g(x) ≤ y}, y ∈ Rm.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem 3.1 Let σ be a level-bounded augmenting function. The following
statements are true:

(i) If ȳ supports an exact penalty representation for the problem (P (f, g)), then
there exist r̄ > 0 and a neighborhood W of 0 ∈ Rm such that

β(u) ≥ β(0) + [ȳ, u]− r̄σ(u), ∀u ∈ W.

(ii) The converse of (i) is true if

(a) β(0) is finite;
(b) there exists r̄′ > 0 such that

inf{f̄ (x, u)− [ȳ, u] + r̄′σ(u) : (x, u) ∈ Rn ×Rm} > −∞;

(c) there exist τ > 0 and N > 0 such that σ(u) ≥ τ‖u‖ when ‖u‖ ≥ N.
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Consider the lk penalty problem:

inf
x∈X

ϕr,k(x) =

(
f (x) + r

m∑
i=1

(max{0, gi(x)})k
)1/k

, r ≥ 0.

Theorem 3.2 Let k ∈ (0, 1]. Suppose thatX0 6= ∅ and x̄ is a local minimum of
(P (f, g)). There is a q > 0 such that x̄ is a local minimum of the k-th power
penalty problem if and only if the following generalized calmness condition

lim inf
u→+0

β(u)− β(0)∑m
i=1 u

k
i

> −∞,

or, for some constant M ,

β(u) ≥ β(0) + M
m∑
i=1

uki , ∀ small u > 0.

Remark Burke (1991) obtained the result in the above theorem when k = 1.
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Estimating the exact penalty parameter

Let X = Rn. We say that the pair (x∗, λ∗) satisfies the second order sufficient
condition of (P) if

∇xL(x∗, λ∗) = 0
gi(x

∗) ≤ 0, i = 1, · · · ,m
λ∗i ≥ 0, i = 1, · · · ,m
λ∗igi(x

∗) = 0
yT∇2L(x∗, λ∗)y > 0, for any y ∈ V (x∗)

where L(x, λ) = f (x) +
∑m

i=1 λigi(x), and

V (x∗) =

{
y ∈ Rn

∣∣∣∣∣ ∇Tgi(x
∗)y = 0, i ∈ A(x∗)

∇Tgi(x
∗)y ≤ 0, i ∈ B(x∗)

}
,

A(x∗) = {i ∈ {1, · · · ,m} | gi(x∗) = 0, λ∗i > 0},
B(x∗) = {i ∈ {1, · · · ,m} | gi(x∗) = 0, λ∗i = 0}.
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Consider the nonlinear programming problem (P (f, g)):

(P) min f (x)

s. t. gi(x) ≤ 0, i = 1, · · · ,m,
x ∈ Rn,

Consider the following penalty problem:

(Pk) min
x∈Rn

f (x) + q
m∑
i=1

(g+
i (x))k.

Theorem 3.3 (Han and Mangasarian (1979)) Let k = 1. Suppose that the pair
(x∗, λ∗) satisfies the second order sufficient condition. Then, x∗ is a strict local
minimum of the penalty problem (Pk) for any q ≥ max1≤i≤m λ

∗
i .

Theorem 3.4 Let k ∈ (0, 1). Suppose that the pair (x∗, λ∗) satisfies the second
order sufficient condition. Then x∗ is a strict local minimum of the penalty
problem (Pk) for any q > 0.
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Example 3.1 Consider the following nonlinear programming problem:

min −x
s.t. x + x2 ≤ 0.

The pair (x∗ = 0, λ∗ = 1) satisfies the second order sufficient condition.

Case 1. k = 1.
ϕr,1(x) = −x + rmax{x + x2, 0}.

If r ≥ 1, then x∗ = 0 is a strict local minimum of ϕr,1(x).
If r < 1, then x∗ = 0 is not a local minimum of ϕr,1(x).

Case 2. k = 1
2
.

ϕr,12(x) = −x + r
√

max{x + x2, 0}.

For any r > 0, x∗ = 0 is a strict local minimum of ϕr,12(x).
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4. Applications: Evaluating American Option
Price

We apply the lower order penalty method to evaluating American option price.

V denote the value of an American put option with strike price K and expiry
date T ,

x denote the price of the underlying asset,

σ(t) denote the volatility of the asset,

r(t) be the interest rate,

V ∗ be the final (payoff) condition defined by

V (x, T ) = V ∗(x) = max{K − x, 0},

I = (0, X), where X >> K .
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It is known that V satisfies the following linear complementarity problem (LCP)

LV (x, t) ≥ 0 (4.4)
V (x, t)− V ∗(x) ≥ 0 (4.5)

LV (x, t) · (V (x, t)− V ∗(x)) = 0 (4.6)

a.e. in Ω := I × (0, T ), where the Black-Scholes differential operator is

LV := −∂V
∂t
− 1

2
σ2(t)x2∂

2V

∂x2
− r(t)x∂V

∂x
+ r(t)V,

* Inequality (4.4) is equivalent to

∂V

∂t
+

1

2
σ2(t)x2∂

2V

∂x2
+ r(t)x

∂V

∂x
≤ r(t)V,

which says that the return from the portfolio cannot be greater than the return
from a bank deposit.

* Inequality (4.5) means that the early exercise is permitted.
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Let H1
0(I) = {v ∈ H1(I) : v(0) = v(X) = 0}.

Introduce a new variable

u(x, t) = −eβt(V (x, t)− V0(x))

where
β = sup

0<t<T
σ2(t).

Then LCP can be formulated as the following modified LCP:

Lu(x, t) ≤ f (x, t),

u(x, t)− u∗(x, t) ≤ 0,

(Lu(x, t)− f (x, t)) · (u(x, t)− u∗(x, t)) = 0,

a.e. in Ω, where L : = − ∂
∂t
− ∂

∂x

[
a(t)x2 ∂

∂x
+ b(t)x

]
+ c(t) is the self-adjoint

form with

a =
1

2
σ2, b = r − σ2, c = r + b + β, and f (x, t) = eβtLV0(x),
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Let k > 0 be a parameter and [a]+ = max{a, 0}. The lk power penalty
approach is to solve a sequence of nonlinear partial differential equations of the
form

Luλ(x, t) + λ[uλ(x, t)− u∗(x, t)]1/k+ = f (x, t), (x, t) ∈ Ω

with the given boundary and final conditions

uλ(0, t) = 0 = uλ(X, t) and uλ(x, T ) = u∗(x, T ),

where λ > 0 and k > 0 are parameters.

This is called a penalized LCP.

Let H(I) be a Hilbert space and

||v||L2(0,T ;H(I)) =

(∫ T

0

||v(·, t)||2Hdt
)1/2

.
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Theorem 4.1 (Arbitrary order convergence rate) Let k > 0 and

• u be the solution to modified;

• uλ be the solution to penalized LCP.

If uλ ∈ L1+1/k(Ω) and ∂u
∂t
∈ Lk+1(Ω), then there exists a constant C > 0,

independent of u, uλ and λ, such that

||u− uλ||L∞(0,T ;L2(I)) + ||u− uλ||L2(0,T ;H1
0 (I)) ≤

C

λk/2
.

Remark
� When k = 1, the penalized LCP reduces the l1 penalty function used in
Bensoussan and Lions (1978), and Glowinski (1984) where a square root
convergence rate is obtained between the solution of the original equation and
the penalized equation.

� Forsyth and Vetzal (2002) has used the l1 penalty function for evaluating
American option price.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Comments:

• This arbitrary order convergence rate allows one to achieve the required
accuracy of the solution with a small penalty parameter.

• The lower order term [uλ(x, t) − u∗(x, t)]
1/k
+ is non-Lpischitz, which may

cause some disadvantage in numerical implementation of the penalized LCP.

• Small scale examples have shown that the penalized LCP is computable.
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5. Conclusions
• Lagrange-type functions, in particular, some non-Lipschitz cases, have shown
satisfactory theoretical advantages.

• But it is still a challenge task how to efficiently solve these (optimization or
LCP) problems with non-Lipschitz data.

THANK YOU !
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