Lagrange-type Functions with Applications

X.Q. Yang

Department of Applied Mathematics
The Hong Kong Polytechnic University

Outline

1. Lagrange-type Functions
2. Zero Duality Gaps
3. Exact Penalty Representation
4. Application: Evaluating American Option Price
5. Conclusions

1. Lagrange-type Functions

Consider the following problem $P(f, g)$:

$$
\min f(x) \text { subject to } x \in X, g(x)=\left(g_{1}(x), \cdots, g_{m}(x)\right) \leq 0
$$

where X is a metric space, f and g_{i} are real-valued functions defined on X. We assume that

- the set $X_{0}=\{x \in X: g(x) \leq 0\}$ is nonempty;
- the objective function f is bounded from below on X.

Let Ω be a set of parameters and $h: R \times R^{m} \times \Omega \rightarrow R$ be a function. Let $\eta \in R$. Then the Lagrange-type function is defined by

$$
\begin{equation*}
L(x, \omega)=h(f(x)-\eta, g(x) ; \omega)+\eta, \quad x \in X, \omega \in \Omega, \tag{1.1}
\end{equation*}
$$

where h is called a convolution function.

- If h is linear with respect to the first variable, more specifically:

$$
h(u, v ; \omega)=u+\chi(v ; \omega)
$$

where $\chi: R^{m} \times \Omega \rightarrow R$ is a real-valued function, then the parameter η can be omitted. Indeed, we have

$$
L(x, \omega)=f(x)+\chi(g(x) ; \omega) .
$$

- One of the possible choices of the number η is $\eta=f\left(x_{*}\right)$ where x_{*} is a reference point, in particular x_{*} is a solution of $P(f, g)$. Then the Lagrangetype function has the form

$$
L(x, \omega)=h\left(f(x)-f\left(x_{*}\right), g(x) ; \omega\right)+f\left(x_{*}\right), \quad x \in X, \omega \in \Omega .
$$

The Lagrange-type function (1.1) includes linear Lagrange functions, classical penalty functions, nonlinear Lagrangian functions and augmented Lagrange functions as special cases:

1) Let $h(u, v ; \omega)=p\left(u, \omega_{1} v_{1}, \cdots, \omega_{m} v_{m}\right)$. If $p(u, v)=u+\sum_{i=1}^{m} v_{i}$, then we obtain the linear Lagrange function

$$
L(x, \omega)=p\left(f(x)-\eta, \omega_{1} g_{1}(x), \cdots, \omega_{m} g_{m}(x)\right)+\eta=f(x)+\sum_{i=1}^{m} \omega_{i} g_{i}(x)
$$

2) Let $h(u, v ; \omega)=p\left(u, \omega_{1} v_{1}, \cdots, \omega_{m} v_{m}\right), p(u, v)=u+\sum_{i=1}^{m} v_{i}^{+}$where $v^{+}=\max (v, 0)$. Then we obtain the classical (linear) penalty function

$$
L(x, \omega)=f(x)+\sum_{i=1}^{m} \omega_{i} g_{i}(x)^{+}
$$

If $p(u, v)=u+\sum_{i=1}^{m}\left(v_{i}^{+}\right)^{2}$, then we obtain the quadratic penalty function

$$
L(x, \omega)=f(x)+\sum_{i=1}^{m} \omega_{i}\left(g_{i}(x)^{+}\right)^{2}
$$

3) Let $\Omega=R_{+}^{m}$ and $p: R^{1+m} \rightarrow R$ be an increasing function bounded from below satisfy the following two properties:
(A) there are numbers $a_{1}>0, \cdots, a_{m}>0$ such that

$$
p\left(u, v_{1}, \cdots, v_{m}\right) \geq \max \left(u, a_{1} v_{1}, \cdots, a_{m} v_{m}\right), \quad u \geq 0, v \in R^{m}
$$

(B) Let $b \geq 0 . p(u, 0, \cdots, 0) \leq u, \quad$ for all $u \geq b$.

Define

$$
h(u, v ; \omega)=p\left(u, \omega_{1} v_{1}, \cdots, \omega_{m} v_{m}\right)
$$

We obtain nonlinear Lagrange functions:

$$
L(x, \omega)=p\left(f(x)-\eta, \omega_{1} g_{1}(x), \cdots, \omega_{m} g_{m}(x)\right)+\eta .
$$

For example:

$$
\begin{gathered}
p_{k}\left(y_{0}, y_{1}, \cdots, y_{m}\right)=\left(y_{0}^{k}+y_{1}^{k}+\cdots+y_{m}^{k}\right)^{\frac{1}{k}}, \quad 0<k, \\
p_{+\infty}\left(y_{0}, y_{1}, \ldots, y_{m}\right)=\max _{0 \leq i \leq m} y_{i} .
\end{gathered}
$$

4) Augmented Lagrangians

Let

- $\sigma: R^{m} \rightarrow R$ be an augmenting function, i.e., $\sigma(0)=0$ and $\sigma(z)>0$, for $z \neq 0$;
- $\Omega \subset\left\{(y, r): y \in R^{m}, r \geq 0\right\}$ be a set of parameters satisfying $(0,0) \in \Omega$ and $(y, r) \in \Omega$ implying $\left(y, r^{\prime}\right) \in \Omega$, for all $r^{\prime} \geq r$.

Let $h: R \times R^{m} \times \Omega \rightarrow R$ be the convolution function defined by

$$
\begin{aligned}
h(u, v ;(y, r)) & =\inf _{z+v \leq 0}(u-[y, z]+r \sigma(z)) \\
& =u+\inf _{z+v \leq 0}(-[y, z]+r \sigma(z)) .
\end{aligned}
$$

Then the Lagrange-type function, corresponding to $\eta=0$, coincides with the augmented Lagrangian, that is,

$$
\begin{aligned}
L(x,(y, r)) & =h(f(x), g(x) ;(y, r)) \\
& =f(x)+\inf _{z+g(x) \leq 0}(-[y, z]+r \sigma(z)),
\end{aligned}
$$

where $x \in X,(y, r) \in R^{m} \times \Omega$.

Three special cases of augmenting function σ :
(i). Convex augmenting function (Rockafellar and Wets (1998)): σ is lower semi-continuous and convex, i.e.,

$$
\sigma\left(t z_{1}+(1-t) z_{2}\right) \leq t \sigma\left(z_{1}\right)+(1-t) \sigma\left(z_{2}\right), \quad t \in(0,1)
$$

(ii). Level-bounded augmenting function (Huang and Yang (2003)): σ is a level-bounded function, i.e., for any $\alpha>0$, the set $\{x \mid \sigma(z) \leq \alpha\}$ is bounded;
(iii). Peak-at-zero augmenting function (Rubinov, Huang and Yang (2002)): σ is a peak-at-zero function, i.e., if
(i) $\sigma(z) \leq 0=\sigma(0)$ for all $z \in Z$;
(ii) for each $\lambda>0, \sup _{\|z\| \geq \lambda} \sigma(z)<0$.

It is clear that Convexity \Longrightarrow Level-boundedness \Longrightarrow Peak-at-zero.

Examples of

 augmenting functions

Convex augmenting function

Level-bounded augmenting function

Negative of Peak-at-zero augmenting function

Remarks

- Augmented Lagrangian scheme with convex augmenting functions guarantee the existence of a zero duality gap without any convex or generalized convex assumption on the data, see Rockafellar and Wets (1998).
- Augmented Lagrangian scheme with level-bounded augmenting functions include the following lower order (non-Lipschitz) penalty functions in Luo, Pang and Ralph (1986) and Pang (1997) as special cases ($\gamma>0$):

$$
f(x)+r\left(\sum_{j=1}^{m} g_{j}^{+}(x)\right)^{\gamma}, \quad f(x)+r\left[\max \left\{g_{1}^{+}(x), \cdots, g_{m}^{+}(x)\right\}\right]^{\gamma} .
$$

With $1>\gamma>0$,
\diamond these penalty functions are exact under weaker conditions than that required for the classical l_{1} exact penalty functions
\diamond they have been intensively studied through so-called error bounds and successfully applied to the study of mathematical programs with equilibrium constraints.

2. Zero Duality Gaps

Consider problem $P(f, g)$:

$$
\min f(x) \text { subject to } x \in X, g(x)=\left(g_{1}(x), \cdots, g_{m}(x)\right) \leq 0
$$

where X is a metric space, f and g_{i} are real-valued functions defined on X, and a convolution function $h: R^{1+m} \times \Omega \rightarrow R$ and the corresponding Lagrangetype function

$$
L(x, \omega)=h(f(x)-\eta, g(x) ; \omega)+\eta .
$$

The dual function $q: \Omega \rightarrow \bar{R}=R \cup\{-\infty,+\infty\}$ of $P(f, g)$ with respect to h and η is defined by

$$
q(\omega)=\inf _{x \in X} h(f(x)-\eta, g(x) ; \omega)+\eta, \quad \omega \in \Omega .
$$

Consider the dual problem to $P(f, g)$ with respect to h and η :

$$
\max q(\omega), \text { subject to } \omega \in \Omega \text {. }
$$

Theorem 2.1 Assume that, for any $\epsilon \in(0, b)$, there exists $\delta>0$ such that

$$
\begin{aligned}
& \sup _{\omega \in \Omega} h(u, v ; \omega) \leq u, \quad \forall(u, v) \in[b,+\infty) \times R_{-}^{m} \\
& \inf _{\omega \in \Omega} h(u, v ; \omega) \geq u-\epsilon, \quad \forall u \geq b, s(v) \leq \delta
\end{aligned}
$$

and that, for each $c>0$, there exists $\bar{\omega} \in \Omega$ such that

$$
h(u, v ; \bar{\omega}) \geq c s(v), \quad \forall u \geq b, v \in R^{m}
$$

where $s: R^{m} \rightarrow R$ is such that $s(v) \leq 0 \Longleftrightarrow v \in R_{-}^{m}$. Assume further that $\left(f_{1}\right)$ The function f is uniformly positive on X_{0};
$\left(f_{2}\right)$ The function f is uniformly continuous on an open set containing X_{0}; (g) The mapping g is continuous and the set-valued mapping

$$
D(\delta)=\{x \in X: s(g(x)) \leq \delta\}
$$

is upper semi-continuous at the point $\delta=0$.
Then the following zero duality gap property holds:

$$
\inf _{x \in X_{0}} f(x)=\sup _{\omega \in \Omega} \inf _{x \in X} h(f(x), g(x) ; \omega)
$$

Examples that the conditions on h are satisfied:
Nonlinear Lagrangian functions:
Let an increasing function $p: R^{1+m} \rightarrow R$ bounded from below satisfy the following two properties:
(A) there are numbers $a_{1}>0, \cdots, a_{m}>0$ such that

$$
p\left(u, v_{1}, \cdots, v_{m}\right) \geq \max \left(u, a_{1} v_{1}, \cdots, a_{m} v_{m}\right), \quad u \geq 0, v \in R^{m}
$$

(B) Let $b \geq 0 . p(u, 0, \cdots, 0) \leq u, \quad$ for all $u \geq b$.

Define $h:[b,+\infty) \times R^{m} \times \Omega \rightarrow R$ by

$$
h(u, v ; \omega)=p\left(u, \omega_{1} v_{1}, \cdots, \omega_{m} v_{m}\right)
$$

Then h satisfies all conditions in Theorem 2.1 with

$$
r(v)=\max _{i=1, \cdots, m}\left(0, a_{1} v_{1}, \cdots, a_{m} v_{m}\right) .
$$

Zero duality gap and l.s.c. of perturbation function

Let $b \geq 0$. Define a convolution function $h:[b,+\infty) \times R^{m} \times \Omega \rightarrow R$ by

$$
h(u, v ; \omega)=p\left(u, \omega_{1} v_{1}, \cdots, \omega_{m} v_{m}\right)
$$

where $p: R_{+} \times R^{m} \rightarrow R$ is an increasing function.
Consider the $P(f, g)$ with uniformly positive objective function f on X. Let L be the Lagrange-type function defined by

$$
L(x, \omega)=p\left(f(x), \omega_{1} g_{1}(x), \cdots, \omega_{m} g_{m}(x)\right)
$$

The zero duality gap means that

$$
\inf _{x \in X_{0}}=\sup _{\omega \in \Omega} \inf _{x \in X} L(x, \omega) .
$$

Define the perturbation function $\beta(y)$ of $P(f, g)$ by

$$
\beta(y)=\inf \{f(x): x \in X, g(x) \leq y\}, \quad y \in R^{m} .
$$

$$
\begin{equation*}
p\left(u, 0_{m}\right) \leq u, \quad \text { for all } u \geq 0 \tag{2.2}
\end{equation*}
$$

Theorem 2.2 Let p be a continuous increasing function satisfying (2.2). Let the zero duality gap property with respect to p hold. Then the perturbation function β is lower semi-continuous at the origin.
Further assume that p satisfies the following property: there exist positive numbers a_{1}, \cdots, a_{m} such that, for all $u>0,\left(v_{1}, \cdots, v_{m}\right) \in R^{m}$, we have

$$
\begin{equation*}
p\left(u, v_{1}, \cdots, v_{m}\right) \geq \max \left(u, a_{1} v_{1}, \cdots, a_{m} v_{m}\right) \tag{2.3}
\end{equation*}
$$

Theorem 2.3 Assume that p is an increasing convolution function that possesses property (2.3), in addition to (2.2). Let perturbation function β of problem $P(f, g)$ be lower semi-continuous at the origin. Then the zero duality gap property with respect to p holds.

Equivalences among zero duality gaps

Recall that two properties (A) and (B) of p are:
(A) there are numbers $a_{1}>0, \cdots, a_{m}>0$ such that

$$
p\left(u, v_{1}, \cdots, v_{m}\right) \geq \max \left(u, a_{1} v_{1}, \cdots, a_{m} v_{m}\right), \quad u \geq 0, v \in R^{m}
$$

(B) Let $b \geq 0 . p(u, 0, \cdots, 0) \leq u, \quad$ for all $u \geq b$.

Let p be an increasing function with properties (A) and (B), and

$$
F(x, \omega)=\left(f(x), \omega_{1} g_{1}(x), \cdots, \omega_{m} g_{m}(x)\right)
$$

where $\omega=\left(\omega_{1}, \cdots, \omega_{m}\right) \in R_{+}^{m}$ and $x \in X$.
The nonlinear Lagrangian dual function corresponding to c is defined as

$$
\phi(\omega)=\inf _{x \in X} p(F(x, \omega)), \quad \omega \in R_{+}^{m} .
$$

Recall that the augmented Lagrangian function is

$$
L(x,(y, r))=f(x)+\inf _{z+g(x) \leq 0}(-[y, z]+r \sigma(z)) .
$$

Theorem 2.4 Consider the constrained program $(P(f, g))$.
If the augmenting function σ is continuous at $0 \in R^{m}$ and the increasing function p defining the nonlinear Lagrangian dual function $\phi(d)$ is continuous,
then the following two statements are equivalent:
(i) Augmented Lagrangian zero duality gap with a level-bounded augmenting function holds:

$$
\inf _{x \in X_{0}} f(x)=\sup _{(y, r) \in R^{m} \times(0,+\infty)} \inf _{x \in X} L(x,(y, r))
$$

(ii) Nonlinear Lagrangian zero duality gap holds:

$$
\inf _{x \in X_{0}} f(x)=\sup _{\omega \in R_{+}^{m} \inf }^{x \in X} \text { } p(F(x, \omega))
$$

3. Exact Penalty Representations

Let $X=R^{n}$. Recall that the augmented Lagrangian function is

$$
L(x,(y, r))=f(x)+\inf _{z+g(x) \leq 0}(-[y, z]+r \sigma(z))
$$

Definition 3.1 Consider the constrained program $(P(f, g))$ and the associated augmented Lagrangian $L(x,(y, r))$. A vector $\bar{y} \in R^{m}$ is said to support an exact penalty representation if there exists $\bar{r}>0$ such that

$$
\inf _{x \in X_{0}} f(x)=\inf \left\{L(x,(\bar{y}, r)): x \in R^{n}\right\}, \quad \forall r \geq \bar{r}
$$

and

$$
\operatorname{argmin}(P(f, g))=\operatorname{argmin}_{x} L(x,(\bar{y}, r)), \quad \forall r \geq \bar{r},
$$

where "argmin $(P(f, g))$ " denotes the set of optimal solutions.

Recall the perturbation function $\beta(y)$ of $P(f, g)$ by

$$
\beta(y)=\inf \{f(x): x \in X, g(x) \leq y\}, \quad y \in R^{m} .
$$

Theorem 3.1 Let σ be a level-bounded augmenting function. The following statements are true:
(i) If \bar{y} supports an exact penalty representation for the problem $(P(f, g))$, then there exist $\bar{r}>0$ and a neighborhood W of $0 \in R^{m}$ such that

$$
\beta(u) \geq \beta(0)+[\bar{y}, u]-\bar{r} \sigma(u), \quad \forall u \in W
$$

(ii) The converse of (i) is true if
(a) $\beta(0)$ is finite;
(b) there exists $\bar{r}^{\prime}>0$ such that

$$
\inf \left\{\bar{f}(x, u)-[\bar{y}, u]+\bar{r}^{\prime} \sigma(u):(x, u) \in R^{n} \times R^{m}\right\}>-\infty ;
$$

(c) there exist $\tau>0$ and $N>0$ such that $\sigma(u) \geq \tau\|u\|$ when $\|u\| \geq N$.

Consider the l_{k} penalty problem:

$$
\inf _{x \in X} \quad \varphi_{r, k}(x)=\left(f(x)+r \sum_{i=1}^{m}\left(\max \left\{0, g_{i}(x)\right\}\right)^{k}\right)^{1 / k}, \quad r \geq 0
$$

Theorem 3.2 Let $k \in(0,1]$. Suppose that $X_{0} \neq \emptyset$ and \bar{x} is a local minimum of $(P(f, g))$. There is a $q>0$ such that \bar{x} is a local minimum of the k-th power penalty problem if and only if the following generalized calmness condition

$$
\liminf _{u \rightarrow+0} \frac{\beta(u)-\beta(0)}{\sum_{i=1}^{m} u_{i}^{k}}>-\infty
$$

or, for some constant M,

$$
\beta(u) \geq \beta(0)+M \sum_{i=1}^{m} u_{i}^{k}, \quad \forall \text { small } u>0 .
$$

Remark Burke (1991) obtained the result in the above theorem when $k=1$.

Estimating the exact penalty parameter

Let $X=R^{n}$. We say that the pair $\left(x^{*}, \lambda^{*}\right)$ satisfies the second order sufficient condition of (P) if

$$
\begin{aligned}
& \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0 \\
& g_{i}\left(x^{*}\right) \leq 0, \quad i=1, \cdots, m \\
& \lambda_{i}^{*} \geq 0, i=1, \cdots, m \\
& \lambda_{i}^{*} g_{i}\left(x^{*}\right)=0 \\
& y^{T} \nabla^{2} L\left(x^{*}, \lambda^{*}\right) y>0, \quad \text { for any } y \in V\left(x^{*}\right)
\end{aligned}
$$

where $L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)$, and

$$
\begin{aligned}
V\left(x^{*}\right) & =\left\{y \in R^{n} \left\lvert\, \begin{array}{ll}
\nabla^{T} g_{i}\left(x^{*}\right) y=0, & i \in A\left(x^{*}\right) \\
\nabla^{T} g_{i}\left(x^{*}\right) y \leq 0, & i \in B\left(x^{*}\right)
\end{array}\right.\right\}, \\
A\left(x^{*}\right) & =\left\{i \in\{1, \cdots, m\} \mid g_{i}\left(x^{*}\right)=0, \lambda_{i}^{*}>0\right\} \\
B\left(x^{*}\right) & =\left\{i \in\{1, \cdots, m\} \mid g_{i}\left(x^{*}\right)=0, \lambda_{i}^{*}=0\right\} .
\end{aligned}
$$

Consider the nonlinear programming problem $(P(f, g))$:

$$
\text { (P) } \begin{array}{cl}
\min & f(x) \\
\text { s. t. } & g_{i}(x) \leq 0, i=1, \cdots, m, \\
& x \in R^{n},
\end{array}
$$

Consider the following penalty problem:

$$
\left(P_{k}\right) \quad \min _{x \in R^{n}} f(x)+q \sum_{i=1}^{m}\left(g_{i}^{+}(x)\right)^{k} .
$$

Theorem 3.3 (Han and Mangasarian (1979)) Let $k=1$. Suppose that the pair $\left(x^{*}, \lambda^{*}\right)$ satisfies the second order sufficient condition. Then, x^{*} is a strict local minimum of the penalty problem $\left(P_{k}\right)$ for any $q \geq \max _{1 \leq i \leq m} \lambda_{i}^{*}$.

Theorem 3.4 Let $k \in(0,1)$. Suppose that the pair $\left(x^{*}, \lambda^{*}\right)$ satisfies the second order sufficient condition. Then x^{*} is a strict local minimum of the penalty problem $\left(P_{k}\right)$ for any $q>0$.

Example 3.1 Consider the following nonlinear programming problem:

$$
\begin{array}{cl}
\min & -x \\
\text { s.t. } & x+x^{2} \leq 0
\end{array}
$$

The pair $\left(x^{*}=0, \lambda^{*}=1\right)$ satisfies the second order sufficient condition.
Case 1. $k=1$.

$$
\varphi_{r, 1}(x)=-x+r \max \left\{x+x^{2}, 0\right\} .
$$

If $r \geq 1$, then $x^{*}=0$ is a strict local minimum of $\varphi_{r, 1}(x)$.
If $r<1$, then $x^{*}=0$ is not a local minimum of $\varphi_{r, 1}(x)$.
Case 2. $k=\frac{1}{2}$.

$$
\varphi_{r, \frac{1}{2}}(x)=-x+r \sqrt{\max \left\{x+x^{2}, 0\right\}} .
$$

For any $r>0, x^{*}=0$ is a strict local minimum of $\varphi_{r, \frac{1}{2}}(x)$.

4. Applications: Evaluating American Option Price

We apply the lower order penalty method to evaluating American option price.
V denote the value of an American put option with strike price K and expiry date T,
x denote the price of the underlying asset,
$\sigma(t)$ denote the volatility of the asset,
$r(t)$ be the interest rate,
V^{*} be the final (payoff) condition defined by

$$
V(x, T)=V^{*}(x)=\max \{K-x, 0\}
$$

$I=(0, X)$, where $X \gg K$.

It is known that V satisfies the following linear complementarity problem (LCP)

$$
\begin{align*}
L V(x, t) & \geq 0 \tag{4.4}\\
V(x, t)-V^{*}(x) & \geq 0 \tag{4.5}\\
L V(x, t) \cdot\left(V(x, t)-V^{*}(x)\right) & =0 \tag{4.6}
\end{align*}
$$

a.e. in $\Omega:=I \times(0, T)$, where the Black-Scholes differential operator is

$$
L V:=-\frac{\partial V}{\partial t}-\frac{1}{2} \sigma^{2}(t) x^{2} \frac{\partial^{2} V}{\partial x^{2}}-r(t) x \frac{\partial V}{\partial x}+r(t) V
$$

* Inequality (4.4) is equivalent to

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2}(t) x^{2} \frac{\partial^{2} V}{\partial x^{2}}+r(t) x \frac{\partial V}{\partial x} \leq r(t) V,
$$

which says that the return from the portfolio cannot be greater than the return from a bank deposit.

* Inequality (4.5) means that the early exercise is permitted.

Let $H_{0}^{1}(I)=\left\{v \in H^{1}(I): v(0)=v(X)=0\right\}$.
Introduce a new variable

$$
u(x, t)=-e^{\beta t}\left(V(x, t)-V_{0}(x)\right)
$$

where

$$
\beta=\sup _{0<t<T} \sigma^{2}(t) .
$$

Then LCP can be formulated as the following modified LCP:

$$
\begin{aligned}
\mathcal{L} u(x, t) & \leq f(x, t), \\
u(x, t)-u^{*}(x, t) & \leq 0, \\
(\mathcal{L} u(x, t)-f(x, t)) \cdot\left(u(x, t)-u^{*}(x, t)\right) & =0,
\end{aligned}
$$

a.e. in Ω, where $\mathcal{L}:=-\frac{\partial}{\partial t}-\frac{\partial}{\partial x}\left[a(t) x^{2} \frac{\partial}{\partial x}+b(t) x\right]+c(t)$ is the self-adjoint form with

$$
a=\frac{1}{2} \sigma^{2}, \quad b=r-\sigma^{2}, \quad c=r+b+\beta, \text { and } f(x, t)=e^{\beta t} L V_{0}(x),
$$

Let $k>0$ be a parameter and $[a]_{+}=\max \{a, 0\}$. The l_{k} power penalty approach is to solve a sequence of nonlinear partial differential equations of the form

$$
\mathcal{L} u_{\lambda}(x, t)+\lambda\left[u_{\lambda}(x, t)-u^{*}(x, t)\right]_{+}^{1 / k}=f(x, t), \quad(x, t) \in \Omega
$$

with the given boundary and final conditions

$$
u_{\lambda}(0, t)=0=u_{\lambda}(X, t) \quad \text { and } \quad u_{\lambda}(x, T)=u^{*}(x, T),
$$

where $\lambda>0$ and $k>0$ are parameters.
This is called a penalized LCP.
Let $H(I)$ be a Hilbert space and

$$
\|v\|_{L^{2}(0, T ; H(I))}=\left(\int_{0}^{T}\|v(\cdot, t)\|_{H}^{2} d t\right)^{1 / 2}
$$

Theorem 4.1 (Arbitrary order convergence rate) Let $k>0$ and

- u be the solution to modified;
- u_{λ} be the solution to penalized $L C P$.

If $u_{\lambda} \in L^{1+1 / k}(\Omega)$ and $\frac{\partial u}{\partial t} \in L^{k+1}(\Omega)$, then there exists a constant $C>0$, independent of u, u_{λ} and λ, such that

$$
\left\|u-u_{\lambda}\right\|_{L^{\infty}\left(0, T ; L^{2}(I)\right)}+\left\|u-u_{\lambda}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(I)\right)} \leq \frac{C}{\lambda^{k / 2}} .
$$

Remark

\diamond When $k=1$, the penalized LCP reduces the l_{1} penalty function used in Bensoussan and Lions (1978), and Glowinski (1984) where a square root convergence rate is obtained between the solution of the original equation and the penalized equation.
\diamond Forsyth and Vetzal (2002) has used the l_{1} penalty function for evaluating American option price.

Comments:

- This arbitrary order convergence rate allows one to achieve the required accuracy of the solution with a small penalty parameter.
- The lower order term $\left[u_{\lambda}(x, t)-u^{*}(x, t)\right]_{+}^{1 / k}$ is non-Lpischitz, which may cause some disadvantage in numerical implementation of the penalized LCP.
- Small scale examples have shown that the penalized LCP is computable.

5. Conclusions

- Lagrange-type functions, in particular, some non-Lipschitz cases, have shown satisfactory theoretical advantages.
- But it is still a challenge task how to efficiently solve these (optimization or LCP) problems with non-Lipschitz data.

THANK YOU!

