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1. Lagrange-type Functions

Consider the following problem P(f, g):

mlnf(x) SllbjeCt toxr € Xag(x) - (gl(x)7 o ,gm(.il?)) < 07

where X is a metric space, f and g; are real-valued functions defined on
X. We assume that

e the set X) = {x € X : g(z) < 0} is nonempty;
e the objective function f is bounded from below on X.

Let €2 be a set of parameters and i : R X R™ x {2 — R be a function. Let
n € R. Then the Lagrange-type function is defined by

L(z,w)=h(f(z) —n,9(z);w)+n, zeXwel, (1.1

where h is called a convolution function.



e If /1 is linear with respect to the first variable, more specifically:
h(u, v;w) = u + x(v;w),

where x : R™ X {2 — R is a real-valued function, then the parameter 7) can be
omitted. Indeed, we have

L(z,w) = f(x) + x(g9(z);w).

e One of the possible choices of the number 77 is 7 = f(z,) where x, is a
reference point, in particular x, is a solution of P(f,g). Then the Lagrange-
type function has the form

Liz,w) = h(f(@) = f(.), g(@)iw) + f(z.), @€ X,weQ



The Lagrange-type function (1.1) includes linear Lagrange functions, classical
penalty functions, nonlinear Lagrangian functions and augmented Lagrange
functions as special cases:

1) Let h(u, v;w) = p(u,wivy, -+ Wty Ep(u, v) = u+ Y 1", v;, then we
obtain the linear Lagrange function

L(z,w) = p(f(z) = n,w101(2), - - ,Wngm(®)) + 1 = f(z +szgz

2) Let h(u,v;w) = p(u,wivy, -+, Wytn), plu,v) = u + > v where
v = max(v, 0). Then we obtain the classical (l1near) penalty function

La,w) = f(z) + 3 wigla)*
i=1
If p(u,v) = u+ > ;" (v;")? then we obtain the quadratic penalty function

L) = fa) + Y w(aa))



3)Let 2 = R” and p : R"*™ — R be an increasing function bounded from
below satisfy the following two properties:

(A) there are numbers a; > 0, - - , a,, > 0 such that
p(u, vy, -+, vy) > max(u, a1vy, - ¢, GpUy), u > 0,0 € R™;

(B)Letb > 0. p(u,0,---,0) <wu, forallu>b.

Define
h(u, v;w) = plu, wivg, -+ W)

We obtain nonlinear Lagrange functions:
L(:Ua CU) — p(f('x) — 1, ngl(x)p U 7wmgm(aj)) + 1.
For example:
Pr(Yo, Y15+ Ym) = (Yo + 91+ +yp)t, 0< K,

Dioo(Yos Yty - - -5 Ymp) = MAX ;.

0<2<m



4) Augmented Lagrangians

Let
e 0 : R" — R be an augmenting function, i.e., o(0) = 0 and o(z) > 0, for

2 #0,;
o) C {(y,r):y € R™,r > 0} be aset of parameters satisfying (0,0) €
and (y,r) € ) implying (y,7’) € , forall 7’ > r.

Leth : R X R™ x {2 — R be the convolution function defined by

hu, v;(y, 7)) = inf (u—ly, 2] +7r0(2))

z4+v<0

= u+ Zirvlio(—[y, z| +ro(z)).

Then the Lagrange-type function, corresponding to 17 = 0, coincides with the
augmented Lagrangian, that is,

L(z,(y,7)) = h(f(z),9(x);(y,7))
= f(x)+ inf (—[y,z]+ro(2)),

z+g(z)<0

where x € X, (y,r) € R™ x ).



Three special cases of augmenting function o:

(1). Convex augmenting function (Rockafellar and Wets (1998)): o is lower
semi-continuous and convex, 1.€.,

otz + (1 —t)z) < to(z)+ (1 —t)o(z), te(0,1);

(i1). Level-bounded augmenting function (Huang and Yang (2003)): o is a
level-bounded function, i.e., for any o > 0, the set {z|o(2) < «} is bounded;

(i11). Peak-at-zero augmenting function (Rubinov, Huang and Yang (2002)): o
1s a peak-at-zero function, 1.e., if

() o(z) <0=0(0)forall z € Z,

(ii) for each A > 0, supy>, 0(2) < 0.

It is clear that Convexity = Level-boundedness = Peak-at-zero.



Examples of
augmenting functions

Convex augmenting function

=) — G

Level-bounded Negative of Peak-at-zero
augmentimg function augmenting function



Remarks

e Augmented Lagrangian scheme with convex augmenting functions guarantee
the existence of a zero duality gap without any convex or generalized convex
assumption on the data, see Rockafellar and Wets (1998).

e Augmented Lagrangian scheme with level-bounded augmenting functions in-
clude the following lower order (non-Lipschitz) penalty functions in Luo, Pang
and Ralph (1986) and Pang (1997) as special cases (v > 0):

fl@)+r (iﬁ(@) . f(@) +rmax{g) (x), -, gn(x)}]"

With 1 >~ > 0,
¢ these penalty functions are exact under weaker conditions than that required
for the classical [; exact penalty functions

¢ they have been intensively studied through so-called error bounds and suc-
cessfully applied to the study of mathematical programs with equilibrium con-
straints.



2. Zero Duality Gaps

Consider problem P(f, g):
mlnf(ﬂf) SUbjGCt tox € X7g(x) - (gl(aj)) N ,gm($)> < 07

where X is a metric space, f and g; are real-valued functions defined on X, and
a convolution function /& : R x () — R and the corresponding Lagrange-

type function
L(z,w) = h(f(2z) —n,g(x);w) +1.

The dual function ¢ : 2 — R = RU {—o00, +00} of P(f, g) with respect to
h and 7 is defined by

q(w) = inf h(f(z) —n,g(7);jw) +1, w €

zeX

Consider the dual problem to P( f, g) with respect to i and 7):

max q(w), subject to w € .



Theorem 2.1 Assume that, for any € € (0, b), there exists 0 > 0 such that

sup h(u, v;w) <wu, V(u,v) € [b,+00) x R™;
weld
ug2 h(u,v;w) >u—¢€, Yu>b s(v) <9;

and that, for each ¢ > 0, there exists w € §) such that
h(u,v;w) > cs(v), Yu>bve R™,

where s : R™ — R is such that s(v) < 0 <= v € R". Assume further that
(f1) The function f is uniformly positive on X;

(f2) The function f is uniformly continuous on an open set containing X;
(g) The mapping g is continuous and the set-valued mapping

D(0) ={r € X : s(g(x)) < 0}

is upper semi-continuous at the point 0 = (.

Then the following zero duality gap property holds:

inf f(z) = sup inf 2(f(2), g();w).

e Xy weN T



Examples that the conditions on h are satisfied:

Nonlinear Lagrangian functions:
Let an increasing function p : R™™ — R bounded from below satisfy the
following two properties:

(A) there are numbers a; > 0, -- - , a,, > 0 such that
p(u, vy, -+, vy) > max(u, avy, ¢, GpUy), u > 0,0 € R™;

(B)Letb > 0. p(u,0,---,0) <wu, forallu>b.

Define h : [b, +00) X R™ x () — R by
h(u, v;w) = p(u, wivg, -+, W)
Then h satisfies all conditions in Theorem 2.1 with

r(v) = iﬁ@Xm(O, A1, * 5 AUy ).



Zero duality gap and l.s.c. of perturbation function

Let b > 0. Define a convolution function h : [b, +00) X R™ X {2 — R by
h(uv v; CU) — p(ua Wiy, - - 7wmvm>7

where p : R, X R™ — R is an increasing function.

Consider the P( f, g) with uniformly positive objective function f on X. Let L
be the Lagrange-type function defined by

L(I, w) — p(f(x)a wlgl(x)7 Co ,wmgm(x)).
The zero duality gap means that

inf = sup inf L(z,w).

x€Xy we TEX

Define the perturbation function 3(y) of P(f, g) by
Bly) =nf{f(z):z € X,g(z) <y}, yeR"



p(u,0,,) <wu, forallu > 0. (2.2)

Theorem 2.2 Let p be a continuous increasing function satisfying (2.2). Let the
zero duality gap property with respect to p hold. Then the perturbation function
B is lower semi-continuous at the origin.

Further assume that p satisfies the following property: there exist positive num-
bers aj, - -+ , a,, such that, for all u > 0, (vy, - - ,v,,) € R™, we have

P, vy, -+, V) > max(w, Gy, QU (2.3)

Theorem 2.3 Assume that p is an increasing convolution function that pos-
sesses property (2.3), in addition to (2.2). Let perturbation function [ of prob-
lem P(f,qg) be lower semi-continuous at the origin. Then the zero duality gap
property with respect to p holds.



Equivalences among zero duality gaps
Recall that two properties (A) and (B) of p are:

(A) there are numbers a; > 0, - - - , a,, > 0 such that
pu, vy, -+ V) > max(u, vy, ApUy), u > 0,0 € R™

(B)Letb > 0. p(u,0,---,0) <wu, forallu>b.

Let p be an increasing function with properties (A) and (B), and

F(ajvw) - (f(x)vwlgl(x)a T 7wmgm(aj))a

where w = (wy, -+ ,w;,) € R andx € X.

The nonlinear Lagrangian dual function corresponding to ¢ is defined as

d(w) = infexp(F(z,w)), w € RT.



Recall that the augmented Lagrangian function is

Lz, (y,7)) = f(x) + it (=ly,z] +7r0o(2)).

z+g(z)<0

Theorem 2.4 Consider the constrained program (P(f,g)).

If the augmenting function o is continuous at 0 € R™ and the increasing
function p defining the nonlinear Lagrangian dual function ¢(d) is continuous,

then the following two statements are equivalent:

(i) Augmented Lagrangian zero duality gap with a level-bounded augmenting
function holds:

inf f(x)= sup inf L(x, (y,7)).

r€Xo (y,r)€R™x(0,400) reX

(ii) Nonlinear Lagrangian zero duality gap holds:

inf f(.flf) — SupweRTinfoXp<F(x7w>)'

reXy



3. [Exact Penalty Representations

Let X = R". Recall that the augmented Lagrangian function is

Lz, (5,7) = f(@) + _int_(~[y,2] +710(2)).

+9(2)<0

Definition 3.1 Consider the constrained program (P(f, g)) and the associated
augmented Lagrangian L(x,(y,r)). A vector y € R™ is said to support an
exact penalty representation if there exists 7 > 0 such that

inf f(:lj) — inf{L(:E, (ga T)) SES Rn}7 Vr>r1

z€Xy

and
argmin (P(f,g)) = argmin L(x, (y,7)), Vr >Tr,

where “argmin (P(f,g))” denotes the set of optimal solutions.

Recall the perturbation function 5(y) of P(f, g) by

B(y) = inf{f(z) 1z € X,g(z) <y}, yeR™



Theorem 3.1 Let 0 be a level-bounded augmenting function. The following
statements are true:

(i) If y supports an exact penalty representation for the problem (P(f, g)), then
there exist 7 > 0 and a neighborhood W of 0 € R™ such that

Bu) = B0) + |9, u] = To(u), VueW.

(ii) The converse of (i) is true if

(a) B(0) is finite;
(b) there exists 7' > 0 such that

inf{ f(z,u) — [y,u] +7o(u): (x,u) € R" x R} > —o0;

(c) there exist T > 0 and N > 0 such that o(u) > 7||u|| when ||u|| > N.



Consider the [;, penalty problem:

m

1/k
inf sor,kcc):(f<x>+rz<max{o,gl—<x>}>’f) Cr20

reX 5
=1

Theorem 3.2 Let k € (0, 1. Suppose that X, # () and T is a local minimum of
(P(f,q)). Thereis a q > 0 such that T is a local minimum of the k-th power
penalty problem if and only if the following generalized calmness condition

lim inf Blu) — BO)

w0 Y S

> —00,
or, for some constant M,

B(u) > B(0) + Mzm:uf, Y small u > 0.

1=1

Remark Burke (1991) obtained the result in the above theorem when k£ = 1.



Estimating the exact penalty parameter

Let X = R". We say that the pair (z*, \*) satisfies the second order sufficient
condition of (P) if

V.L(z*, ) =0

gi(z*) <0, i=1,---,m

X >0, i=1,---,m

Aigi(x*) =0

y'V2L(z*, )y > 0, foranyy € V(z*)

where L(z, \) = f(x) + D%, Nigi(x), and

VIigi(x*)y =0, i€ A(z*)
(x%)y <0, i€ Bx*) (7

- }’gz( *):O,A;>O},
B(CE*) - {iE{l,-'- 7m}’9@( *)207 )‘;ZO}'



Consider the nonlinear programming problem (P(f, g)):

(P) min  f(x)
s.t. gi(x) <0,i=1,---,m,
r e R",

Consider the following penalty problem:

(B min f(z) + 03 (g (@)

TER"

Theorem 3.3 (Han and Mangasarian (1979)) Let k = 1. Suppose that the pair
(x*, \*) satisfies the second order sufficient condition. Then, x* is a strict local
minimum of the penalty problem (Py,) for any ¢ > maxj<;<, AL

Theorem 3.4 Let k € (0, 1). Suppose that the pair (x*, \*) satisfies the second
order sufficient condition. Then x* is a strict local minimum of the penalty
problem (P,) for any q > 0.



Example 3.1 Consider the following nonlinear programming problem:

min —x
st. x4+2°<0.

The pair (z* = 0, A\* = 1) satisfies the second order sufficient condition.

Case 1. k = 1.
¢r1(T) = —x + 7 max{z + z°,0}.

If r > 1, then x* = 0 is a strict local minimum of ¢, 1(z).
If r < 1, then 2* = 0 is not a local minimum of ¢, ; ().

Case 2. k = %

pri(z) = —x + T\/max{a: + 22,0}.

For any r > 0, z* = 0 is a strict local minimum of ¢, 1(z).



4. Applications: Evaluating American Option
Price

We apply the lower order penalty method to evaluating American option price.

V' denote the value of an American put option with strike price I and expiry
date T,

x denote the price of the underlying asset,
o (t) denote the volatility of the asset,
r(t) be the interest rate,

V* be the final (payoff) condition defined by
Ve, T)=V"(x) =max{K — z,0},
I =(0,X), where X >> K.



It is known that V" satisfies the following linear complementarity problem (LCP)

LV(x,t) > 0 (4.4)
Vi, t) —V*(x) > 0 (4.5)
LV (x,t)- (V(z,t)—V*(z)) = 0 (4.6)

a.e. in () := I x (0,T), where the Black-Scholes differential operator is

ov 1 0*V oV
LV = —— — —¢° e —
Vv i (t)x 57 r(t)x 5 +7r(t)V,
* Inequality (4.4) is equivalent to
oV 1, . OV oV
— + =0 ()" == Hoe— < r(t
> -+ 57 (t)x 92 + 7( )x&c < r(t)V,

which says that the return from the portfolio cannot be greater than the return
from a bank deposit.

* Inequality (4.5) means that the early exercise is permitted.



Let H\(I) = {v € HY(I) : v(0) = v(X) = 0}.
Introduce a new variable

u(z,t) = =P (V(z,t) — Vo(z))

where
B = sup o(t).
0<t<T
Then LCP can be formulated as the following modified LCP:
Lu(z,t) < f(z,1),
u(z,t) —u(z,t) < 0,
— ()7

(Lulz,t) = f(2,1)) - (u(z,t) = w'(z,1))
( )]

a.e. in ), where L: = — 2 [a(t)z*2 + b(¢

form with

+ ¢(t) is the self-adjoint

SBIQD

1
a = 502, b=r—0% c=7r+b+p,and f(z,t) = " LV,(z),



Let k£ > 0 be a parameter and [a], = max{a,0}. The [, power penalty
approach is to solve a sequence of nonlinear partial differential equations of the
form

Luy(z,t) + Mua(z, t) — w(z, )]V = flx, 1), (z,t)€Q
with the given boundary and final conditions
ur(0,t) =0 =u)(X,t) and wuy(z,T)=u"(z,T),
where A > 0 and £ > 0 are parameters.

This is called a penalized LCP.

Let H(I) be a Hilbert space and

T 1/2
o]l 20z = ( / ||v<-,t>||zdt) |



Theorem 4.1 (Arbitrary order convergence rate) Let k > 0 and
® 1 be the solution to modified;
® U be the solution to penalized LCP.

Ifuy, € L'V"(Q) and % € L"(Q), then there exists a constant C' > 0,
independent of u, uy and )\, such that

C
e = wallz=orzzay + llw = will oz < 337

Remark

© When k£ = 1, the penalized LCP reduces the [; penalty function used in
Bensoussan and Lions (1978), and Glowinski (1984) where a square root
convergence rate is obtained between the solution of the original equation and
the penalized equation.

¢ Forsyth and Vetzal (2002) has used the [; penalty function for evaluating
American option price.



Comments:

e This arbitrary order convergence rate allows one to achieve the required
accuracy of the solution with a small penalty parameter.

e The lower order term [uy(z,t) — uw*(z,t)])/" is non-Lpischitz, which may
cause some disadvantage in numerical implementation of the penalized LCP.

e Small scale examples have shown that the penalized LCP is computable.



5. Conclusions

e Lagrange-type functions, in particular, some non-Lipschitz cases, have shown
satisfactory theoretical advantages.

e But it is still a challenge task how to efficiently solve these (optimization or
LCP) problems with non-Lipschitz data.

THANK YOU !
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