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KURDYKA-LOJASIEWICZ INEQUALITY AND ERROR BOUNDS
OF D-GAP FUNCTIONS FOR NONSMOOTH AND
NONMONOTONE VARIATIONAL INEQUALITY PROBLEMS

MINGHUA LI*, KAIWEN MENG!, AND XIAOQI YANGH#

Abstract. In this paper, we study the D-gap function associated with a nonsmooth and non-
monotone variational inequality problem. We present some exact formulas for the subderivative,
the regular subdifferential set, and the limiting subdifferential set of the D-gap function. By virtue
of these formulas, we provide some sufficient and necessary conditions for the Kurdyka-Lojasiewicz
inequality property and the error bound property for the D-gap functions. As an application of our
Kurdyka-Lojasiewicz inequality result and the abstract convergence result in [Attouch, et al., Con-
vergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-
backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137(2013)91-129], we
show that the sequence generated by a derivative free descent algorithm with an inexact line search
converges linearly to some solution of the variational inequality problem.
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1. Introduction. In this paper, we consider a variational inequality problem
(VIP) of finding z € K such that

<PK$)7y —'$> Z 0 Vy € I(v

where K is a closed and convex subset of R™ and the mapping F' : R* — R” is
locally Lipschitz continuous and not necessarily monotone. (VIP) has many applica-
tions in various fields such as mathematical programming, traffic network equilibrium
problems and economics. We refer the reader to the very informative book [10] by
Facchinei and Pang for the background information and motivations of (VIP).

One popular approach to study (VI) is based on reformulating (VIP) as equiv-
alent constrained/unconstrained optimization problems through the consideration of
appropriate gap (merit) functions; see [1, 2, 7, 10, 11, 13, 15, 16, 17, 19, 22, 25, 26, 27,
28, 29, 30, 33, 34, 36, 38, 39]. Among various reformulations in the literature, we recall
that Z solves (VIP) if and only if Z solves the following unconstrained optimization
problem with 0 as its optimal value:

min  fop(x) = fo(x) — folz),

ESING

where b > a > 0, and for each ¢ > 0,

fo(a) = max{(F(x).x —y) = 5lly — I},

While f. is known as the regularized gap function [1, 11] with ¢ being the regularized
parameter, f,p is often known as the D-gap function [28] with ‘D’ standing for the
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2 M. H. LI, K. W. MENG, AND X. Q. YANG

"difference’ of two parameterized regularized gap functions. By replacing the quadratic
term in defining f. with some general term having very similar properties as those of
the quadratic term, the corresponding generalized regularized gap and generalized D-
gap functions have also been extensively studied in the literature; see [18, 19, 36, 39].

The (generalized) differentiability properties of these regularized gap and D-gap
functions have been extensively investigated, and have been utilized to study the prop-
erty of error bounds [10] and the property of the Kurdyka-Lojasiewicz (KL, for short)
inequality [9]. The latter properties have played very important roles in convergence
analysis for algorithms designed based upon gap functions.

We review a few of typical results related to the (generalized) D-gap function
as follows. Peng [28] showed that if F' is continuously differentiable and strongly
monotone, the D-gap function is also continuously differentiable and its square root
provides a global error bound for (VIP). Yamashita et al. [39] introduced the general-
ized D-gap function and obtained its continuous differentiability by assuming that F’
is continuously differentiable. Moreover, by assuming that F' is strong monotone and
that either F' is Lipschitz continuous or K is compact, they showed that the square
root of the generalized D-gap function provides a global error bound for (VIP), and
that the sequence generated by a descent algorithm with an inexact line search con-
verges to the unique solution of (VIP). Based on the D-gap function and by assuming
that F' is continuously differentiable and monotone, Solodov and Tseng [32] devel-
oped two unconstrained methods that are similar to the feasible method in Zhu and
Marcotte [40] which is based on the regularized gap function. By assuming that F is
locally Lipschitz continuous, Xu [37] obtained a formula for the Clarke subdifferential
set of the D-gap function, and a global convergence result for a descent algorithm
with an inexact line search under the circumstance that F' is strongly monotone and
Lipschitz continuous. By the same assumption that F' is locally Lipschitz continuous,
Ng and Tan [23] obtained some formulas for the Clarke directional derivative and the
Clarke subdifferential set of the D-gap function. By assuming that F' is coercive and
locally Lipschitz continuous, and by introducing a condition expressed in terms of the
Clarke generalized Jacobian of F, Li and Ng [18] showed that the square root of the
generalized D-gap function provides a local error bound for (VIP), and by virtue of
which, they proved that any cluster point of the sequence generated by a descent algo-
rithm with an inexact line search is a solution of (VIP), and that the convergence rate
is linear when F' is smooth, strongly monotone and VF' is locally Lipschitz continu-
ous. Note that Li and Ng [18] also provided some formulas for the Clarke directional
derivative and the Clarke subdifferential set of the generalized D-gap function, which
were very crucial for their arguments. Later Li et al. [19] established some error
bound results for the generalized D-gap function by assuming that F' is (Lipschitz)
continuous, locally monotone and coercive.

From the literature review above, it is clear to see that most of the existing
results for error bounds and the convergence of a descent algorithm were obtained by
assuming that F' is strongly monotone, with an exception being that, the error bound
result in Li and Ng [18], though having difficulty in verification, was applied to some
cases when F' is nonmonotone. As for the property of the KL inequality, there is
almost no result, to the best of our knowledge, presented in a straightforward way for
the case when F' is locally Lipschitz continuous. By examining the definition for the
KL inequality (see Definition 2.4 below) and the theory of error bounds in [5, 21], it
is reasonable that the notion of the subderivative, the regular/Fréchet subdifferential
set, and the general /limiting subdifferential set (see Definition 2.2) should have played
a role in studying the generalized differentiability properties of the regularized gap
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KURDYKA-LOJASIEWICZ INEQUALITY AND ERROR BOUNDS 3

and D-gap functions. But it is quite surprising that there is no such a related result in

the literature for the case when F' is locally Lipschitz continuous and not necessarily

monotone.

To fill this gap, we will investigate the KL inequality and error bounds of the
D-gap function for nonsmooth and nonmonotone (VIP) by providing formulas for the
subderivative and the (limiting) subdifferential sets of the D-gap functions, and as an
application of our result for the KL inequality and the abstract convergence result
in [4] for inexact descent methods, we will establish the linear convergence rate for a
descent algorithm with an inexact line search.

The main contributions of the paper are as follows.

(i) We obtain a number of exact formulas for the subderivatives, the regular/Fréchet
subdifferential sets, and the general/limiting subdifferential sets of the regu-
larized gap function f. and the D-gap function fy;, respectively. See Propo-
sitions 3.2-3.4 below. Taking the limiting subdifferential set 0 fq;(Z) of fap at
a point Z for instance, we obtain

Ofap(T) = D*F(Z) (m(Z) = ma()) = b(mp(Z) — ma(2)) + (b — a)(Z — 7a (7)),

where D*F(Z) denotes the coderivative of F' at Z (cf. Definition 2.6), and
me(x) = Pk (x - %) for any given & > 0 with Pk (-) being the projection
operator onto K. To the best of our knowledge, these formulas have not
been seen from the literature, although, as mentioned above, exact formu-
las have been obtained for the Clarke directional derivatives and the Clarke
subdifferential sets of f. and f,p, respectively.

(i) By virtue of the formula obtained for the general/limiting subdifferential set of
the D-gap function f,;,, we present a few sharp results on the properties of
the KL inequality and the error bounds for f,;. In particular, by assuming

that the following inequality holds for some p > 0 and for all x € R™ where
F is differentiable:

(1.1) (VF(2)(ma(2) = my(2)), ma(z) = mp(2)) > pllma(@) — my(2)|]?,

which can be considered as a restricted (weaker) notion of strong monotonic-
ity, we show that

d(0,0fap()) = pllmy(2) — ma(2)[| - Var € R,

and that fg; is a KL function with an exponent of %, and moreover that some
local/global error bound results holds. See Theorem 4.7 below.

(iii) By assuming (1.1) and applying our result on the KL property for fu,, we ob-
tained the linear convergence rate for a derivative free descent algorithm,
which is essentially the same algorithm as those studied in [15, 18, 29, 30, 37,
39]. See Theorem 5.6 below. Starting from any initial point zq, the algorithm
generates a sequence {x,} in the manner of 2,11 = x, + t,d,, where d, is
the search direction, either being mq(z,) — 2, or mq(zy,) — mp(zy), and ¢, is
the stepsize determined by an Armijo line search. Under some other mild
assumptions, except for (1.1), we show that the stepsize sequence {¢,} has a
positive lower bound ¢* > 0 (cf. Proposition 5.4 below), and moreover the
following hold (cf. Proposition 5.5 below):

fab(wn-&-l) - fab(xn) S *M1||xn+l - xn||2

This manuscript is for review purposes only.



124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140

142
143
144
145
146
147
148
149

161
162
163
164

165

4 M. H. LI, K. W. MENG, AND X. Q. YANG

and

40,0 (2)) < T2 i1 2l
where M; and M, are two positive constants. That is, the sequence {z,}
satisfies the assumptions (H1), a variant of (H2), and (H3) proposed in
[4], and our convergence analysis falls into the framework of the abstract
convergence for inexact descent methods studied in [4].

The outline of the paper is as follows. Section 2 is about notation and terminology,
and some mathematical preliminaries. In section 3, we present some exact formulas for
the subderivatives, the regular/Fréchet subdifferential sets, and the general/limiting
subdifferential sets of the regularized gap function f. and the D-gap function fg,
respectively. By virtue of these formulas for the D-gap function, we present in Section
4 some sufficient and necessary conditions for the error bound property and the KL
inequality property. As an application of our KL inequality result and the abstract
convergence result in [4] for inexact descent methods, we show in section 5 that the
sequence generated by a descent algorithm (based upon the D-gap function) with an
inexact line search converges linearly to some solution of (VIP).

2. Notation and Mathematical Preliminaries. Throughout the paper we
use the standard notations of variational analysis; see the seminal book [31] by
Rockafellar and Wets. The Euclidean norm of a vector x is denoted by ||z||, and
the inner product of vectors z and y is denoted by (z,y). Let A C R™ be a
nonempty set. We denote by conv A the convex hull of A. The polar cone of A
is defined by A* := {v € R" | (v,2) < 0 Vo € A}. The distance from z to A
is defined by d(z, A) := inf,ca ||y — z||. The projection mapping P, is defined by
Pa(w) i={y € A| |y — ol = d(z, A)}.

DEFINITION 2.1. Let C CR"™ and let x € C.

(i) The tangent cone to C at x is denoted by Tc(x), i.e., w € Te(x) if there exist
sequences ty | 0 and {wy} C R™ with wy, — w and x + tywy € C Vk.
(ii) The regular normal cone to C at x is denoted by N (), i.e., v € No(z) if

(w,z—Z) <ol||lx —z|) forallxzeC.

Another way of defining the regular normal cone is via the equality ]\Afc(x) =
Tc(li)*

(iii) The normal cone to C at x is denoted by Nc(x), i.e., v € No(x) if there exist
sequences T — ¢ and vy — v with x, € C and vy € J/\\fc(xk) for all k.

(iv) C is said to be regular at x in the sense of Clarke if it is locally closed at x (i.e.,
CNU is closed for some closed neighborhood U of ) and N¢(x) = Ne ().

Let f: R® — R := RU {400} be an extended real-valued function. We denote
the epigraph of f by epi f := {(z,a) | f(z) < a}. The lower level set with a level of «
is defined and denoted by [f < a] := {z € R™ | f(z) < a}. In a similar way, we define
[f<al:={zeR"| f(z)<aland [a< f < p]:={z e R" | a< f(z) < 8}

DEFINITION 2.2. Let f : R — R be an extended real-valued function and let T be
a point with f(T) finite.

(i) The vector v € R™ is a regular/Fréchet subgradient of f at T, written v € 0f(Z),
if
f@) z2 f(2) + (v, = 2) + ||z — ).

This manuscript is for review purposes only.
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KURDYKA-LOJASIEWICZ INEQUALITY AND ERROR BOUNDS 5

(ii) The vector v € R™ is a general/limiting subgradient of f at T, written v € f(T),
if there exist sequences x, — T and vy — v with f(zr) — f(Z) and v, €

(iii) The function f is said to be (subdifferentially) reqular at T if epi f is reqular in
the sense of Clarke at (Z, f(Z)) as a subset of R™ x R.

(iv) The subderivative df (z) : R™ — R is defined by

4 (F)w) = Timinf LEF) = @)

tl0,w’ —w t

Remark 2.3. The regular subgradients can be derived from the subderivative as
follows [31, Exercise 8.4]:

Af(z) = {v € R*|(v,w) < df (z)(w) Yw € R"}.

Following [3, 6, 20], we introduce the notion of the Kurdyka-Lojasiewicz (KL, for
short) inequality.

DEFINITION 2.4. For a proper lower semicontinuous function f : R — R :=
R U {%o0}, a point T € R™ with 0f(z) # 0, and some « € [0,1), we say that f
satisfies the KL inequality at T with an exponent of «, if there exist pu,e > 0 and
v € (0, +00] so that

d(0,0f(x)) = p(f(x) — f(2))"

whenever ||z — Z|| <€ and f(Z) < f(x) < f(Z) +v. If f satisfies the KL inequality at
every x € R™ with 0f(x) # () and with the same exponent o, we say that f is a KL
function with an exponent of «.

Following [10], we introduce the notion of local and global error bounds as follows.

DEFINITION 2.5. For a proper function f : R® — R and a set C C R", we say
that f has a local error bound on C' if there exist two positive constants T and € such
that for allx € [f <N C

d(z,[f <0]NC) < 1tmax{f(z),0}.
Furthermore, we say that f has a global error bound on C' if there exists a constant

7 > 0 such that the above inequality holds for all x € C.
DEFINITION 2.6. Let S : R™ = R™ be a set-valued mapping and (Z,u) € gph S :=

{(z,u) [ue S(x)}
(i) The graphical derivative of S at T for u is the mapping DS(Z | @) : R™ = R™
defined by
z€ DS(Z | a)(w) <= (w,2) € Typns(Z, ).
(ii) The regular coderivative of S at T for @ is the mapping D*S(z | w) : R™ = R"
defined by

o* € D*S(z | u)(u*) < (z*, —u*) € Nypn 5(Z, ).

(iii) The coderivative of S at T for @ is the mapping D*S(Z | @) : R™ = R™ defined
by
z* € D*S(z | u)(u") <= (2, —u") € Ngpn s(Z, Q).
Here the notation DS(Z | @), D*S(z | 4) and D*S(z | @) is simplified to DS(z),
D*S(z) and D*S(z) when S is single-valued at T, i.e., S(T) = {u}.

This manuscript is for review purposes only.
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6 M. H. LI, K. W. MENG, AND X. Q. YANG

DEFINITION 2.7. Let F be a single-valued mapping defined on R™, with values in
R™.
(i) F is globally Lipschitz continuous if there exists k € Ry := [0, 00) with

IF(2") = F(z)|| < &ll2’ -zl Vo,2" € R™

Then k is called a Lipschitz constant for F.
(ii) F is locally Lipschitz continuous at a point T € R™ if the value

F(z')—F
lip F(Z) := limsup H(x)/_(:z:)”
z,x’ =T, xFx! ||£L' - .%'H
is finite. Here lip F(Z) is the Lipschitz modulus of F at T.
(iii) F is locally Lipschitz continuous if F is locally Lipschitz continuous at every
z e R™
LEMMA 2.8. Let f : R® — R be an extended real-valued function and let T be
a point with f(Z) finite. Assume that f is locally Lipschitz continuous at T. The
following properties hold:
(a) Of(Z) is nonempty and compact.
F ) — F(3
(b) df(@)(w) = g in 1T T,
(c) 9f(z) = conv(0f(z)), where df (%) denotes the Clarke subdifferential set of f at

x.

Proof. (a-c) can be found in [31, Theorem 9.13, Exercise 9.15, Theorem 9.61],
respectively. ]

LEMMA 2.9. Assume that F': R™ — R™ is locally Lipschitz continuous at a point
Z € R™. The following properties hold:
(a) D*F(z)(0) = {0}, which is also sufficient for F being locally Lipschitz continuous

at T.

(b) The mappings DF(Z) and D*F(Z) are nonempty-valued and locally bounded.
(¢) [[2I] < (lip F(z) ]| holds for all (w, ) € gph(DF(z)).
(d) ||lz*|] < (lip F(z)) ||u*|| holds for all (u*,x*) € gph(D*F(Z)).
(e) z € DF(z)(w) if and only if there is some ¥ | 0 such that w — z.

Proof. (a) follows directly from the Mordukhovich criterion [31, Theorem 9.40]. (b-
d) follow from [31, Proposition 9.24]. (e) follows from the definitions of the graphical
derivative and the local Lipschitzian continuity. O

Assume now that F' : R” — R™ is a locally Lipschitz continuous function and
let D be the subset of R™ consisting of the points where F' is differentiable. By the
Rademacher Theorem [31, Theorem 9.60], F is differentiable almost everywhere with
R™\ D being negligible. For each Z € R", define

(2.1) VF(z) = {A € R™" | 3a¥ — 7 with z¥ € D, VF(2") — A},

in terms of which, the generalized Jacobian F(x) [8, Definition 2.6.1] of F' at Z can
be written as

(2.2) OF (z) := conv VF(z).

According to [31, Theorem 9.62], VF(Z) is a nonempty, compact set of matrices, and
for every w € R™ and y € R™ one has

(2.3) conv D*F(z)(y) = conv{ATy | Ac VF(z)} = {ATy | A € convVF(z)}

This manuscript is for review purposes only.
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KURDYKA-LOJASIEWICZ INEQUALITY AND ERROR BOUNDS 7

and
(2.4) conv D, F(z)(w) = conv{Aw | A€ VF(Z)} = {Aw | A € convVF ()},

where D, F(Z) stands for the strict derivative mapping of F' at Z [31, Definition 9.53],
and has the following definition by taking into account that F' is locally Lipschitz
continuous:

(2.5) D.F(z)(w):={z|3r" 10,2 — T with (F(z" + 77w) — F (")) /7" — z}.

Note that D, F(Z) is also known as the Thibault’s strict derivative (cf. [35]), and that
by definition

(2.6) gph DF(z) C gph D, F(Z).

DEFINITION 2.10. [10] Let C be a subset of R™, and let F be a single-valued
mapping defined on R™, with values in R™. F is said to be coercive on C if

(Fla).x—y) _

1m
z€C, ||z]|—o0 ||l

holds for all y € C' (if C is bounded, then F is by convention coercive on C); and F
is said to be strongly monotone on C (with modulus p > 0) if (F(x) — F(y), = —y) >
wllx — y||? holds for all x,y € C.

3. Subderivatives and subgradients of gap functions. In the remainder
of the paper, we make the following blanket assumptions on problem data and some
constants, and for the sake of simplicity, we will not mention them in stating a result.

e K C R" is a nonempty closed and convex set.
e F:R™ — R" is a locally Lipschitz continuous function.
e a,b,c are fixed positive numbers with a < b.

The aim of this section is to study subderivatives and subgradients of f,; and f,
at some Z by virtue of the graphical derivative DF(Z) and the coderivatives, D*F ()
and ZA)*F(:E), and frequently, the following projection operator associated with F, K

and some & > 0:
7T§(.Z‘) = PK (:L‘— Féx)) .

To begin with, we summarize below some basic properties of the regularized gap
function f. and the D-gap function f,;, most of which can be found in the literature
and are useful for further development in the sequel.

LEMMA 3.1. The following properties hold:

@ 52l = mE + glme) ~ e < fule) < Sl =@ = o)
o ()||?.

(0) lImo(@)—ma(@) ]| < 22| [r—ma(@) || and [lz—mp(@)]] < |lo—Ta(@)]] < Lllo—my(@)]].

(c) =z € R™ solves (VIP) & x = me(x) for any € > 0 < for(y) > far(z) =0 for all
yeR" &z e K and f.(y) > fo(x) =0 forally € K.

(d) (a(x —ma(2)) = b(z — 7p(x)), Ta(2) — mp(2)) = 0.

(e) ma(x) = mo(x) € Tap(x, F, K) := T (my(x)) N (=Tk (wa(2))) N (F(2))"

(£) ma, 7, Te, fe and fap are locally Lipschitz continuous. If F is globally Lipschitz
continuous, then wy, T, Te, fe and fq, are also globally Lipschitz continuous.

This manuscript is for review purposes only.
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(g) The following hold:

arg max, e { (F(@),z = y) = §lly - al*} = {me(2)} v >0,
fol@) = (F(),x — mo(®)) — &l|x — mela)|2,
funl@) = (F(@), m(x) — 70 (@) — &Iz — 7a(@)][2 + L[z — my ()|

Proof. (a) and (b) can be found in [32, Lemma 1] and [23], respectively. (c) can
be found in [11] and [36]. (d) and (e) can be found in [18, Lemma 4.4] or in [10,
Theorem 10.3.4]. (f) can be found in [19, Lemma 3.1]. (g) can be found in [36] or
deduced from standard optimality condition for convex programs. This completes the
proof. 0

3.1. Subderivatives and subgradients of f.. We first present the formulas
for the subderivative, the regular subdifferential set and the limiting subdifferential
set of f. at a point Z.

PROPOSITION 3.2. Let T € R™ and let w € R™. We have the following formulas:

Ao(@)(w) = (F(@), w) +min{(DF(F) - el)w, & - (7)),
7)= (DF(@) —cl) (z — 7.(2) + F(2),
z) = (D*F(z) — cl) (z — 7(7)) + F(Z).

Proof. Let w € R™ be fixed. Since F is locally Lipschitz continuous, it follows
from Lemma 2.9 (b) and (e) that for any continuous function M : R — R™,

.. F@+tw)— F(z) B .
(3.1) hrﬁ%)nﬂ ; , M(t)) = UEDIII%%%(M)(& M(0)).

By Lemma 3.1 (f), f. is a locally Lipschitz continuous function, which implies by
Lemma 2.8 (b) that df.(Z)(w) = liminf,}o w In view of Lemma 3.1
(g), we have for all ¢, f.(z) > (F(z),z — (T + tw)) — §||z — 7(Z + tw)||?, and
Je(Z +tw) = (F(T + tw), T + tw — 7(ZT + tw)) — 5||T + tw — me(Z + tw)||?. This,
together with (3.1) and the fact that 7. is locally Lipschitz continuous (cf. Lemma
3.1 (f)), implies that

B .. P+ tw) — F(x)
de(@)(w) < limint( : 7

T — me(T +tw)) + ltiﬁ}(F(j + tw), w)
c

lim $(2(z — 7.(z -
+ tlﬁ)12< (T — (T + tw)) + tw, —w)

= guin (0.7 = we(7)) + (F(@), w) ~ efF — me(@), )

=: (F(&), w) + min((DF(Z) — cI)w, T — 7.(T)).

To prove the inequality in the other direction, we simply follow a similar way by
observing from Lemma 3.1 (g) that for all ¢, fc(‘) = (F(z),z—7.(Z )) |z —me(2)]?,
and fo(T + tw) > (F(Z + tw), T + tw — m.(Z)) — §[|Z + tw — m(7)]|?.

To get the formula for d fe(Z), we resort to the formula for df.(Z) and the equality

This manuscript is for review purposes only.
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in Remark 2.3. Specifically, in terms of © := F(Z) — ¢(Z — 7.(Z)), we have

v € df.(T)
(v,w) <

w) + min(DF(Z)(w),Z — 7.(Z)) Vw € R™,
51— me()) V(w,2) € gph(DF (7)) = Tepn r (7, F(7)),
(U -0, -7+ 7T-C(j: ) € (TgphF('f7F(‘f)))* = gphF(i‘7F(i‘))v

~

v—10€ D*F(Z)(Z — 7.(T)).

rret

This gives us the formula for 0, fe(Z).
To show O0f.(Z) C U := (D*F(z) — cl) (T — 7.(T)) + F(Z), let v € 0f.(Z). Then

o~

by the formula for df.(zy), there are some x, — & and vy — v such that

(Uk — fl_;k’ﬂ'c(,fck) — .Ik) S ]/\}gphF('r]mF(xk)) vk’

where Uy, := F(xy) — c(xp — 7e(zg)). In view of the fact that F' and 7, are locally
Lipschitz continuous functions (cf. Lemma 3.1 (f)), we have o, — F(Z) — ¢(Z —
(%)), xp — we(xy) = T — m(Z), and hence (v — F(Z) + (T — 7c(Z)), () — T) €
Ngph 7(Z, F(Z)), or in other words, v — F/(Z) + ¢(Z — m.(Z)) € D*F(z)(z — m.()).
This verifies that v € U and hence that 0f.(Z) C U.
To show U C 9f.(Z), let v € (D*F(Z) — ¢I) (Z — w.(Z)) + F(Z). Then we have
z € D*F(Z)(Z — (%)) <= (2, —T + 7c(Z)) € Ngph r(Z, F(T)),

where z := v + ¢(Z — 7.(Z)) — F(Z). According to the definition of normal cone (cf.
Definition 2.1) and the definition of regular coderivative (cf. Definition 2.6), there
exist x — T, 2z — z and wg — T — 7.(Z) such that for all k,

(2, —wg) € nghF(l’k,F(ﬂ?k)) <= (21, —wy) € (gph DF(zy))",
or explicitly,
(3.2) (2, w) — (xg — Te(mh), 2) < (Wi — x + 7e(Tk), 2) V2 € DF(xp)(w).
By the Cauchy-Schwarz inequality and Lemma 2.9 (c), we have for all k,

(Wi — xp + me(ar), 2) < exflwl| V2 € DF(zx)(w),
where e, := lUpF (z1)||wr — xx + 7c(zk)||. It then follows from (3.2) that for all &,
(zi, w) < min(DF(xg)(w), vk — me(z)) + exljw]| Yw € R™.

By the formula for the subderivative df.(zx)(w), we have for all k,
(3.3) (zr — c(xp — me(zp)) + Fxk), w) < dfe(zr)(w) + exljw]| Yw e R™.
In view of the fact that F' and 7. are locally Lipschitz continuous functions (cf.
Lemma 3.1 (f)) and by letting ¥ — 400, we have z; — c(ap — 7e(zx)) + F(zr) —
z—c(Z—m.(Z))+ F(Z) = v, and €, — 0 (due to lip F () being upper semicontinuous

([31, Theorem 9.2]) and wy, — x, + mc(xx) — 0). Then by [31, Proposition 10.46] and
(3.3), we have v € 9f.(z). This completes the proof. d
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10 M. H. LI, K. W. MENG, AND X. Q. YANG

By virtue of the formula for the limiting subdifferential set 9f.(Z) in Proposition

3.2, we can easily get the formula for the Clarke subdifferential set 0f.(Z), which has
been obtained first in [37, Lemma 3.2].

COROLLARY 3.3. Let T € R™. We have
0f.(z) = (OF (z)" — cI) (z — m.()) + F(2),

where OF (z) denotes the generalized Jacobian of F at & (cf. (2.2)).

Proof. By Lemma 3.1 (f) and Lemma 2.8 (c), f. is locally Lipschitz continuous
and hence 0f.(Z) = conv(9f.(Z)). The formula for df.(Z) then follows directly from
Proposition 3.2 and the coderivative duality (2.3). This completes the proof. O

3.2. Subderivatives and subgradients of f,,. In parallel fashion as we have
done in subsection 3.1, we present in this subsection some differential properties of
the D-gap function f,;. Most of the proofs are omitted because they are very similar
with the corresponding ones in subsection 3.1.

PROPOSITION 3.4. Let & € R™ and w € R™. We have the following formulas:
dfop(Z)(w) = (b — a)(Z — 7 (Z), w) + min((DF(z) — bl) w, m(Z) — 7o (Z)),
Ofar(@) = (D" F(@) = bI) (m(3) = 7a(@)) + (b~ @) (& — 7a(2)),
O fap(z) = (D*F(Z) — bI) (4 (Z) — 7a(Z)) + (b — a)(T — 7a(T)).

Proof. In view of the fact that f,, = fo — fp is a locally Lipschitz continuous
function, we have

fa(@ +tw) = fo() _ fo(Z +1w) = f(2)
t t

Af b (Z) (W) = lir?ig)nf [

According to Lemma 3.1 (g), we have for all ¢, f,(z) > (F(z),Z — ﬂa(f—i—tw)} Sllz—
To(Z + tw)||? and fo(Z + tw) > (F(Z + tw), Z + tw — m(T)) — ]| + tw — m,( |2
This, together with (3.1) and the fact that 7, and m;, are locally Llpschltz continuous
functions (see Lemma 3.1 (f)), implies that

dfop(Z)(w) < lim inf(F(i + tw) — F(T)

ni , b (T) — ma (T + tw))

a ||z +tw — 7, (T + tw)||> — ||1Z — 7o (Z + tw)][?

— lim =
10 2 t
b |7 + tw — my(2)|* — ||7 — m(2)|]?
+lim
tl0 2 t

= (b(z — m(7)) — a(z — (7)), w) + veDr?%g)(w)<U’7Tb(I) a(T)).
To prove the inequality in the other direction, we simply follow a similar way by
observing from Lemma 3.1 (g) that for all ¢, fo(Z+tv) > (F(Z+tv),T+tv—m,(T)) —
40|z + tv — o (T)||* and fu(z) > (F(2), 2 — m(T + tv)) — L[|z — my(Z + tv)||?. This
completes the proof of the formula for dfy;(Z)(w). The other two formulas can be
obtained in a similar way as we have done in Proposition 3.2. ]

COROLLARY 3.5. Let x € R™. The following properties hold:

This manuscript is for review purposes only.
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(a) We have the formula for the Clarke subdifferential set of fup at T as follows:
Ifar(@) = (OF ()" — bI) (my(T) — 70 (7)) + (b — a)(& — 7a ().

(b) Z solves (VIP) if and only if 0 € fuu(Z) and 7, (T) = mp(T).

Remark 3.6. The formula for df,;(z) was first obtained in [37, Lemma 3.3], and
then in [23, Theorem 4.1] and [18, Theorem 3.1] for some generalized D-gap functions.
According to the generalized Fermat’s rule [31, Theorem 10.1], the condition

(3.4) 0 € 9far(7)
is necessary for T to be locally optimal for the optimization problem
min fep(z) st. x €RY,

and hence necessary for Z to be a solution of (VIP) (cf. Lemma 3.1 (c¢)). Another
necessary condition for Z to be a solution of (VIP) is, by Lemma 3.1 (c), the equality

(3.5) Ta(Z) = ().

Although these two necessary conditions together become sufficient for z to be a
solution of (VIP), it is interesting to note that either one alone is not sufficient.

To see that (3.4) alone is not enough to guarantee that Z solves (VIP), we simply
consider the case that K = R" and F is smooth with VF(z)T F(z) = 0 but F(z) # 0,
for which case, (3.4) holds as f is smooth with Vf.,(z) = &2V F(z)TF(z) = 0,
but Z does not solve (VIP) as F(Z) # 0. In this case, (3.5) does not hold as it amount
to F(z) = 0.

To see that (3.5) alone is not enough to guarantee that & solves (VIP), we simply
consider the case that K = R and z € R"™ with F;(z) > 0 and Z; < 0 for all 4, for
which case, (3.5) holds as 7, (Z) = m,(Z) = 0, but Z does not solve (VIP) as T ¢ K.
In this case, (3.4) does not hold as 0 & 9f.(Z) = {(b — a)Z}.

It was shown in [18, Theorem 4.3] that Z solves (VIP) if and only if 0 € 0f.(7)
and

w€ Ty(z,F,K), Z¢cdF(x)
(3.6) = F(z)"w =0,
ZTw € Toy(z, F, K)*

where Typ(x, F, K) is a cone defined as in Lemma 3.1 (e). However, by resorting to
Corollary 3.5 (b) and noting that df.,(Z) = 0fap(Z) in the presence of (3.5), we can
refine [18, Theorem 4.3] as follows: # solves (VIP) if and only if 0 € 9f.,(Z) and
(3.5) holds. Note that m,(Z) and m(Z) are involved in the definition of Ty,(x, F, K).
So in contrast to the verification of (3.6), it is much easier to verify (3.5). It is also
noteworthy that (3.5) is implied by (3.4) whenever the inequality

(3.7) d(0,0fa()) = pl|my(Z) — 7a (Z)

holds for some p > 0. Inequalities in the form of (3.7) will play a crucial role in the
next section.

4. The Kurdyka-Lojasiewicz inequality and error bounds of f,;. In this
section, we study the KL inequality and error bounds for the D-gap function fg
by virtue of the formula for the limiting subdifferential sets 0fq;(x) presented in

This manuscript is for review purposes only.
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last section. Before summarizing our main results in Theorem 4.7, we present in
Lemmas 4.1-4.4 several results on necessary and sufficient conditions for the following
inequalities:

d(0,0fap(x)) = pllmy(z) — ma ()| Yz €V,

where V' is some open set in R”.

LEMMA 4.1. Let z € R™ and let p > 0. If d(0, 0 fap(x)) > pl|mp(x) — ma(2)]|, then

(1.1) 0(0,0fup(2)) > — 10— )

= mnﬂf — a(x)].

Proof. Let w := mp(x) — mq(z) and let u := x — m,(z). By invoking the for-
mula for Ofq(x) in Proposition 3.4, we can find some z* € D*F(x)(w) such that
d(0,0fap(x)) = ||2* — bw + (b — a)u||. Then we get (4.1), as we have

d(0,0 fap(x)) —lI2*[l = bllwll + (b = a)||ull

>
> —(b+lip F()) ]| + (b — a)lu|
> PR 40,0 fu(@) + (b — a) ul,

where the first inequality follows from the triangle inequality, the second one from
Lemma 2.9 (d), and the last one from the assumption that d(0,0f.p(x)) > wllwl.
This completes the proof. ]

LEMMA 4.2. Assume that lip F(x) is bounded from above on a monempty subset
V of R™, as is true in particular when V' is bounded. Then the following properties
are equivalent:
(a) There is some > 0 such that d(0,0fup(x)) > pr/far(z) Vr e V.
(b) There is some p > 0 such that d(0,dfq(x)) > pllz — me(2)]] Vo e V.
(c) There is some p > 0 such that d(0,0f.p(x)) > pl||lmp(z) — mo(z)|| Vo e V.
Therefore, fq, satisfies the KL inequality at any solution T of (VIP) with an exponent
of% if and only if any of (a), (b) and (c) holds with V' being some neighborhood of
z.

Proof. The relations (a) <= (b) = (c) follow directly from Lemma 3.1 (a). As
lip F'(z) is upper semicontinuous ([31, Theorem 9.2]), it follows from [31, Corollary
1.10] that lip F'(z) is bounded from above on each bounded subset of R”. We now
show (¢) = (b) by assuming that (c) holds with some p > 0 and that there is some
L > 0 such that lip F(z) < L Vz € V. By Lemma 4.1, we get (b) as we have

4(0,9fup(a)) > — 0= nb—a)

— = z- >
~ u+b+lip F(z) e = ma(@)] 2 p+b+ L

|z — ma(2)|| VeV
Let Z be a solution of (VIP). We first note that f,; is locally Lipschitz continuous
with fop > 0 and fo(Z) = 0 (cf. Lemma 3.1 (c¢)). Then f,;, satisfies the KL inequality
at Z with an exponent of 3 if, according to Definition 2.4, (a) holds with V being
some bounded neighborhood of Z. By the previous argument, (a), (b) and (c) are
equivalent whenever V' is bounded, and therefore the last assertion is true. This
completes the proof. ]

LEMMA 4.3. Assume that the solution set of (VIP) is nonempty. If there are
some p € (0,4+00) and ¢ € (0,400] such that

(4.2) d(0,0fap(x)) = pllme(z) = ma(2)[| Vo € [fap <el,

This manuscript is for review purposes only.



418

419

420

421

KURDYKA-LOJASIEWICZ INEQUALITY AND ERROR BOUNDS 13

and
(4.3) L= sup  lip F(z) < 400,
z€[0< fap<e]
then
(4.4)
b—a I
e —— <
Voo e e <o) < (Vi@ - vE) | Vo e0e), Vo€ [fu <<

which, in particular, implies the following error bound property:

ﬁﬂd@,mbgm)gm Vi € [fup < ).

w+b+L

Proof. Tt suffices to show (4.4) by assuming (4.2) and (4.3) for some given u €
(0,400) and € € (0, +00]. As the solution set of (VIP) is nonempty, we deduce from
Lemma 3.1 (c) that [fus < 0] # 0. In what follows, we assume that [0 < fup < €]
is nonempty, for otherwise (4.4) holds trivially. Fix any z € [0 < fop < €]. In

view of (4.2) and (4.3), we get from Lemma 4.1 that d(0, 8fab(x)) > —(&-b—i—)L”

7a(2)||. Then by Lemma 3.1 (a), we have d(0,0fqu(x)) > AV20 4 \/fab . By

= +b+L
- g%.l;((g;)) and hence d (0,0V/fas()) >

. Then by [21, Lemma 2.1 (ii’)], we have

[b—a p
VA fab —_—
| Jarl( p+b+ L’

where for a function f : R™ — R and a point § € R",

VFI(7) = limsup L& =W+
oz =7l

some direct calculation, we have 94/ fap(x)

b—a 7
2 pu+b+L

denotes the the strong slope of f at g, introduced by De Giorgi et al. [12]. As
x € [0 < fap < €] is chosen arbitrarily, we can apply [5, Theorem 2.1] to deduce that

inf inf /Jurl) = V0 = inf IV fab(2)

0<VO<E z€VOI<VTar<vE] d <x, {, [Fap < \/§D 2€[0<VFap<VE]

b—a I
p+b+ L’

from which, (4.4) follows readily. This completes the proof. d

Many existing conditions in the literature are sufficient for Lemma 4.2 (c) or
(4.2), as can be seen from the following lemma, where we also provide a new sufficient
condition which can be considered as some restricted strong monotonicity.

LEMMA 4.4. Let pp > 0 and let V- C R”™ be open. Consider the following properties:

This manuscript is for review purposes only.
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(a) F is strongly monotone on V with modulus p, which holds in the case of V' being
convez if and only if the following inequality holds for all x € V where F' is
differentiable:

(4.5) (VE(z)w, w) > pllw|®  Vw e R™.
(b) The following holds for all x € V where F is differentiable and fqp(x) > 0:
(VF@)w, w) > pllul? Vo € T (s, F, K).
(c) The following holds for all x € V where F is differentiable:
(VE(2)(ma(2) — my(2)), ma(@) — m(2)) = plma(z) — mp(@)]|*.

(d) d(0,0fun(2)) > pllmy(@) — ma(@)]| Vze V.
We have (a) = (b) = (c) = (d).

Proof. According to [14, Proposition 2.3 (b)], the following holds for all xz € V:
(4.6) (Zw, w) > pl|lw||* VZ € VF(z), Vw € R",

if F' is strongly monotone on V with modulus p, and the converse is true whenever
V is convex. As VF(z) € VF(x) when F is differentiable at z, (4.5) is implied by
(4.6). To show that (4.6) is implied by (4.5), let 2 € V and let Z € VF(z). By
the definition of VF(x) (cf. (2.1)), there is #; — z such that F is differentiable at
xy for all k and VF(zr) — Z. Then by (4.5), we have for all sufficiently large k:
(VF(z1)w, w) > pllw|]* Yw € R™, which implies (4.6) by letting k — oo.

By the previous argument, we get (b) from (a) in a straightforward way. To get
(c) from (b), it suffices to note the following facts: (1) 7o (z) — mp(x) € Tup(z, F, K)
(cf. Lemma 3.1 (e)); (2) mq(x) = mp(z) whenever fup(x) =0 (cf. Lemma 3.1 (c)).

We now show (c) = (d). Let x € V. Set w := mp(x) — 7o (x) and u := z — w4 ().
We first claim that the following holds for all z* € conv D*F(z)(w):

(4.7) (=", w) > pllw]|*.

By the coderivative duality (2.3) for a locally Lipschitz continuous mapping, we have
z* € {ATw | A € convVF(z)}. Then there exist a positive integer r and some
A? € VF(z) such that

T T T
(4.8) zt = (Z )\iAi> w = Z A (Ai)Tw,

where A* > 0 for all 4 and >.,_; A* = 1. For each A" € VF(z), there exists by
definition some sequence {z}} such that F is differentiable at zi for all k, 2} — z
and VF(z}) — A" as k — oo. Then by (c), we have for all k large enough,

(VF(z}) (ma()) — mo(2}), Ta(@)) — my(zy)) > pllme () — malh)].

Thus, by noting that 7, and m, are locally Lipschitz continuous and letting k — oo,
we get (A(m,(x) — mp(x)), ma(x) — mp(x)) = pl|mp(z) — 7a(2)]]?, or in terms of w,
(AYTw,w) > pl|lw||?. This, together with (4.8), yields (4.7).

By invoking the formula for 0f,,(z) in Proposition 3.4, we can find some z* €
D*F(z)(w) C conv D*F(x)(w) such that d(0,df.p(2z)) = ||2* — bw + (b — a)u||. Then
we get (d), as we have d(0, 0 f.(2)) |w|| > (5 —bw+ (b—a)u, w) > (z*,w) > u|wl?,

where the first inequality follows from the Cauchy-Schwarz inequality, the second one
from Lemma 3.1 (d), and the last one from (4.7). This completes the proof. d
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Remark 4.5. As VF(z) € VF(x) C OF (x) when F is differentiable at x, Lemma
4.4 (b) holds if the following holds for all € V' with f,(z) > 0:

(4.9) (ZTw,w) > pllw|? VZ € IF (x), Yw € Tup(z, F, K).

When V = R", the supremum of all possible positive u satisfying (4.9) can be refor-
mulated as

(4.10)  pap := inf{wT Zw | Z € OF (z), w € Top(z, F, K), ||w|| = 1, fap(x) > 0}.

The quantity pqp was first introduced for a general case in [18, Theorem 4.2], where
the condition g, > 0 was utilized to study the local error bounds for fu;.

Remark 4.6. Lemma 4.4 (c) can be reformulated as
(4.11)
(2", mp(x) — mo(2)) > pl|ma(z) — wb(x)||2 Vax €V, z* € conv D*F(x)(mp(z) — ma(2)),

(412)
(z,ma(x) — mp(2)) > pl|ma(z) — mp(2)]|> Vo €V, 2 € conv D, F(x)(m,(z) — mp(x)),

where D, F(z) stands for the strict derivative mapping of F at = (cf. (2.5)). As
VF(z)" (my(x) — Ta(2)) € conv D*F(z)(my(x) — ma())

and
VF(z)(me(x) — mp(x)) € conv D F(z)(me(z) — mp(2))

whenever F' is differentiable at = (cf. (2.3) and (2.4)), Lemma 4.4 (c) is clearly implied
by (4.11) or (4.12). In the proof of (¢) = (d) in Lemma 4.4, we have already shown
that (4.11) is implied by Lemma 4.4 (c). By the coderivative duality (2.4) for a locally
Lipschitz continuous mapping, we can show in a similar way that (4.12) is also implied
by Lemma 4.4 (c).

EXAMPLE 1. Let A € R™™ and q € R™ be such that g + rge A # {0}, where
rge A denotes the range space of A. Consider a (VIP) instance with K = R™ and
F(z) = Az + q. In this case, to find a solution of (VIP) is to find a solution to
the linear equation Ax + q = 0, which exists if and only if ¢ € rge A. Clearly, F is
continuously differentiable on R™ with VF(-) = A, implying that fup is continuously
differentiable on R™. By some direct computation we have

b—a

b—a
m(x) — ma(x) = W(AQJ"JFQ)’ Jav(z) = T‘LbHAerqIIZ,

and

ba—baAT(Az +q), Tuwp(z,F,K)={w]| {Az + ¢, w) < 0}.

Then in the case of V := R", Lemma 4.4 (a)-(d) can be reduced respectively to the

following:

(a) A — pl is positive-semidefinite on R™.

(b) A — pul is positive-semidefinite on at least one closed-half space containing the
origin and hence on the whole space R™.
(Therefore, (a) and (b) coincide, both of which implies that A is positive-
definite on R™ and that the linear equation Ax+q = 0 has a unique solution.)

V fab(x) =

This manuscript is for review purposes only.
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(c) A—pul is positive-semidefinite on the linear subspace R{q} +rge A, which entails
positive-semidefiniteness of AT AA—pAT A on R™ and is equivalent to it when
q € rge A. (The latter property can be fulfilled for a symmetric matriz A if and
only if A is positive-semidefinite and 0 < p < X\; with A; being any positive
eigenvalue of A.)

(d) AAT — u2I is positive-semidefinite on the linear subspace R{q} + rge A, which
entails positive-semidefiniteness of (AT A)? — 2 AT A on R™ and is equivalent
to it when q € rge A. (The latter property can be fulfilled as long as 0 < p <
Vi with \; being any positive eigenvalue of ATA.)

Therefore, in the case of q € rge A with A being symmetric and positive-semidefinitdll
(but not positive-definite), Lemma 4.4 (a)-(b) cannot hold, but Lemma 4.4 (¢) can as
long as 0 < p < X\; with A\; being any positive eigenvalue of A. This demonstrates that
Lemma 4.4 (c) can be strictly weaker than Lemma 4.4 (a)-(b). While in the case
of ¢ € rge A with A being symmetric but not positive-semidefinite, Lemma 4.4 (c)
cannot hold, but Lemma 4.4 (d) can as long as u is less than or equal to the square
root of the smallest positive eigenvalue of AT A. This demonstrates that Lemma ./
(d) can be strictly weaker than Lemma 4.4 (c).

THEOREM 4.7. Assume that any of (a)-(d) in Lemma 4.4 holds with some p > 0
and V =R". Then the following properties hold:
(@) fab is a KL function with an exponent of 3.
(b) If F is coercive on R™, then the solution set of (VIP) is nonempty and compact,
and v/ fap has a local error bound on R™, i.e., the following holds for any given
e>0:

b—a I

1 T d a < < a a S .

Ve e < 0)) < V) Vo€ [fu <]
where L is any number such that L > lip F(x) for all x € [0 < fop < €].

(c) If the solution set of (VIP) is nonempty and F is globally Lipschitz continuous
with a constant L > 0, then \/fqa has a global error bound on R™, i.e., the
following holds:

Vo e <0) < VTa) Ve R

Proof. For each x that is a solution of (VIP), it follows from Lemma 4.2 that fg;
is a KL function at  with an exponent of 5. For each z that is not a solution of (VIP),
we claim that 0 € dfq () and hence fgp is a KL function at x with an exponent of
0, for otherwise the inclusion 0 € Jf,p(z), together with the equality m,(z) = mp(x)
as can be guaranteed by Lemma 4.4 (d), would imply that z is a solution of (VIP)
(cf. Corollary 3.5 (b)). As a whole fu; is indeed a KL function with an exponent of
%. This verifies (a). B

To show (b), fix any € > 0 and let L := sup,cjo<y,, << lip F(2). By the coercive-
ness of F' on R” (hence on K), the solution set of (VIP) is nonempty and compact
(cf. [10, Proposition 2.2.7]), and the level set [fop < €] is bounded (cf. [18, Lemma
4.1]). Aslip F(z) is upper semicontinuous (cf. [31, Theorem 9.2]), it follows from [31,
Corollary 1.10] that lip F'(x) is bounded from above on each bounded subset of R"™.
So we have L < +o00. Then by Lemma 4.3, we get (b) in a straightforward way.

To show (c), we apply Lemma 4.3 again by noting that

sup lip F(z) < L.
z€[0< fap<+o0]

This manuscript is for review purposes only.
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This completes the proof. 0

Remark 4.8. In the presence of Lemma 4.4 (a) with some > 0 and V =R" (i.e.,
F is strongly monotone on R™ with modulus p), it was pointed out by [18, Remark 2.1
(ii)] that F' is coercive on R™. In this case, Theorem 4.7 (b) holds without explicitly
assuming coerciveness. While in the presence of Lemma 4.4 (b) with V' = R™ and
some p > 0, Theorem 4.7 (b) can be deduced from [18, Theorem 4.2](cf. Remark
4.5). To the best of our knowledge, all the results in Theorem 4.7, except for the

mentioned ones, are new.

ExXAMPLE 2 ([18], Example 4.4). Consider a (VIP) instance with K = R and

. . T
F : R? — R? being given by F(z) = (21 + (21)+(22)4, 22+ 2(z1)4) . Clearly, F
is differentiable at © € R? if and only if x129 # 0, and moreover,

1 'El'Z 1;[1 if:cl > 0,22 >0,
1 2O

VF(z)= 3 ifzy > 0,20 <0,
2
1 0 .
0 1 ) ifry < 0,29 #0.

Let a € (0,1) and b = 1. According to [18, Example 4.4], F is coercive on R%, \/fup
has a local error bound on R? (with some error bound modulus expressed in an abstract
way), and pqp > 1, where pqp is defined by (4.10).

In what follows, by virtue of Lemma 4.4 (c), we can show that e, = 1 and that
some error bound modulus expressed in an explicit way can be provided. First, by
some direct calculation, we have my(x) = (0,0)T for all x € R? and

-1
(a Ty, 0) mel Soax2207
a
T
a—1 a—1 )
Wa(x) _ 7Tb(!L') _ ( e T, e x2) if v1 < 0,22 <0,
a—1 3 r
0, —a2 — —21 if0 <y < 2oy,
a 2a
(0, 0)" otherwise.

Then it is straightforward to verify that the inequality
(VE(2)(ma(2) = my(2)), Ta(2) = mp(2)) > pl|ma(@) — my(x)||?

holds for all x € R? with x1w2 # 0 if and only if 0 < u < 1. That is, Lemma 4./ (c)
holds with V- = R? if and only if 0 < p < 1. As Lemma /.4 (c) is implied by Lemma
4.4 (b), we deduce that Lemma 4.4 (b) cannot hold with V.= R? and u > 1, which
implies that pap cannot be greater than 1 (c¢f. Remark 4.5). Therefore, we confirm
that pap, = 1. Furthermore, we can apply Theorem 4.7 to get the following: (i) fab is
a KL function with an exponent of %; (ii) /fap has a local error bound on R?, i.e.,
for any given € > 0,

ﬁ@d@,mbswsw Ve € [fup < &),

where L is any number such that L > sup,cio<y,, < ip F'(2).

5. A derivative free descent method for (VIP). In this section, we an-
alyze the convergence behavior of the following descent algorithm with an Armijo
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line search, which is essentially the same as those studied in [15, 18, 29, 30, 37, 39],

especially the same in the way how descent directions are chosen.

Algorithm

Step 1. Set 0 < a < b and 0 < p < 1. Choose three positive constants «, 8, 7 such
that 8 and 7 are small and that « is close to b — a. Select a start point
ro € R™, and set n = 0.

Step 2. If fo(x,,) = 0, stop. Otherwise, go to Step 3.

Step 3. Let uy, = mo(ryn) — zpn and wy, = 7 (Tn) — mp(xn). If Bllun|l < ||wn]|, set
d, = w, and select m,, as the smallest nonnegative integer m such that

(51) fab(xn + pmdn) - fab(xn) S _Tpm|‘dn||2

Otherwise, set d,, = u,, and select m,, as the smallest nonnegative integer m
such that

(5.2) Jav(Tn + p™dn) = fap(xn) < —(b—a—a) p™||dn|>.

Step 4. Set t, = p™", Tp41 = Ty + tpd, and n =n+ 1, and go to Step 2.
In what follows, we make the following assumptions.

Assumption (i) The level set [fup < fas(20)] is bounded, which can be guaranteed
by the coerciveness of F on R™ as pointed out by [18, Lemma 4.1].

Assumption (ii) F is globally Lipschitz continuous with a constant L > 0 (implying
that f.p, o and m, are all globally Lipschitz continuous).

Assumption (iii) There exists some p* > 0 such that the inequality

(VE(z)(ma(@) = my(x)), ma(z) = mp(2)) 2 p*||ma(z) — mp(2)]*

holds for all x € R™ where F is differentiable. This implies by Theorem 4.7
that f is a KL function with an exponent of %, and by Remark 4.6 and (2.6)
that

min 2, 7q(x) — mp(2)) > p*||me(z) — mp(2)||? Vo € R™.
B (ma() = m(@) 2 4 ra(e) — )|

Assumption (iv) The parameters a, 8,7 in the Algorithm are chosen such that

b—a N
O<B<m7 (b+L)B<0¢<b—a, 0<’T<,U/

To begin with, we give two technical lemmas, which are helpful for our further
analysis.

LEMMA 5.1. Under Assumption (ii), we have
[oll < (04 L)[|lmo(x) — ma(@)]| + (b — )|z — ma()| V& € R, Vv € 8 fap().

Proof. In view of Lemma 2.9 (d) and Assumption (ii), we get this result directly
from the formula for 0 f,,(x) presented in Proposition 3.4. The proof is completed. O

LEMMA 5.2. Consider a locally Lipschitz continuous function g : R™ — R. For
some x € R™ and w € R™"\{0}, assume that there are some o > 0 and 0 < ty < t1
such that

g(x +tow) — g(x) < —ato||w|* and g(x + tiw) — g(x) > —aty||jw||*.
Then there exist some 0* € (0,1) and v* € dg(z + 0*t1w) such that

g(x +tiw) — g(x) = t1(v*, w).

This manuscript is for review purposes only.
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Proof. Define ¢ : R — R by ¢(0) := g(z + 0tiw) — g(x) + 0[g(x) — g(z + t1w)].
Clearly, ¢ is locally Lipschitz continuous, and ¢(0) = ¢(1) = 0. Moreover, it follows
from the assumption that p(to/t1) = g(z+tow) —g(x) + (to/t1)[g9(x) — g(z+t1w)] < 0.
This entails the existence of at least one 6* € (0,1) such that ¢ attains its minimum
over [0,1] at 6*, implying by the Fermat’s rule that 0 € 9p(6*). In view of the
local Lipschitzian continuity of g, we get from the calculus rules [31, Exercise 8.8 and
Theorem 10.6] that 0p(0*) C g(x) — g(x +tiw) + {t1{v,w) | v € dg(x + 0*tyw)}. This
completes the proof. ]

PROPOSITION 5.3. Under Assumptions (ii)-(iv), Step & of the Algorithm is
well defined.

Proof. To show that Step 3 in the Algorithm is well defined, it suffices to show
that i Bllunl| < lwall, —d(—fas)(zn)(wn) < —rlwal?, and if Allunll > |jw,ll,
—d(—fap)(Tn)(un) < —(b—a — a)|lu,||*>. Following from the proof of the formula
for dfas(Z)(w) in Proposition 3.4, we get the formula for the subderivative of — fu;, at
a point & € R™ as follows:

—d(=fup)(Z)(w) = (b = a) (T — 7a(Z), w) —min((DF(Z) — bI) w, —75(Z) + 7a(T)).

In the case of Bl|u,|| < ||wy||, we have

—d(—fap)(@n)(wn)

(b(xn — mp(2n)) — a(®n — Ta(Tn)), wn) — minzeDF(xn)(wn)<Za W)
—MiNepp(a,)(wn) (2> Wn)

—p*[Jwn|[?

—7l[wall?,

VAR VAN VAN

where the first inequality follows from Lemma 3.1 (d), the second inequality follows
from Assumption (iii), and the third inequality follows from Assumption (iv). In
the case of f||uy|| > ||wnl|, we have

—d(=fap) (@) (un)
<b(l‘n - Trb(x’ﬂ)) - a(xn - ﬂ-a(xn))a un> - mianDF(:vn)(un)<Z7 wn>

- a)HunH2 + 0(ma(2n) — T (20), Un) + maxzeDF(zn)(un)<Zv —Wn)
a

—(b
< —[(b—a) = bB]|lunl[* + max.cDF (2, ) (un) (2 —Wn)
< —[(b—a) = bB]|[unll* + Lifun]| - [[wn]]
< =l —a) = (b+L)B|lunl®
< =[(b—a) = of||unl?,

where the first inequality follows by using the Cauchy-Schwarz inequality and the
inequality S||us|| > |lwg]|, the second inequality follows from Lemma 2.9 (¢) and
Assumption (ii), the third inequality follows from the inequality S||un|| > ||wnl],
and the last inequality follows from Assumption (iv). This completes the proof. O

PROPOSITION 5.4. Assume that the sequence {x,} generated by the Algorithm
satisfies fap(xn) > 0 for all n. Under Assumptions (ii)-(iv), there is some t* >
0 such that t, > t* for all n, i.e., the step length sequence {t,} generated by the
Algorithm has a lower bound.

Proof. Recall that in Step 3 of the Algorithm, we set w, := 74 (2y) — Tp, Wy, =
To(xn) — mp(zy), and dy, = uy, if Blluy|| > ||wn|, and d,, = wy, if B||lu,|] < |[wy]]. In
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view of the setting for d,, and our assumption that f.;(z,) > 0 for all n, we get from
Lemma 3.1 (c) that d,, # 0 for all n.

Suppose by contradiction that the step length sequence {t,,} does not have a
positive lower bound, i.e., by taking a subsequence if necessary we assume that ¢,, —
0+ as n — +o00. Due to t, = p™", we have m,, — +0co as n — +oo0. Without loss of
generality, we may assume that m,, > 1 for all n. In view of the line search strategy
in Step 3 of the Algorithm, we apply Lemma 5.2 to get

(5-3) fab(xn + Pmnildn) - fab(xn) = Pm"71<vnv dn> vn,

where v, € O fap(yn) With y, := 2, + 0% p™"~1d,, and 0} € (0,1). By the formula for
O fab(yn) in Proposition 3.4, there exists some 2 € D*F(m,(yn) — 7o (yn)) such that

(5.4) Un = 25 + 0(Yn — T (yn)) — a(yn — Ta(Yn))-
In view of Lemma 2.9 (d) and Assumption (ii), we have
(5.5) llzall < L7y (yn) — ma(yn)l]-
First, we consider the case that §|un| > ||wg| in Step 3. In this case, we
have d,, = u, = ma(xn) — 2, and y, := x, + 05 p™ lu,. Due to the line search

strategy proposed in the Algorithm, we have fup(2, + p™  tuy) — fap(2n) > —(b—
a — a)p™t||lu,||?. This, together with (5.3), (5.4) and (5.5), implies that

—(b—a—a)||un]|*< (vn, un)
= (2, un) + (0(Yn — 7 (Yn)) — a(Yn — Ta(yn)), un)
= (2, un) + b(Ta(Yn) — T (Yn), un) + (b — a)(Yn — Ta(Yn), un)
(5.6) < (L+)Imo(yn) = ma(yn)ll - [Junll = (b = a)(Ta(yn) — Yn, tn).

Moreover, by Assumption (ii), we have

17 (yn) = mo(yu)ll < llwnll + 17 (yn) — 7o (yn) — wall

< | + 17 (gn) = Ta )| + 70(5) = o) |
L
< Blhtnll + (1 4+ D)l = all + 1+ Pl —

L L « -
(57) — [+ @+ 2+ 0™ uall

170 (Yn) = Yn — Ta(Tn) + 20|
[7a(yn) — mal(zn) | + lyn — znl
2+ D)llyn — znll = 2+ £)07 0™ HJun]|-

[
g
2
|

17 (Yn) = Yn

IN N

The latter condition entails that

* My — u
(5.8) (Ta(Yn) = Yns un) = [Jun]|* + (2 + )9 Hlunl[*en, ”Tn”%
where ¢, := (zfz()ye’;)pfn%::m 7 having the property that [en|l < 1. Combining (5.6-
5.8), we have ‘
(5.9) —b-a-a) < (L+b)B+@2+L+ )0* pmn 1

—(b=a)[L+ 2+ L) 0" en, )]
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Next, we consider the case that S||u,| < ||wy|| in Step 3. In this case, we have
dp = wy = Tq(n)—mp (1) and y,, = 2, +07 p"™"Lw,. Due to the line search strategy
proposed in the Algorithm, we have fop (2, + p™" " Yw,) — fap(2) > —7p™ | |w, |2,
which, together with (5.3), (5.4) and (5.5), implies that
(5.10)

=7 |wnlf?

< (Un, wy)

= (25 +0(yn — m(Yn)) — a(yn — Ta(Yn)), wn)

< (o ma(yn) — mo(yn)) + (25, Wn — (Ta(Yn) — T6(Yn)))

+(b(Yn — T (Yn)) — a(Yn — Ta(yn)), wn — (Ta(Yn) — T (Yn)))
< —pHlma(yn) = mo(ya)l1? + (2 wn — (Ta(yn) — T (yn)))
+(bYn — m(Yn)) — a(yn — Ta(Yn)), wn — (Ta(yn) — m(Yn)))
< —ptlImalyn) = To(yn) | + Llma(yn) = To(yn)l| - [wn = (Ta(yn) = To(yn))l]

+(b = a@)l[ma(yn) = ynll + bllma(yn) = 7 (yn)l[Illwn — (Ta(yn) — 7o (yn))ll,

where the second inequality follows from Lemma 3.1 (d), the third one from Assump-
tion (iii), the last one from Cauchy-Schwarz inequality. Moreover, by Assumption
(ii), we have

L L I
(5.11) [ma(yn) = mp(yn) —wall < 24—+ )Ilyn nll = 2+—+4 )9 " Hwnll,

(5.12) 17a(yn) = m(yu)ll < [L+ (24 — = )9* P,

17a(yn) = ynll < llunll + [[7a(yn) = yn — unl|
L _
< lunll + 2+ —)np™" HJown||

(5.13) < % @4 D)0 |

and then there exists b, with ||b,|| < 1 such that

L L
(5.14) Ta(Yn) — To(Yn) = wn + (2 + w + 00" 1||wn”bn

b )
Combining (5.10-5.14), we have

L L

<l 2 2 D D0 ) (2 D0 )

IIwnII

L L L
L[1+(2+ + )9* m”‘l](2+ + )0* mn 1

+(b—a)[%+( )e* Mn—l}(2+L+ T

L L L L
(5.15) +b[1 + (2 + -+ 2)6rpm (2 + —+ =)0xpmn

b b

Our assumption that fup(x,) > 0 for all n suggests that there are infinitely many
positive integers n such that either S|u,|| > [lwy|| or Bllun|| < |lwn ||, implying that
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there are infinitely many positive integers n such that either the inequality (5.9) or
(5.15) holds. In view of p™»~1 — 0+, we have correspondingly either —(b—a — a) <
(L+0b)8—(b—a) or —7 < —p*, both contradicting to Assumption (iv). This
contradiction indicates that the step length sequence {t,} generated by the Algorithm
has a positive lower bound. This completes the proof. 0

PROPOSITION 5.5. Assume that the sequence {x,} generated by the Algorithm
satisfies fop(xn) > 0 for all n. Under Assumptions (ii)-(iv), the following inequal-
ities hold for all n:

(516) fab(xn+1) - fab(xn) S _M1||xn+1 - xn||2
and

M.
(517) 40, farlrn)) < L2 onss —

where My := min{b —a —a, 7}, My :=L+b+ I’_T“ and t* is a positive lower bound
of {tn}-

Proof. By Steps 3 and 4 of the Algorithm, we have 0 < t,, < 1, 41 = x5, +
tady, and fop(Tni1) — fap(n) < —Mity,||d,||? for all n, from which we get (5.16)
immediately. By Lemma 5.1, we have d(0,0fa(2y)) < (L + b)||wn|| + (b — a)||un]]
where L is given as in Assumption (ii), and w, = 7w,(z,) — m(z,) and u, =
Ta(Zn) — Ty, are set as in Step 3. If B)|uy|| < ||wy]|, we get from Steps 3 and 4 of the
Algorithm that ||zp+1 — @n|| = ta]|ws| and hence that

—a %|

b
(L +0)[[wnl[ + (0 = a)Jun]| < (L+b+ 3 Nwall = —=llznt1 = zall.

Alternatively if S||un|| > ||wn]||, we get from Steps 3 and 4 of the Algorithm that
|Zn+1 — Zn|| = tn|lun|| and hence that

b—a

Mo
Nunl| < T||9Cn+1 — Znll,
n

(L +0)l[wall + (b = a)lunl| < B(L + b+

where the second inequality follows from the fact that 0 < 8 < % < 1 according
to Assumption (iv). In both cases, we get (5.17) by noting that the existence of a
positive lower bound t* of {¢,} is guaranteed by Proposition 5.4. This completes the
proof. 0

THEOREM 5.6. Assume that the sequence {x,} generated by the Algorithm sat-
isfies fap(xy) > 0 for all n. Under Assumptions (i)-(iv), the following assertions
hold:

(a) The sequence x,, has a finite length, i.e., 320 ||2pt1 — Tal| < +o0.
(b) The sequence fqp(xy) converges Q-linearly to 0.
(¢) The sequence x,, converges R-linearly to a solution T of (VIP).

Proof. From Proposition 5.5, it follows that (5.16) and (5.17) holds with M :=
min{r,b —a —a}, My :=L+b+ b*T“ and t* being a positive lower bound of {t,}.
By Assumption (i), the level set [fup < fap(20)] is bounded, which, together with
(5.16), implies that the sequence {z,} is also bounded. Denote by Z any cluster
point of the sequence {z,}. By Assumption (iii), f satisfies the KL inequality at

T with an exponent of % In view of these facts and the continuity of f,;, we confirm
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that the sequence {x,} satisfies the assumptions (H1) and (H3) and a variant of
the assumption (H2) in [4]. Note that the assumption (H2) in [4] requires that
d(0,0fap(xn+1)), instead of d(0,0fup(xy)), has an upper estimate as in the form of
(5.17). In this case, [4, Theorem 2.9] cannot be applied directly, but we can still follow
the proof of [4, Theorem 2.9] to deduce the following: (i) (a) holds; (ii) x,, — & and
Sfav(xn) = fap(Z) as n goes to oo; and (iii) 0 € 9 f,p(Z). In view of Assumption (iii)
and Lemma 4.4, we have 7,(Z) = m(Z). Then by Corollary 3.5 (b), Z is a solution
of (VIP) or equivalently fq;(Z) =0 (cf. Lemma 3.1 (c)).

It remains to show the convergence rate. By the line search strategy in Step 3 of
the Algorithm, the following hold for all n:

(5.18) |dnll > Bllzn — ma(2n)l],
and
fab(l'n—i-l) _fab(zn) < _min{Tab_a_O‘}thdnHQ
(5.19) < —min{7,b—a— a}t*||d,|?
< 0.

In view of (5.18), we get from Lemma 3.1 (a) that ||d,||* > %fab(a:n), which,
together with (5.19) and the definition of My, implies that

2M *
fab(-rnJrl) S _Z\4lﬁ*||dn||2 + fab(xn> S (1 - %)fab(xn)a

and hence that,

fab(xn+1) 262M1t* .
(>20) falea) = e

Clearly, we have 0 < n < 1. Then by definition [24, pp.619-620], the sequence fup(xy,)
converges Q-linearly to 0. That is, (b) follows.

By the triangle inequality, the following holds for all positive integers n and m
with m > n: ||z, — Z|| < Y10, |@k+1 — 2k + ||zms1 — Z[|. In view of (a) and the
fact that ||zm41 — Z|| = 0 as m — oo, we have ;" ||zpt1 — zi|| + [|2my1 — || —
oo lzks1 — zx|| as m — oo, and hence ||z, — Z|| < >, llzk+1 — 2k In view of
(5.16) and (5.20), we further have

_ = | fan(wr) fan () ~ ffa(xn) 1
||:vn—:vH§k§:; i ST I;OW— T e

and%:q/%g\/ﬁ As 0 <n <1, we have 0 < /7 < 1. Then by definition

[24, pp.619-620], ¢, converges Q-linearly to 0, and x,, converges R-linearly to . This
completes the proof. O
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