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1. Introduction. In this paper, we consider a variational inequality problem18

(VIP) of finding x ∈ K such that19

〈F (x), y − x〉 ≥ 0 ∀y ∈ K,20

where K is a closed and convex subset of Rn and the mapping F : Rn → Rn is21

locally Lipschitz continuous and not necessarily monotone. (VIP) has many applica-22

tions in various fields such as mathematical programming, traffic network equilibrium23

problems and economics. We refer the reader to the very informative book [10] by24

Facchinei and Pang for the background information and motivations of (VIP).25

One popular approach to study (VI) is based on reformulating (VIP) as equiv-26

alent constrained/unconstrained optimization problems through the consideration of27

appropriate gap (merit) functions; see [1, 2, 7, 10, 11, 13, 15, 16, 17, 19, 22, 25, 26, 27,28

28, 29, 30, 33, 34, 36, 38, 39]. Among various reformulations in the literature, we recall29

that x̄ solves (VIP) if and only if x̄ solves the following unconstrained optimization30

problem with 0 as its optimal value:31

min
x∈Rn

fab(x) := fa(x)− fb(x),32

where b > a > 0, and for each c > 0,33

fc(x) := max
y∈K
{〈F (x), x− y〉 − c

2
||y − x||2}.34

While fc is known as the regularized gap function [1, 11] with c being the regularized35

parameter, fab is often known as the D-gap function [28] with ‘D’ standing for the36
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’difference’ of two parameterized regularized gap functions. By replacing the quadratic37

term in defining fc with some general term having very similar properties as those of38

the quadratic term, the corresponding generalized regularized gap and generalized D-39

gap functions have also been extensively studied in the literature; see [18, 19, 36, 39].40

The (generalized) differentiability properties of these regularized gap and D-gap41

functions have been extensively investigated, and have been utilized to study the prop-42

erty of error bounds [10] and the property of the Kurdyka- Lojasiewicz (KL, for short)43

inequality [9]. The latter properties have played very important roles in convergence44

analysis for algorithms designed based upon gap functions.45

We review a few of typical results related to the (generalized) D-gap function46

as follows. Peng [28] showed that if F is continuously differentiable and strongly47

monotone, the D-gap function is also continuously differentiable and its square root48

provides a global error bound for (VIP). Yamashita et al. [39] introduced the general-49

ized D-gap function and obtained its continuous differentiability by assuming that F50

is continuously differentiable. Moreover, by assuming that F is strong monotone and51

that either F is Lipschitz continuous or K is compact, they showed that the square52

root of the generalized D-gap function provides a global error bound for (VIP), and53

that the sequence generated by a descent algorithm with an inexact line search con-54

verges to the unique solution of (VIP). Based on the D-gap function and by assuming55

that F is continuously differentiable and monotone, Solodov and Tseng [32] devel-56

oped two unconstrained methods that are similar to the feasible method in Zhu and57

Marcotte [40] which is based on the regularized gap function. By assuming that F is58

locally Lipschitz continuous, Xu [37] obtained a formula for the Clarke subdifferential59

set of the D-gap function, and a global convergence result for a descent algorithm60

with an inexact line search under the circumstance that F is strongly monotone and61

Lipschitz continuous. By the same assumption that F is locally Lipschitz continuous,62

Ng and Tan [23] obtained some formulas for the Clarke directional derivative and the63

Clarke subdifferential set of the D-gap function. By assuming that F is coercive and64

locally Lipschitz continuous, and by introducing a condition expressed in terms of the65

Clarke generalized Jacobian of F , Li and Ng [18] showed that the square root of the66

generalized D-gap function provides a local error bound for (VIP), and by virtue of67

which, they proved that any cluster point of the sequence generated by a descent algo-68

rithm with an inexact line search is a solution of (VIP), and that the convergence rate69

is linear when F is smooth, strongly monotone and ∇F is locally Lipschitz continu-70

ous. Note that Li and Ng [18] also provided some formulas for the Clarke directional71

derivative and the Clarke subdifferential set of the generalized D-gap function, which72

were very crucial for their arguments. Later Li et al. [19] established some error73

bound results for the generalized D-gap function by assuming that F is (Lipschitz)74

continuous, locally monotone and coercive.75

From the literature review above, it is clear to see that most of the existing76

results for error bounds and the convergence of a descent algorithm were obtained by77

assuming that F is strongly monotone, with an exception being that, the error bound78

result in Li and Ng [18], though having difficulty in verification, was applied to some79

cases when F is nonmonotone. As for the property of the KL inequality, there is80

almost no result, to the best of our knowledge, presented in a straightforward way for81

the case when F is locally Lipschitz continuous. By examining the definition for the82

KL inequality (see Definition 2.4 below) and the theory of error bounds in [5, 21], it83

is reasonable that the notion of the subderivative, the regular/Fréchet subdifferential84

set, and the general/limiting subdifferential set (see Definition 2.2) should have played85

a role in studying the generalized differentiability properties of the regularized gap86
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and D-gap functions. But it is quite surprising that there is no such a related result in87

the literature for the case when F is locally Lipschitz continuous and not necessarily88

monotone.89

To fill this gap, we will investigate the KL inequality and error bounds of the90

D-gap function for nonsmooth and nonmonotone (VIP) by providing formulas for the91

subderivative and the (limiting) subdifferential sets of the D-gap functions, and as an92

application of our result for the KL inequality and the abstract convergence result93

in [4] for inexact descent methods, we will establish the linear convergence rate for a94

descent algorithm with an inexact line search.95

The main contributions of the paper are as follows.96

(i) We obtain a number of exact formulas for the subderivatives, the regular/Fréchet
subdifferential sets, and the general/limiting subdifferential sets of the regu-
larized gap function fc and the D-gap function fab, respectively. See Propo-
sitions 3.2-3.4 below. Taking the limiting subdifferential set ∂fab(x̄) of fab at
a point x̄ for instance, we obtain

∂fab(x̄) = D∗F (x̄) (πb(x̄)− πa(x̄))− b (πb(x̄)− πa(x̄)) + (b− a)(x̄− πa(x̄)),

where D∗F (x̄) denotes the coderivative of F at x̄ (cf. Definition 2.6), and97

πξ(x) := PK

(
x− F (x)

ξ

)
for any given ξ > 0 with PK(·) being the projection98

operator onto K. To the best of our knowledge, these formulas have not99

been seen from the literature, although, as mentioned above, exact formu-100

las have been obtained for the Clarke directional derivatives and the Clarke101

subdifferential sets of fc and fab, respectively.102

(ii) By virtue of the formula obtained for the general/limiting subdifferential set of103

the D-gap function fab, we present a few sharp results on the properties of104

the KL inequality and the error bounds for fab. In particular, by assuming105

that the following inequality holds for some µ > 0 and for all x ∈ Rn where106

F is differentiable:107

(1.1) 〈∇F (x)(πa(x)− πb(x)), πa(x)− πb(x)〉 ≥ µ||πa(x)− πb(x)||2,108

which can be considered as a restricted (weaker) notion of strong monotonic-
ity, we show that

d(0, ∂fab(x)) ≥ µ‖πb(x)− πa(x)‖ ∀x ∈ Rn,

and that fab is a KL function with an exponent of 1
2 , and moreover that some109

local/global error bound results holds. See Theorem 4.7 below.110

(iii) By assuming (1.1) and applying our result on the KL property for fab, we ob-111

tained the linear convergence rate for a derivative free descent algorithm,112

which is essentially the same algorithm as those studied in [15, 18, 29, 30, 37,113

39]. See Theorem 5.6 below. Starting from any initial point x0, the algorithm114

generates a sequence {xn} in the manner of xn+1 = xn + tndn, where dn is115

the search direction, either being πa(xn) − xn or πa(xn) − πb(xn), and tn is116

the stepsize determined by an Armijo line search. Under some other mild117

assumptions, except for (1.1), we show that the stepsize sequence {tn} has a118

positive lower bound t∗ > 0 (cf. Proposition 5.4 below), and moreover the119

following hold (cf. Proposition 5.5 below):120

fab(xn+1)− fab(xn) ≤ −M1||xn+1 − xn||2121
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and122

d(0, ∂fab(xn)) ≤ M2

t∗
||xn+1 − xn||,123

where M1 and M2 are two positive constants. That is, the sequence {xn}124

satisfies the assumptions (H1), a variant of (H2), and (H3) proposed in125

[4], and our convergence analysis falls into the framework of the abstract126

convergence for inexact descent methods studied in [4].127

The outline of the paper is as follows. Section 2 is about notation and terminology,128

and some mathematical preliminaries. In section 3, we present some exact formulas for129

the subderivatives, the regular/Fréchet subdifferential sets, and the general/limiting130

subdifferential sets of the regularized gap function fc and the D-gap function fab,131

respectively. By virtue of these formulas for the D-gap function, we present in Section132

4 some sufficient and necessary conditions for the error bound property and the KL133

inequality property. As an application of our KL inequality result and the abstract134

convergence result in [4] for inexact descent methods, we show in section 5 that the135

sequence generated by a descent algorithm (based upon the D-gap function) with an136

inexact line search converges linearly to some solution of (VIP).137

2. Notation and Mathematical Preliminaries. Throughout the paper we138

use the standard notations of variational analysis; see the seminal book [31] by139

Rockafellar and Wets. The Euclidean norm of a vector x is denoted by ||x||, and140

the inner product of vectors x and y is denoted by 〈x, y〉. Let A ⊂ Rn be a141

nonempty set. We denote by convA the convex hull of A. The polar cone of A142

is defined by A∗ := {v ∈ Rn | 〈v, x〉 ≤ 0 ∀x ∈ A}. The distance from x to A143

is defined by d(x,A) := infy∈A ||y − x||. The projection mapping PA is defined by144

PA(x) := {y ∈ A | ‖y − x‖ = d(x,A)}.145

Definition 2.1. Let C ⊂ Rn and let x ∈ C.146

(i) The tangent cone to C at x is denoted by TC(x), i.e., w ∈ TC(x) if there exist147

sequences tk ↓ 0 and {wk} ⊂ Rn with wk → w and x+ tkwk ∈ C ∀k.148

(ii) The regular normal cone to C at x is denoted by N̂C(x), i.e., v ∈ N̂C(x) if149

〈v, x− x̄〉 ≤ o(‖x− x̄‖) for all x ∈ C.150

Another way of defining the regular normal cone is via the equality N̂C(x) =151

TC(x)∗.152

(iii) The normal cone to C at x is denoted by NC(x), i.e., v ∈ NC(x) if there exist153

sequences xk → x and vk → v with xk ∈ C and vk ∈ N̂C(xk) for all k.154

(iv) C is said to be regular at x in the sense of Clarke if it is locally closed at x (i.e.,155

C ∩ U is closed for some closed neighborhood U of x) and N̂C(x) = NC(x).156

Let f : Rn → R := R ∪ {±∞} be an extended real-valued function. We denote157

the epigraph of f by epi f := {(x, α) | f(x) ≤ α}. The lower level set with a level of α158

is defined and denoted by [f ≤ α] := {x ∈ Rn | f(x) ≤ α}. In a similar way, we define159

[f < α] := {x ∈ Rn | f(x) < α} and [α < f < β] := {x ∈ Rn | α < f(x) < β}.160

Definition 2.2. Let f : Rn → R be an extended real-valued function and let x̄ be161

a point with f(x̄) finite.162

(i) The vector v ∈ Rn is a regular/Fréchet subgradient of f at x̄, written v ∈ ∂̂f(x̄),163

if164

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(||x− x̄||).165
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(ii) The vector v ∈ Rn is a general/limiting subgradient of f at x̄, written v ∈ ∂f(x̄),166

if there exist sequences xk → x̄ and vk → v with f(xk) → f(x̄) and vk ∈167

∂̂f(xk).168

(iii) The function f is said to be (subdifferentially) regular at x̄ if epi f is regular in169

the sense of Clarke at (x̄, f(x̄)) as a subset of Rn × R.170

(iv) The subderivative df(x̄) : Rn → R is defined by

df(x̄)(w) := lim inf
t↓0,w′→w

f(x̄+ tw′)− f(x̄)

t
.

Remark 2.3. The regular subgradients can be derived from the subderivative as
follows [31, Exercise 8.4]:

∂̂f(x̄) = {v ∈ Rn|〈v, w〉 ≤ df(x̄)(w) ∀w ∈ Rn}.

Following [3, 6, 20], we introduce the notion of the Kurdyka- Lojasiewicz (KL, for171

short) inequality.172

Definition 2.4. For a proper lower semicontinuous function f : Rn → R :=173

R ∪ {±∞}, a point x̄ ∈ Rn with ∂f(x̄) 6= ∅, and some α ∈ [0, 1), we say that f174

satisfies the KL inequality at x̄ with an exponent of α, if there exist µ, ε > 0 and175

ν ∈ (0,+∞] so that176

d(0, ∂f(x)) ≥ µ(f(x)− f(x̄))α177

whenever ‖x− x̄‖ ≤ ε and f(x̄) < f(x) < f(x̄) + ν. If f satisfies the KL inequality at178

every x ∈ Rn with ∂f(x) 6= ∅ and with the same exponent α, we say that f is a KL179

function with an exponent of α.180

Following [10], we introduce the notion of local and global error bounds as follows.181

Definition 2.5. For a proper function f : Rn → R and a set C ⊂ Rn, we say182

that f has a local error bound on C if there exist two positive constants τ and ε such183

that for all x ∈ [f ≤ ε] ∩ C184

d(x, [f ≤ 0] ∩ C) ≤ τ max{f(x), 0}.185

Furthermore, we say that f has a global error bound on C if there exists a constant186

τ > 0 such that the above inequality holds for all x ∈ C.187

Definition 2.6. Let S : Rn ⇒ Rm be a set-valued mapping and (x̄, ū) ∈ gphS :=188

{(x, u) | u ∈ S(x)}.189

(i) The graphical derivative of S at x̄ for ū is the mapping DS(x̄ | ū) : Rn ⇒ Rm190

defined by191

z ∈ DS(x̄ | ū)(w)⇐⇒ (w, z) ∈ TgphS(x̄, ū).192

(ii) The regular coderivative of S at x̄ for ū is the mapping D̂∗S(x̄ | ū) : Rm ⇒ Rn193

defined by194

x∗ ∈ D̂∗S(x̄ | ū)(u∗)⇐⇒ (x∗,−u∗) ∈ N̂gphS(x̄, ū).195

(iii) The coderivative of S at x̄ for ū is the mapping D∗S(x̄ | ū) : Rm ⇒ Rn defined196

by197

x∗ ∈ D∗S(x̄ | ū)(u∗)⇐⇒ (x∗,−u∗) ∈ NgphS(x̄, ū).198

Here the notation DS(x̄ | ū), D∗S(x̄ | ū) and D̂∗S(x̄ | ū) is simplified to DS(x̄),199

D∗S(x̄) and D̂∗S(x̄) when S is single-valued at x̄, i.e., S(x̄) = {ū}.200
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Definition 2.7. Let F be a single-valued mapping defined on Rn, with values in201

Rm.202

(i) F is globally Lipschitz continuous if there exists κ ∈ R+ := [0,∞) with203

‖F (x′)− F (x)‖ ≤ κ‖x′ − x‖ ∀x, x′ ∈ Rn.204

Then κ is called a Lipschitz constant for F .205

(ii) F is locally Lipschitz continuous at a point x̄ ∈ Rn if the value206

lipF (x̄) := lim sup
x,x′→x̄, x 6=x′

‖F (x′)− F (x)‖
‖x′ − x‖

207

is finite. Here lipF (x̄) is the Lipschitz modulus of F at x̄.208

(iii) F is locally Lipschitz continuous if F is locally Lipschitz continuous at every209

x̄ ∈ Rn.210

Lemma 2.8. Let f : Rn → R be an extended real-valued function and let x̄ be211

a point with f(x̄) finite. Assume that f is locally Lipschitz continuous at x̄. The212

following properties hold:213

(a) ∂f(x̄) is nonempty and compact.214

(b) df(x̄)(w) = lim inf
t↓0

f(x̄+ tw)− f(x̄)

t
.215

(c) ∂f(x̄) = conv(∂f(x̄)), where ∂f(x̄) denotes the Clarke subdifferential set of f at216

x̄.217

Proof. (a-c) can be found in [31, Theorem 9.13, Exercise 9.15, Theorem 9.61],218

respectively.219

Lemma 2.9. Assume that F : Rn → Rm is locally Lipschitz continuous at a point220

x̄ ∈ Rn. The following properties hold:221

(a) D∗F (x̄)(0) = {0}, which is also sufficient for F being locally Lipschitz continuous222

at x̄.223

(b) The mappings DF (x̄) and D∗F (x̄) are nonempty-valued and locally bounded.224

(c) ||z|| ≤ (lipF (x̄)) ||w|| holds for all (w, z) ∈ gph(DF (x̄)).225

(d) ||x∗|| ≤ (lipF (x̄)) ||u∗|| holds for all (u∗, x∗) ∈ gph(D∗F (x̄)).226

(e) z ∈ DF (x̄)(w) if and only if there is some τν ↓ 0 such that F (x̄+τνw)−F (x̄)
τν → z.227

Proof. (a) follows directly from the Mordukhovich criterion [31, Theorem 9.40]. (b-228

d) follow from [31, Proposition 9.24]. (e) follows from the definitions of the graphical229

derivative and the local Lipschitzian continuity. �230

Assume now that F : Rn → Rm is a locally Lipschitz continuous function and231

let D be the subset of Rn consisting of the points where F is differentiable. By the232

Rademacher Theorem [31, Theorem 9.60], F is differentiable almost everywhere with233

Rn\D being negligible. For each x̄ ∈ Rn, define234

(2.1) ∇F (x̄) := {A ∈ Rm×n | ∃xν → x̄ with xν ∈ D, ∇F (xν)→ A},235

in terms of which, the generalized Jacobian ∂F (x) [8, Definition 2.6.1] of F at x̄ can236

be written as237

(2.2) ∂F (x̄) := conv∇F (x̄).238

According to [31, Theorem 9.62], ∇F (x̄) is a nonempty, compact set of matrices, and239

for every w ∈ Rn and y ∈ Rm one has240

(2.3) convD∗F (x̄)(y) = conv{AT y | A ∈ ∇F (x̄)} = {AT y | A ∈ conv∇F (x̄)}241

This manuscript is for review purposes only.



KURDYKA- LOJASIEWICZ INEQUALITY AND ERROR BOUNDS 7

and242

(2.4) convD∗F (x̄)(w) = conv{Aw | A ∈ ∇F (x̄)} = {Aw | A ∈ conv∇F (x̄)},243

where D∗F (x̄) stands for the strict derivative mapping of F at x̄ [31, Definition 9.53],244

and has the following definition by taking into account that F is locally Lipschitz245

continuous:246

(2.5) D∗F (x̄)(w) := {z | ∃τν ↓ 0, xν → x̄ with (F (xν + τνw)− F (xν))/τν → z}.247

Note that D∗F (x̄) is also known as the Thibault’s strict derivative (cf. [35]), and that248

by definition249

(2.6) gphDF (x̄) ⊂ gphD∗F (x̄).250

Definition 2.10. [10] Let C be a subset of Rn, and let F be a single-valued
mapping defined on Rn, with values in Rn. F is said to be coercive on C if

lim
x∈C, ‖x‖→∞

〈F (x), x− y〉
‖x‖

= +∞

holds for all y ∈ C (if C is bounded, then F is by convention coercive on C); and F251

is said to be strongly monotone on C (with modulus µ > 0) if 〈F (x)−F (y), x− y〉 ≥252

µ‖x− y‖2 holds for all x, y ∈ C.253

3. Subderivatives and subgradients of gap functions. In the remainder254

of the paper, we make the following blanket assumptions on problem data and some255

constants, and for the sake of simplicity, we will not mention them in stating a result.256

• K ⊂ Rn is a nonempty closed and convex set.257

• F : Rn → Rn is a locally Lipschitz continuous function.258

• a, b, c are fixed positive numbers with a < b.259

The aim of this section is to study subderivatives and subgradients of fab and fc
at some x̄ by virtue of the graphical derivative DF (x̄) and the coderivatives, D∗F (x̄)

and D̂∗F (x̄), and frequently, the following projection operator associated with F , K
and some ξ > 0:

πξ(x) := PK

(
x− F (x)

ξ

)
.

To begin with, we summarize below some basic properties of the regularized gap260

function fc and the D-gap function fab, most of which can be found in the literature261

and are useful for further development in the sequel.262

Lemma 3.1. The following properties hold:263

(a) b−a
2 ||x− πb(x)||2 + a

2 ||πb(x)− πa(x)||2 ≤ fab(x) ≤ b−a
2 ||x− πa(x)||2 − b

2 ||πb(x)−264

πa(x)||2.265

(b) ||πb(x)−πa(x)|| ≤ b−a
a ||x−πa(x)|| and ||x−πb(x)|| ≤ ||x−πa(x)|| ≤ b

a ||x−πb(x)||.266

(c) x ∈ Rn solves (VIP) ⇔ x = πξ(x) for any ξ > 0 ⇔ fab(y) ≥ fab(x) = 0 for all267

y ∈ Rn ⇔ x ∈ K and fc(y) ≥ fc(x) = 0 for all y ∈ K.268

(d) 〈a(x− πa(x))− b(x− πb(x)), πa(x)− πb(x)〉 ≥ 0.269

(e) πa(x)− πb(x) ∈ Tab(x, F,K) := TK(πb(x)) ∩ (−TK(πa(x))) ∩ (F (x))∗.270

(f) πa, πb, πc, fc and fab are locally Lipschitz continuous. If F is globally Lipschitz271

continuous, then πa, πb, πc, fc and fab are also globally Lipschitz continuous.272
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(g) The following hold:273

arg maxy∈K

{
〈F (x), x− y〉 − ξ

2 ||y − x||
2
}

= {πξ(x)} ∀ξ > 0,

fc(x) = 〈F (x), x− πc(x)〉 − c
2 ||x− πc(x)||2,

fab(x) = 〈F (x), πb(x)− πa(x)〉 − a
2 ||x− πa(x)||2 + b

2 ||x− πb(x)||2.
274

Proof. (a) and (b) can be found in [32, Lemma 1] and [23], respectively. (c) can275

be found in [11] and [36]. (d) and (e) can be found in [18, Lemma 4.4] or in [10,276

Theorem 10.3.4]. (f) can be found in [19, Lemma 3.1]. (g) can be found in [36] or277

deduced from standard optimality condition for convex programs. This completes the278

proof.279

3.1. Subderivatives and subgradients of fc. We first present the formulas280

for the subderivative, the regular subdifferential set and the limiting subdifferential281

set of fc at a point x̄.282

Proposition 3.2. Let x̄ ∈ Rn and let w ∈ Rn. We have the following formulas:283

dfc(x̄)(w) = 〈F (x̄), w〉+ min〈(DF (x̄)− cI)w, x̄− πc(x̄)〉,

∂̂fc(x̄) =
(
D̂∗F (x̄)− cI

)
(x̄− πc(x̄)) + F (x̄),

∂fc(x̄) = (D∗F (x̄)− cI) (x̄− πc(x̄)) + F (x̄).

284

Proof. Let w ∈ Rn be fixed. Since F is locally Lipschitz continuous, it follows285

from Lemma 2.9 (b) and (e) that for any continuous function M : R→ Rn,286

(3.1) lim inf
t↓0
〈F (x̄+ tw)− F (x̄)

t
, M(t)〉 = min

v∈DF (x̄)(w)
〈v, M(0)〉.287

By Lemma 3.1 (f), fc is a locally Lipschitz continuous function, which implies by288

Lemma 2.8 (b) that dfc(x̄)(w) = lim inft↓0
fc(x̄+tw)−fc(x̄)

t . In view of Lemma 3.1289

(g), we have for all t, fc(x̄) ≥ 〈F (x̄), x̄ − πc(x̄ + tw)〉 − c
2 ||x̄ − πc(x̄ + tw)||2, and290

fc(x̄ + tw) = 〈F (x̄ + tw), x̄ + tw − πc(x̄ + tw)〉 − c
2 ||x̄ + tw − πc(x̄ + tw)||2. This,291

together with (3.1) and the fact that πc is locally Lipschitz continuous (cf. Lemma292

3.1 (f)), implies that293

dfc(x̄)(w) ≤ lim inf
t↓0
〈F (x̄+ tw)− F (x̄)

t
, x̄− πc(x̄+ tw)〉+ lim

t↓0
〈F (x̄+ tw), w〉294

+ lim
t↓0

c

2
〈2(x̄− πc(x̄+ tw)) + tw, −w〉295

= min
v∈DF (x̄)(w)

〈v, x̄− πc(x̄)〉+ 〈F (x̄), w〉 − c〈x̄− πc(x̄), w〉296

=: 〈F (x̄), w〉+ min〈(DF (x̄)− cI)w, x̄− πc(x̄)〉.297

To prove the inequality in the other direction, we simply follow a similar way by298

observing from Lemma 3.1 (g) that for all t, fc(x̄) = 〈F (x̄), x̄−πc(x̄)〉− c
2 ||x̄−πc(x̄)||2,299

and fc(x̄+ tw) ≥ 〈F (x̄+ tw), x̄+ tw − πc(x̄)〉 − c
2 ||x̄+ tw − πc(x̄)||2.300

To get the formula for ∂̂fc(x̄), we resort to the formula for dfc(x̄) and the equality301
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in Remark 2.3. Specifically, in terms of v̄ := F (x̄)− c(x̄− πc(x̄)), we have302

v ∈ ∂̂fc(x̄)

⇐⇒ 〈v, w〉 ≤ 〈v̄, w〉+ min〈DF (x̄)(w), x̄− πc(x̄)〉 ∀w ∈ Rn,
⇐⇒ 〈v − v̄, w〉 ≤ 〈z, x̄− πc(x̄)〉 ∀(w, z) ∈ gph(DF (x̄)) = TgphF (x̄, F (x̄)),

⇐⇒ (v − v̄,−x̄+ πc(x̄)) ∈ (TgphF (x̄, F (x̄)))∗ = N̂gphF (x̄, F (x̄)),

⇐⇒ v − v̄ ∈ D̂∗F (x̄)(x̄− πc(x̄)).

303

This gives us the formula for ∂̂fc(x̄).304

To show ∂fc(x̄) ⊂ U := (D∗F (x̄)− cI) (x̄− πc(x̄)) + F (x̄), let v ∈ ∂fc(x̄). Then305

by the formula for ∂̂fc(xk), there are some xk → x̄ and vk → v such that306

(vk − v̄k, πc(xk)− xk) ∈ N̂gphF (xk, F (xk)) ∀k,307

where v̄k := F (xk) − c(xk − πc(xk)). In view of the fact that F and πc are locally308

Lipschitz continuous functions (cf. Lemma 3.1 (f)), we have v̄k → F (x̄) − c(x̄ −309

πc(x̄)), xk − πc(xk) → x̄ − πc(x̄), and hence (v − F (x̄) + c(x̄ − πc(x̄)), πc(x̄) − x̄) ∈310

NgphF (x̄, F (x̄)), or in other words, v − F (x̄) + c(x̄ − πc(x̄)) ∈ D∗F (x̄)(x̄ − πc(x̄)).311

This verifies that v ∈ U and hence that ∂fc(x̄) ⊂ U .312

To show U ⊂ ∂fc(x̄), let v ∈ (D∗F (x̄)− cI) (x̄− πc(x̄)) + F (x̄). Then we have313

z ∈ D∗F (x̄)(x̄− πc(x̄))⇐⇒ (z,−x̄+ πc(x̄)) ∈ NgphF (x̄, F (x̄)),314

where z := v + c(x̄ − πc(x̄)) − F (x̄). According to the definition of normal cone (cf.315

Definition 2.1) and the definition of regular coderivative (cf. Definition 2.6), there316

exist xk → x̄, zk → z and wk → x̄− πc(x̄) such that for all k,317

(zk,−wk) ∈ N̂gphF (xk, F (xk))⇐⇒ (zk,−wk) ∈ (gphDF (xk))∗,318

or explicitly,319

(3.2) 〈zk, w〉 − 〈xk − πc(xk), z〉 ≤ 〈wk − xk + πc(xk), z〉 ∀z ∈ DF (xk)(w).320

By the Cauchy-Schwarz inequality and Lemma 2.9 (c), we have for all k,

〈wk − xk + πc(xk), z〉 ≤ εk‖w‖ ∀z ∈ DF (xk)(w),

where εk := lipF (xk)‖wk − xk + πc(xk)‖. It then follows from (3.2) that for all k,

〈zk, w〉 ≤ min〈DF (xk)(w), xk − πc(xk)〉+ εk‖w‖ ∀w ∈ Rn.

By the formula for the subderivative dfc(xk)(w), we have for all k,321

(3.3) 〈zk − c(xk − πc(xk)) + F (xk), w〉 ≤ dfc(xk)(w) + εk‖w‖ ∀w ∈ Rn.322

In view of the fact that F and πc are locally Lipschitz continuous functions (cf.323

Lemma 3.1 (f)) and by letting k → +∞, we have zk − c(xk − πc(xk)) + F (xk) →324

z − c(x̄− πc(x̄)) + F (x̄) = v, and εk → 0 (due to lipF (·) being upper semicontinuous325

([31, Theorem 9.2]) and wk − xk + πc(xk)→ 0). Then by [31, Proposition 10.46] and326

(3.3), we have v ∈ ∂fc(x̄). This completes the proof.327
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By virtue of the formula for the limiting subdifferential set ∂fc(x̄) in Proposition328

3.2, we can easily get the formula for the Clarke subdifferential set ∂fc(x̄), which has329

been obtained first in [37, Lemma 3.2].330

Corollary 3.3. Let x̄ ∈ Rn. We have

∂fc(x̄) =
(
∂F (x̄)T − cI

)
(x̄− πc(x̄)) + F (x̄),

where ∂F (x̄) denotes the generalized Jacobian of F at x̄ (cf. (2.2)).331

Proof. By Lemma 3.1 (f) and Lemma 2.8 (c), fc is locally Lipschitz continuous332

and hence ∂fc(x̄) = conv(∂fc(x̄)). The formula for ∂fc(x̄) then follows directly from333

Proposition 3.2 and the coderivative duality (2.3). This completes the proof.334

3.2. Subderivatives and subgradients of fab. In parallel fashion as we have335

done in subsection 3.1, we present in this subsection some differential properties of336

the D-gap function fab. Most of the proofs are omitted because they are very similar337

with the corresponding ones in subsection 3.1.338

Proposition 3.4. Let x̄ ∈ Rn and w ∈ Rn. We have the following formulas:339

dfab(x̄)(w) = (b− a)〈x̄− πa(x̄), w〉+ min〈(DF (x̄)− bI)w, πb(x̄)− πa(x̄)〉,

∂̂fab(x̄) =
(
D̂∗F (x̄)− bI

)
(πb(x̄)− πa(x̄)) + (b− a)(x̄− πa(x̄)),

∂fab(x̄) = (D∗F (x̄)− bI) (πb(x̄)− πa(x̄)) + (b− a)(x̄− πa(x̄)).

340

Proof. In view of the fact that fab = fa − fb is a locally Lipschitz continuous341

function, we have342

dfab(x̄)(w) = lim inf
t↓0

[
fa(x̄+ tw)− fa(x̄)

t
− fb(x̄+ tw)− fb(x̄)

t

]
.343

According to Lemma 3.1 (g), we have for all t, fa(x̄) ≥ 〈F (x̄), x̄−πa(x̄+tw)〉− a
2 ||x̄−344

πa(x̄ + tw)||2 and fb(x̄ + tw) ≥ 〈F (x̄ + tw), x̄ + tw − πb(x̄)〉 − b
2 ||x̄ + tw − πb(x̄)||2.345

This, together with (3.1) and the fact that πa and πb are locally Lipschitz continuous346

functions (see Lemma 3.1 (f)), implies that347

dfab(x̄)(w) ≤ lim inf
t↓0
〈F (x̄+ tw)− F (x̄)

t
, πb(x̄)− πa(x̄+ tw)〉348

− lim
t↓0

a

2

||x̄+ tw − πa(x̄+ tw)||2 − ||x̄− πa(x̄+ tw)||2

t
349

+ lim
t↓0

b

2

||x̄+ tw − πb(x̄)||2 − ||x̄− πb(x̄)||2

t
350

= 〈b(x̄− πb(x̄))− a(x̄− πa(x̄)), w〉+ min
v∈DF (x̄)(w)

〈v, πb(x̄)− πa(x̄)〉.351

To prove the inequality in the other direction, we simply follow a similar way by352

observing from Lemma 3.1 (g) that for all t, fa(x̄+ tv) ≥ 〈F (x̄+ tv), x̄+ tv−πa(x̄)〉−353
a
2 ||x̄ + tv − πa(x̄)||2 and fb(x̄) ≥ 〈F (x̄), x̄ − πb(x̄ + tv)〉 − b

2 ||x̄ − πb(x̄ + tv)||2. This354

completes the proof of the formula for dfab(x̄)(w). The other two formulas can be355

obtained in a similar way as we have done in Proposition 3.2.356

Corollary 3.5. Let x̄ ∈ Rn. The following properties hold:357

This manuscript is for review purposes only.



KURDYKA- LOJASIEWICZ INEQUALITY AND ERROR BOUNDS 11

(a) We have the formula for the Clarke subdifferential set of fab at x̄ as follows:

∂fab(x̄) =
(
∂F (x̄)T − bI

)
(πb(x̄)− πa(x̄)) + (b− a)(x̄− πa(x̄)).

(b) x̄ solves (VIP) if and only if 0 ∈ ∂fab(x̄) and πa(x̄) = πb(x̄).358

Remark 3.6. The formula for ∂fab(x̄) was first obtained in [37, Lemma 3.3], and359

then in [23, Theorem 4.1] and [18, Theorem 3.1] for some generalized D-gap functions.360

According to the generalized Fermat’s rule [31, Theorem 10.1], the condition361

(3.4) 0 ∈ ∂fab(x̄)362

is necessary for x̄ to be locally optimal for the optimization problem

min fab(x) s.t. x ∈ Rn,

and hence necessary for x̄ to be a solution of (VIP) (cf. Lemma 3.1 (c)). Another363

necessary condition for x̄ to be a solution of (VIP) is, by Lemma 3.1 (c), the equality364

(3.5) πa(x̄) = πb(x̄).365

Although these two necessary conditions together become sufficient for x̄ to be a366

solution of (VIP), it is interesting to note that either one alone is not sufficient.367

To see that (3.4) alone is not enough to guarantee that x̄ solves (VIP), we simply368

consider the case that K = Rn and F is smooth with ∇F (x̄)TF (x̄) = 0 but F (x̄) 6= 0,369

for which case, (3.4) holds as fab is smooth with ∇fab(x̄) = b−a
ab ∇F (x̄)TF (x̄) = 0,370

but x̄ does not solve (VIP) as F (x̄) 6= 0. In this case, (3.5) does not hold as it amount371

to F (x̄) = 0.372

To see that (3.5) alone is not enough to guarantee that x̄ solves (VIP), we simply373

consider the case that K = Rn+ and x̄ ∈ Rn with Fi(x̄) ≥ 0 and x̄i < 0 for all i, for374

which case, (3.5) holds as πa(x̄) = πb(x̄) = 0, but x̄ does not solve (VIP) as x̄ 6∈ K.375

In this case, (3.4) does not hold as 0 6∈ ∂fab(x̄) = {(b− a)x̄}.376

It was shown in [18, Theorem 4.3] that x̄ solves (VIP) if and only if 0 ∈ ∂fab(x̄)377

and378

(3.6)
w ∈ Tab(x, F,K), Z ∈ ∂F (x)

ZTw ∈ Tab(x, F,K)∗

}
⇒ F (x)Tw = 0,379

where Tab(x, F,K) is a cone defined as in Lemma 3.1 (e). However, by resorting to380

Corollary 3.5 (b) and noting that ∂fab(x̄) = ∂fab(x̄) in the presence of (3.5), we can381

refine [18, Theorem 4.3] as follows: x̄ solves (VIP) if and only if 0 ∈ ∂fab(x̄) and382

(3.5) holds. Note that πa(x̄) and πb(x̄) are involved in the definition of Tab(x, F,K).383

So in contrast to the verification of (3.6), it is much easier to verify (3.5). It is also384

noteworthy that (3.5) is implied by (3.4) whenever the inequality385

(3.7) d(0, ∂fab(x̄)) ≥ µ‖πb(x̄)− πa(x̄)‖386

holds for some µ > 0. Inequalities in the form of (3.7) will play a crucial role in the387

next section.388

4. The Kurdyka- Lojasiewicz inequality and error bounds of fab. In this
section, we study the KL inequality and error bounds for the D-gap function fab
by virtue of the formula for the limiting subdifferential sets ∂fab(x) presented in
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last section. Before summarizing our main results in Theorem 4.7, we present in
Lemmas 4.1-4.4 several results on necessary and sufficient conditions for the following
inequalities:

d(0, ∂fab(x)) ≥ µ‖πb(x)− πa(x)‖ ∀x ∈ V,

where V is some open set in Rn.389

Lemma 4.1. Let x ∈ Rn and let µ > 0. If d(0, ∂fab(x)) ≥ µ‖πb(x)− πa(x)‖, then390

(4.1) d(0, ∂fab(x)) ≥ µ(b− a)

µ+ b+ lipF (x)
‖x− πa(x)‖.391

Proof. Let w := πb(x) − πa(x) and let u := x − πa(x). By invoking the for-392

mula for ∂fab(x) in Proposition 3.4, we can find some z∗ ∈ D∗F (x)(w) such that393

d(0, ∂fab(x)) = ‖z∗ − bw + (b− a)u‖. Then we get (4.1), as we have394

d(0, ∂fab(x)) ≥ −‖z∗‖ − b‖w‖+ (b− a)‖u‖
≥ −(b+ lipF (x))‖w‖+ (b− a)‖u‖
≥ − b+lipF (x)

µ d(0, ∂fab(x)) + (b− a)‖u‖,
395

where the first inequality follows from the triangle inequality, the second one from396

Lemma 2.9 (d), and the last one from the assumption that d(0, ∂fab(x)) ≥ µ‖w‖.397

This completes the proof.398

Lemma 4.2. Assume that lipF (x) is bounded from above on a nonempty subset399

V of Rn, as is true in particular when V is bounded. Then the following properties400

are equivalent:401

(a) There is some µ > 0 such that d(0, ∂fab(x)) ≥ µ
√
fab(x) ∀x ∈ V.402

(b) There is some µ > 0 such that d(0, ∂fab(x)) ≥ µ‖x− πa(x)‖ ∀x ∈ V.403

(c) There is some µ > 0 such that d(0, ∂fab(x)) ≥ µ‖πb(x)− πa(x)‖ ∀x ∈ V.404

Therefore, fab satisfies the KL inequality at any solution x̄ of (VIP) with an exponent405

of 1
2 if and only if any of (a), (b) and (c) holds with V being some neighborhood of406

x̄.407

Proof. The relations (a)⇐⇒ (b) =⇒ (c) follow directly from Lemma 3.1 (a). As
lipF (x) is upper semicontinuous ([31, Theorem 9.2]), it follows from [31, Corollary
1.10] that lipF (x) is bounded from above on each bounded subset of Rn. We now
show (c) =⇒ (b) by assuming that (c) holds with some µ > 0 and that there is some
L > 0 such that lipF (x) ≤ L ∀x ∈ V. By Lemma 4.1, we get (b) as we have

d(0, ∂fab(x)) ≥ µ(b− a)

µ+ b+ lipF (x)
‖x− πa(x)‖ ≥ µ(b− a)

µ+ b+ L
‖x− πa(x)‖ ∀x ∈ V.

Let x̄ be a solution of (VIP). We first note that fab is locally Lipschitz continuous408

with fab ≥ 0 and fab(x̄) = 0 (cf. Lemma 3.1 (c)). Then fab satisfies the KL inequality409

at x̄ with an exponent of 1
2 if, according to Definition 2.4, (a) holds with V being410

some bounded neighborhood of x̄. By the previous argument, (a), (b) and (c) are411

equivalent whenever V is bounded, and therefore the last assertion is true. This412

completes the proof.413

Lemma 4.3. Assume that the solution set of (VIP) is nonempty. If there are414

some µ ∈ (0,+∞) and ε ∈ (0,+∞] such that415

(4.2) d (0, ∂fab(x)) ≥ µ‖πb(x)− πa(x)‖ ∀x ∈ [fab < ε],416
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and417

(4.3) L := sup
x∈[0<fab<ε]

lipF (x) < +∞,418

then419

(4.4)√
b− a

2

µ

µ+ b+ L
d (x, [fab ≤ θ]) ≤

(√
fab(x)−

√
θ
)

+
∀θ ∈ [0, ε), ∀x ∈ [fab < ε],420

which, in particular, implies the following error bound property:√
b− a

2

µ

µ+ b+ L
d (x, [fab ≤ 0]) ≤

√
fab(x) ∀x ∈ [fab ≤ ε].

Proof. It suffices to show (4.4) by assuming (4.2) and (4.3) for some given µ ∈
(0,+∞) and ε ∈ (0,+∞]. As the solution set of (VIP) is nonempty, we deduce from
Lemma 3.1 (c) that [fab ≤ 0] 6= ∅. In what follows, we assume that [0 < fab < ε]
is nonempty, for otherwise (4.4) holds trivially. Fix any x ∈ [0 < fab < ε]. In

view of (4.2) and (4.3), we get from Lemma 4.1 that d(0, ∂fab(x)) ≥ µ(b− a)

µ+ b+ L
‖x −

πa(x)‖. Then by Lemma 3.1 (a), we have d(0, ∂fab(x)) ≥
µ
√

2(b− a)

µ+ b+ L

√
fab(x). By

some direct calculation, we have ∂
√
fab(x) =

∂fab(x)

2
√
fab(x)

and hence d
(
0, ∂
√
fab(x)

)
≥√

b− a
2

µ

µ+ b+ L
. Then by [21, Lemma 2.1 (ii’)], we have

|∇
√
fab|(x) ≥

√
b− a

2

µ

µ+ b+ L
,

where for a function f : Rn → R and a point ȳ ∈ Rn,421

|∇f |(ȳ) := lim sup
y→ȳ, y 6=ȳ

(f(ȳ)− f(y))+

‖y − ȳ‖
422

denotes the the strong slope of f at ȳ, introduced by De Giorgi et al. [12]. As
x ∈ [0 < fab < ε] is chosen arbitrarily, we can apply [5, Theorem 2.1] to deduce that

inf
0≤
√
θ<
√
ε

inf
x∈[
√
θ<
√
fab<

√
ε ]

√
fab(x)−

√
θ

d
(
x,
[√

fab ≤
√
θ
]) = inf

x∈[0<
√
fab<

√
ε]
|∇
√
fab|(x)

≥
√
b− a

2

µ

µ+ b+ L
,

from which, (4.4) follows readily. This completes the proof.423

Many existing conditions in the literature are sufficient for Lemma 4.2 (c) or424

(4.2), as can be seen from the following lemma, where we also provide a new sufficient425

condition which can be considered as some restricted strong monotonicity.426

Lemma 4.4. Let µ > 0 and let V ⊂ Rn be open. Consider the following properties:427
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(a) F is strongly monotone on V with modulus µ, which holds in the case of V being428

convex if and only if the following inequality holds for all x ∈ V where F is429

differentiable:430

(4.5) 〈∇F (x)w, w〉 ≥ µ||w||2 ∀w ∈ Rn.431

(b) The following holds for all x ∈ V where F is differentiable and fab(x) > 0:

〈∇F (x)w, w〉 ≥ µ||w||2 ∀w ∈ Tab(x, F,K).

(c) The following holds for all x ∈ V where F is differentiable:

〈∇F (x)(πa(x)− πb(x)), πa(x)− πb(x)〉 ≥ µ||πa(x)− πb(x)||2.

(d) d(0, ∂fab(x)) ≥ µ‖πb(x)− πa(x)‖ ∀x ∈ V .432

We have (a) =⇒ (b) =⇒ (c) =⇒ (d).433

Proof. According to [14, Proposition 2.3 (b)], the following holds for all x ∈ V :434

(4.6) 〈Zw, w〉 ≥ µ||w||2 ∀Z ∈ ∇F (x), ∀w ∈ Rn,435

if F is strongly monotone on V with modulus µ, and the converse is true whenever436

V is convex. As ∇F (x) ∈ ∇F (x) when F is differentiable at x, (4.5) is implied by437

(4.6). To show that (4.6) is implied by (4.5), let x ∈ V and let Z ∈ ∇F (x). By438

the definition of ∇F (x) (cf. (2.1)), there is xk → x such that F is differentiable at439

xk for all k and ∇F (xk) → Z. Then by (4.5), we have for all sufficiently large k:440

〈∇F (xk)w, w〉 ≥ µ||w||2 ∀w ∈ Rn, which implies (4.6) by letting k →∞.441

By the previous argument, we get (b) from (a) in a straightforward way. To get442

(c) from (b), it suffices to note the following facts: (1) πa(x)− πb(x) ∈ Tab(x, F,K)443

(cf. Lemma 3.1 (e)); (2) πa(x) = πb(x) whenever fab(x) = 0 (cf. Lemma 3.1 (c)).444

We now show (c) =⇒ (d). Let x ∈ V . Set w := πb(x)−πa(x) and u := x−πa(x).445

We first claim that the following holds for all z∗ ∈ convD∗F (x)(w):446

(4.7) 〈z∗, w〉 > µ||w||2.447

By the coderivative duality (2.3) for a locally Lipschitz continuous mapping, we have448

z∗ ∈ {ATw | A ∈ conv∇F (x)}. Then there exist a positive integer r and some449

Ai ∈ ∇F (x) such that450

(4.8) z∗ =

(
r∑
i=1

λiAi

)T
w =

r∑
i=1

λi
(
Ai
)T
w,451

where λi ≥ 0 for all i and
∑r
i=1 λ

i = 1. For each Ai ∈ ∇F (x), there exists by452

definition some sequence {xik} such that F is differentiable at xik for all k, xik → x453

and ∇F (xik)→ Ai as k →∞. Then by (c), we have for all k large enough,454

〈∇F (xik)(πa(xik)− πb(xik)), πa(xik)− πb(xik)〉 > µ||πb(xik)− πa(xik)||2.455

Thus, by noting that πa and πb are locally Lipschitz continuous and letting k → ∞,456

we get 〈Ai(πa(x) − πb(x)), πa(x) − πb(x)〉 > µ||πb(x) − πa(x)||2, or in terms of w,457

〈(Ai)Tw,w〉 ≥ µ‖w‖2. This, together with (4.8), yields (4.7).458

By invoking the formula for ∂fab(x) in Proposition 3.4, we can find some z̄∗ ∈459

D∗F (x)(w) ⊂ convD∗F (x)(w) such that d(0, ∂fab(x)) = ‖z̄∗ − bw + (b− a)u‖. Then460

we get (d), as we have d(0, ∂fab(x)) ‖w‖ ≥ 〈z̄∗−bw+(b−a)u, w〉 ≥ 〈z̄∗, w〉 ≥ µ‖w‖2,461

where the first inequality follows from the Cauchy-Schwarz inequality, the second one462

from Lemma 3.1 (d), and the last one from (4.7). This completes the proof.463
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Remark 4.5. As ∇F (x) ∈ ∇F (x) ⊂ ∂F (x) when F is differentiable at x, Lemma464

4.4 (b) holds if the following holds for all x ∈ V with fab(x) > 0:465

(4.9) 〈ZTw,w〉 ≥ µ||w||2 ∀Z ∈ ∂F (x), ∀w ∈ Tab(x, F,K).466

When V = Rn, the supremum of all possible positive µ satisfying (4.9) can be refor-467

mulated as468

(4.10) µab := inf{wTZw | Z ∈ ∂F (x), w ∈ Tab(x, F,K), ‖w‖ = 1, fab(x) > 0}.469

The quantity µab was first introduced for a general case in [18, Theorem 4.2], where470

the condition µab > 0 was utilized to study the local error bounds for fab.471

Remark 4.6. Lemma 4.4 (c) can be reformulated as472

(4.11)
〈z∗, πb(x)− πa(x)〉 ≥ µ||πa(x)− πb(x)||2 ∀x ∈ V, z∗ ∈ convD∗F (x)(πb(x)− πa(x)),473

or474

(4.12)
〈z, πa(x)− πb(x)〉 ≥ µ||πa(x)− πb(x)||2 ∀x ∈ V, z ∈ convD∗F (x)(πa(x)− πb(x)),475

where D∗F (x) stands for the strict derivative mapping of F at x (cf. (2.5)). As

∇F (x)T (πb(x)− πa(x)) ∈ convD∗F (x)(πb(x)− πa(x))

and
∇F (x)(πa(x)− πb(x)) ∈ convD∗F (x)(πa(x)− πb(x))

whenever F is differentiable at x (cf. (2.3) and (2.4)), Lemma 4.4 (c) is clearly implied476

by (4.11) or (4.12). In the proof of (c) =⇒ (d) in Lemma 4.4, we have already shown477

that (4.11) is implied by Lemma 4.4 (c). By the coderivative duality (2.4) for a locally478

Lipschitz continuous mapping, we can show in a similar way that (4.12) is also implied479

by Lemma 4.4 (c).480

Example 1. Let A ∈ Rn×n and q ∈ Rn be such that q + rgeA 6= {0}, where
rgeA denotes the range space of A. Consider a (VIP) instance with K = Rn and
F (x) = Ax + q. In this case, to find a solution of (VIP) is to find a solution to
the linear equation Ax + q = 0, which exists if and only if q ∈ rgeA. Clearly, F is
continuously differentiable on Rn with ∇F (·) = A, implying that fab is continuously
differentiable on Rn. By some direct computation we have

πb(x)− πa(x) =
b− a
ab

(Ax+ q), fab(x) =
b− a
2ab
‖Ax+ q‖2,

and

∇fab(x) =
b− a
ab

AT (Ax+ q), Tab(x, F,K) = {w | 〈Ax+ q, w〉 ≤ 0}.

Then in the case of V := Rn, Lemma 4.4 (a)-(d) can be reduced respectively to the481

following:482

(a) A− µI is positive-semidefinite on Rn.483

(b) A − µI is positive-semidefinite on at least one closed-half space containing the484

origin and hence on the whole space Rn.485

(Therefore, (a) and (b) coincide, both of which implies that A is positive-486

definite on Rn and that the linear equation Ax+q = 0 has a unique solution.)487
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(c) A−µI is positive-semidefinite on the linear subspace R{q}+ rgeA, which entails488

positive-semidefiniteness of ATAA−µATA on Rn and is equivalent to it when489

q ∈ rgeA. (The latter property can be fulfilled for a symmetric matrix A if and490

only if A is positive-semidefinite and 0 < µ < λi with λi being any positive491

eigenvalue of A.)492

(d) AAT − µ2I is positive-semidefinite on the linear subspace R{q} + rgeA, which493

entails positive-semidefiniteness of (ATA)2−µ2ATA on Rn and is equivalent494

to it when q ∈ rgeA. (The latter property can be fulfilled as long as 0 < µ ≤495 √
λi with λi being any positive eigenvalue of ATA.)496

Therefore, in the case of q ∈ rgeA with A being symmetric and positive-semidefinite497

(but not positive-definite), Lemma 4.4 (a)-(b) cannot hold, but Lemma 4.4 (c) can as498

long as 0 < µ < λi with λi being any positive eigenvalue of A. This demonstrates that499

Lemma 4.4 (c) can be strictly weaker than Lemma 4.4 (a)-(b). While in the case500

of q ∈ rgeA with A being symmetric but not positive-semidefinite, Lemma 4.4 (c)501

cannot hold, but Lemma 4.4 (d) can as long as µ is less than or equal to the square502

root of the smallest positive eigenvalue of ATA. This demonstrates that Lemma 4.4503

(d) can be strictly weaker than Lemma 4.4 (c).504

Theorem 4.7. Assume that any of (a)-(d) in Lemma 4.4 holds with some µ > 0505

and V = Rn. Then the following properties hold:506

(a) fab is a KL function with an exponent of 1
2 .507

(b) If F is coercive on Rn, then the solution set of (VIP) is nonempty and compact,
and
√
fab has a local error bound on Rn, i.e., the following holds for any given

ε > 0: √
b− a

2

µ

µ+ b+ L
d (x, [fab ≤ 0] ) ≤

√
fab(x) ∀x ∈ [fab ≤ ε].

where L is any number such that L ≥ lipF (x) for all x ∈ [0 < fab < ε].508

(c) If the solution set of (VIP) is nonempty and F is globally Lipschitz continuous
with a constant L > 0, then

√
fab has a global error bound on Rn, i.e., the

following holds:√
b− a

2

µ

µ+ b+ L
d (x, [fab ≤ 0]) ≤

√
fab(x) ∀x ∈ Rn.

Proof. For each x that is a solution of (VIP), it follows from Lemma 4.2 that fab509

is a KL function at x with an exponent of 1
2 . For each x that is not a solution of (VIP),510

we claim that 0 6∈ ∂fab(x) and hence fab is a KL function at x with an exponent of511

0, for otherwise the inclusion 0 ∈ ∂fab(x), together with the equality πa(x) = πb(x)512

as can be guaranteed by Lemma 4.4 (d), would imply that x is a solution of (VIP)513

(cf. Corollary 3.5 (b)). As a whole fab is indeed a KL function with an exponent of514
1
2 . This verifies (a).515

To show (b), fix any ε > 0 and let L̄ := supx∈[0<fab<ε]
lipF (x). By the coercive-516

ness of F on Rn (hence on K), the solution set of (VIP) is nonempty and compact517

(cf. [10, Proposition 2.2.7]), and the level set [fab ≤ ε] is bounded (cf. [18, Lemma518

4.1]). As lipF (x) is upper semicontinuous (cf. [31, Theorem 9.2]), it follows from [31,519

Corollary 1.10] that lipF (x) is bounded from above on each bounded subset of Rn.520

So we have L̄ < +∞. Then by Lemma 4.3, we get (b) in a straightforward way.521

To show (c), we apply Lemma 4.3 again by noting that

sup
x∈[0<fab<+∞]

lipF (x) ≤ L.
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This completes the proof.522

Remark 4.8. In the presence of Lemma 4.4 (a) with some µ > 0 and V = Rn (i.e.,523

F is strongly monotone on Rn with modulus µ), it was pointed out by [18, Remark 2.1524

(ii)] that F is coercive on Rn. In this case, Theorem 4.7 (b) holds without explicitly525

assuming coerciveness. While in the presence of Lemma 4.4 (b) with V = Rn and526

some µ > 0, Theorem 4.7 (b) can be deduced from [18, Theorem 4.2](cf. Remark527

4.5). To the best of our knowledge, all the results in Theorem 4.7, except for the528

mentioned ones, are new.529

Example 2 ([18], Example 4.4). Consider a (VIP) instance with K = R2
+ and530

F : R2 → R2 being given by F (x) =
(
x1 + (x1)+(x2)+, x2 + 3

2 (x1)+

)T
. Clearly, F531

is differentiable at x ∈ R2 if and only if x1x2 6= 0, and moreover,532

∇F (x) =



(
1 + x2 x1

3
2 1

)
if x1 > 0, x2 > 0,(

1 0
3
2 1

)
if x1 > 0, x2 < 0,(

1 0
0 1

)
if x1 < 0, x2 6= 0.

533

Let a ∈ (0, 1) and b = 1. According to [18, Example 4.4], F is coercive on R2,
√
fab534

has a local error bound on R2 (with some error bound modulus expressed in an abstract535

way), and µab ≥ 1, where µab is defined by (4.10).536

In what follows, by virtue of Lemma 4.4 (c), we can show that µab = 1 and that537

some error bound modulus expressed in an explicit way can be provided. First, by538

some direct calculation, we have πb(x) = (0, 0)T for all x ∈ R2 and539

πa(x)− πb(x) =



(
a− 1

a
x1, 0

)T
if x1 ≤ 0, x2 ≥ 0,(

a− 1

a
x1,

a− 1

a
x2

)T
if x1 ≤ 0, x2 ≤ 0,(

0,
a− 1

a
x2 −

3

2a
x1

)T
if 0 ≤ x1 ≤ 2(a−1)

3 x2,

(0, 0)
T

otherwise.

540

Then it is straightforward to verify that the inequality

〈∇F (x)(πa(x)− πb(x)), πa(x)− πb(x)〉 ≥ µ||πa(x)− πb(x)||2

holds for all x ∈ R2 with x1x2 6= 0 if and only if 0 < µ ≤ 1. That is, Lemma 4.4 (c)
holds with V = R2 if and only if 0 < µ ≤ 1. As Lemma 4.4 (c) is implied by Lemma
4.4 (b), we deduce that Lemma 4.4 (b) cannot hold with V = R2 and µ > 1, which
implies that µab cannot be greater than 1 (cf. Remark 4.5). Therefore, we confirm
that µab = 1. Furthermore, we can apply Theorem 4.7 to get the following: (i) fab is
a KL function with an exponent of 1

2 ; (ii)
√
fab has a local error bound on R2, i.e.,

for any given ε > 0,√
b− a

2

1

1 + b+ L
d (x, [fab ≤ 0]) ≤

√
fab(x) ∀x ∈ [fab ≤ ε],

where L is any number such that L ≥ supx∈[0<fab<ε]
lipF (x).541

5. A derivative free descent method for (VIP). In this section, we an-542

alyze the convergence behavior of the following descent algorithm with an Armijo543
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line search, which is essentially the same as those studied in [15, 18, 29, 30, 37, 39],544

especially the same in the way how descent directions are chosen.545

Algorithm546

Step 1. Set 0 < a < b and 0 < ρ < 1. Choose three positive constants α, β, τ such547

that β and τ are small and that α is close to b − a. Select a start point548

x0 ∈ Rn, and set n = 0.549

Step 2. If fab(xn) = 0, stop. Otherwise, go to Step 3.550

Step 3. Let un = πa(xn) − xn and wn = πa(xn) − πb(xn). If β||un|| < ||wn||, set551

dn = wn and select mn as the smallest nonnegative integer m such that552

(5.1) fab(xn + ρmdn)− fab(xn) ≤ −τρm||dn||2.553

Otherwise, set dn = un and select mn as the smallest nonnegative integer m554

such that555

(5.2) fab(xn + ρmdn)− fab(xn) ≤ − (b− a− α) ρm||dn||2.556

Step 4. Set tn = ρmn , xn+1 = xn + tndn and n = n+ 1, and go to Step 2.557

In what follows, we make the following assumptions.558

Assumption (i) The level set [fab ≤ fab(x0)] is bounded, which can be guaranteed559

by the coerciveness of F on Rn as pointed out by [18, Lemma 4.1].560

Assumption (ii) F is globally Lipschitz continuous with a constant L > 0 (implying561

that fab, πa and πb are all globally Lipschitz continuous).562

Assumption (iii) There exists some µ∗ > 0 such that the inequality

〈∇F (x)(πa(x)− πb(x)), πa(x)− πb(x)〉 ≥ µ∗||πa(x)− πb(x)||2

holds for all x ∈ Rn where F is differentiable. This implies by Theorem 4.7563

that f is a KL function with an exponent of 1
2 , and by Remark 4.6 and (2.6)564

that565

min
z∈DF (x)(πa(x)−πb(x))

〈z, πa(x)− πb(x)〉 ≥ µ∗||πa(x)− πb(x)||2 ∀x ∈ Rn.566

Assumption (iv) The parameters α, β, τ in the Algorithm are chosen such that567

0 < β <
b− a
b+ L

, (b+ L)β < α < b− a, 0 < τ < µ∗.568

To begin with, we give two technical lemmas, which are helpful for our further569

analysis.570

Lemma 5.1. Under Assumption (ii), we have571

‖v‖ ≤ (b+ L)‖πb(x)− πa(x)‖+ (b− a)‖x− πa(x)‖ ∀x ∈ Rn, ∀v ∈ ∂fab(x).572

Proof. In view of Lemma 2.9 (d) and Assumption (ii), we get this result directly573

from the formula for ∂fab(x) presented in Proposition 3.4. The proof is completed.574

Lemma 5.2. Consider a locally Lipschitz continuous function g : Rn → R. For
some x ∈ Rn and w ∈ Rn\{0}, assume that there are some σ > 0 and 0 < t0 < t1
such that

g(x+ t0w)− g(x) ≤ −σt0||w||2 and g(x+ t1w)− g(x) > −σt1||w||2.

Then there exist some θ∗ ∈ (0, 1) and v∗ ∈ ∂g(x+ θ∗t1w) such that

g(x+ t1w)− g(x) = t1〈v∗, w〉.
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Proof. Define ϕ : R → R by ϕ(θ) := g(x + θt1w) − g(x) + θ[g(x) − g(x + t1w)].575

Clearly, ϕ is locally Lipschitz continuous, and ϕ(0) = ϕ(1) = 0. Moreover, it follows576

from the assumption that ϕ(t0/t1) = g(x+t0w)−g(x)+(t0/t1)[g(x)−g(x+t1w)] < 0.577

This entails the existence of at least one θ∗ ∈ (0, 1) such that ϕ attains its minimum578

over [0, 1] at θ∗, implying by the Fermat’s rule that 0 ∈ ∂ϕ(θ∗). In view of the579

local Lipschitzian continuity of g, we get from the calculus rules [31, Exercise 8.8 and580

Theorem 10.6] that ∂ϕ(θ∗) ⊂ g(x)−g(x+ t1w)+{t1〈v, w〉 | v ∈ ∂g(x+ θ∗t1w)}. This581

completes the proof.582

Proposition 5.3. Under Assumptions (ii)-(iv), Step 3 of the Algorithm is583

well defined.584

Proof. To show that Step 3 in the Algorithm is well defined, it suffices to show
that if β||un|| < ||wn||, −d(−fab)(xn)(wn) < −τ‖wn‖2, and if β||un|| ≥ ||wn||,
−d(−fab)(xn)(un) < −(b − a − α)‖un‖2. Following from the proof of the formula
for dfab(x̄)(w) in Proposition 3.4, we get the formula for the subderivative of −fab at
a point x̄ ∈ Rn as follows:

−d(−fab)(x̄)(w) = (b− a)〈x̄− πa(x̄), w〉 −min〈(DF (x̄)− bI)w, −πb(x̄) + πa(x̄)〉.

In the case of β||un|| < ||wn||, we have585

−d(−fab)(xn)(wn)

= 〈b(xn − πb(xn))− a(xn − πa(xn)), wn〉 −minz∈DF (xn)(wn)〈z, wn〉
≤ −minz∈DF (xn)(wn)〈z, wn〉
≤ −µ∗||wn||2

< −τ ||wn||2,

586

where the first inequality follows from Lemma 3.1 (d), the second inequality follows587

from Assumption (iii), and the third inequality follows from Assumption (iv). In588

the case of β||un|| ≥ ||wn||, we have589

−d(−fab)(xn)(un)

= 〈b(xn − πb(xn))− a(xn − πa(xn)), un〉 −minz∈DF (xn)(un)〈z, wn〉
= −(b− a)||un||2 + b〈πa(xn)− πb(xn), un〉+ maxz∈DF (xn)(un)〈z,−wn〉
≤ −[(b− a)− bβ]||un||2 + maxz∈DF (xn)(un)〈z,−wn〉
≤ −[(b− a)− bβ]||un||2 + L||un|| · ||wn||
≤ −[(b− a)− (b+ L)β]||un||2

< −[(b− a)− α]||un||2,

590

where the first inequality follows by using the Cauchy-Schwarz inequality and the591

inequality β||un|| ≥ ||wn||, the second inequality follows from Lemma 2.9 (c) and592

Assumption (ii), the third inequality follows from the inequality β||un|| ≥ ||wn||,593

and the last inequality follows from Assumption (iv). This completes the proof.594

Proposition 5.4. Assume that the sequence {xn} generated by the Algorithm595

satisfies fab(xn) > 0 for all n. Under Assumptions (ii)-(iv), there is some t∗ >596

0 such that tn ≥ t∗ for all n, i.e., the step length sequence {tn} generated by the597

Algorithm has a lower bound.598

Proof. Recall that in Step 3 of the Algorithm, we set un := πa(xn) − xn, wn :=599

πa(xn)− πb(xn), and dn := un if β‖un‖ ≥ ‖wn‖, and dn := wn if β‖un‖ < ‖wn‖. In600
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view of the setting for dn and our assumption that fab(xn) > 0 for all n, we get from601

Lemma 3.1 (c) that dn 6= 0 for all n.602

Suppose by contradiction that the step length sequence {tn} does not have a603

positive lower bound, i.e., by taking a subsequence if necessary we assume that tn →604

0+ as n→ +∞. Due to tn = ρmn , we have mn → +∞ as n→ +∞. Without loss of605

generality, we may assume that mn ≥ 1 for all n. In view of the line search strategy606

in Step 3 of the Algorithm, we apply Lemma 5.2 to get607

(5.3) fab(xn + ρmn−1dn)− fab(xn) = ρmn−1〈vn, dn〉 ∀n,608

where vn ∈ ∂fab(yn) with yn := xn + θ∗nρ
mn−1dn and θ∗n ∈ (0, 1). By the formula for609

∂fab(yn) in Proposition 3.4, there exists some z∗n ∈ D∗F (πb(yn)− πa(yn)) such that610

(5.4) vn = z∗n + b(yn − πb(yn))− a(yn − πa(yn)).611

In view of Lemma 2.9 (d) and Assumption (ii), we have612

(5.5) ||z∗n|| ≤ L||πb(yn)− πa(yn)||.613

First, we consider the case that β‖un‖ ≥ ‖wn‖ in Step 3. In this case, we614

have dn = un = πa(xn) − xn and yn := xn + θ∗nρ
mn−1un. Due to the line search615

strategy proposed in the Algorithm, we have fab(xn + ρmn−1un) − fab(xn) > −(b −616

a− α)ρmn−1‖un‖2. This, together with (5.3), (5.4) and (5.5), implies that617

−(b− a− α)||un||2< 〈vn, un〉618

= 〈z∗n, un〉+ 〈b(yn − πb(yn))− a(yn − πa(yn)), un〉619

= 〈z∗n, un〉+ b〈πa(yn)− πb(yn), un〉+ (b− a)〈yn − πa(yn), un〉620

≤ (L+ b)||πb(yn)− πa(yn)|| · ||un|| − (b− a)〈πa(yn)− yn, un〉.(5.6)621

Moreover, by Assumption (ii), we have622

||πa(yn)− πb(yn)|| ≤ ||wn||+ ||πa(yn)− πb(yn)− wn||623

≤ ‖wn‖+ ||πa(yn)− πa(xn)‖+ ‖πb(yn)− πb(xn)||624

≤ β‖un‖+ (1 +
L

a
)‖yn − xn‖+ (1 +

L

b
)‖yn − xn‖625

= [β + (2 +
L

a
+
L

b
)θ∗nρ

mn−1]||un||,(5.7)626

and627

||πa(yn)− yn − un|| = ||πa(yn)− yn − πa(xn) + xn||
≤ ‖πa(yn)− πa(xn)‖+ ‖yn − xn‖
≤ (2 + L

a )||yn − xn|| = (2 + L
a )θ∗nρ

mn−1||un||.
628

The latter condition entails that629

(5.8) 〈πa(yn)− yn, un〉 = ||un||2 + (2 +
L

a
)θ∗nρ

mn−1||un||2〈cn,
un
‖un‖

〉,630

where cn := πa(yn)−yn−un
(2+L

a )θ∗nρ
mn−1||un||

having the property that ‖cn‖ ≤ 1. Combining (5.6-631

5.8), we have632

(5.9)
−(b− a− α) < (L+ b)[β + (2 + L

a + L
b )θ∗nρ

mn−1]

−(b− a)[1 + (2 + L
a )θ∗nρ

mn−1〈cn, un
||un|| 〉].

633
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Next, we consider the case that β‖un‖ < ‖wn‖ in Step 3. In this case, we have634

dn = wn = πa(xn)−πb(xn) and yn := xn+θ∗nρ
mn−1wn. Due to the line search strategy635

proposed in the Algorithm, we have fab(xn + ρmn−1wn)− fab(xn) > −τρmn−1‖wn‖2,636

which, together with (5.3), (5.4) and (5.5), implies that637

(5.10)
−τ‖wn‖2

< 〈vn, wn〉
= 〈z∗n + b(yn − πb(yn))− a(yn − πa(yn)), wn〉
≤ 〈z∗n, πa(yn)− πb(yn)〉+ 〈z∗n, wn − (πa(yn)− πb(yn))〉

+〈b(yn − πb(yn))− a(yn − πa(yn)), wn − (πa(yn)− πb(yn))〉
≤ −µ∗||πa(yn)− πb(yn)||2 + 〈z∗n, wn − (πa(yn)− πb(yn))〉

+〈b(yn − πb(yn))− a(yn − πa(yn)), wn − (πa(yn)− πb(yn))〉
≤ −µ∗||πa(yn)− πb(yn)||2 + L||πa(yn)− πb(yn)|| · ||wn − (πa(yn)− πb(yn))||

+[(b− a)||πa(yn)− yn||+ b||πa(yn)− πb(yn)||]||wn − (πa(yn)− πb(yn))||,

638

where the second inequality follows from Lemma 3.1 (d), the third one from Assump-639

tion (iii), the last one from Cauchy-Schwarz inequality. Moreover, by Assumption640

(ii), we have641

(5.11) ||πa(yn)−πb(yn)−wn|| ≤ (2+
L

a
+
L

b
)||yn−xn|| = (2+

L

a
+
L

b
)θ∗nρ

mn−1||wn||,642

643

(5.12) ||πa(yn)− πb(yn)|| ≤ [1 + (2 +
L

a
+
L

b
)θ∗nρ

mn−1]||wn||,644

645

||πa(yn)− yn|| ≤ ‖un‖+ ||πa(yn)− yn − un||646

≤ ||un||+ (2 +
L

a
)θ∗nρ

mn−1||wn||647

≤ [
1

β
+ (2 +

L

a
)θ∗nρ

mn−1]||wn||(5.13)648

and then there exists bn with ||bn|| ≤ 1 such that649

(5.14) πa(yn)− πb(yn) = wn + (2 +
L

a
+
L

b
)θ∗nρ

mn−1||wn||bn.650

Combining (5.10-5.14), we have651

−τ < −µ∗[1 + 2〈 wn
||wn||

, (2 +
L

a
+
L

b
)θ∗nρ

mn−1bn〉+ (2 +
L

a
+
L

b
)2(θ∗nρ

mn−1)2||bn||2]652

+L[1 + (2 +
L

a
+
L

b
)θ∗nρ

mn−1](2 +
L

a
+
L

b
)θ∗nρ

mn−1
653

+(b− a)[
1

β
+ (2 +

L

a
)θ∗nρ

mn−1](2 +
L

a
+
L

b
)θ∗nρ

mn−1
654

+b[1 + (2 +
L

a
+
L

b
)θ∗nρ

mn−1](2 +
L

a
+
L

b
)θ∗nρ

mn−1.(5.15)655

Our assumption that fab(xn) > 0 for all n suggests that there are infinitely many656

positive integers n such that either β‖un‖ ≥ ‖wn‖ or β‖un‖ < ‖wn‖, implying that657
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there are infinitely many positive integers n such that either the inequality (5.9) or658

(5.15) holds. In view of ρmn−1 → 0+, we have correspondingly either −(b− a−α) ≤659

(L + b)β − (b − a) or −τ ≤ −µ∗, both contradicting to Assumption (iv). This660

contradiction indicates that the step length sequence {tn} generated by the Algorithm661

has a positive lower bound. This completes the proof.662

Proposition 5.5. Assume that the sequence {xn} generated by the Algorithm663

satisfies fab(xn) > 0 for all n. Under Assumptions (ii)-(iv), the following inequal-664

ities hold for all n:665

(5.16) fab(xn+1)− fab(xn) ≤ −M1||xn+1 − xn||2666

and667

(5.17) d(0, ∂fab(xn)) ≤ M2

t∗
||xn+1 − xn||,668

where M1 := min{b − a − α, τ}, M2 := L + b + b−a
β and t∗ is a positive lower bound669

of {tn}.670

Proof. By Steps 3 and 4 of the Algorithm, we have 0 < tn ≤ 1, xn+1 = xn +671

tndn and fab(xn+1) − fab(xn) ≤ −M1tn‖dn‖2 for all n, from which we get (5.16)672

immediately. By Lemma 5.1, we have d(0, ∂fab(xn)) ≤ (L + b)||wn|| + (b − a)||un||,673

where L is given as in Assumption (ii), and wn = πa(xn) − πb(xn) and un =674

πa(xn)− xn are set as in Step 3. If β||un|| < ||wn||, we get from Steps 3 and 4 of the675

Algorithm that ‖xn+1 − xn‖ = tn‖wn‖ and hence that676

(L+ b)||wn||+ (b− a)||un|| < (L+ b+
b− a
β

)||wn|| =
M2

tn
||xn+1 − xn||.677

Alternatively if β||un|| ≥ ||wn||, we get from Steps 3 and 4 of the Algorithm that678

‖xn+1 − xn‖ = tn‖un‖ and hence that679

(L+ b)||wn||+ (b− a)||un|| ≤ β(L+ b+
b− a
β

)||un|| ≤
M2

tn
||xn+1 − xn||,680

where the second inequality follows from the fact that 0 < β < b−a
b+L < 1 according681

to Assumption (iv). In both cases, we get (5.17) by noting that the existence of a682

positive lower bound t∗ of {tn} is guaranteed by Proposition 5.4. This completes the683

proof.684

Theorem 5.6. Assume that the sequence {xn} generated by the Algorithm sat-685

isfies fab(xn) > 0 for all n. Under Assumptions (i)-(iv), the following assertions686

hold:687

(a) The sequence xn has a finite length, i.e.,
∑+∞
n=0 ||xn+1 − xn|| < +∞.688

(b) The sequence fab(xn) converges Q-linearly to 0.689

(c) The sequence xn converges R-linearly to a solution x̄ of (VIP).690

Proof. From Proposition 5.5, it follows that (5.16) and (5.17) holds with M1 :=691

min{τ, b − a − α}, M2 := L + b + b−a
β and t∗ being a positive lower bound of {tn}.692

By Assumption (i), the level set [fab ≤ fab(x0)] is bounded, which, together with693

(5.16), implies that the sequence {xn} is also bounded. Denote by x̄ any cluster694

point of the sequence {xn}. By Assumption (iii), f satisfies the KL inequality at695

x̄ with an exponent of 1
2 . In view of these facts and the continuity of fab, we confirm696
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that the sequence {xn} satisfies the assumptions (H1) and (H3) and a variant of697

the assumption (H2) in [4]. Note that the assumption (H2) in [4] requires that698

d(0, ∂fab(xn+1)), instead of d(0, ∂fab(xn)), has an upper estimate as in the form of699

(5.17). In this case, [4, Theorem 2.9] cannot be applied directly, but we can still follow700

the proof of [4, Theorem 2.9] to deduce the following: (i) (a) holds; (ii) xn → x̄ and701

fab(xn)→ fab(x̄) as n goes to∞; and (iii) 0 ∈ ∂fab(x̄). In view of Assumption (iii)702

and Lemma 4.4, we have πa(x̄) = πb(x̄). Then by Corollary 3.5 (b), x̄ is a solution703

of (VIP) or equivalently fab(x̄) = 0 (cf. Lemma 3.1 (c)).704

It remains to show the convergence rate. By the line search strategy in Step 3 of705

the Algorithm, the following hold for all n:706

(5.18) ‖dn‖ ≥ β‖xn − πa(xn)‖,707

and708

(5.19)

fab(xn+1)− fab(xn) ≤ −min{τ, b− a− α}tn‖dn‖2

≤ −min{τ, b− a− α}t∗‖dn‖2

< 0.

709

In view of (5.18), we get from Lemma 3.1 (a) that ‖dn‖2 ≥ 2β2

b−afab(xn), which,710

together with (5.19) and the definition of M1, implies that711

fab(xn+1) ≤ −M1t
∗||dn||2 + fab(xn) ≤ (1− 2β2M1t

∗

b− a
)fab(xn),712

and hence that,713

(5.20)
fab(xn+1)

fab(xn)
≤ 1− 2β2M1t

∗

b− a
=: η.714

Clearly, we have 0 < η < 1. Then by definition [24, pp.619-620], the sequence fab(xn)715

converges Q-linearly to 0. That is, (b) follows.716

By the triangle inequality, the following holds for all positive integers n and m
with m > n: ‖xn − x̄‖ ≤

∑m
k=n ‖xk+1 − xk‖ + ‖xm+1 − x̄‖. In view of (a) and the

fact that ‖xm+1 − x̄‖ → 0 as m → ∞, we have
∑m
k=n ‖xk+1 − xk‖ + ‖xm+1 − x̄‖ →∑∞

k=n ‖xk+1 − xk‖ as m→∞, and hence ‖xn − x̄‖ ≤
∑∞
k=n ‖xk+1 − xk‖. In view of

(5.16) and (5.20), we further have

‖xn − x̄‖ ≤
∞∑
k=n

√
fab(xk)

M1
≤

√
fab(xn)

M1

∞∑
k=0

√
ηk =

√
fab(xn)

M1

1

1−√η
=: ζn,

and ζn+1

ζn
=
√

fab(xn+1)
fab(xn) ≤

√
η. As 0 < η < 1, we have 0 <

√
η < 1. Then by definition717

[24, pp.619-620], ζn converges Q-linearly to 0, and xn converges R-linearly to x̄. This718

completes the proof.719
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