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Abstract

In this paper, we investigate a group sparse optimization problem via ℓp,q regularization in
three aspects: theory, algorithm and application. In the theoretical aspect, by introducing
a notion of group restricted eigenvalue condition, we establish an oracle property and a

global recovery bound of order O(λ
2

2−q ) for any point in a level set of the ℓp,q regularization
problem, and by virtue of modern variational analysis techniques, we also provide a local
analysis of recovery bound of order O(λ2) for a path of local minima. In the algorithmic
aspect, we apply the well-known proximal gradient method to solve the ℓp,q regularization
problems, either by analytically solving some specific ℓp,q regularization subproblems, or by
using the Newton method to solve general ℓp,q regularization subproblems. In particular,
we establish a local linear convergence rate of the proximal gradient method for solving the
ℓ1,q regularization problem under some mild conditions and by first proving a second-order
growth condition. As a consequence, the local linear convergence rate of proximal gradient
method for solving the usual ℓq regularization problem (0 < q < 1) is obtained. Finally in
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the aspect of application, we present some numerical results on both the simulated data
and the real data in gene transcriptional regulation.

Keywords: group sparse optimization, lower-order regularization, nonconvex optimiza-
tion, restricted eigenvalue condition, proximal gradient method, iterative thresholding al-
gorithm, gene regulation network

1. Introduction

In recent years, a great amount of attention has been paid to sparse optimization, which is
to find the sparse solutions of an underdetermined linear system. The sparse optimization
problem arises in a wide range of fields, such as compressive sensing, machine learning,
pattern analysis and graphical modeling; see Blumensath and Davies (2008); Candès et al.
(2006b); Chen et al. (2001); Donoho (2006a); Fan and Li (2001); Tibshirani (1994) and
references therein.

In many applications, the underlying data usually can be represented approximately by
a linear system of the form

Ax = b+ ε,

where A ∈ Rm×n and b ∈ Rm are known, ε ∈ Rm is an unknown noise vector, and x =
(x1, x2, . . . , xn)⊤ ∈ Rn is the variable to be estimated. If m≪ n, the above linear system is
seriously ill-conditioned and may have infinitely many solutions. The sparse optimization
problem is to recover x from information b such that x is of a sparse structure. The sparsity
of variable x has been measured by the ℓp norm ∥x∥p (p = 0, see Blumensath and Davies
(2008); p = 1, see Beck and Teboulle (2009); Chen et al. (2001); Daubechies et al. (2004);
Donoho (2006a); Tibshirani (1994); Wright et al. (2009); Yang and Zhang (2011); and p =
1/2, see Chartrand and Staneva (2008); Xu et al. (2012)). The ℓp norm ∥x∥p for p > 0 is
defined by

∥x∥p :=

(
n∑
i=1

|xi|p
)1/p

,

while the ℓ0 norm ∥x∥0 is defined by the number of nonzero components of x. The sparse
optimization problem can be modeled as

min ∥Ax− b∥2
s.t. ∥x∥0 ≤ s,

where s is the given sparsity level.

For the sparse optimization problem, a popular and practical technique is the regulariza-
tion method, which is to transform the sparse optimization problem into an unconstrained
optimization problem, called the regularization problem. For example, the ℓ0 regularization
problem is

min
x∈Rn

∥Ax− b∥22 + λ∥x∥0,

where λ > 0 is the regularization parameter, providing a tradeoff between accuracy and
sparsity. However, the ℓ0 regularization problem is nonconvex and non-Lipschitz, and thus
it is generally intractable to solve it directly (indeed, it is NP-hard; see Natarajan, 1995).
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To overcome this difficulty, two typical relaxations of the ℓ0 regularization problem are
introduced, which are the ℓ1 regularization problem

min
x∈Rn

∥Ax− b∥22 + λ∥x∥1 (1)

and the ℓq regularization problem (0 < q < 1)

min
x∈Rn

∥Ax− b∥22 + λ∥x∥qq. (2)

1.1 ℓq Regularization Problems

The ℓ1 regularization problem (1), also called Lasso (Tibshirani, 1994) or Basis Pursuit
(Chen et al., 2001), has attracted much attention and has been accepted as one of the
most useful tools for sparse optimization. Since the ℓ1 regularization problem is a convex
optimization problem, many exclusive and efficient algorithms have been proposed and de-
veloped for solving problem (1); see Beck and Teboulle (2009); Combettes and Wajs (2005);
Daubechies et al. (2004); Hu et al. (2016); Nesterov (2012, 2013); Xiao and Zhang (2013);
Yang and Zhang (2011). However, the ℓ1 regularization problem (1) suffers some frustra-
tions in practical applications. It was revealed by extensive empirical studies that the
solutions obtained from the ℓ1 regularization problem are much less sparse than the true
sparse solution, that it cannot recover a signal or image with the least measurements when
applied to compressed sensing, and that it often leads to sub-optimal sparsity in reality; see
Chartrand (2007); Xu et al. (2012); Zhang (2010).

Recently, to overcome these drawbacks of ℓ1 regularization, the lower-order regulariza-
tion technique (that is, the ℓq regularization with 0 < q < 1) is proposed to improve the
performance of sparsity recovery of the ℓ1 regularization problem. Chartrand and Staneva
(2008) claimed that a weaker restricted isometry property is sufficient to guarantee per-
fect recovery in the ℓq regularization, and that it can recover sparse signals from fewer
linear measurements than that required by the ℓ1 regularization. Xu et al. (2012) showed
that the ℓ1/2 regularization admits a significantly stronger sparsity promoting capability
than the ℓ1 regularization in the sense that it allows to obtain a more sparse solution or
predict a sparse signal from a smaller amount of samplings. Qin et al. (2014) exhibited
that the ℓ1/2 regularization achieves a more reliable solution in biological sense than the
ℓ1 regularization when applied to infer gene regulatory network from gene expression data
of mouse embryonic stem cell. However, the ℓq regularization problem is nonconvex, non-
smooth and non-Lipschitz, and thus it is difficult in general to design efficient algorithms
for solving it. It was presented in Ge et al. (2011) that finding the global minimal value
of the ℓq regularization problem (2) is strongly NP-hard; while fortunately, computing a
local minimum could be done in polynomial time. Some effective and efficient algorithms
have been proposed to find a local minimum of problem (2), such as interior-point potential
reduction algorithm (Ge et al., 2011), smoothing methods (Chen, 2012; Chen et al., 2010),
splitting methods (Li and Pong, 2015a,b) and iterative reweighted minimization methods
(Lai and Wang, 2011; Lai et al., 2013; Lu, 2014).

The ℓq regularization problem (2) is a variant of lower-order penalty problems, inves-
tigated in Huang and Yang (2003); Luo et al. (1996); Yang and Huang (2001), for a con-
strained optimization problem. The main advantage of the lower-order penalty functions
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over the classical ℓ1 penalty function is that they require weaker conditions to guarantee
an exact penalization property and that their least exact penalty parameter is smaller; see
Huang and Yang (2003). It was reported in Yang and Huang (2001) that the first- and
second-order necessary optimality conditions of lower-order penalty problems converge to
that of the original constrained optimization problem under a linearly independent con-
straint qualification.

Besides the preceding numerical algorithms, one of the most widely studied meth-
ods for solving the sparse optimization problem is the class of the iterative threshold-
ing algorithms, which is studied in a unified framework of proximal gradient methods;
see Beck and Teboulle (2009); Blumensath and Davies (2008); Combettes and Wajs (2005);
Daubechies et al. (2004); Gong et al. (2013); Nesterov (2013); Xu et al. (2012) and refer-
ences therein. It is convergent fast and of very low computational complexity. Benefitting
from its simple formulation and low storage requirement, it is very efficient and applicable
for large-scale sparse optimization problems. In particular, the iterative hard (resp. soft,
half) thresholding algorithm for the ℓ0 (resp. ℓ1, ℓ1/2) regularization problem was studied
in Blumensath and Davies (2008) (resp. Daubechies et al., 2004; Xu et al., 2012).

1.2 Global Recovery Bound

To estimate how far is the solution of regularization problems from that of the linear system,
the global recovery bound (also called the ℓ2 consistency) of the ℓ1 regularization problem
has been investigated in the literature. More specifically, under some mild conditions on A,
such as the restricted isometry property (RIP, Candès and Tao, 2005) or restricted eigen-
value condition (REC, Bickel et al., 2009), van de Geer and Bühlmann (2009) established
a deterministic recovery bound for the (convex) ℓ1 regularization problem:

∥x∗(ℓ1) − x̄∥22 = O(λ2s), (3)

where x∗(ℓ1) is a solution of problem (1), x̄ is a solution of the linear system Ax = b, and
sparsity s := ∥x̄∥0. In the statistics literature, Bickel et al. (2009); Bunea et al. (2007);
Meinshausen and Yu (2009); Zhang (2009) provided the recovery bound in a high probabil-
ity for the ℓ1 regularization problem when the size of the variable tends to infinity, under
REC/RIP or some relevant conditions. However, to the best of our knowledge, the recovery
bound for the general (nonconvex) ℓp regularization problem is still undiscovered. We will
establish such a deterministic property in section 2.

1.3 Group Sparse Optimization

In applications, a wide class of problems usually have certain special structures, and recently,
enhancing the recoverability due to the special structures has become an active topic in
sparse optimization. One of the most popular structures is the group sparsity structure, that
is, the solution has a natural grouping of its components, and the components within each
group are likely to be either all zeros or all nonzeros. In general, the grouping information
can be an arbitrary partition of x, and it is usually pre-defined based on prior knowledge of
specific problems. Let x := (x⊤G1

, · · · , x⊤Gr)
⊤ represent the group structure of x. The group
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sparsity of x with such a group structure can be measured by an ℓp,q norm, defined by

∥x∥p,q :=

(
r∑
i=1

∥xGi∥qp

)1/q

.

Exploiting the group sparsity structure can reduce the degrees of freedom in the solution,
thereby leading to better recovery performance. Benefitting from these advantages, the
group sparse optimization model has been applied in birthweight prediction (Bach, 2008;
Yuan and Lin, 2006), dynamic MRI (Usman et al., 2011) and gene finding (Meier et al.,
2008; Yang et al., 2010) with the ℓ2,1 norm. More specifically, the ℓ2,1 regularization problem

min
x∈Rn

∥Ax− b∥22 + λ∥x∥2,1

was introduced by Yuan and Lin (2006) to study the grouped variable selection in statistics
under the name of group Lasso. The ℓ2,1 regularization, an important extension of the
ℓ1 regularization, proposes an ℓ2 regularization for each group and ultimately yields the
sparsity in a group manner. Since the ℓ2,1 regularization problem is a convex optimization
problem, some effective algorithms have been proposed, such as, the spectral projected gra-
dient method (van den Berg et al., 2008), SpaRSA (Wright et al., 2009) and the alternating
direction method (Deng et al., 2011).

1.4 The Aim of This Paper

In this paper, we will investigate the group sparse optimization via ℓp,q regularization (p ≥
1, 0 ≤ q ≤ 1), also called the ℓp,q regularization problem

min
x∈Rn

F (x) := ∥Ax− b∥22 + λ∥x∥qp,q. (4)

We will investigate the oracle property and recovery bound for the ℓp,q regularization prob-
lem, which extends the existing results in two ways: one is the lower-order regularization,
including the ℓq regularization problem (q < 1); the other is the group sparse optimiza-
tion, including the ℓ2,1 regularization problem (group Lasso) as a special case. To this end,
we will introduce the weaker notions of REC: the lower-order REC and the group REC
(GREC). We will further establish the relationships between the new notions with the clas-
sical one: the lower-order REC is weaker than the classical REC, but the reverse is not true
(see Example 1); and the GREC is weaker than the REC. Under the lower-order GREC,
we will provide the oracle property and the global recovery bound for the ℓp,q regulariza-
tion problem (see Theorem 9). Furthermore, we will conduct a local analysis of recovery
bound for the ℓp,q regularization problem by virtue of modern variational analysis tech-
niques (Rockafellar and Wets, 1998). More precisely, we assume that any nonzero group of
x̄ is active and the columns of A corresponding to the active components of x̄ (a solution
of Ax = b) are linearly independent, which matches the nature of the group sparsity struc-
ture. This leads us to the application of implicit function theorem and thus guarantees the
existence of a local path around x̄ which satisfies a second-order growth condition. As such,
in the local recovery bound, we will establish a uniform recovery bound O(λ2S) for all the
ℓp,q regularization problems; see Theorem 2.2.
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The proximal gradient method is one of the most popular and practical methods for
the sparse optimization problems, either convex or nonconvex problems. We will apply
the proximal gradient method to solve the ℓp,q regularization problem (4). The advantage
of the proximal gradient method is that the proximal optimization subproblems of some
specific regularization have the analytical solutions, and the resulting algorithm is thus
practically attractive. In the general cases when the analytical solutions of the proximal
optimization subproblems seem not available, we will employ the Newton method to solve
them. Furthermore, we will investigate a local linear convergence rate of the proximal
gradient method for solving the ℓp,q regularization problem when p = 1 and 0 < q < 1
under the assumption that any nonzero group of a local minimum is active. Problem (4)
of the case p = 1 and 0 < q < 1 possesses the properties that the regularization term
∥ · ∥qp,q is concave near a local minimum and that the objective function F (·) of (4) satisfies
a second-order growth condition, which plays an important role in the establishment of the
local linear convergence rate. To the best of our knowledge, this is the first attempt to
study the local linear convergence rate of proximal gradient method for solving the lower-
order optimization problems. As a consequence of this result, we will obtain the local
linear convergence rate of proximal gradient method for solving ℓq regularization problem
(0 < q < 1), which includes the iterative half thresholding algorithm (q = 1/2) proposed in
Xu et al. (2012) as a special case. The result on local linear convergence rate of proximal
gradient method for solving the ℓq regularization problem is still new, as far as we know.

In the aspect of application, we will conduct some numerical experiments on both simu-
lated data and real data in gene transcriptional regulation to demonstrate the performance
of the proposed proximal gradient method. From the numerical results, it is demonstrated
that the ℓp,1/2 regularization is the best one among the ℓp,q regularizations for q ∈ [0, 1],
and it outperforms the ℓp,1 and ℓp,0 regularizations on both accuracy and robustness. This
observation is consistent with several previous numerical studies on the ℓp regularization
problem; see Chartrand and Staneva (2008); Xu et al. (2012). It is also illustrated from the
numerical results that the proximal gradient method (ℓ2,1/2) outperforms most solvers in
group sparse learning, such as OMP (Cai and Wang, 2011), FoBa (Zhang, 2011), ℓ1-Magic
(Candès et al., 2006a), ISTA (Daubechies et al., 2004), YALL1 (Yang and Zhang, 2011)
etc. The R package of the proximal gradient method for solving group sparse optimization,
named GSparO in CRAN, is available at https://CRAN.R-project.org/package=GSparO

1.5 Main Contributions

This paper is to investigate the group sparse optimization under a unified framework of the
ℓp,q regularization problem (4). In this paper, we establish the oracle property and recov-
ery bound, design an efficient numerical method for problem (4), and apply the proposed
method to solve the problem of gene transcriptional regulation. The main contributions are
presented as follows.

(i) We establish the following global recovery bound for the ℓp,q regularization problem
(4) under the (p, q)-GREC:

∥x∗ − x̄∥22 ≤

{
O(λ

2
2−qS), 2K−1q = 1,

O(λ
2

2−qS
3−q
2−q ), 2K−1q > 1,

(5)
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where x̄ is a solution of Ax = b, S := ∥x̄∥p,0 is the group sparsity, 0 < q ≤ 1 ≤ p ≤ 2,
x∗ is any point in the level set levF (x̄) of problem (4), and K is the smallest integer
such that 2K−1q ≥ 1.

(ii) By virtue of the variational analysis technique, for all the ℓp,q regularization problems,
we establish a uniform local recovery bound

∥x∗p,q(λ) − x̄∥22 ≤ O(λ2S) for small λ,

where 0 < q < 1 ≤ p and x∗p,q(λ) is a local optimal solution of problem (4) (near x̄).

(iii) We present the analytical formulae for the proximal optimization subproblems of spe-
cific ℓp,q regularizations when p = 1, 2 and q = 0, 1/2, 2/3, 1. Moreover, we prove
that any sequence {xk}, generated by proximal gradient method for solving the ℓ1,q
regularization problem, linearly converges to a local minimum x∗ under some mild
conditions, that is, there exist N ∈ N, C > 0 and η ∈ (0, 1) such that

F (xk) − F (x∗) ≤ Cηk and ∥xk − x∗∥2 ≤ Cηk for any k ≥ N.

(iv) Our numerical experiments show that, measured by the biological golden standards,
the accuracy of the gene regulation networks forecasting can be improved by exploiting
the group structure of TF complexes. The successful application of group sparse
optimization to gene transcriptional regulation will facilitate biologists to study the
gene regulation of higher model organisms in a genome-wide scale.

1.6 The Organization of This Paper

This paper is organized as follows. In section 2, we introduce the notions of q-REC and
GREC, and establish the oracle property and (global and local) recovery bounds for the ℓp,q
regularization problem. In section 3, we apply the proximal gradient method to solve the
group sparse optimization using different types of ℓp,q regularization, and investigate the
local linear convergence rate of the resulting proximal gradient method. Finally, section 4
exhibits the numerical results on both simulated data and real data in gene transcriptional
regulation.

2. Global and Local Recovery Bounds

This section is devoted to the study of the oracle property and (global and local) recovery
bounds for the ℓp,q regularization problem (4). To this end, we first present some basic
inequalities of ℓp norm and introduce the notions of RECs, as well as their relationships.

The notations adopted in this paper are described as follows. We let the lowercase
letters x, y, z denote the vectors, calligraphic letters I, T , S, J , N denote the index sets,
capital letters N,S denote the numbers of groups in the index sets. In particular, we use
Gi to denote the index set corresponding to the i-th group and GS to denote the index set
{Gi : i ∈ S}. For x ∈ Rn and T ⊆ {1, . . . , n}, we use xT to denote the subvector of x
corresponding to T . We use sign : R → R to denote the signum function, defined by

sign(t) =


1, t > 0,
0, t = 0,
−1, t < 0.
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Throughout this paper, we assume that the group sparse optimization problem is of
the group structure described as follows. Let x := (x⊤G1

, · · · , x⊤Gr)
⊤ represent the group

structure of x, where {xGi ∈ Rni : i = 1, · · · , r} is the grouping of x,
∑r

i=1 ni = n and
nmax := max {ni : i ∈ {1, . . . , r}}. For a group xGi , we use xGi = 0 (reps. xGi ̸= 0, xGi ̸=a 0)
to denote a zero (reps. nonzero, active) group, where xGi = 0 means that xj = 0 for all
j ∈ Gi; xGi ̸= 0 means that xj ̸= 0 for some j ∈ Gi; and xGi ̸=a 0 means that xj ̸= 0 for all
j ∈ Gi. It is trivial to see that

xGi ̸=a 0 ⇒ xGi ̸= 0.

For this group structure and p > 0, the ℓp,q norm of x is defined by

∥x∥p,q =

{
(
∑r

i=1 ∥xGi∥
q
p)

1/q
, q > 0,∑r

i=1 ∥xGi∥0p, q = 0,
(6)

which proposes the ℓp norm for each group and then processes the ℓq norm for the resulting
vector. When p = q, the ℓp,q norm coincides with the ℓp norm, that is, ∥x∥p,p = ∥x∥p.
Furthermore, all ℓp,0 norms share the same formula, that is, ∥x∥p,0 = ∥x∥2,0 for all p > 0.
In particular, when the grouping structure is degenerated to the individual feature level,
that is, if nmax = 1 or n = r, we have ∥x∥p,q = ∥x∥q for all p > 0 and q > 0.

Moreover, we assume that A and b in (4) are related by a linear model (noiseless)

b = Ax̄.

Let S := {i ∈ {1, . . . , r} : x̄Gi ̸= 0} be the index set of nonzero groups of x̄, Sc := {1, . . . , r}\
S be the complement of S, S := |S| be the group sparsity of x̄, and na :=

∑
i∈S ni.

2.1 Inequalities of ℓp,q Norm

We begin with some basic inequalities of the ℓp and ℓp,q norms, which will be useful in the
later discussion of RECs and recovery bounds. First, we recall the following well-known
inequality (

n∑
i=1

|xi|γ2
)1/γ2

≤

(
n∑
i=1

|xi|γ1
)1/γ1

if 0 < γ1 ≤ γ2, (7)

or equivalently (x = (x1, x2, . . . , xn)⊤),

∥x∥γ2 ≤ ∥x∥γ1 if 0 < γ1 ≤ γ2.

The following lemma improves Huang and Yang (2003, lem. 4.1) and extends to the ℓp,q
norm. It will be useful in providing a shaper global recovery bound (see Theorem 9 later).

Lemma 1 Let 0 < q ≤ p ≤ 2, x ∈ Rn and K be the smallest integer such that 2K−1q ≥ 1.
Then the following relations hold.

(i) ∥x∥qq ≤ n1−2−K∥x∥q2.

(ii) ∥x∥qp,q ≤ r1−2−K∥x∥qp,2.
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Proof (i) Repeatedly using the property that ∥x∥1 ≤
√
n∥x∥2, one has that

∥x∥qq ≤
√
n

(
n∑
i=1

|xi|2q
)1/2

≤ · · · ≤ n
1
2
+···+ 1

2K

(
n∑
i=1

|xi|2
Kq

)2−K

.

Since 2K−1q ≥ 1, by (7), we obtain that(
n∑
i=1

|xi|2
Kq

)2−K

=

(
n∑
i=1

(|xi|2)2
K−1q

) 1

2K−1q

q
2

≤

(
n∑
i=1

|xi|2
)q/2

= ∥x∥q2.

Therefore, we arrive at the conclusion that

∥x∥qq ≤ n1−2−K∥x∥q2.

(ii) By (6), it is a direct consequence of (i).

For example, if q = 1, then K = 1; if q = 1
2 or 2

3 , then K = 2. The following lemma
describes the triangle inequality of ∥ · ∥qp,q.
Lemma 2 Let 0 < q ≤ 1 ≤ p and x, y ∈ Rn. Then

∥x∥qp,q − ∥y∥qp,q ≤ ∥x− y∥qp,q.

Proof By the subadditivity of the ℓp norm and (7), it is easy to see that

∥xGi∥qp − ∥yGi∥qp ≤ ∥xGi − yGi∥qp, for i = 1, . . . , r.

Consequently, the conclusion directly follows from (6).

The following lemma will be beneficial to studying properties of the lower-order REC
in Proposition 5 later.

Lemma 3 Let γ ≥ 1, and two finite sequences {yi : i ∈ I} and {xj : j ∈ J } satisfy that
yi ≥ xj ≥ 0 for all (i, j) ∈ I × J . If

∑
i∈I yi ≥

∑
j∈J xj, then

∑
i∈I y

γ
i ≥

∑
j∈J x

γ
j .

Proof Set ȳ := 1
|I|
∑

i∈I yi and α := mini∈I yi. By Huang and Yang (2003, lem. 4.1(ii)),
one has that ∑

i∈I
yγi ≥ 1

|I|γ−1

(∑
i∈I

yi

)γ
= |I|ȳγ . (8)

On the other hand, let M ∈ N and β ∈ [0, α) be such that
∑

j∈J xj = Mα+ β. Observing

that γ ≥ 1 and 0 ≤ xj ≤ α for all j ∈ J , we obtain that xγj ≤ xjα
γ−1, and thus,∑

j∈J x
γ
j ≤Mαγ + αγ−1β. By (8), it remains to show that

|I|ȳγ ≥Mαγ + αγ−1β. (9)

If |I| > M , the relation (9) is trivial since ȳ ≥ α > β; otherwise, |I| ≤ M , from the facts
that |I|ȳ ≥Mα+ β (that is,

∑
i∈I yi ≥

∑
j∈J xj) and that γ ≥ 1, it follows that

|I|ȳγ ≥M1−γ(Mα+ β)γ ≥M1−γ(Mγαγ + γMγ−1αγ−1β) ≥Mαγ + αγ−1β.

Therefore, we verify the relation (9), and the proof is complete.
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2.2 Group Restricted Eigenvalue Conditions

This subsection aims at the development of the critical conditions on the matrix A to guar-
antee the oracle property and the global recovery bound of the ℓp,q regularization problem
(4). In particular, we will focus on the restricted eigenvalue condition (REC), and extend
it to the lower-order setting and equip it with the group structure.

In the scenario of sparse optimization, given the sparsity level s, it is always assumed that
the 2s-sparse minimal eigenvalue of A⊤A is positive (see Bickel et al., 2009; Bunea et al.,
2007; Meinshausen and Yu, 2009), that is,

ϕmin(2s) := min
∥x∥0≤2s

x⊤A⊤Ax

x⊤x
> 0, (10)

which is the minimal eigenvalue of any 2s×2s dimensional submatrix. It is well-known that
the solution at sparsity level s of the linear system Ax = b is unique if the condition (10) is
satisfied; otherwise, assume that there are two distinct vectors x̂ and x̃ such that Ax̂ = Ax̃
and ∥x̂∥0 = ∥x̃∥0 = s. Then x := x̂ − x̃ is a vector such that Ax = 0 and ∥x∥0 ≤ 2s,
and thus ϕmin(2s) = 0, which is contradict with (10). Therefore, if the 2s-sparse minimal
eigenvalue of A⊤A is zero (that is, ϕmin(2s) = 0), one has no hope of recovering the true
sparse solution from noisy observations.

However, only condition (10) is not enough and some further condition is required to
maintain the nice recovery of regularization problems; see Bickel et al. (2009); Bunea et al.
(2007); Meinshausen and Yu (2009); van de Geer and Bühlmann (2009); Zhang (2009) and
references therein. For example, the REC was introduced in Bickel et al. (2009) to inves-
tigate the ℓ2 consistency of the ℓ1 regularization problem (Lasso), where the minimum in
(10) is replaced by a minimum over a restricted set of vectors measured by an ℓ1 norm
inequality and the denominator is replaced by the ℓ2 norm of only a part of x.

We now introduce the notion of the lower-order REC. Note that the residual x̂ :=
x∗(ℓq) − x̄, where x∗(ℓq) is an optimal solution of the ℓq regularization problem and x̄ is a
sparse solution of Ax = b, of the ℓq regularization problem always satisfies

∥x̂Sc∥q ≤ ∥x̂S∥q, (11)

where S is the support of x̄. Thus we introduce a lower-order REC, where the minimum is
taken over a restricted set measured by an ℓq norm inequality such as (11), for establishing
the global recovery bound of the ℓq regularization problem. Given s ≤ t ≪ n, x ∈ Rn and
I ⊆ {1, . . . , n}, we denote by I(x; t) the subset of {1, . . . , n} corresponding to the first t
largest coordinates in absolute value of x in Ic.

Definition 4 Let 0 ≤ q ≤ 1. The q-restricted eigenvalue condition relative to (s, t) (q-
REC(s, t)) is said to be satisfied if

ϕq(s, t) := min

{
∥Ax∥2
∥xT ∥2

: |I| ≤ s, ∥xIc∥q ≤ ∥xI∥q, T = I(x; t) ∪ I
}
> 0.

The q-REC describes a kind of restricted positive definiteness of A⊤A, which is valid only
for the vectors satisfying the relation measured by an ℓq norm. The q-REC presents a
unified framework of the REC-type conditions whenever q ∈ [0, 1]. In particular, we note by

10
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(a) REC (b) 1/2-REC (c) 0-REC

Figure 1: The geometric interpretation of the RECs: the gray regions show the feasible sets
Cq(s) (q = 1, 1/2, 0). The q-REC holds if and only if the null space of A does not
intersect the gray region.

definition that 1-REC reduces to the classical REC (Bickel et al., 2009), and that ϕmin(2s) =
ϕ20(s, s), and thus

(10) ⇔ 0-REC(s, s) is satisfied.

It is well-known in the literature that the 1-REC is a stronger condition than the 0-REC
(10). A natural question arises what are the relationships between the general q-RECs. To
answer this question, associated with the q-REC, we consider the feasible set

Cq(s) := {x ∈ Rn : ∥xIc∥q ≤ ∥xI∥q for some |I| ≤ s},

which is a cone. Since the objective function associated with the q-REC is homogeneous,
the q-REC(s, t) says that the null space of A does not cross over Cq(s). Figure 1 presents
the geometric interpretation of the q-RECs. It is shown in Figure 1 that C0(s) ⊆ C1/2(s) ⊆
C1(s), and thus

1-REC ⇒ 1/2-REC ⇒ 0-REC.

It is also observed from Figure 1 that the gap between the 1-REC and 1/2-REC and
that between 1/2-REC and 0-REC are the matrices whose null spaces fall in the cones
of C1(s) \ C1/2(s) and C1/2(s) \ C0(s), respectively.

We now provide a rigorous proof in the following proposition to identify the relationship
between the feasible sets Cq(s) and between the general q-RECs: the lower the q, the smaller
the cone Cq(s), and the weaker the q-REC.

Proposition 5 Let 0 ≤ q1 ≤ q2 ≤ 1 and 1 ≤ s ≤ t≪ n. Then the following statements are
true:

(i) Cq1(s) ⊆ Cq2(s), and

(ii) if the q2-REC(s, t) holds, then the q1-REC(s, t) holds.

11



Hu, Li, Meng, Qin, and Yang

Proof (i) Fix x ∈ Cq1(s). We use I∗ to denote the index set of the first s largest coordinates
in absolute value of x. Since x ∈ Cq1(s), it follows that ∥xIc∗∥q1 ≤ ∥xI∗∥q1 (|I∗| ≤ s due to
the construction of I∗). By Lemma 3 (taking γ = q2/q1), one has that

∥xIc∗∥q2 ≤ ∥xI∗∥q2 ,

that is, x ∈ Cq2(s). Hence it follows that Cq1(s) ⊆ Cq2(s).
(ii) As proved by (i) that Cq1(s) ⊆ Cq2(s), by the definition of q-REC, it follows that

ϕq1(s, t) ≥ ϕq2(s, t) > 0.

The proof is complete.

To the best of our knowledge, this is the first work on introducing the lower-order REC
and establishing the relationship of the lower-order RECs. In the following, we provide a
counter example to show that the reverse of Proposition 5 is not true.

Example 1 (A matrix satisfying 1/2-REC but not REC) Consider the matrix

A :=

(
a a+ c a− c
ã ã− c̃ ã+ c̃

)
∈ R2×3,

where a > c > 0 and ã > c̃ > 0. This matrix A does not satisfy the REC(1, 1). Indeed, by
letting J = {1} and x = (2,−1,−1)⊤, we have Ax = 0 and thus ϕ(1, 1) = 0.

Below, we claim that A satisfies the 1/2-REC(1, 1). It suffices to show that ϕ1/2(1, 1) >

0. Let x = (x1, x2, x3)
⊤ satisfy the constraint associated with 1/2-REC(1, 1). As s = 1, the

deduction is divided into the following three cases.

(i) J = {1}. Then

|x1| ≥ ∥xJ c∥1/2 = |x2| + |x3| + 2|x2|1/2|x3|1/2. (12)

Without loss of generality, we assume |x1| ≥ |x2| ≥ |x3|. Hence, T = {1, 2} and

∥Ax∥2
∥xT ∥2

≥ min{a, ã}|x1 + x2 + x3| + min{c, c̃}|x2 − x3|
|x1| + |x2|

. (13)

If |x2| ≤ 1
3 |x1|, (13) reduces to

∥Ax∥2
∥xT ∥2

≥
min{a,ã}

3 |x1|
4
3 |x1|

=
min{a, ã}

4
. (14)

If |x2| ≥ 1
3 |x1|, substituting (12) into (13), one has that

∥Ax∥2
∥xT ∥2

≥

{
min{c,c̃}

8 , |x3| ≤ 1
2 |x2|,

min{a,ã}
4 , |x3| ≥ 1

2 |x2|.
(15)

12
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(ii) J = {2}. Since T = {2, 1} or {2, 3}, it follows from Huang and Yang (2003, lem. 4.1(i-
i)) that

|x2| ≥ ∥xJ c∥1/2 ≥ |x1| + |x3|. (16)

Thus, it is easy to verify that ∥xT ∥2 ≤ 2|x2| and that

∥Ax∥2
∥xT ∥2

≥ |ax1 + (a+ c)x2 + (a− c)x3|
2|x2|

=
|a(x1 + x2 + a−c

a x3) + cx2|
2|x2|

≥ c

2
, (17)

where the last inequality follows from (16) and the fact that a > c.

(iii) J = {3}. Similar to the deduction of (ii), one has that

∥Ax∥2
∥xT ∥2

≥ |ãx1 + (ã− c̃)x2 + (ã+ c̃)x3|
2|x3|

≥ c̃

2
. (18)

Therefore, by (14)-(15) and (17)-(18), we conclude that ϕ1/2(1, 1) ≥ 1
8 min{c, c̃} > 0, and

thus, the matrix A satisfies the 1/2-REC(1, 1).

In order to establish the oracle property and the global recovery bound for the ℓp,q regu-
larization problem, we further introduce the notion of group restricted eigenvalue condition
(GREC). Given S ≤ N ≪ r, x ∈ Rn and J ⊆ {1, . . . , r}, we use ranki(x) to denote the
rank of ∥xGi∥p among {∥xGj∥p : j ∈ J c} (in a decreasing order), J (x;N) to denote the
index set of the first N largest groups in the value of ∥xGi∥p among {∥xGj∥p : j ∈ J c}, that
is,

J (x;N) := {i ∈ J c : ranki(x) ∈ {1, . . . , N}} .

Furthermore, by letting R := ⌈ r−|J |
N ⌉, we denote

Jk(x;N) :=

{
{i ∈ J c : ranki(x) ∈ {kN + 1, . . . , (k + 1)N}} , k = 1, . . . , R− 1,
{i ∈ J c : ranki(x) ∈ {RN + 1, . . . , r − |J |}} , k = R.

(19)

Note that the residual x̂ := x∗(ℓp,q)− x̄ of the ℓp,q regularization problem always satisfies
∥x̂GSc∥p,q ≤ ∥x̂GS∥p,q. Thus we introduce the notion of GREC, where the minimum is taken
over a restricted set measured by an ℓp,q norm inequality, as follows.

Definition 6 Let 0 < q ≤ p ≤ 2. The (p, q)-group restricted eigenvalue condition relative
to (S,N) ((p, q)-GREC(S,N)) is said to be satisfied if

ϕp,q(S,N) := min

{
∥Ax∥2

∥xGN ∥p,2
: |J | ≤ S, ∥xGJ c∥p,q ≤ ∥xGJ ∥p,q,N = J (x;N) ∪ J

}
> 0.

The (p, q)-GREC extends the q-REC to the setting equipping with a pre-defined group
structure. Handling the components in each group as one element, the (p, q)-GREC admits
the fewer degree of freedom, which is S (about s/nmax), on its associated constraint than
that of the q-REC, and thus it characterizes a weaker condition than the q-REC. For
example, the 0-REC(s, s) is to indicate the restricted positive definiteness of A⊤A, which is
valid only for the vectors whose cardinality is less than 2s; while the (p, 0)-GREC(S, S) is to
describe the restricted positive definiteness of A⊤A on any 2S-group support, whose degree
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of freedom is much less than the 2s-support. Thus the (p, 0)-GREC(S, S) provides a broader
condition than the 0-REC(s, s). Similar to the proof of Proposition 5, we can show that if
0 ≤ q1 ≤ q2 ≤ 1 ≤ p ≤ 2 and the (p, q2)-GREC(S,N) holds, then the (p, q1)-GREC(S,N)
also holds.

We end this subsection by providing the following lemma, which will be useful in estab-
lishing the global recovery bound for the ℓp,q regularization problem in Theorem 9.

Lemma 7 Let 0 < q ≤ 1 ≤ p, τ ≥ 1 and x ∈ Rn, N := J (x;N) ∪ J and Jk := Jk(x;N)
for k = 1, . . . , R. Then the following inequalities hold

∥xGNc∥p,τ ≤
R∑
k=1

∥xGJk
∥p,τ ≤ N

1
τ
− 1
q ∥xGJ c∥p,q.

Proof By the definition of Jk (19), for each j ∈ Jk, one has that

∥xGj∥p ≤ ∥xGi∥p, for each i ∈ Jk−1,

and thus

∥xGj∥qp ≤
1

N

∑
i∈Jk−1

∥xGi∥qp =
1

N
∥xGJk−1

∥qp,q.

Consequently, we obtain that

∥xGJk
∥τp,τ =

∑
i∈Jk

∥xGi∥τp ≤ N1−τ/q∥xGJk−1
∥τp,q.

Further by Huang and Yang (2003, lem. 4.1) (τ ≥ 1 and q ≤ 1), it follows that

∥xGNc∥p,τ =
(∑R

k=1

∑
i∈Jk ∥xGi∥

τ
p

)1/τ
≤
∑R

k=1 ∥xGJk
∥p,τ

≤ N
1
τ
− 1
q
∑R

k=1 ∥xGJk−1
∥p,q

≤ N
1
τ
− 1
q ∥xGJ c∥p,q.

The proof is complete.

2.3 Global Recovery Bound

In recent years, many articles have been devoted to establishing the oracle property and
the global recovery bound for the ℓ1 regularization problem (1) under the RIP or REC; see
Bickel et al. (2009); Meinshausen and Yu (2009); van de Geer and Bühlmann (2009); Zhang
(2009). However, to the best of our knowledge, there is few paper devoted to investigating
these properties for the lower-order regularization problem.

In the preceding subsections, we have introduced the general notion of (p, q)-GREC.
Under the (p, q)-GREC(S, S), the solution of Ax = b with group sparsity being S is unique.
In this subsection, we will present the oracle property and the global recovery bound for

14
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the ℓp,q regularization problem (4) under the (p, q)-GREC. The oracle property provides an
upper bound on the squares error of the linear system and the violation of the true nonzero
groups for each point in the level set of the objective function of problem (4)

levF (x̄) := {x ∈ Rn : ∥Ax− b∥22 + λ∥x∥qp,q ≤ λ∥x̄∥qp,q}.

Proposition 8 Let 0 < q ≤ 1 ≤ p, S > 0 and let the (p, q)-GREC(S, S) hold. Let x̄ be the
unique solution of Ax = b at a group sparsity level S, and S be the index set of nonzero
groups of x̄. Let K be the smallest integer such that 2K−1q ≥ 1. Then, for any x∗ ∈ levF (x̄),
the following oracle inequality holds

∥Ax∗ −Ax̄∥22 + λ∥x∗GSc
∥qp,q ≤ λ

2
2−qS(1−2−K) 2

2−q /ϕ
2q
2−q
p,q (S, S). (20)

Moreover, letting N∗ := S ∪ S(x∗;S), we have

∥x∗GN∗
− x̄GN∗∥

2
p,2 ≤ λ

2
2−qS(1−2−K) 2

2−q /ϕ
4

2−q
p,q (S, S).

Proof Let x∗ ∈ levF (x̄). That is, ∥Ax∗ − b∥22 + λ∥x∗∥qp,q ≤ λ∥x̄∥qp,q. By Lemmas 1(ii) and
2, one has that

∥Ax∗ −Ax̄∥22 + λ∥x∗GSc
∥qp,q ≤ λ∥x̄GS∥

q
p,q − λ∥x∗GS

∥qp,q
≤ λ∥x̄GS − x∗GS

∥qp,q
≤ λS1−2−K∥x̄GS − x∗GS

∥qp,2.
(21)

Noting that

∥x∗GSc
− x̄GSc∥

q
p,q−∥x∗GS − x̄GS∥

q
p,q ≤ ∥x∗GSc

∥qp,q− (∥x̄GS∥
q
p,q−∥x∗GS∥

q
p,q) = ∥x∗∥qp,q−∥x̄∥qp,q ≤ 0.

Then the (p, q)-GREC(S, S) implies that

∥x̄GS − x∗GS∥p,2 ≤ ∥Ax∗ −Ax̄∥2/ϕp,q(S, S).

This, together with (21), yields that

∥Ax∗ −Ax̄∥22 + λ∥x∗GSc
∥qp,q ≤ λS1−2−K∥Ax∗ −Ax̄∥q2/ϕ

q
p,q(S, S), (22)

and consequently,

∥Ax∗ −Ax̄∥2 ≤ λ
1

2−qS(1−2−K)/(2−q)/ϕ
q

2−q
p,q (S, S). (23)

Therefore, by (22) and (23), we arrive at the oracle inequality (20). Furthermore, by the
definition of N∗, the (p, q)-GREC(S, S) implies that

∥x∗GN∗
− x̄GN∗∥

2
p,2 ≤ ∥Ax∗ −Ax̄∥22/ϕ2p,q(S, S) ≤ λ

2
2−qS(1−2−K) 2

2−q /ϕ
4

2−q
p,q (S, S).

The proof is complete.

One of the main results of this section is presented as follows, where we establish the
global recovery bound for the ℓp,q regularization problem under the (p, q)-GREC. We will
apply oracle inequality (20) and Lemma 7 in our proof.

15



Hu, Li, Meng, Qin, and Yang

Theorem 9 Let 0 < q ≤ 1 ≤ p ≤ 2, S > 0 and let the (p, q)-GREC(S, S) hold. Let x̄
be the unique solution of Ax = b at a group sparsity level S, and S be the index set of
nonzero groups of x̄. Let K be the smallest integer such that 2K−1q ≥ 1. Then, for any
x∗ ∈ levF (x̄), the following global recovery bound for problem (4) holds

∥x∗ − x̄∥22 ≤ 2λ
2

2−qS
q−2
q

+(1−2−K) 4
q(2−q) /ϕ

4
2−q
p,q (S, S). (24)

More precisely,

∥x∗ − x̄∥22 ≤

{
O(λ

2
2−qS), 2K−1q = 1,

O(λ
2

2−qS
3−q
2−q ), 2K−1q > 1.

(25)

Proof Let N∗ := S ∪ S(x∗;S) as in Proposition 8. Since p ≤ 2, it follows from Lemma 7
and Proposition 8 that

∥x∗GNc∗
∥22 ≤ ∥x∗GNc∗

∥2p,2 ≤ S1−2/q∥x∗GSc
∥2p,q ≤ λ

2
2−qS

q−2
q

+(1−2−K) 4
q(2−q) /ϕ

4
2−q
p,q (S, S).

Then by Proposition 8, one has that

∥x∗ − x̄∥22 = ∥x∗GN∗
− x̄GN∗∥

2
2 + ∥x∗GNc∗

∥22

≤ λ
2

2−qS(1−2−K) 2
2−q /ϕ

4
2−q
p,q (S, S) + λ

2
2−qS

q−2
q

+(1−2−K) 4
q(2−q) /ϕ

4
2−q
p,q (S, S)

≤ 2λ
2

2−qS
q−2
q

+(1−2−K) 4
q(2−q) /ϕ

4
2−q
p,q (S, S),

where the last inequality follows from the fact that 2K−1q ≥ 1. This proves (24). In
particular, if 2K−1q = 1, then q−2

q +
(
1 − 2−K

)
4

q(2−q) = 1 and thus

∥x∗ − x̄∥22 ≤ O(λ
2

2−qS).

If 2K−1q > 1, then 2K−2q < 1. Hence, q−2
q +

(
1 − 2−K

)
4

q(2−q) <
3−q
2−q , and consequently

∥x∗ − x̄∥22 ≤ O(λ
2

2−qS
3−q
2−q ).

Hence (25) is obtained. The proof is complete.

The global recovery bound (25) is deduced under general (p, q)-GREC(S, S), which is
weaker than the REC as used in van de Geer and Bühlmann (2009). It shows that the
sparse solution x̄ may be recovered by any point x∗ in the level set levF (x̄), in particular,
when x∗ is a global optimal solution of problem (4), as long as λ is sufficiently small. It is
well-known that when p = 2 and q = 1, convex regularization problem (4) is numerically
intractable for finding the sparse solution and that when q < 1 finding a point in the
nonconvex level set levF (x̄) is equivalent to finding a global minimum of minimizing the
indicator function of the nonconvex level set, which is NP-hard. Thus Theorem 9 is only
a theoretical result and does not provide any insight for the numerical computation of a
sparse solution by virtue of problem (4). We will design a proximal gradient method in
section 3, test its numerical efficiency and provide some general guidance on which q is
more attractive in practical applications in section 4.
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To conclude this subsection, we illustrate by an example in which (24) does not hold
when q = 1, but it does and is also tight when q = 1

2 . We will testify the recovery bound

O(λ4/3S) in (24) when q = 1
2 by using a global optimization method.

Example 2 By letting a = ã = 2 and c = c̃ = 1 in Example 1, we consider the following
matrix:

A :=

(
2 3 1
2 1 3

)
.

We set b := (2, 2)⊤ and then a true solution of Ax = b is x̄ := (1, 0, 0)⊤. Denoting
x := (x1, x2, x3)

⊤, the objective function associated with the ℓ1 regularization problem (1) is

F (x) := ∥Ax− b∥22 + λ∥x∥1
= (2x1 + 3x2 + x3 − 2)2 + (2x1 + x2 + 3x3 − 2)2 + λ(|x1| + |x2| + |x3|).

Let x∗(ℓ1) := (x∗1, x
∗
2, x

∗
3)

⊤ be an optimal solution of problem (1). Without loss of generality,
we assume λ ≤ 1. The necessary condition of x∗(ℓ1) being an optimal solution of problem
(1) is 0 ∈ ∂F (x∗(ℓ1)), that is,

0 ∈ 16x∗1 + 16x∗2 + 16x∗3 − 16 + λ∂|x∗1|, (26a)

0 ∈ 16x∗1 + 20x∗2 + 12x∗3 − 16 + λ∂|x∗2|, (26b)

0 ∈ 16x∗1 + 12x∗2 + 20x∗3 − 16 + λ∂|x∗3|, (26c)

where ∂|µ| :=

{
sign(µ), µ ̸= 0,
[−1, 1], µ = 0.

We first show that x∗i ≥ 0 for i = 1, 2, 3 by contradiction. Indeed, if x∗1 < 0, (26a)
reduces to

16x∗1 + 16x∗2 + 16x∗3 − 16 = λ.

Summing (26b) and (26c), we further have

λ = 16x∗1 + 16x∗2 + 16x∗3 − 16 ∈ −λ
2

(∂|x∗2| + ∂|x∗3|),

which implies that x∗2 ≤ 0 and x∗3 ≤ 0. Hence, it follows that F (x∗) > F (0), which indicates
that x∗ is not an optimal solution of problem (1), and thus, x∗1 < 0 is impossible. Similarly,
we can show that x∗2 ≥ 0 and x∗3 ≥ 0.

Next, we find the optimal solution x∗(ℓ1) by only considering x∗(ℓ1) ≥ 0. It is easy
to obtain that the solution of (26) and the corresponding objective value associated with
problem (1) can be represented respectively by

x∗1 = 1 − λ

16
− 2x∗3, x∗2 = x∗3

(
0 ≤ x∗3 ≤

1

2
− λ

32

)
, and F (x∗(ℓ1)) = λ− λ2

32
.

Hence, x∗(ℓ1) :=
(
0, 12 − λ

32 ,
1
2 − λ

32

)⊤
is an optimal solution of problem (1). The estimated

error for this x∗(ℓ1) is

∥x∗(ℓ1) − x̄∥22 = 1 +
1

2

(
1 − λ

16

)2

> 1,
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Figure 2: The illustration of the recovery bound (24) and estimated error.

which does not meet the recovery bound (25) for any λ ≤ 1.

It is revealed from Example 1 that this matrix A satisfies the 1/2-REC(1, 1). Then
the hypothesis of Theorem 9 is verified, and thus, Theorem 9 is applicable to establishing
the recovery bound (25) for the ℓ1/2 regularization problem. Although we cannot obtain
the closed-form solution of this nonconvex ℓ1/2 regularization problem, as it is of only 3-
dimensions, we can apply a global optimization method, the filled function method (Ge
(1990)), to find the global optimal solution x∗(ℓ1/2) and thus to testify the recovery bound
(25). This is done by computing the ℓ1/2 regularization problem for many λ to plot the curve
∥x∗(ℓ1/2)− x̄∥22. Figure 2 illustrates the variation of the estimated error ∥x∗(ℓ1/2)− x̄∥22 and

the bound 2λ4/3 (that is the right-hand side of (24), where S = 1 and ϕ1/2(1, 1) ≤ 1 (see
Example 1)), when varying the regularization parameter λ from 10−8 to 1. It is illustrated
from Figure 2 the recovery bound (25) is satisfied, and it is indeed tight, for this example.

2.4 Local Recovery Bound

In the preceding subsection, we provided the global analysis of the recovery bound for the
ℓp,q regularization problem under the (p, q)-GREC; see Theorem 9. One can also observe
from Figure 2 that the global recovery bound (25) is tight for the ℓ1/2 regularization problem
as the curves come together at λ ≃ 0.5, but there is still a big gap for the improvement
when λ is small.

This subsection is devoted to providing a local analysis of the recovery bound for the ℓp,q
regularization problem by virtue of the variational analysis technique (Rockafellar and Wets,
1998). For x ∈ Rn and δ ∈ R+, we use B(x, δ) to denote the open ball of radius δ centered at
x. For a lower semi-continuous (lsc) function f : Rn → R and x,w ∈ Rn, the subderivative
of f at x along the direction w is defined by

df(x̄)(w) := lim inf
τ↓0, w′→w

f(x̄+ τw′) − f(x̄)

τ
.
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To begin with, we show in the following lemma a significant advantage of lower-order regu-
larization over the ℓ1 regularization: the lower-order regularization term can easily induce
the sparsity of the local minimum.

Lemma 10 Let 0 < q < 1 ≤ p. Let f : Rn → R be a lsc function satisfying df(0)(0) = 0.
Then the function F := f + λ∥ · ∥qp,q has a local minimum at 0 with the first-order growth
condition being fulfilled, that is, there exist some ϵ > 0 and δ > 0 such that

F (x) ≥ F (0) + ϵ∥x∥2 for any x ∈ B(0, δ).

Proof Let φ := λ∥ · ∥qp,q and then F = f + φ. Since φ is grouped separable, by
Rockafellar and Wets (1998, prop. 10.5), it follows from the definition that dφ(0) = δ{0},
where δX is the indicator function of X. Applying Rockafellar and Wets (1998, prop. 10.9),
it follows that

dF (0) ≥ df(0) + dφ(0) = df(0) + δ{0}. (27)

By the assumption that f is finite and df(0)(0) = 0, its subderivative df(0) is proper (see
Rockafellar and Wets, 1998, ex. 3.19). Noting that df(0)(0) = 0, we obtain that df(0) +
δ{0} = δ{0}. This, together with (27), yields that dF (0) ≥ δ{0}. Therefore, by definition,
there exist some ϵ > 0 and δ > 0 such that

F (x) ≥ F (0) + ϵ∥x∥2 for any x ∈ B(0, δ).

The proof is complete.

With the help of the above lemma, we can present in the following a local version of
the recovery bound. This is done by constructing a path of local minima depending on
the regularization parameter λ for the regularization problem, which starts from a sparse
solution of the original problem and shares the same support as this sparse solution has,
resulting in a sharper bound in terms of λ2.

Theorem 11 Let x̄ be a solution of Ax = b, S be the group sparsity of x̄, and B be
a submatrix of A consisting of its columns corresponding to the active components of x̄.
Suppose that any nonzero group of x̄ is active, and that the columns of A corresponding to
the active components of x̄ are linearly independent. Let 0 < q < 1 ≤ p. Then there exist
κ > 0 and a path of local minima of problem (4), x∗(λ), such that

∥x∗(λ) − x̄∥22 ≤ λ2q2S∥(B⊤B)−1∥2 max
x̄Gi ̸=0

(
∥x̄Gi∥2(q−p)p ∥x̄Gi∥

2p−2
2p−2

)
for any λ < κ.

Proof Without loss of generality, we let x̄ be of structure x̄ = (z̄⊤, 0)⊤ with

z̄ = (x̄⊤G1
, . . . , x̄⊤GS )⊤ and x̄Gi ̸=a 0 for i = 1, . . . , S,

and let s be the sparsity of x̄. Let A = (B,D) with B being the submatrix involving the
first s columns of A (corresponding to the active components of x̄). By the assumption, we
have that B is of full column rank and thus B⊤B is invertible. In this setting, the linear
relation Ax̄ = b reduces to Bz̄ = b. The proof of this theorem is divided into the following
three steps:
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(a) construct a smooth path from x̄ by the implicit function theorem;

(b) validate that every point of the constructed path is a local minimum of (4); and

(c) establish the recovery bound for the constructed path.

First, to show (a), we define H : Rs+1 → Rs by

H(z, λ) = 2B⊤(Bz − b) + λq

∥zG1∥
q−p
p σ(zG1)

...

∥zGS∥
q−p
p σ(zGS )

 ,

where σ(zGi) = vector
(
|zj |p−1sign(zj)

)
Gi

, denoting a vector consisting of |zj |p−1sign(zj) for

all j ∈ Gi. Let δ̄ > 0 be sufficiently small such that sign(z) = sign(z̄) for any z ∈ B(z̄, δ̄)
and thus H is smooth on B(z̄, δ̄)×R. Note that H(z̄, 0) = 0 and ∂H

∂z (z̄, 0) = 2B⊤B. By the
implicit function theorem (Rudin, 1976), there exist some κ > 0, δ ∈ (0, δ̄) and a unique
smooth function ξ : (−κ, κ) → B(z̄, δ) such that

{(z, λ) ∈ B(z̄, δ̄) × (−κ, κ) : H(z, λ) = 0} = {(ξ(λ), λ) : λ ∈ (−κ, κ)}, (28)

and

dξ

dλ
= −q

2B⊤B + λq

 M1 0 0

0
. . . 0

0 0 MS




−1∥ξ(λ)G1∥
q−p
p σ(ξ(λ)G1)

...

∥ξ(λ)GS∥
q−p
p σ(ξ(λ)GS )

 , (29)

where Mi for each i = 1, . . . , S is denoted by

Mi = (q − p)∥ξ(λ)Gi∥q−2p
p (σ(ξ(λ)Gi))(σ(ξ(λ)Gi))

⊤ + (p− 1)∥ξ(λ)Gi∥q−pp diag
(
|ξ(λ)j |p−2

)
,

and diag
(
|ξ(λ)j |p−2

)
denotes a diagonal matrix generated by vector

(
|ξ(λ)j |p−2

)
. Thus, by

(28) and (29), we have constructed a smooth path ξ(λ) near z̄, λ ∈ (−κ, κ), such that

2B⊤(Bξ(λ) − b) + λq

∥ξ(λ)G1∥
q−p
p σ(ξ(λ)G1)

...

∥ξ(λ)GS∥
q−p
p σ(ξ(λ)GS )

 = 0 (30)

and

2B⊤B + λq

 M1 0 0

0
. . . 0

0 0 MS

 ≻ 0. (31)

This shows that (a) is done as desired.
For fixed λ ∈ (−κ, κ), let x∗(λ) := (ξ(λ)⊤, 0)⊤. To verify (b), we prove that x∗(λ),

with ξ(λ) satisfying (30) and (31), is a local minimum of problem (4). Let h : Rs → R
be a function with h(z) := ∥Bz − b∥22 + λ∥z∥qp,q for any z ∈ Rs. Note that h(ξ(λ)) =
∥Ax∗(λ)−b∥22 +λ∥x∗(λ)∥qp,q and that h is smooth around ξ(λ). By noting that ξ(λ) satisfies
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(30) and (31) (the first- and second- derivative of h at ξ(λ)), one has that h satisfies the
second-order growth condition at ξ(λ), that is, there exist ϵλ > 0 and δλ > 0 such that

h(z) ≥ h(ξ(λ)) + 2ϵλ∥z − ξ(λ)∥22 for any z ∈ B(ξ(λ), δλ). (32)

In what follows, let ϵλ > 0 and δλ > 0 be given as above, and select ϵ0 > 0 such that
√
ϵλϵ0 − ∥B∥∥D∥ > 0. (33)

According to Lemma 10 (with ∥D · ∥22 + 2⟨Bξ(λ) − b,D·⟩ − 2ϵ0∥ · ∥22 in place of f), there
exists δ0 > 0 such that

∥Dy∥22 + 2⟨Bξ(λ) − b,Dy⟩ − 2ϵ0∥y∥22 + λ∥y∥qp,q ≥ 0 for any y ∈ B(0, δ0). (34)

Thus, for each x := (z, y) ∈ B(ξ(λ), δλ) ×B(0, δ0), it follows that

∥Ax− b∥22 + λ∥x∥qp,q
= ∥Bz − b+Dy∥22 + λ∥z∥qp,q + λ∥y∥qp,q
= ∥Bz − b∥22 + λ∥z∥qp,q + ∥Dy∥22 + 2⟨Bz − b,Dy⟩ + λ∥y∥qp,q
= h(z) + ∥Dy∥22 + 2⟨Bξ(λ) − b,Dy⟩ + λ∥y∥qp,q + 2⟨B(z − ξ(λ)), Dy⟩.

By (32) and (34), it yields that

∥Ax− b∥22 + λ∥x∥qp,q
≥ h(ξ(λ)) + 2ϵλ∥z − ξ(λ)∥22 + 2ϵ0∥y∥22 + 2⟨B(z − ξ(λ)), Dy⟩
≥ h(ξ(λ)) + 4

√
ϵλϵ0∥z − ξ(λ)∥2∥y∥2 − 2∥B∥∥D∥∥z − ξ(λ)∥2∥y∥2

= ∥Ax∗(λ) − b∥22 + λ∥x∗(λ)∥qp,q + 2(2
√
ϵλϵ0 − ∥B∥∥D∥)∥z − ξ(λ)∥2∥y∥2

≥ ∥Ax∗(λ) − b∥22 + λ∥x∗(λ)∥qp,q,

where the last inequality follows from (33). Hence x∗(λ) is a local minimum of problem (4),
and (b) is verified.

Finally, we check (c) by providing an upper bound on the distance from ξ(λ) to z̄. By
(30), one has that

ξ(λ) − z̄ = −λq
2

((B⊤B)−1)

∥ξ(λ)G1∥
q−p
p σ(ξ(λ)G1)

...

∥ξ(λ)GS∥
q−p
p σ(ξ(λ)GS )

 . (35)

Noting that {ξ(λ) : λ ∈ (−κ, κ)} ⊆ B(z̄, δ̄), without loss of generality, we assume for any
λ < κ that

∥ξ(λ)Gi∥2(q−p)p ≤ 2∥z̄Gi∥2(q−p)p and ∥ξ(λ)Gi∥
2p−2
2p−2 ≤ 2∥z̄Gi∥

2p−2
2p−2 for i = 1, . . . , S

(otherwise, we choose a smaller δ̄). Recall that σ(ξ(λ)Gi) = vector
(
|ξ(λ)j |p−1sign(ξ(λ)j)

)
Gi

.

We obtain from (35) that

∥ξ(λ) − z̄∥22 ≤ λ2q2

4 ∥(B⊤B)−1∥2
∑S

i=1

(
∥ξ(λ)Gi∥

2(q−p)
p

∑
j∈Gi |ξ(λ)j |2p−2

)
= λ2q2

4 ∥(B⊤B)−1∥2
∑S

i=1

(
∥ξ(λ)Gi∥

2(q−p)
p ∥ξ(λ)Gi∥

2p−2
2p−2

)
≤ λ2q2

4 ∥(B⊤B)−1∥2S max
i=1,...,S

(
∥ξ(λ)Gi∥

2(q−p)
p ∥ξ(λ)Gi∥

2p−2
2p−2

)
≤ λ2q2S∥(B⊤B)−1∥2 max

i=1,...,S

(
∥z̄Gi∥

2(q−p)
p ∥z̄Gi∥

2p−2
2p−2

)
.
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Hence we arrive at that

∥x∗(λ) − x̄∥22 = ∥ξ(λ) − z̄∥22 ≤ λ2q2S∥(B⊤B)−1∥2 max
x̄Gi ̸=0

(
∥x̄Gi∥2(q−p)p ∥x̄Gi∥

2p−2
2p−2

)
for any λ < κ, and the proof is complete.

Theorem 11 provides a uniform local recovery bound for all the ℓp,q regularization prob-
lems (0 < q < 1 ≤ p), which is

∥x∗p,q(λ) − x̄∥22 ≤ O(λ2S),

where x∗p,q(λ) is a local optimal solution of problem (4) (near x̄). This bound improves

the global recovery bound given in Theorem 9 (of order O(λ
2

2−q )) and shares the same
one with the ℓp,1 regularization problem (group Lasso); see Blumensath and Davies (2008);
van de Geer and Bühlmann (2009). It is worth noting that our proof technique is not
working when q = 1 as Lemma 10 fails in this case.

3. Proximal Gradient Method for Group Sparse Optimization

Many efficient algorithms have been proposed to solve sparse optimization problems, and
one of the most popular optimization algorithms is the proximal gradient method (PGM);
see Beck and Teboulle (2009); Combettes and Wajs (2005); Xiao and Zhang (2013) and ref-
erences therein. It was reported in Combettes and Wajs (2005) that the PGM for solving the
ℓ1 regularization problem (1) reduces to the well-known iterative soft thresholding algorith-
m (ISTA), and that the ISTA has a local linear convergence rate under some assumptions;
see Bredies and Lorenz (2008); Hale et al. (2008); Tao et al. (2016). Recently, the glob-
al convergence of the PGM for solving some types of nonconvex regularization problems
have been studied under the framework of the Kurdyka- Lojasiewicz theory (Attouch et al.,
2010; Bolte et al., 2013), the majorization-minimization scheme (Mairal, 2013), the coordi-
nate gradient descent method (Tseng and Yun, 2009), the general iterative shrinkage and
thresholding (Gong et al., 2013) and the successive upper-bound minimization approach
(Razaviyayn et al., 2013).

In this section, we apply the PGM to solve the group sparse optimization problem (4)
(PGM-GSO), which is stated as follows.

Algorithm 1 (PGM-GSO) Select a stepsize v, start with an initial point x0 ∈ Rn, and
generate a sequence {xk} ⊆ Rn via the iteration

zk = xk − 2vA⊤(Axk − b), (36)

xk+1 ∈ arg min
x∈Rn

{
λ∥x∥qp,q +

1

2v
∥x− zk∥22

}
. (37)

Global convergence of the PGM-GSO falls in the framework of the Kurdyka- Lojasiewicz
theory (see Attouch et al., 2010). In particular, following from Bolte et al. (2013, prop. 3),
the sequence generated by the PGM-GSO converges to a critical point, especially a glob-
al minimum when q ≥ 1 and a local minimum when q = 0 (inspired by the idea in
Blumensath and Davies, 2008), as summarized as follows.
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Theorem 12 Let p ≥ 1. Suppose that the sequence {xk} is generated by the PGM-GSO
with v < 1

2∥A∥
−2
2 . Then the following statements hold:

(i) if q ≥ 1, then {xk} converges to a global minimum of problem (4),

(ii) if q = 0, then {xk} converges to a local minimum of problem (4), and

(iii) if 0 < q < 1, then {xk} converges to a critical point 1 of problem (4).

Although the global convergence of the PGM-GSO has been provided in Theorem 12,
some important issues of the PGM-GSO have not been discovered yet. The section is to
continue the development of the PGM-GSO, concentrating on its efficiency and applicability.
In particular, we will establish the local convergence rate of the PGM-GSO under some mild
conditions, and derive the analytical solutions of subproblem (37) for some specific p and q.

3.1 Local Linear Convergence Rate

In this subsection, we establish the local linear convergence rate of the PGM-GSO for the
case when p = 1 and 0 < q < 1. For the reminder of this subsection, we always assume that
p = 1 and 0 < q < 1.

To begin with, by virtue of the second-order necessary condition of subproblem (37), the
following lemma provides a lower bound for nonzero groups of sequence {xk} generated by
the PGM-GSO and shows that the index set of nonzero groups of {xk} maintains constant
for large k.

Lemma 13 Let K = (vλq(1 − q))
1

2−q , and let {xk} be a sequence generated by the PGM-
GSO with v < 1

2∥A∥
−2
2 . Then the following statements hold:

(i) For any i and k, if xkGi ̸= 0, then ∥xkGi∥1 ≥ K.

(ii) xk shares the same index set of nonzero groups for large k, that is, there exist N ∈ N
and I ⊆ {1, . . . , r} such that{

xkGi ̸= 0, i ∈ I,
xkGi = 0, i /∈ I, for all k ≥ N.

Proof (i) For each group xkGi , by (37), one has that

xkGi ∈ arg min
x∈Rni

{
λ∥x∥q1 +

1

2v
∥x− zk−1

Gi ∥22
}
. (38)

If xkGi ̸= 0, we define Ak
i := {j ∈ Gi : xkj ̸= 0} and aki := |Ak

i |. Without loss of generality, we

assume that the first aki components of xkGi are nonzeros. Then (38) implies that

xkGi ∈ arg min

x∈Ra
k
i ×{0}

{
λ∥x∥q1 +

1

2v
∥x− zk−1

Gi ∥22
}
.

1. A point x is said to be a critical point of F if 0 belongs to its limiting subdifferential at x; see
Mordukhovich (2006).
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Its second-order necessary condition says that

1

v
Iki + λq(q − 1)Mk

i ≽ 0,

where Iki is the identity matrix in Ra
k
i×aki and Mk

i = ∥xkAki ∥
q−2
1 (sign(xkAki

))(sign(xkAki
))⊤. Let

e be the first column of Iki . Then, we obtain that

1

v
e⊤Iki e+ λq(q − 1)e⊤Mk

i e ≥ 0,

that is,
1

v
+ λq(q − 1)∥xkAki ∥

q−2
1 ≥ 0.

Consequently, it implies that

∥xkGi∥1 = ∥xkAki ∥1 ≥ (vλq(1 − q))
1

2−q = K.

Hence, it completes the proof of (i).
(ii) Recall from Theorem 12 that {xk} converges to a critical point x∗. Then there exists
N ∈ N such that ∥xk − x∗∥2 < K

2
√
n

, and thus,

∥xk+1 − xk∥2 ≤ ∥xk+1 − x∗∥2 + ∥xk − x∗∥2 <
K√
n
, (39)

for any k ≥ N . Proving by contradiction, without loss of generality, we assume that there
exist k ≥ N and i ∈ {1, . . . , r} such that xk+1

Gi ̸= 0 and xkGi = 0. Then it follows from (i)
that

∥xk+1 − xk∥2 ≥
1√
n
∥xk+1 − xk∥1 ≥

1√
n
∥xk+1

Gi − xkGi∥1 ≥
K√
n
,

which yields a contradiction with (39). The proof is complete.

Let x∗ ∈ Rn, and let

S :=
{
i ∈ {1, . . . , r} : x∗Gi ̸= 0

}
and B := (A·j)j∈GS .

Consider the following restricted problem

min
y∈Rna

f(y) + φ(y), (40)

where na :=
∑

i∈S ni, and

f : Rna → R with f(y) := ∥By − b∥22 for any y ∈ Rna ,

φ : Rna → R with φ(y) := λ∥y∥q1,q for any y ∈ Rna .

The following lemma provides the first- and second-order conditions for a local minimum of
the ℓ1,q regularization problem, and shows a second-order growth condition for the restricted
problem (40), which is useful for establishing the local linear convergence rate of the PGM-
GSO.
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Lemma 14 Assume that x∗ is a local minimum of problem (4). Suppose that any nonzero
group of x∗ is active, and the columns of B are linearly independent 2. Then the following
statements are true:

(i) The following first- and second-order conditions hold

2B⊤(By∗ − b) + λq

 ∥y∗G1
∥q−1
1 sign(y∗G1

)
...

∥y∗GS∥
q−1
1 sign(y∗GS )

 = 0, (41)

and

2B⊤B + λq(q − 1)

 M∗
1 0 0

0
. . . 0

0 0 M∗
S

 ≻ 0, (42)

where

M∗
i = ∥y∗Gi∥

q−2
1

(
sign(y∗Gi)

) (
sign(y∗Gi)

)⊤
.

(ii) The second-order growth condition holds at y∗ for problem (40), that is, there exist
ε > 0 and δ > 0 such that

(f + φ)(y) ≥ (f + φ)(y∗) + ε∥y − y∗∥22 for any y ∈ B(y∗, δ). (43)

Proof Without loss of generality, we assume that S := {1, . . . , S}. By assumption, x∗ is
of structure x∗ := (y∗⊤, 0)⊤ with

y∗ := (x∗G1

⊤, . . . , x∗GS
⊤)⊤ and x∗Gi ̸=a 0 for i = 1, . . . , S. (44)

(i) By (44), one has that φ(·) is smooth around y∗ with its first- and second-derivatives
being

φ′(y∗) = λq

 ∥y∗G1
∥q−1
1 sign(y∗G1

)
...

∥y∗GS∥
q−1
1 sign(y∗GS )

 ,

and

φ′′(y∗) = λq(q − 1)

 M∗
1 0 0

0
. . . 0

0 0 M∗
S

 ;

hence (f + φ)(·) is also smooth around y∗. Therefore, we obtain the following first- and
second-order necessary conditions of problem (40)

f ′(y∗) + φ′(y∗) = 0 and f ′′(y∗) + φ′′(y∗) ≽ 0,

2. This assumption is mild, and it holds automatically for the case when nmax = 1 (see Chen et al., 2010,
thm. 2.1).
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which are (41) and

2B⊤B + λq(q − 1)

 M∗
1 0 0

0
. . . 0

0 0 M∗
S

 ≽ 0,

respectively. Proving by contradiction, we assume that (42) does not hold, that is, there
exists some w ̸= 0 such that

2w⊤B⊤Bw + λq(q − 1)
S∑
i=1

∥y∗Gi∥
q−2
1 ·

∑
j∈Gi

wjsign(y∗j )

2 = 0. (45)

By assumption, one has that B⊤B ≻ 0, and thus it follows from (45) that∑
j∈Gi

wjsign(y∗j )

2

> 0 for some i ∈ {1, . . . , S}. (46)

Let h : R → R with h(t) := ∥B(y∗ + tw) − b∥22 + λ∥y∗ + tw∥pp for any t ∈ R. Clearly, h(·)
has a local minimum at 0, and h(·) is smooth around 0 with its derivatives being

h′(0) = 2w⊤B⊤(By∗ − b) + λq

S∑
i=1

∥y∗Gi∥
q−1
1 ·

∑
j∈Gi

wjsign(y∗j )

 = 0,

h′′(0) = 2w⊤B⊤Bw + λq(q − 1)

S∑
i=1

∥y∗Gi∥
q−2
1 ·

∑
j∈Gi

wjsign(y∗j )

2 = 0 (by (45)),

h(3)(0) = λq(q − 1)(q − 2)

S∑
i=1

∥y∗Gi∥
q−3
1 ·

∑
j∈Gi

wjsign(y∗j )

3 = 0,

h(4)(0) = λq(q − 1)(q − 2)(q − 3)
S∑
i=1

∥y∗Gi∥
q−4
1 ·

∑
j∈Gi

wjsign(y∗j )

4 < 0; (47)

due to (46). However, by elementary of calculus, it is clear that h(4)(0) must be nonnegative
(since h(·) obtains a local minimum at 0), which yields a contradiction to (47). Therefore,
we proved (42).
(ii) By the structure of y∗ (44), φ(·) is smooth around y∗, and thus, (f+φ)(·) is also smooth
around y∗ with its derivatives being

f ′(y∗) + φ′(y∗) = 0 and f ′′(y∗) + φ′′(y∗) ≻ 0;

due to (41) and (42). Hence (43) follows from Rockafellar and Wets (1998, thm. 13.24).
This completes the proof.

The key for the study of local convergence rate of the PGM-GSO is the descent property
of the function f+φ in each iteration step. The following lemma states some basic properties
of active groups of sequence {xk} generated by the PGM-GSO.
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Lemma 15 Let {xk} be a sequence generated by the PGM-GSO with v < 1
2∥A∥

−2
2 , which

converges to x∗ (by Theorem 12). Assume that the assumptions in Lemma 14 are satisfied.
We define

α := ∥B∥22, L := 2∥A∥22 and Dk := φ(yk) − φ(yk+1) + ⟨f ′(yk), yk − yk+1⟩.

Then there exist δ > 0 and N ∈ N such that the following inequalities hold for any k ≥ N :

Dk ≥
(

1

v
− α

)
∥yk − yk+1∥22, (48)

and

(f + φ)(yk+1) ≤ (f + φ)(yk) −
(

1 − Lv

2(1 − vα)

)
Dk. (49)

Proof By Lemma 13(ii) and the fact that {xk} converges to x∗, one has that xk shares
the same index set of nonzero groups with that of x∗ for large k; further by the structure
of y∗ (44), we obtain that all components in nonzero groups of yk are nonzero for large k.
In another word, we have

there exists N ∈ N such that yk ̸=a 0 and xkGSc
= 0 for any k ≥ N ; (50)

hence φ(·) is smooth around yk for any k ≥ N .

In view of PGM-GSO and the decomposition of x =
(
y⊤, z⊤

)⊤
, one has that

yk+1 ∈ arg min

{
φ(y) +

1

2v

∥∥∥y − (yk − vf ′(yk)
)∥∥∥2

2

}
.

Its first-order necessary condition is

φ′(yk+1) =
1

v

(
yk − vf ′(yk) − yk+1

)
. (51)

Recall from (42) that φ′′(y∗) ≻ −2B⊤B. Since φ(·) is smooth around y∗, then there exists
δ > 0 such that φ′′(w) ≻ −2B⊤B for any w ∈ B(y∗, δ). Noting that {yk} converges to
y∗, without loss of generality, we assume that ∥yk − y∗∥ < δ for any k ≥ N (otherwise, we
can choose a larger N). Therefore, one has that φ′′(yk) ≻ −2B⊤B for any k ≥ N . Then
by Taylor expansion, we can assume without loss of generality that the following inequality
holds for any k ≥ N and any w ∈ B(y∗, δ) (otherwise, we can choose a smaller δ):

φ(w) > φ(yk+1) + ⟨φ′(yk+1), w − yk+1⟩ − α∥w − yk+1∥22.

Hence, by (51), it follows that

φ(w) − φ(yk+1) >
1

v
⟨yk − vf ′(yk) − yk+1, w − yk+1⟩ − α∥w − yk+1∥22. (52)

Then (48) follows by setting w = yk. Furthermore, by the definition of f(·), it is of class
C1,1
L and it follows from Bertsekas (1999, prop. A.24) that

∥f(y) − f(x) − f ′(x)(y − x)∥ ≤ L

2
∥y − x∥2 for any x, y.
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Then, by the definition of Dk, it follows that

(f + φ)(yk+1) − (f + φ)(yk) +Dk = f(yk+1) − f(yk) + ⟨f ′(yk), yk − yk+1⟩
≤ L

2 ∥y
k − yk+1∥22

≤ Lv
2(1−vα)Dk,

where the last inequality follows from (48), and thus, (49) is proved.

The main result of this subsection is presented as follows, in which we establish the local
linear convergence rate of the PGM-GSO to a local minimum for the case when p = 1 and
0 < q < 1 under some mild assumptions.

Theorem 16 Let {xk} be a sequence generated by the PGM-GSO with v < 1
2∥A∥

−2
2 . Then

{xk} converges to a critical point x∗ of problem (4). Assume that x∗ is a local minimum
of problem (4). Suppose that any nonzero group of x∗ is active, and the columns of B are
linearly independent. Then there exist N ∈ N, C > 0 and η ∈ (0, 1) such that

F (xk) − F (x∗) ≤ Cηk and ∥xk − x∗∥2 ≤ Cηk for any k ≥ N. (53)

Proof The convergence of {xk} to a critical point x∗ of problem (4) directly follows from
Theorem 12. Let Dk, N and δ be defined as in Lemma 15, and let

rk := F (xk) − F (x∗).

Note in (50) that yk ̸=a 0 and xkGcS
= 0 for any k ≥ N . Thus

rk = (f + φ)(yk) − (f + φ)(y∗) for any k ≥ N.

It is trivial to see that φ(·) is smooth around y∗ (as it is active) and that

φ′′(y∗) = λq(q − 1)

 M∗
1 0 0

0
. . . 0

0 0 M∗
S

 ≺ 0, f ′′(y∗) + φ′′(y∗) ≻ 0;

as shown in (42). This shows that φ(·) is concave around y∗, while (f + φ)(·) is convex
around y∗. Without loss of generality, we assume that φ(·) is concave and (f + φ)(·) is
convex in B(y∗, δ) and that yk ∈ B(y∗, δ) for any k ≥ N (since {yk} converges to y∗).

By the convexity of (f + φ)(·) in B(y∗, δ), it follows that for any k ≥ N

rk = (f + φ)(yk) − (f + φ)(y∗)
≤ ⟨f ′(yk) + φ′(yk), yk − y∗⟩
= ⟨f ′(yk) + φ′(yk), yk − yk+1⟩ + ⟨f ′(yk) + φ′(yk), yk+1 − y∗⟩
= Dk − φ(yk) + φ(yk+1) + ⟨φ′(yk), yk − yk+1⟩ + ⟨f ′(yk) + φ′(yk), yk+1 − y∗⟩.

(54)

Noting that φ(·) is concave in B(y∗, δ), it follows that

φ(yk) − φ(yk+1) ≥ ⟨φ′(yk), yk − yk+1⟩.
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Consequently, (54) is reduced to

rk ≤ Dk + ⟨f ′(yk) + φ′(yk), yk+1 − y∗⟩
= Dk + ⟨φ′(yk) − φ′(yk+1), yk+1 − y∗⟩ + ⟨f ′(yk) + φ′(yk+1), yk+1 − y∗⟩
≤ Dk +

(
Lφ + 1

v

)
∥yk − yk+1∥2∥yk+1 − y∗∥2,

(55)

where the last inequality follows from the smoothness of φ on B(y∗, δ) and (51), and Lφ
is the Lipschitz constant of φ′(·) on B(y∗, δ). Let β := 1 − Lv

2(1−vα) ∈ (0, 1) (due to the

assumption v < 1
L). Then, (49) is reduced to

rk − rk+1 = (f + φ)(yk) − (f + φ)(yk+1) ≥ βDk > 0,

and thus, it follows from (55) and (48) that

βrk ≤ βDk + β
(
Lφ + 1

v

)
∥yk − yk+1∥2∥yk+1 − y∗∥2

≤ rk − rk+1 + β
(
Lφ + 1

v

)
∥yk+1 − y∗∥2

√
v

1−vαDk

≤ rk − rk+1 +
(
Lφ + 1

v

)√ vβ
1−vα∥y

k+1 − y∗∥2
√
rk − rk+1.

(56)

Recall from Lemma 14(ii) that there exists c > 0 such that

∥y − y∗∥22 ≤ c ((f + φ)(y) − (f + φ)(y∗)) for any y ∈ B(y∗, δ).

Thus, it follows that

∥yk+1 − y∗∥22 ≤ crk+1 ≤ crk for any k ≥ N. (57)

Let ϵ := c
β

(
Lφ + 1

v

)2
. By Young’s inequality, (56) yields that

βrk ≤ rk − rk+1 + 1
2ϵ∥y

k+1 − y∗∥22
(
Lφ + 1

v

)2
+ ϵvβ

2(1−vα)(rk − rk+1)

≤ rk − rk+1 + β
2 rk + cv

2(1−vα)
(
Lφ + 1

v

)2
(rk − rk+1).

(58)

Let γ := cv
2(1−vα)

(
Lφ + 1

v

)2
> 0. Then, (58) is reduced to

rk+1 ≤
1 + γ − β

2

1 + γ
rk = η1rk,

where η1 :=
1+γ−β

2
1+γ ∈ (0, 1). Thus, by letting C1 := rNη

−N
1 , it follows that

rk ≤ ηk−N1 rN = C1η
k
1 for any k ≥ N.

By letting η2 =
√
η1 and C2 =

√
cC1, it follows from (57) that

∥xk − x∗∥2 = ∥yk − y∗∥2 ≤ (crk)
1/2 ≤ C2η

k
2 for any k ≥ N.

Letting C := max{C1, C2} and η := max{η1, η2}, we obtain (53). The proof is complete.
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Theorem 16 establishes the linear convergence rate of the PGM for solving the ℓ1,q
regularization problem under two assumptions: (i) the critical point x∗ of the sequence
produced by the PGM is a local minimum of problem (4), and (ii) any nonzero group of
the local minimum is an active one. The assumption (i) is important by which we are
able to establish a second-order growth property, which plays a crucial role in our analysis.
Note that the assumption (ii) is satisfied automatically for the sparse optimization problem
(nmax = 1). Hence, when nmax = 1, we obtain the linear convergence rate of the PGM for
solving ℓq regularization problem (0 < q < 1). This result is stated below as a corollary.

Corollary 17 Let 0 < q < 1, and let {xk} be a sequence generated by the PGM for solving
the following ℓq regularization problem

min
x∈Rn

F (x) := ∥Ax− b∥22 + λ∥x∥qq (59)

with v < 1
2∥A∥

−2
2 . Then {xk} converges to a critical point x∗ of problem (59). Further

assume that x∗ is a local minimum of problem (59). Then there exist N ∈ N, C > 0 and
η ∈ (0, 1) such that

F (xk) − F (x∗) ≤ Cηk and ∥xk − x∗∥2 ≤ Cηk for any k ≥ N.

While we are carrying out the revision of our manuscript, we have found that the local
linear convergence rate of the PGM has been studied in the literature. On one hand, the lo-
cal linear convergence rate of the PGM for solving the ℓ1 regularization problem (ISTA) has
been established under some assumptions in Bredies and Lorenz (2008); Hale et al. (2008);
Tao et al. (2016), and, under the framework of the so-called KL theory, it is established that
the sequence generated by the PGM linearly converges to a critical point of a KL function
if its KL exponent is in (0,12 ]; see Frankel et al. (2015); Li and Pong (2016); Xu and Yin
(2013). However, the KL exponent of the ℓq regularized function is still unknown, and thus
the linear convergence result in these references cannot directly be applied to the ℓq regular-
ization problem. On the other hand, Zeng et al. (2015) has obtained the linear convergence
rate of the ℓq regularization problem under the framework of a restricted KL property.
However, it seems that their result is restrictive as it is assumed that the stepsize v and the
regularization component q satisfy

q

2
<
λmin(ATSAS)

∥A∥22
and

q

4λmin(ATSAS)
< v <

1

2∥A∥22
,

where S is the active index of the limiting point x∗, while our result in Corollary 17 holds
for all the stepsize v < 1

2∥A∥
−2
2 and the regularization component 0 < q < 1.

3.2 Analytical Solutions of Proximal Subproblems

Since the main computation of the PGM is the proximal step (37), it is significant to
investigate the solutions of subproblem (37) for the specific applications so as to spread the
application of the PGM. Note that ∥x∥qp,q and ∥x− zk∥22 are both grouped separable. Then
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the proximal step (37) can be achieved parallelly in each group, and is equivalent to solve
a cycle of low dimensional proximal optimization subproblems

xk+1
Gi ∈ arg min

x∈Rni

{
λ∥xGi∥qp +

1

2v
∥xGi − zkGi∥

2
2

}
for i = 1, · · · , r. (60)

When p and q are given as some specific numbers, such as p = 1, 2 and q = 0, 1/2, 2/3, 1, the
solution of subproblem (60) of each group can be given explicitly by an analytical formula,
as shown in the following proposition.

Proposition 18 Let z ∈ Rl, v > 0 and the proximal regularization be

Qp,q(x) := λ∥x∥qp +
1

2v
∥x− z∥22 for any x ∈ Rl.

Then the proximal operator

Pp,q(z) ∈ arg min
x∈Rl

{Qp,q(x)}

has the following analytical formula:

(i) if p = 2 and q = 1, then

P2,1(z) =

{(
1 − vλ

∥z∥2

)
z, ∥z∥2 > vλ,

0, otherwise,

(ii) if p = 2 and q = 0, then

Pp,0(z) =


z, ∥z∥2 >

√
2vλ,

0 or z, ∥z∥2 =
√

2vλ,

0, ∥z∥2 <
√

2vλ,

(iii) if p = 2 and q = 1/2, then

P2,1/2(z) =



16∥z∥3/22 cos3
(
π
3
−ψ(z)

3

)
3
√
3vλ+16∥z∥3/22 cos3

(
π
3
−ψ(z)

3

)z, ∥z∥2 > 3
2(vλ)2/3,

0 or
16∥z∥3/22 cos3

(
π
3
−ψ(z)

3

)
3
√
3vλ+16∥z∥3/22 cos3

(
π
3
−ψ(z)

3

)z, ∥z∥2 = 3
2(vλ)2/3,

0, ∥z∥2 < 3
2(vλ)2/3,

(61)

with

ψ(z) = arccos

(
vλ

4

(
3

∥z∥2

)3/2
)
, (62)

(iv) if p = 1 and q = 1/2, then

P1,1/2(z) =


z̃, Q1,1/2(z̃) < Q1,1/2(0),

0 or z̃, Q1,1/2(z̃) = Q1,1/2(0),

0, Q1,1/2(z̃) > Q1,1/2(0),
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with

z̃ = z −
√

3vλ

4
√

∥z∥1 cos
(
π
3 − ξ(z)

3

)sign(z), ξ(z) = arccos

(
vλl

4

(
3

∥z∥1

)3/2
)
,

(v) if p = 2 and q = 2/3, then

P2,2/3(z) =



3
(
a3/2+

√
2∥z∥2−a3

)
32vλa2+3

(
a3/2+

√
2∥z∥2−a3

)z, ∥z∥2 > 2
(
2
3vλ

)3/4
,

0 or
3
(
a3/2+

√
2∥z∥2−a3

)
32vλa2+3

(
a3/2+

√
2∥z∥2−a3

)z, ∥z∥2 = 2
(
2
3vλ

)3/4
,

0, ∥z∥2 < 2
(
2
3vλ

)3/4
,

(63)

with

a =
2√
3

(2vλ)1/4
(

cosh

(
φ(z)

3

))1/2

, φ(z) = arccosh

(
27∥z∥22

16(2vλ)3/2

)
, (64)

(vi) if p = 1 and q = 2/3, then

P1,2/3(z) =


z̄, Q1,2/3(z̄) < Q1,2/3(0),

0 or z̄, Q1,2/3(z̄) = Q1,2/3(0),

0, Q1,2/3(z̄) > Q1,2/3(0),

with

z̄ = z − 4vλā1/2

3
(
ā3/2 +

√
2∥z∥1 − ā3

)sign(z),

and

ā =
2√
3

(2vλl)1/4
(

cosh

(
ζ(z)

3

))1/2

, ζ(z) = arccosh

(
27∥z∥21

16(2vλl)3/2

)
.

Proof Since the proximal regularization Qp,q(·) := λ∥ · ∥qp + 1
2v∥ ·−z∥

2
2 is non-differentiable

only at 0, Pp,q(z) must be 0 or some point x̃(̸= 0) satisfying the first-order optimality
condition

λq∥x̃∥q−pp

|x̃1|p−1sign(x̃1)
...

|x̃l|p−1sign(x̃l)

+
1

v
(x̃− z) = 0. (65)

Thus, to derive the analytical formula of the proximal operator Pp,q(z), we just need to
calculate such x̃ via (65), and then compare the objective function values Qp,q(x̃) and
Qp,q(0) to obtain the solution inducing a smaller value. The proofs of the six statements
follow in the above routine, and we only provide the detailed proofs of (iii) and (v) as
samples.
(iii) When p = 2 and q = 1/2, (65) reduces to

λx̃

2∥x̃∥3/22

+
1

v
(x̃− z) = 0, (66)
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and consequently,

∥x̃∥3/22 − ∥z∥2∥x̃∥1/22 +
1

2
vλ = 0. (67)

Denote η = ∥x̃∥1/22 > 0. The equation (67) can be transformed into the following cubic
algebraic equation

η3 − ∥z∥2η +
1

2
vλ = 0. (68)

Due to the hyperbolic solution of the cubic equation (see Short, 1937), by denoting

r = 2

√
∥z∥2

3
, α = arccos

(
vλ

4

(
3

∥z∥2

)3/2
)

and β = arccosh

(
−vλ

4

(
3

∥z∥2

)3/2
)
,

the solution of (68) can be expressed as the follows.

(1) If 0 ≤ ∥z∥2 ≤ 3
(
vλ
4

)2/3
, then the three roots of (68) are given by

η1 = r cosh
β

3
, η2 = −r

2
cosh

β

3
+ i

√
3r

2
sinh

β

3
, η3 = −r

2
cosh

β

3
− i

√
3r

2
sinh

β

3
,

where i denotes the imaginary unit. However, this β does not exist since the value of
hyperbolic cosine must be positive. Thus, in this case, P2,1/2(z) = 0.

(2) If ∥z∥2 > 3
(
vλ
4

)2/3
, then the three roots of (68) are

η1 = r cos
(π

3
− α

3

)
, η2 = −r sin

(π
2
− α

3

)
, η3 = −r cos

(
2π

3
− α

3

)
.

The unique positive solution of (68) is ∥x̃∥1/22 = η1, and thus, the unique solution of
(66) is given by

x̃ =
2η31

vλ+ 2η31
z =

16∥z∥3/22 cos3
(
π
3 − ψ(z)

3

)
3
√

3vλ+ 16∥z∥3/22 cos3
(
π
3 − ψ(z)

3

)z.
Finally, we compare the objective function values Q2,1/2(x̃) and Q2,1/2(0). For this purpose,

when ∥z∥2 > 3
(
vλ
4

)2/3
, we define

H(∥z∥2) := v
∥x̃∥2

(
Q2,1/2(0) −Q2,1/2(x̃)

)
= v

∥x̃∥2

(
1
2v∥z∥

2
2 − λ∥x̃∥1/22 − 1

2v∥x̃− z∥22
)

= ∥z∥2 −
∥x̃∥22+2vλ∥x̃∥1/22

2∥x̃∥2
= 1

2∥z∥2 −
3
4vλ∥x̃∥

−1/2
2 ,

where the third equality holds since that x̃ is proportional to z, and fourth equality follows
from (67). Since both ∥z∥2 and ∥x̃∥2 are strictly increasing on ∥z∥2, H(∥z∥2) is also strictly

increasing when ∥z∥2 > 3
(
vλ
4

)2/3
. Thus the unique solution of H(∥z∥2) = 0 satisfies

∥z∥2∥x̃∥1/22 =
3

2
vλ,
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and further, (67) implies that the solution of H(∥z∥2) = 0 is

∥z∥2 =
3

2
(vλ)2/3.

Therefore, we arrive at the formulae (61) and (62).
(v) When p = 2 and q = 2/3, (65) reduces to

2λx̃

3∥x̃∥4/32

+
1

v
(x̃− z) = 0, (69)

and consequently,

∥x̃∥4/32 − ∥z∥2∥x̃∥1/32 +
2

3
vλ = 0. (70)

Denote η = ∥x̃∥1/32 > 0 and h(t) = t4 − ∥z∥2t + 2
3vλ for any t ∈ R. Thus, η is the positive

solution of h(t) = 0. Next, we seek η by the method of undetermined coefficients. Assume
that

h(t) = t4 − ∥z∥2t+
2

3
vλ = (t2 + at+ b)(t2 + ct+ d), where a, b, c, d ∈ R. (71)

By expansion and comparison, we have that

a+ c = 0, b+ d+ ac = 0, ad+ bc = −∥z∥2, bd =
2

3
vλ,

and thus,

c = −a, b =
1

2

(
a2 +

∥z∥2
a

)
, d =

1

2

(
a2 − ∥z∥2

a

)
, bd =

1

4

(
a4 − ∥z∥22

a2

)
=

2

3
vλ. (72)

By letting M = a2, the last one of the above equalities reduces to the following cubic
algebraic equation

M3 − 8

3
vλM − ∥z∥22 = 0. (73)

According to the Cardano formula for the cubic equation, the root of (73) can be represented
by

a2 = M =

∥z∥22
2

+

√
∥z∥42

4
−
(

8

9
vλ

)3
1/3

+

∥z∥22
2

−

√
∥z∥42

4
−
(

8

9
vλ

)3
1/3

,

which can also be reformulated in the following hyperbolic form (see Short (1937))

a2 = M =
4

3

√
2vλ cosh

(
φ(z)

3

)
, (74)

where φ(z) is given by (64). By (71) and (72), we have that η, the positive root of h(t) = 0,
satisfies

η2 + aη +
1

2

(
a2 +

∥z∥2
a

)
= 0 or η2 − aη +

1

2

(
a2 − ∥z∥2

a

)
= 0.
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Hence, the real roots of the above equations, that is, the real roots of h(t) = 0, are

η1 =
1

2

(
|a| +

√
2∥z∥2
|a|

− a2

)
and η2 =

1

2

(
|a| −

√
2∥z∥2
|a|

− a2

)
. (75)

It is easy to see that η1 > η2 and that η2 should be discarded as it induces the saddle point
rather than a minimum (since h(t) > 0 when t < η2). Thus, by (69), (74) and (75), one has

x̃ =
3η41

2vλ+ 3η41
z =

3
(
a3/2 +

√
2∥z∥2 − a3

)
32vλa2 + 3

(
a3/2 +

√
2∥z∥2 − a3

)z,
where a is given by (64). Finally, we compare the objective function values Q2,2/3(x̃) and
Q2,2/3(0). For this purpose, we define

H(∥z∥2) := v
∥x̃∥2

(
Q2,2/3(0) −Q2,2/3(x̃)

)
= v

∥x̃∥2

(
1
2v∥z∥

2
2 − λ∥x̃∥2/32 − 1

2v∥x̃− z∥22
)

= ∥z∥2 −
∥x̃∥22+2vλ∥x̃∥2/32

2∥x̃∥2
= 1

2∥z∥2 −
2
3vλ∥x̃∥

−1/3
2 ,

where the third equality holds since that x̃ is proportional to z, and fourth equality follows
from (70). Since both ∥z∥2 and ∥x̃∥2 are strictly increasing on ∥z∥2, H(∥z∥2) is also strictly
increasing when ∥z∥2 > 4(29vλ)3/4. Thus the unique solution of H(∥z∥2) = 0 satisfies

∥z∥2∥x̃∥1/32 =
4

3
vλ,

and further, (70) implies that the solution of H(∥z∥2) = 0 is

∥z∥2 = 2

(
2

3
vλ

)3/4

.

Therefore, we arrive at the formulae (63) and (64). The proof is complete.

Remark 19 Note from Proposition 18 that the solutions of the proximal optimization sub-
problems might not be unique when Qp,q(x̃) = Qp,q(0). To avoid this obstacle in numerical
computations, we select the solution Pp,q(z) = 0 whenever Qp,q(x̃) = Qp,q(0), which achieves
a more sparse solution, in the definition of the proximal operator to guarantee a unique up-
date.

Remark 20 By Proposition 18, one sees that the PGM-GSO meets the group sparsity
structure, since the components of each iterate within each group are likely to be either
all zeros or all nonzeros. When nmax = 1, the data do not form any group structure
in the feature space, and the sparsity is achieved only on the individual feature level. In
this case, the proximal operators P2,1(z), P2,0(z), and P2,1/2(z) and P1,1/2(z) reduce to
the soft thresholding function in Daubechies et al. (2004), the hard thresholding function
in Blumensath and Davies (2008) and the half thresholding function in Xu et al. (2012),
respectively.

35



Hu, Li, Meng, Qin, and Yang

Remark 21 Proposition 18 presents the analytical solution of the proximal optimization
subproblems (60) when q = 0, 1/2, 2/3, 1. However, in other cases, the analytical solution
of problem (60) seems not available, since the algebraic equation (65) does not have an
analytical solution (it is difficult to find an analytical solution for the algebraic equation
whose order is larger than four). Thus, in the general cases of q ∈ (0, 1), we alternatively use
the Newton method to solve the nonlinear equation (65), which is the optimality condition
of the proximal optimization subproblem. The numerical simulation in Figure 5 of section 4
shows that the Newton method works in solving the proximal optimization subproblems (60)
for the general q, while the ℓp,1/2 regularization is the best one among the ℓp,q regularizations
for q ∈ [0, 1].

4. Numerical Experiments

The purpose of this section is to carry out the numerical experiments of the proposed
PGM for the ℓp,q regularization problem. We illustrate the performance of the PGM-GSO
among different types of ℓp,q regularization, in particular, when (p, q) =(2,1), (2,0), (2,1/2),
(1,1/2), (2,2/3) and (1,2/3), by comparing them with several state-of-the-art algorithms for
simulated data and applying them to infer gene regulatory network from gene expression
data of mouse embryonic stem cell. All numerical experiments are implemented in Matlab
R2013b and executed on a personal desktop (Intel Core Duo E8500, 3.16 GHz, 4.00 GB of
RAM). The R package of the PGM for solving group sparse optimization, named GSparO
in CRAN, is available at https://CRAN.R-project.org/package=GSparO

4.1 Simulated Data

In the numerical experiments on simulated data, the numerical data are generated as follows.
We first randomly generate an i.i.d. Gaussian ensemble A ∈ Rm×n satisfying A⊤A = I.
Then we generate a group sparse solution x̄ ∈ Rn via randomly splitting its components into
r groups and randomly picking k of them as active groups, whose entries are also randomly
generated as i.i.d. Gaussian, while the remaining groups are all set to be zeros. We generate
the data b by the Matlab script

b = A ∗ x̄+ sigma ∗ randn(m, 1),

where sigma is the standard deviation of additive Gaussian noise. The problem size is set
to n = 1024 and m = 256, and we test on the noisy measurement data with sigma =
0.1%. Assuming the group sparsity level S is predefined, the regularization parameter λ is
iteratively updated by obeying the rule: we set the iterative threshold to be the S-th largest
value of ∥zkGi∥2 and solve the λ by virtue of Proposition 18.

For each given sparsity level, which is k/r, we randomly generate the data A, x̄, b (as
above) 500 times, run the algorithm, and average the 500 numerical results to illustrate the
performance of the algorithm. We choose the stepsize v = 1/2 in the tests of the PGM-
GSO. Two key criteria to characterize the performance are the relative error ∥x− x̄∥2/∥x̄∥2
and the successful recovery rate, where the recovery is defined as success when the relative
error between the recovered data and the true data is smaller than 0.5%; otherwise, it is
regarded as failure.
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(a) Convergence Rate: sparsity level 1%
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(b) Convergence Rate: sparsity level 5%
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(c) Convergence Rate: sparsity level 10%
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Figure 3: Convergence results and recovery rates for different sparsity levels.

We carry out six experiments with the initial point x0 = 0 (unless otherwise specified).
In the first experiment, setting r = 128 (so group size G = 1024/128 = 8), we compare
the convergence rates and the successful recovery rates of the PGM-GSO with (p, q) =
(2, 1), (2, 0), (2, 1/2), (1, 1/2), (2, 2/3) and (1, 2/3) for different sparsity levels. In Figure 3,
(a), (b), and (c) illustrate the convergence rate results on sparsity level 1%, 5%, and 10%,
respectively, while (d) plots the successful recovery rates on different sparsity levels. When
the solution is of high sparse level, as shown in Figure 3(a), all ℓp,q regularization problems
perform perfect and achieve a fast convergence rate. As demonstrated in Figure 3(b), when
the sparsity level drops to 5%, ℓp,1/2 and ℓp,2/3 (p = 1 and 2) perform better and arrive at
a more accurate level than ℓ2,1 and ℓ2,0. As illustrated in Figure 3(c), when the sparsity
level is 10%, ℓp,1/2 further outperforms ℓp,2/3 (p = 1 or 2), and it surprises us that ℓ2,q
performs better than ℓ1,q (q = 1/2 or 2/3). From Figure 3(d), it is illustrated that ℓp,1/2
achieves a better successful recovery rate than ℓp,2/3 (p = 1 or 2), which outperforms ℓ2,0
and ℓ2,1. Moreover, we surprisingly see that ℓ2,q also outperforms ℓ1,q (q = 1/2 or 2/3)
on the successful recovery rate. In a word, ℓ2,1/2 performs as the best one of these six
regularizations on both accuracy and robustness. In this experiment, we also note that the
running times are at a same level, about 0.9 second per 500 iterations.

The second experiment is performed to show the sensitivity analysis on the group size
(G = 4, 8, 16, 32) of the PGM-GSO with the six types of ℓp,q regularization. As shown in
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Figure 4: Sensitivity analysis on group size.

Figure 4, the six types of ℓp,q regularization reach a higher successful recovery rate for the
larger group size. We also note that the larger the group size, the shorter the running time.

The third experiment is implemented to study the variation of the PGM-GSO when vary-
ing the regularization order q (fix p = 2). Recall from Theorem 18 that the analytical solu-
tion of the proximal optimization subproblem (60) can be obtained when q = 0, 1/2, 2/3, 1.
However, in other cases, the analytical solution of subproblem (60) seems not available,
and thus we apply the Newton method to solve the nonlinear equation (65), which is the
optimality condition of the proximal optimization subproblem. Figure 5 shows the varia-
tion of successful recovery rates by decreasing the regularization order q from 1 to 0. It
is illustrated that the PGM-GSO achieves the best successful recovery rate when q = 1/2,
which arrives at the same conclusion as the first experiment. The farther the distance of q
from 1/2, the lower the successful recovery rate.
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Figure 5: Variation of the PGM-GSO when varying the regularization order q.
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Figure 6: Comparison between the PGM-GSO and several state-of-the-art algorithms.

The fourth experiment is to compare the PGM-GSO with several state-of-the-art algo-
rithms in the field of sparse optimization, either convex or nonconvex algorithms, as listed
in Table 1. All these algorithms, including PGM-GSO, can successfully recover the signal
when the solution is of high sparse level. However, some of these algorithms fails to obtain
the group sparsity structure along with the group sparsity level decreases. Figure 7 plots
the signals estimated by these algorithms in a random trial at a group sparsity level of 15%.
It is illustrated that the solutions of the MultiFoBa and the PGM-GSO type solvers are of
group sparsity structure, while other algorithms do not obtain the group sparse solutions.
In these solvers, the MultiFoBa and the ℓ2,1 obtain the true active groups but inaccurate
weights, the ℓ2,0 achieves the accurate weights but some incorrect active groups, while ℓp,1/2
and ℓp,2/3 recover perfect solutions in both true active groups and accurate weights. Fig-
ure 6 demonstrates the overall performance of these algorithms by plotting the successful
recovery rates on different sparsity levels. It is indicated by Figure 6 that ℓ2,1/2 can achieve
the higher successful recovery rate than other algorithms, by exploiting the group spar-
sity structure and lower-order regularization. From this experiment, it is demonstrated
that the PGM-GSO (ℓ2,1/2) outperforms most solvers of sparse learning in solving sparse
optimization problems with group structure.
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SL0 SL0 is an algorithm for finding the sparsest solutions of an
underdetermined system of linear equations based on Smoothed
ℓ0 norm (Mohimani et al., 2009). The package is available at
http://ee.sharif.edu/˜SLzero/

SPGL1 SPGL1 is a Matlab solver for large-scale sparse reconstruction
(van den Berg and Friedlander, 2008). The package is available at
http://www.cs.ubc.ca/˜mpf/spgl1/

YALL1 YALL1 (Your ALgorithm for L1) is a package of Matlab solvers for the
ℓ1 sparse reconstruction, by virtue of the alternating direction method
(Deng et al., 2011; Yang and Zhang, 2011). The package is available at
http://yall1.blogs.rice.edu/

OMP Orthogonal Matching Pursuit algorithm for the recovery of a high-
dimensional sparse signal (Cai and Wang, 2011). The package is avail-
able at MathWorks.

CoSaMP Compressive Sampling Matched Pursuit algorithms for the recovery of a
high-dimensional sparse signal (Needell and Tropp, 2009). The packages
are available at MathWorks.

FoBa Adaptive forward-backward greedy algorithm for sparse learning
(Zhang, 2011). The R package is available at https://CRAN.R-
project.org/package=foba

MultiFoBa MultiFoBa is group FoBa for multi-task learning (Tian et al., 2016).

ℓ1-Magic ℓ1-Magic is a collection of Matlab routines for solving the convex opti-
mization programs central to compressive sampling, based on standard
interior-point methods (Candès et al., 2006a). The package is available
at https://statweb.stanford.edu/˜candes/l1magic/

ISTA Iterative Shrinkage/Thresholding Algorithm (Daubechies et al., 2004)
for solving the ℓ1 regularization problem.

GBM Gradient Based Method for solving the ℓ1/2 regularization problem
(Wu et al., 2014). Suggested by the authors, we choose the initial point
as the solution obtained by the ℓ1-Magic.

LqRecovery LqRecovery is an iterative algorithm for the ℓp norm mini-
mization (Foucart and Lai, 2009). The code is available at
http://www.math.drexel.edu/˜foucart/software.htm

HardTA Iterative Hard Thresholding Algorithm (Blumensath and Davies, 2008)
for solving the ℓ0 regularization problem.

HalfTA Iterative Half Thresholding Algorithm (Xu et al., 2012) for solving the
ℓ1/2 regularization problem.

Table 1: List of the state-of-the-art algorithms for sparse learning.
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Figure 7: Simulation of the PGM-GSO and several state-of-the-art algorithms.

The fifth experiment is devoted to the phase diagram study (see Donoho, 2006b) of the
ℓp,q regularization problem, which further demonstrates the stronger sparsity promoting
capability of ℓp,1/2 and ℓp,2/3 (p = 1, 2) regularization over ℓ2,1 regularization. In this
experiment, we consider a noiseless signal recovery problem with n = 512, G = 4, r = 128
and sigma = 0 as a prototype. More specifically, for each fixed m, we vary the number of
active groups k from 1 to m/G, that is, the sparsity level varies from 1/r to m/(Gr), and
then, we increase m from G to n in the way such that 128 equidistributed values mj = jG
are considered. For each specific problem size, we randomly generate the data 500 times
and apply the PGM-GSO to solve the ℓp,q regularization problem. For these noiseless data,
the recovery is defined as success whenever the relative error between the recovered data
and the true data is smaller than 10−5, otherwise, it is regarded as failure. Also, we embody
a pixel blue whenever the point is in the case of success, otherwise, red when failure. In
this way, a phase diagram of an algorithm is plotted in Figure 8, where the color of each
cell reflects the empirical recovery rate (scaled between 0 and 1). It is illustrated in Figure
8 that the phase transition phenomenon does appear for the PGM-GSO with the six types
of ℓp,q regularization. It is shown that ℓp,1/2 and ℓp,2/3 (p = 1, 2) regularizations are more
robust than that of ℓ2,0 and ℓ2,1 in the sense that they allow to achieve higher recovery
rates and recover a sparse signal from a smaller amount of samples. It is also revealed by
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Figure 8: Phase diagram study of ℓp,q regularization of group sparse optimization. Blue
denotes perfect recovery in all experiments, and red denotes failure for all exper-
iments.

Figure 8 that ℓ2,1/2 regularization is the most robust one of these six regularizations, which
achieves the same conclusion as the first and third experiments.

Even though some global optimization method, such as the filled function method (Ge,
1990), can find the global solution of the lower-order regularization problem as in Example
2, however, it does not work for the large-scale sparse optimization problems. Because,
in the filled function method, all the directions need to be searched or compared in each
iteration, which costs a large amount of time and hampers the efficiency for solving the
large-scale problems.
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4.2 Real Data in Gene Transcriptional Regulation

Gene transcriptional regulation is the process that a combination of transcription factors
(TFs) act in concert to control the transcription of the target genes. Inferring gene regula-
tory network from high-throughput genome-wide data is still a major challenge in systems
biology, especially when the number of genes is large but the number of experimental sam-
ples is small. In large genomes, such as human and mouse, the complexity of gene regulatory
system dramatically increases. Thousands of TFs combine in different ways to regulate tens
of thousands target genes in various tissues or biological processes. However, only a few
TFs collaborate and usually form complexes (groups of cooperative TFs) to control the
expression of a specific gene in a specific cell type or developmental stage. Thus, the preva-
lence of TF complex makes the solution of gene regulatory network have a group structure,
and the gene regulatory network inference in such large genomes becomes a group sparse
optimization problem, which is to search a small number of TF complexes (or TFs) from a
pool of thousands of TF complexes (or TFs) for each target gene based on the dependencies
between the expression of TF complexes (or TFs) and the targets. Even though TFs often
work in the form of complexes (Xie et al., 2013), and TF complexes are very important in
the control of cell identity and diseases (Hnisz et al., 2013), current methods to infer gene
regulatory network usually consider each TF separately. To take the grouping information
of TF complexes into consideration, we can apply the group sparse optimization to gene
regulatory network inference with the prior knowledge of TF complexes as the pre-defined
grouping.

4.2.1 Materials

Chromatin immunoprecipitation (ChIP) coupled with next generation sequencing (ChIP-
seq) identifies in vivo active and cell-specific binding sites of a TF. They are commonly
used to infer TF complexes recently. Thus, we manually collect ChIP-seq data in mouse
embryonic stem cells (mESCs), as shown in Table 2. Transcriptome is the gene expression
profile of the whole genome that is measured by microarray or RNA-seq. The transcriptome
data in mESCs for gene regulatory network inference are downloaded from Gene Expres-
sion Omnibus (GEO). 245 experiments under perturbations in mESC are collected from
three papers Correa-Cerro et al. (2011); Nishiyama et al. (2009, 2013). Each experiment
produced transcriptome data with or without overexpression or knockdown of a gene, in
which the control and treatment have two replicates respectively. Gene expression fold
changes between control samples and treatment samples of 12488 target genes in all ex-
periments are log 2 transformed and form matrix B ∈ R245×12488 (Figure 9A). The known
TFs are collected from four TF databases, TRANSFAC, JASPAR, UniPROBE and TFCat,
as well as literature. Let matrix H ∈ R245×939 be made up of the expression profiles of
939 known TFs, and matrix Z ∈ R939×12488 describe the connections between these TFs
and targets. Then, the regulatory relationship between TFs and targets can be represented
approximately by a linear system

HZ = B + ϵ.

The TF-target connections defined by ChIP-seq data are converted into an initial matrix
Z0 (see Qin et al., 2014). Indeed, if TF i has a binding site around the gene j promoter
within a defined distance (10 kbp), a non-zero number is assigned on Z0

ij as a prior value.
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Figure 9: Workflow of gene regulatory network inference with ℓp,q regularization.

Now we add the grouping information (TF complexes) into this linear system. The
TF complexes are inferred from ChIP-seq data (Table 2) via the method described in
Giannopoulou and Elemento (2013). Let the group structure of Z be a matrix W ∈
R2257×939 (actually, the number of groups is 1439), whose Moore-Penrose pseudoinverse
is denoted by W+ (Horn and Johnson., 1985). We further let A := HW+ and X := WZ.
Then the linear system can be converted into

AX = B + ϵ,

where A denotes expression profiles of TF complexes, and X represents connections between
TF complexes and targets (Figure 9A).

A literature-based golden standard (low-throughput golden standard) TF-target pair
set from biological studies (Figure 9C), including 97 TF-target interactions between 23
TFs and 48 target genes, is downloaded from iScMiD (Integrated Stem Cell Molecular
Interactions Database). Each TF-target pair in this golden standard data set has been
verified by biological experiments. Another more comprehensive golden standard mESC
network is constructed from high-throughput data (high-throughput golden standard) by
ChIP-Array (Qin et al., 2011) using the methods described in Qin et al. (2014). It contains
40006 TF-target pairs between 13092 TFs or targets (Figure 9C). Basically, each TF-target
pair in the network is evidenced by a cell-type specific binding site of the TF on the target’s
promoter and the expression change of the target in the perturbation experiment of the TF,
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Factor GEO accession Pubmed ID Factor GEO accession Pubmed ID
Atf7ip GSE26680 - Rad21 GSE24029 21589869
Atrx GSE22162 21029860 Rbbp5 GSE22934 21477851
Cdx2 GSE16375 19796622 Rcor1 GSE27844 22297846
Chd4 GSE27844 22297846 Rest GSE26680 -
Ctcf GSE11431 18555785 Rest GSE27844 22297846
Ctcf GSE28247 21685913 Rnf2 GSE13084 18974828
Ctr9 GSE20530 20434984 Rnf2 GSE26680 -
Dpy30 GSE26136 21335234 Rnf2 GSE34518 22305566
E2f1 GSE11431 18555785 Setdb1 GSE17642 19884257
Ep300 GSE11431 18555785 Smad1 GSE11431 18555785
Ep300 GSE28247 21685913 Smad2 GSE23581 21731500
Esrrb GSE11431 18555785 Smarca4 GSE14344 19279218
Ezh2 GSE13084 18974828 Smc1a GSE22562 20720539
Ezh2 GSE18776 20064375 Smc3 GSE22562 20720539
Jarid2 GSE18776 20064375 Sox2 GSE11431 18555785
Jarid2 GSE19365 20075857 Stat3 GSE11431 18555785
Kdm1a GSE27844 22297846 Supt5h GSE20530 20434984
Kdm5a GSE18776 20064375 Suz12 GSE11431 18555785
Klf4 GSE11431 18555785 Suz12 GSE13084 18974828

Lmnb1 GSE28247 21685913 Suz12 GSE18776 20064375
Med1 GSE22562 20720539 Suz12 GSE19365 20075857
Med12 GSE22562 20720539 Taf1 GSE30959 21884934
Myc GSE11431 18555785 Taf3 GSE30959 21884934
Mycn GSE11431 18555785 Tbp GSE30959 21884934
Nanog GSE11431 18555785 Tbx3 GSE19219 20139965
Nipbl GSE22562 20720539 Tcfcp2l1 GSE11431 18555785
Nr5a2 GSE19019 20096661 Tet1 GSE26832 21451524
Pou5f1 GSE11431 18555785 Wdr5 GSE22934 21477851
Pou5f1 GSE22934 21477851 Whsc2 GSE20530 20434984
Prdm14 GSE25409 21183938 Zfx GSE11431 18555785

Table 2: ChIP-seq data for TF complex inference.

which is generally accepted as a true TF-target regulation. These two independent golden
standards are both used to validate the accuracy of the inferred gene regulatory networks.

4.2.2 Numerical Results

We apply the PGM-GSO, starting from the initial matrix X0 := WZ0, to the gene regula-
tory network inference problem (Figure 9B), and compare with the CQ algorithm (CQA),
which is shown in Wang et al. (2017) an efficient solver for gene regulatory network infer-
ence based on the group structure of TF complexes. The area under the curve (AUC) of a
receiver operating characteristic (ROC) curve is widely recognized as an important index of
the overall classification performance of an algorithm (see Fawcett, 2006). Here, we apply
AUC to evaluate the performance of the PGM-GSO with four types of ℓp,q regularization,
(p, q) = (2, 1), (2, 0), (2, 1/2) and (1, 1/2), as well as the CQA. A series of numbers of predic-
tive TF complexes (or TFs), denoted by k, from 1 to 100 (that is, the sparsity level varies
from about 0.07% to 7%) are tested. For each k and each pair of TF complex (or TF) i

and target j, if the X
(k)
Gij

is non-zero, this TF complex (or TF) is regarded as a potential
regulator of this target in this test. In biological sense, we only concern about whether the
true TF is predicted, but not the weight of this TF. We also expect that the TF complexes
(or TFs) which are predicted in a higher sparsity level should be more important than those
that are only reported in a lower sparsity level. Thus, when calculating the AUC, a score
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Figure 10: ROC curves and AUCs of the PGM-GSO on mESC gene regulatory network
inference.

Scoreij is applied as the predictor for TF i on target j:

Scoreij :=

{
maxk{1/k}, X

(k)
ij ̸= 0,

0, otherwise.

Both high-throughput and low-throughput golden standards are used to draw the ROC
curves of the PGM-GSO with four types of ℓp,q regularization and the CQA in Figure 10
to compare their accuracy. When matched with the high-throughput golden standard, it is
illustrated from Figure 10(a) that ℓ2,1/2, ℓ1,1/2 and ℓ2,0 perform almost the same (as indicated
by the almost same AUC value), and significantly outperform ℓ2,1 and CQA. With the low-
throughput golden standard, it is demonstrated from Figure 10(b) that ℓ1,1/2 is slightly
better than ℓ2,1/2, ℓ2,0 and CQA, and these three regularizations perform much better than
ℓ2,1. These results are basically consistent with the results from simulated data. Since the
golden standards we use here are obtained from real biological experiments, which are well-
accepted as true TF-target regulations, the higher AUC, the more biologically accurate
the result gene regulatory network is. Thus, our results indicate that the ℓp,1/2 and ℓp,0
regularizations are applicable to gene regulatory network inference in biological researches
that study higher organisms but generate transcriptome data for only a small number of
samples, which facilitates biologists to analyze gene regulation in a system level.
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