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Abstract
The �p regularization problem with 0 < p < 1 has been widely studied for finding sparse
solutions of linear inverse problems and gained successful applications in various mathemat-
ics and applied science fields. The proximal gradient algorithm is one of the most popular
algorithms for solving the �p regularisation problem. In the present paper, we investigate
the linear convergence issue of one inexact descent method and two inexact proximal gra-
dient algorithms (PGA). For this purpose, an optimality condition theorem is explored to
provide the equivalences among a local minimum, second-order optimality condition and
second-order growth property of the �p regularization problem. By virtue of the second-order
optimality condition and second-order growth property, we establish the linear convergence
properties of the inexact descent method and inexact PGAs under some simple assumptions.
Both linear convergence to a local minimal value and linear convergence to a local minimum
are provided. Finally, the linear convergence results of these methods are extended to the
infinite-dimensional Hilbert spaces. Our results cannot be established under the framework
of Kurdyka–Łojasiewicz theory.
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1 Introduction

The following linear inverse problem is at the core of many problems in various areas of
mathematics and applied sciences: finding x ∈ R

n such that

Ax = b,

where A ∈ R
m×n and b ∈ R

m are known, and an unknown noise is included in b. If m � n,
the above linear inverse problem is seriously ill-conditioned and has infinitelymany solutions,
and researchers are interested in finding solutions with certain structures, e.g., the sparsity
structure. A popular technique for approaching a sparse solution of the linear inverse problem
is to solve the �1 regularization problem

min
x∈Rn

‖Ax − b‖2 + λ‖x‖1,

where ‖·‖ denotes the Euclidean norm, ‖x‖1 := ∑n
i=1 |xi | is a sparsity promoting norm, and

λ > 0 is a regularization parameter providing a tradeoff between accuracy and sparsity. In
the past decade, the �1 regularization problem has been extensively investigated (see, e.g.,
[4,18,19,37,53,56]) and gained successful applications in a wide range of fields, such as
compressive sensing [13,20], image science [4,21], systems biology [46,50] and machine
learning [3,35].

However, in recent years, it has been revealed by extensive empirical studies that the
solutions obtained from the �1 regularization may be much less sparse than the true sparse
solution, and that the �1 regularization cannot recover a signal or an image with the least
measurements when applied to compressive sensing; see, e.g., [15,55,61]. To overcome these
drawbacks, the following �p regularization problem (0 < p < 1) was introduced in [15,55]
to improve the performance of sparsity recovery:

min
x∈Rn

‖Ax − b‖2 + λ‖x‖p
p, (1)

where ‖x‖p := (∑n
i=1 |xi |p

)1/p is the �p quasi-norm. It was shown in [15] that the �p
regularization requires a weaker restricted isometry property to guarantee perfect sparsity
recovery and allows to obtain amore sparse solution from fewer linearmeasurements than that
required by the �1 regularization; and it was illustrated in [24,55] that the �p regularization
has a significantly stronger capability in obtaining a sparse solution than the �1 regularization.
Benefitting from these advantages, the �p regularization technique has been applied in many
fields; see [24,33,36,40,41] and references therein. It is worth noting that the �p regularization
problem (1) is a variant of lower-order penalty problems, investigated in [11,26,34], for a
constrained optimization problem. The main advantage of the lower-order penalty functions
over the classical �1 penalty function in the context of constrained optimization is that they
require weaker conditions to guarantee an exact penalization property and that their least
exact penalty parameter is smaller.

Motivated by these significant advantages and successful applications of the �p regular-
ization, tremendous efforts have been devoted to the study of optimization algorithms for
the �p regularization problem. Many practical algorithms have been investigated for solving
problem (1), such as an interior-point potential reduction algorithm [23], smoothing methods
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[16,17], splitting methods [29,30] and iterative reweighted minimization methods [27,31].
In particular, Xu et al. [55] proposed an iterative half thresholding algorithm, which is effi-
cient in signal recovery and image deconvolution. In the present paper, we are particularly
interested in the proximal gradient algorithm (in short, PGA) for solving problem (1).

Algorithm PGA. Given an initial point x0 ∈ R
n and a sequence of stepsizes {vk} ⊆ R+.

For each k ∈ N, having xk , we determine xk+1 as follows:

zk := xk − 2vk A
�(Axk − b),

xk+1 ∈ arg min
x∈Rn

{

λ‖x‖p
p + 1

2vk
‖x − zk‖2

}

. (2)

The practicability of the PGA is an important issue when solving the nonconvex �p
regularization problem (1). It is worth noting that the main computation of the PGA is the
calculation of the proximity operator of the �p regularizer in (2). In particular, the analytical
solutions of the proximity operator of the �p regularizer (2) when p = 1 (resp. 0, 1

2 ,
2
3 )

were provided in [19] (resp. [6,14,55]); see also [24, Proposition 18] for the group-wised �p
regularizer. In such cases, the PGA is reduced to the iterative soft [19] (resp., hard [6], half
[55]) thresholding algorithm when p = 1 (resp, 0, 1

2 ) and the algorithm proposed in [14]
when p = 2

3 for solving the associated �p regularization problems. However, in the scenario
of general p ∈ (0, 1), the proximity operator of the �p regularizer may not have an analytic
solution (see [24,Remark21]), and it could be computationally expensive to solve subproblem
(2) exactly at each iteration. Moreover, recall that the sparsity of x is defined by ‖x‖0 (i.e.,
the number of its nonzero components) and a well-known fact that lim p→0 ‖x‖p

p = ‖x‖0
for each x ∈ R

n . From this theoretical perspective, the �p regularization problem is close
to the sparse recovery when p is close to 0; see [15,17,55]. It was also illustrated by the
numerical studies in [24,55,57] that the PGA with p ∈ (0, 1) outperforms the numerical
algorithms for the �1 regularization problem on both accuracy and robustness. Hence, the
excellent numerical performance of the PGAwith p ∈ (0, 1) but lacking the analytic formula
with general p ∈ (0, 1) motivates us to concern the convergence theory of the inexact PGA
for the �p regularization problem (1).

The PGA is one of the most widely studied first-order iterative algorithms for solving
regularization problems, and a special case of several iterative methods (see [1,2,8,42,49])
for solving the composite minimization problem

min
x∈Rn

F(x) := H(x) + Φ(x), (3)

where H : Rn → R := R ∪ {+∞} is smooth and convex, and Φ : Rn → R is nonsmooth
and possibly nonconvex. The convergence properties of these iterative methods have been
explored under the framework of so-call Kurdyka–Łojasiewicz (in short, KL) theory. In
particular, Attouch et al. [2] established the global convergence of abstract descent methods
forminimizing aKL function F : Rn → R, in which the sequence {xk} satisfies the following
hypotheses for two positive constants α and β:

(H1) (Sufficient decrease condition). For each k ∈ N,

F(xk+1) − F(xk) ≤ −α‖xk+1 − xk‖2;
(H2) (Relative error condition). For each k ∈ N, there exists wk+1 ∈ ∂F(xk+1) such that

‖wk+1‖ ≤ β‖xk+1 − xk‖;
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(H3) (Continuity condition).1 There exist a subsequence {xk j } and a point x∗ such that

lim
j→∞ xk j → x∗ and lim

j→∞ F(xk j ) → F(x∗).

The global convergence of Algorithm PGA follows from the convergence results of [2].
The study of convergence rates of optimization algorithms is an important issue of numer-

ical optimization, and much attention has been paid to establish the convergence rates
of relevant iterative algorithms for solving the structured optimization problem (3); see
[1,7,25,29,38,48,49,52,54] and references therein. For example, the linear convergence of
the PGA for solving the classical �1 (convex) regularization problem has been well inves-
tigated; see, e.g., [9,47,58–60] and references therein. Under the general framework of the
KL (possibly nonconvex) functions, the linear convergence of several iterative algorithms for
solving problem (3), including the PGA as a special case, have been established in [1,8,49,54]
under the assumption that the KL exponent of the objective function is 1

2 . On the other hand,
Zeng et al. [57] obtained the linear convergence of the PGA for problem (1) with an upper
bound on p, which may be less than 1, and a lower bound on the stepsizes {vk} (Example 1
shows its restriction on parameters); Hu et al. [24] established the linear convergence of the
PGA for the group-wised �p regularization problem under the assumption that the limiting
point is a local minimum.

The inexact numerical algorithms have been widely used and extensively applied in engi-
neering and application fields due to practical considerations of computational error and
noise or the difficulty in solving the subproblems. Although some recent works studied the
convergence properties of inexact numerical methods (see, e.g., [12,25,28]) for the convex
composite optimization problem, to the best of our knowledge, there is few theoretical anal-
ysis on how the error in the calculation of the proximity operator affects the convergence
rate of the inexact PGA for solving the �p regularization problem (1). Two relevant papers
on the linear convergence study of the inexact PGA should be mentioned: (a) Schmidt et
al. [45] proved the linear convergence of the inexact PGA for solving the convex composite
optimization problem (3), in which H is strongly convex and Φ is convex; (b) Frankel et al.
[22] provided a framework of establishing the linear convergence for descent methods satis-
fying (H1)–(H3), where (H2) is replaced by inexact form (H2◦) (see Sect. 4). However, the
convergence analysis in [22] was based on the descent property of the sequence of function
values (H1) and the inexact version would be not convenient to implement for applications;
see the explanation in Remark 6 below. Therefore, neither of the convergence analysis in
[22,45] can be applied to establish the linear convergence of the inexact PGA for solving
the �p regularization problem, in which the sequence of function values is not necessarily
descent. Thus, a clear analysis of the convergence rate of the inexact PGA is required to
advance our understanding of its strength for solving the �p regularization problem (1).

The aim of the present paper is to investigate the linear convergence issue of an inexact
descent method and inexact PGAs for solving the �p regularization problem (1). For this
purpose, we first investigate an optimality condition theorem for the local minima of the �p
regularization problem (1), in which we establish the equivalences among a local minimum,
second-order optimality condition and second-order growth property of the �p regulariza-
tion problem (1). The established optimality conditions are not only of independent interest
(which, in particular, improve the result in [17] and ensure the KL property of the �p regu-
larized function with exponent 1

2 at the local minimum; see Remark 1) in investigating the
structure of local minima, but also provide a crucial tool for establishing the linear conver-

1 This condition is satisfied automatically for the �p regularization problem (1).
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gence of the inexact descent method and inexact PGAs for solving the �p regularization
problem in Sects. 4 and 5.

We then consider a general framework of an inexact descent method, in which both (H1)
and (H2) are relaxed to inexact forms (see (H1◦) and (H2◦) in Sect. 4), for solving the �p
regularization problem. Correspondingly, the solution sequence does not satisfy the descent
property. This is an essential difference from the extensive studies in descent methods and the
work of Frankel et al. [22], which obstructs the application of the methodology of KL theory
for exact descentmethods proposed in [1,2] to the convergence analysis of the inexact descent
method; see Remark 3 for the detail explanations. Instead, under some mild assumptions
on the limiting points and inexact terms, we establish the linear convergence of the inexact
descent method by virtue of both second-order optimality condition and second-order growth
property (see Theorem 2). Our convergence analysis deviates significantly from that of [22]
and relevant works in descent methods [1,2], where the KL inequality is used as a standard
technique.

The convergence theorem for the inexact descent method further provides a useful tool
for establishing the linear convergence of the inexact PGAs in Sect. 5. In particular, we
investigate the inexact versions of the PGA for solving the �p regularization problem (1),
in which the proximity operator of the �p regularizer (2) is approximately solved at each
iteration (with progressively better accuracy). Inspired by the ideas in the seminal work of
Rockafellar [43], we consider two types of inexact PGAs: one measures the inexact term by
the approximation of proximal regularized function value, and the other is measured by the
distance of the iterate to the exact proximal operator (see Algorithms IPGA-I and IPGA-II).
Under some suitable assumptions on the inexact terms, we establish the linear convergence
of these two inexact PGAs to a local minimum of problem (1); see Theorems 5 and 6. It
is worth noting that neither of these inexact PGAs satisfies the conditions of the inexact
descent method mentioned earlier; see the explanation in Remark 5(ii). In our analysis in
this part, Theorem 2 plays an important role in such a way that we are able to show that the
components sequence on the support of the limiting point satisfies the conditions of Theorem
2. We further propose two implementable inexact PGAs that satisfy the assumptions made in
the convergence theorems and thus share the linear convergence property. It is worth noting
that our results cannot be established under the framework of the KL theory.

As an interesting byproduct, the results obtained above are extended to the infinite-
dimensional Hilbert spaces. Bredies et al. [10] investigated the PGA for solving the �p
regularization problem in infinite-dimensional Hilbert spaces and proved its global conver-
gence to a critical point under some technical assumptions and using dedicated tools from
algebraic geometry; see the explanation before Theorem 9. Dropping these technical assump-
tions, we prove the global convergence of the PGA under the only assumption on stepsizes
(as in [10]), which significantly improves [10, Theorem 5.1], and, under a simple additional
assumption, further establish the linear convergence of the descent method and PGA, as well
as their inexact versions, for solving the �p regularization problem in infinite-dimensional
Hilbert spaces.

The paper is organized as follows. In Sect. 2, we present the notations and preliminary
results to be used in the present paper. In Sect. 3, we establish the equivalences among a local
minimum, second-order optimality condition and second-order growth property of the �p
regularization problem (1), as well as some interesting corollaries. By virtue of the second-
order optimality condition and second-order growth property, the linear convergence of an
inexact descent method and inexact PGAs for solving problem (1) are established in Sects. 4
and 5, respectively. Finally, the convergence properties of relevant algorithms are extended
to the infinite-dimensional Hilbert spaces in Sect. 6.
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2 Notation and preliminary results

We consider the n-dimensional Euclidean space Rn with inner product 〈· , ·〉 and Euclidean
norm ‖·‖. For 0 < p < 1 and x ∈ R

n , the �p “norm” on R
n is denoted by ‖·‖p and defined

as follows:

‖x‖p :=
(

n∑

i=1

|xi |p
) 1

p

for each x ∈ R
n;

while ‖x‖0 denotes the number of nonzero components of x . It is well-known (see, e.g., [24,
Eq. (7)]) that

‖x‖p ≥ ‖x‖q for each x ∈ R
n and 0 < p ≤ q. (4)

We write supp : Rn → R and sign : R → R to denote the support function and signum
function, respectively. For an integer l ≤ n, fixing x ∈ R

l and δ ∈ R+, we use B(x, δ) to
denote the open ball of radius δ centered at x (in the Euclidean norm). Moreover, we write

R
l�= := {x ∈ R

l : xi �= 0 for each i = 1, . . . , l}.
Let Rl×l denote the space of all l × l matrices. We endow R

l×l with the partial orders � and
�, which are defined for any Y , Z ∈ R

l×l by

Y � (resp.,�) Z ⇐⇒ Y − Z is positive definite (resp., positive semi-definite).

Thus, for Z ∈ R
l×l , Z � 0 (resp., Z � 0, Z ≺ 0) means that Z is positive definite (resp.,

positive semi-definite, negative definite). In particular, we use diag(x) to denote a square
diagonal matrix with the components of vector x on its main diagonal.

For simplicity, associated with problem (1), we use F : R
n → R to denote the �p

regularized function, and H : Rn → R and Φ : Rn → R are the functions defined by

F(·) := H(·) + Φ(·), H(·) := ‖A · −b‖2 and Φ(·) := λ‖·‖p
p. (5)

Letting x∗ ∈ R
n\{0}, we write

s := ‖x∗‖0 and I := supp(x∗), (6)

We write Ai to denote the i-th column of A, AI := (Ai )i∈I and xI := (xi )i∈I . Let f : Rs →
R, h : Rs → R and ϕ : Rs → R be the functions defined by

f (·) := h(·) + ϕ(·), h(·) := ‖AI · −b‖2 and ϕ(·) := λ‖·‖p
p (7)

Obviously, ϕ is smooth (of arbitrary order) on R
s�=, and so is f . The first- and second-order

derivatives of ϕ at each y ∈ R
s�= are respectively given by

∇ϕ(y) = λp
((|yi |p−1sign(yi )

)
i∈I

)
and ∇2ϕ(y) = λp(p − 1)diag

((|yi |p−2)
i∈I

)
. (8)

Since 0 < p < 1, it is clear that ∇2ϕ(y) ≺ 0 for any y ∈ R
s�=. By (5) and (7), one sees that

Φ(x) = ϕ(xI ) and F(x) = f (xI ) for each x satisfying supp(x) = I . (9)

The point x∗ is called a critical point of problem (1) if it satisfies that ∇ f (x∗
I ) = 0. The

following elementary equality is repeatedly used in our convergence analysis:

‖Ay − b‖2 − ‖Ax − b‖2 =
〈
y − x, 2A�(Ax − b)

〉
+ ‖A(y − x)‖2 (10)
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(by Taylor’s formula applied to the function ‖A · −b‖2). We end this section by providing
the following lemma, which is useful to establish the linear convergence of inexact decent
methods.

Lemma 1 Let η ∈ (0, 1), and let {ak} and {δk} be two sequences of nonnegative scalars such
that

ak+1 ≤ akη + δk for each k ∈ N and lim sup
k→∞

δk+1

δk
< 1. (11)

Then there exist θ ∈ (0, 1) and K > 0 such that

ak ≤ K θk for each k ∈ N. (12)

Proof By the second inequality of (11), there exist θ ∈ (η, 1) and N ∈ N such that

δN < 1 and δk+1 ≤ θδk for each k ≥ N . (13)

Then we show by mathematical induction that

aN+k ≤ aNηk + θk−1

θ − η
for each k ∈ N. (14)

Clearly, (14) holds for k = 1 (by (11) and δN < 1). Suppose that (14) holds when k = i .
Then it follows from (11) and (13) that

aN+i+1 ≤
(

aNηi + θ i−1

θ − η

)

η + θ iδN ≤ aNηi+1 + θ i

θ − η
.

That is, (14) holds when k = i+1, and so, it holds for each k ∈ N bymathematical induction.
Then (14) is applicable to deriving (12) by letting K := max{2aN , 2

θ(θ−η)
,maxk≤N

ak
θk

}, and
the proof is complete. ��

3 Characterizations of local minima

Optimality condition is a crucial tool for optimization problems, either providing the useful
characterizations of (local) minima or designing effective optimization algorithms. Some
sufficient or necessary optimality conditions for the �p regularization problem (1) have been
developed in the literature; see [17,24,32,39] and references therein. In particular, Chen et
al. [17] established the following first- and second-order necessary optimality conditions for
a local minimum x∗ of problem (1), i.e.,

2A�
I (AI x

∗
I − b) + λp

((|x∗
i |p−1sign(x∗

i )
)
i∈I

) = 0, (15)

and

2A�
I AI + λp(p − 1)diag

((|x∗
i |p−2)

i∈I
) � 0, (16)

where I = supp(x∗) is defined by (6). These necessary conditions were used to estimate
the (lower/upper) bounds for the absolute values and the number of nonzero components of
local minima. However, it seems that a complete optimality condition that is both necessary
and sufficient for the local minima of the �p regularization problem has not been established
yet in the literature. To remedy this gap, this section is devoted to providing some necessary
and sufficient characterizations for the local minima of problem (1).
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Tobeginwith, the following lemma (i.e., [24, Lemma10]) illustrates that the �p regularized
function satisfies a first-order growth property at 0, which is useful for proving the equivalent
characterizations of its local minima. This property also indicates a significant advantage of
the �p regularization over the �1 regularization that the �p regularization has a strong sparsity
promoting capability.

Lemma 2 Let h : Rn → R be a continuously differentiable function. Then there exist ε > 0
and δ > 0 such that

h(x) + λ‖x‖p
p ≥ h(0) + ε‖x‖ for any x ∈ B(0, δ).

Themain result of this section is presented in the following theorem, in which we establish
the equivalences among a local minimum, second-order optimality condition and second-
order growth property of the �p regularization problem (1). Note that the latter two conditions
were provided in [24] as necessary conditions for the group-wised �p regularization problem,
while the second-order optimality condition is an improvement of the result in [17] in that
the matrix in the left-hand side of (16) is indeed positive definite. Recall that F : Rn → R

is the �p regularized function defined by (5) and I = supp(x∗) is defined by (6).

Theorem 1 Let x∗ ∈ R
n\{0}. Then the following assertions are equivalent:

(i) x∗ is a local minimum of problem (1).
(ii) (15) and the following condition hold:

2A�
I AI + λp(p − 1)diag

((|x∗
i |p−2)

i∈I
) � 0. (17)

(iii) Problem (1) satisfies the second-order growth property at x∗, i.e., there exist ε > 0 and
δ > 0 such that

F(x) ≥ F(x∗) + ε‖x − x∗‖2 for any x ∈ B(x∗, δ). (18)

Proof Without loss of generality, we assume that I = {1, . . . , s}.
(i) ⇒ (ii). Suppose that (i) holds. Then x∗

I is a local minimum of f [by (9)], and (15)
and (16) hold by [17, p. 76] (they can also be checked directly by the optimality condition
for smooth optimization in [5, Proposition 1.1.1]): ∇ f (x∗

I ) = 0 and ∇2 f (x∗
I ) � 0. Thus, it

remains to prove (17), i.e., ∇2 f (x∗
I ) � 0. To do this, suppose on the contrary that (17) does

not hold. Then, by (16), there exists w �= 0 such that
〈
w,∇2 f (x∗

I )w
〉 = 0. Let ψ : R → R

be defined by

ψ(t) := f (x∗
I + tw) for each t ∈ R.

Then one sees that ψ ′(0) = 〈
w,∇ f (x∗

I )
〉 = 0 and ψ ′′(0) = 〈

w,∇2 f (x∗
I )w

〉 = 0, and 0
is a local minimum of ψ (as x∗

I is a local minimum of f ). Therefore, ψ(3)(0) = 0 and
ψ(4)(0) ≥ 0. However, by the elementary calculus, one can check that

ψ(4)(0) = λp(p − 1)(p − 2)(p − 3)
∑

i∈I

(
w4
i |x∗

i |p−4) < 0,

which yields a contradiction. Hence, assertion (ii) holds.
(ii) ⇒ (iii). Suppose that assertion (ii) of this theorem holds. Then

∇ f (x∗
I ) = 0 and ∇2 f (x∗

I ) � 0. (19)

By Taylor’s formula, we have that

f (y) = f (x∗
I ) + ∇ f (x∗

I )(y − x∗
I ) + 1

2

〈
y − x∗

I ,∇2 f (x∗
I )(y − x∗

I )
〉

123



Journal of Global Optimization (2021) 79:853–883 861

+o(‖y − x∗
I ‖2) for each y ∈ R

s .

This, together with (19), implies that there exist ε1 > 0 and δ1 > 0 such that

f (y) ≥ f (x∗
I ) + 2ε1‖y − x∗

I ‖2 for any y ∈ B(x∗
I , δ1). (20)

Let τ > 0 be such that
√

ε1τ ≥ ‖AI ‖‖AIc‖, and define g : Rn−s → R by

g(z) := ‖AIc z‖2 + 2
〈
AI x

∗
I − b, AIc z

〉 − 2τ‖z‖2 for each z ∈ R
n−s . (21)

Clearly, g is continuously differentiable on R
n−s with g(0) = 0. Then, by Lemma 2, there

exist ε2 > 0 and δ2 > 0 such that

g(z) + λ‖z‖p
p ≥ g(0) + ε2‖z‖ = ε2‖z‖ ≥ 0 for any z ∈ B(0, δ2). (22)

Fix x :=
(
xI
xI c

)

with xI ∈ B(x∗
I , δ1) and xI c ∈ B(0, δ2). Then it follows from the definitions

of the functions F , f and g [see (5), (7) and (21)] that

F(x) = ‖AI xI + AIc xI c − b‖2 + λ‖xI ‖p
p + λ‖xI c‖p

p

= ‖AI xI − b‖2 + ‖AIc xI c‖2 + 2 〈AI xI − b, AIc xI c 〉 + λ‖xI ‖p
p + λ‖xI c‖p

p

= f (xI ) + g(xI c ) + 2τ‖xI c‖2 + λ‖xI c‖p
p + 2

〈
AI (xI − x∗

I ), AIc xI c
〉
.

Applying (20) (to xI in place of y) and (22) (to xI c in place of z), we have that

F(x) ≥ f (x∗
I ) + 2ε1‖xI − x∗

I ‖2 + 2τ‖xI c‖2 + 2
〈
AI (xI − x∗

I ), AIc xI c
〉
.

By the definition of τ , we have that

2| 〈AI (xI − x∗
I ), AIc xI c

〉 | ≤ 2
√

ε1τ‖xI − x∗
I ‖‖xI c‖ ≤ ε1‖xI − x∗

I ‖2 + τ‖xI c‖2,
and then, it follows that

F(x) ≥ f (x∗
I ) + ε1‖xI − x∗

I ‖2 + τ‖xI c‖2 ≥ f (x∗
I ) + min{ε1, τ }‖x − x∗‖2

(noting that xI c = xI c − x∗
I c ). Hence F(x) ≥ F(x∗) + min{ε1, τ }‖x − x∗‖2, as f (x∗

I ) =
F(x∗) by (9). This means that (18) holds with ε := min{ε1, τ } and δ := min{δ1, δ2}, and so
(iii) is verified.

(iii) ⇒ (i). It is trivial. The proof is complete. ��
Remark 1 (i) A function F : Rn → R is said to satisfy the Kurdyka–Łojasiewicz (in short,

KL) property at x∗ ∈ R
n if there exist η > 0, a neighborhood U of x∗ and a continuous

concave function ψ : [0, η) → R+ such that

(a) ψ(0) = 0,
(b) ψ is continuously differentiable on (0, η) with ψ ′(s) > 0 for each s ∈ (0, η), and
(c) for each x ∈ U ∩ {x ∈ R

n : F(x∗) < F(x) < F(x∗) + η}, the KL inequality holds

ψ ′(F(x) − F(x∗)) dist(0, ∂F(x)) ≥ 1. (23)

The function F is said to be a KL function at x∗ with the exponent being 1
2 if it satisfies

the KL property with ψ chosen as ψ(s) := c
√
s for each s ∈ [0, η). The KL property of

F is crucial in the establishment of the global convergence of exact descent methods (i.e.,
the sequence satisfying (H1)–(H3) as stated in Sect. 1; see [2]), while the KL property
with exponent 1

2 can guarantee the linear convergence rate of exact descent methods
(see, e.g., [1,7]). It is well-known that the �p regularized function (0 < p < 1) is a KL
function (see, e.g., [1,2]). For convex function F , it was shown by [7, Theorem 5] that
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second-order growth property (18) can ensure that it is a KL function with exponent 1
2

at x∗. Note that the �p regularized function F is nonconvex. As communicated with Dr.
Ting Kei Pong, the positive definiteness of ∇2 f (x∗

I ) [i.e., (17)] implies that f satisfies
the KL property at x∗

I with exponent 1
2 (by [57, Lemma 2]). One can then obtain that F

is a KL function with exponent 1
2 at x∗ by considering the restriction of F on I and I c

respectively.
(ii) As shown in Lemma 2, for the case when x∗ = 0, the equivalence between assertions (i)

and (iii) in Theorem 1 is true, while assertion (ii) is not well defined (as I = ∅).
The structure of local minima is a useful property for the numerical study of the �p

regularization problem; see, e.g., [17,55]. As a byproduct of Theorem 1, we will prove that
the number of local minima of problem (1) is finite, which was claimed in [17, Corollary 2.2]
but with an incomplete proof (because their proof is based on the fact that f has at most one
local minimum whenever A�

I AI is of full rank, which is unclear).

Corollary 1 The �p regularization problem (1) has only a finite number of local minima.

Proof Let I ⊆ {1, . . . , n}. We use LM(F,Rn; I ) to denote the set of local minima x∗ of
problem (1) with supp(x∗) = I , and set

Θ(I ) := {
xI : x ∈ LM(F,Rn; I )} . (24)

Then the set of local minima of problem (1) can be expressed as the union of LM(F,Rn; I )
over all subsets I ⊆ {1, . . . , n}. Clearly, LM(F,Rn; I ) and Θ(I ) have the same cardinality.
Thus, to complete the proof, it suffices to show thatΘ(I ) is finite. To do this, we may assume
that, without loss of generality, I = {1, . . . , s}, and write

O := {y ∈ R
s�= : ∇2 f (y) � 0}, (25)

where f : Rs → R is defined by (7). Clearly, O is open in R
s , and Θ(I ) ⊆ O by Theorem

1. Thus, it follows from (24) that

Θ(I ) ⊆ LM( f ,Rs) ∩ O (26)

(we indeed can show an equality), where, for an open subset U of Rs , LM( f ,U ) stands for
the set of local minima of f over U . For simplicity, we set

R
s
J := {y ∈ R

s : y j > 0 for j ∈ J , y j < 0 for j ∈ I\J }
and OJ := O ∩ R

s
J for any J ⊆ I . Then each OJ is open in R

s (as so are O and R
s
J ). This

particularly implies that

LM( f ,Rs) ∩ OJ = LM( f , OJ ) for each J ⊆ I . (27)

Moreover, it is clear that O = ∪J⊆I OJ . Hence

Θ(I ) ⊆ LM( f ,Rs) ∩ O = ∪J⊆I
(
LM( f ,Rs) ∩ OJ

) = ∪J⊆I LM( f , OJ ) (28)

[thanks to (26) and (27)]. Below we show that

OJ is convex for each J ⊆ I . (29)

Granting this, one concludes that each LM( f , OJ ) is at most a singleton, because ∇2 f � 0
on OJ by (25) and then f is strictly convex on OJ by the higher-dimensional derivative tests
for convexity (see, e.g., [44, Theorem 2.14]); hence Θ(I ) is finite by (28), completing the
proof.
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To show (29), fix J ⊆ I , and let y, z ∈ OJ . Then, by definition, one has that

∇2 f (y) � 0 and ∇2 f (z) � 0. (30)

By elementary calculus, the map t �→ t p−2 is convex on (0,+∞), and so

|yi |p−2 + |zi |p−2

2
≥

( |yi | + |zi |
2

)p−2

for each i ∈ I .

Consequently, we have

diag

(( |yi |p−2 + |zi |p−2

2

)

i∈I

)

� diag

((( |yi | + |zi |
2

)p−2
)

i∈I

)

.

This, together with (8) and (30), implies that

∇2 f

(
y + z

2

)

� ∇2 f (y) + ∇2 f (z)

2
� 0.

Since y+z
2 ∈ R

s
J ⊆ R

s�=, it follows that
y+z
2 ∈ O ∩ R

s
J = OJ and (29) is proved. ��

Another byproduct of Theorem 1 is the following corollary, in whichwe show the isolation
of a local minimum of problem (1) in the sense of critical points. This property is useful for
establishing the global convergence of the inexact descent method and inexact PGA. For
simplicity, we use S to denote the set of critical points of problem (1).

Corollary 2 Let x∗ be a local minimum of the �p regularization problem (1). Then x∗ is an
isolated critical point of problem (1), that is, there exists τ > 0 such that S∩B(x∗, τ ) = {x∗}.
Proof Recall that I = supp(x∗) and f are defined by (6) and (7), respectively. Since x∗ is a
local minimum of problem (1), it follows from (9) that x∗

I is a local minimum of f and from
Theorem 1 [cf. (17)] that ∇2 f (x∗

I ) � 0. By the fact that x∗
I ∈ R

s�= and by the smoothness of
f at x∗

I , we can find a constant τ with

0 < τ <

(
4

λp
‖A�(Ax∗ − b)‖∞

) 1
p−1

(31)

such that

B(x∗
I , τ ) ⊆ R

s�= ∩ {y ∈ R
s : ∇2 f (y) � 0}. (32)

We aim to show that S ∩ B(x∗, τ ) = {x∗}. To do this, let x ∈ S ∩ B(x∗, τ ). We first claim
that supp(x) = I . It is clear by (32) that

xi �= 0 when i ∈ I , and |xi | < τ otherwise. (33)

If i ∈ supp(x), by the definition of critical point, it follows that 2A�
i (Ax − b) +

λp|xi |p−1sign(xi ) = 0; consequently, by the fact that x is closed to x∗, we obtain that

|xi | =
(
2|A�

i (Ax − b)|
λp

) 1
p−1

>

(
4|A�

i (Ax∗ − b)|
λp

) 1
p−1

>

(
4‖A�(Ax∗ − b)‖∞

λp

) 1
p−1

> τ

[due to (31)]. This, together with (33), shows that supp(x) = I , as desired.
Finally, we show that x = x∗. By (32), one has that f is strongly convex on B(x∗

I , τ ).
Since x is a critical point of problem (1), one has by the definition of critical point that
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∇ f (xI ) = 0, and so xI is a minimum of f on B(x∗
I , τ ). By the strongly convexity of f

on B(x∗
I , τ ), we obtain xI = x∗

I , and hence that x = x∗ (since supp(x) = I ). The proof is
complete. ��

4 Linear convergence of inexact descent method

This section aims to establish the linear convergence of an inexact version of descent meth-
ods in a general framework. In our analysis, we will employ both second-order optimality
condition and second-order growth property, established in Theorem 1.

Let α and β be fixed positive constants and {εk} ⊆ R+ be a sequence of nonnegative
scalars, and recall that F : R

n → R is the �p regularized function defined by (5). We
consider a sequence {xk} that satisfies the following relaxed conditions of (H1) and (H2).

(H1◦) For each k ∈ N,

F(xk+1) − F(xk) ≤ −α‖xk+1 − xk‖2 + ε2k ; (34)

(H2◦) For each k ∈ N, there exists wk+1 ∈ ∂F(xk+1) such that

‖wk+1‖ ≤ β‖xk+1 − xk‖ + εk .

Remark 2 Frankel et al. [22] proposed an inexact version of descent methods, in which
only (H2) is relaxed to the inexact form (H2◦) while the exact form (H1) is maintained.
Consequently, the corresponding sequence {xk} satisfies a descent property. However, in
our framework, note by (34) that the sequence {xk} does not necessarily satisfy a descent
property. This is an essential difference between [22], as well as extensive studies in descent
methods [1,2,8,54], and our study in this paper.

Remark 3 (i) Due to Remark 2, the methodology of KL theory for exact descent methods
proposed in [2] cannot be directly applied (with some minor modification) to establish
the global convergence of the inexact descent method with the solution sequence {xk}
satisfying (H1◦) and (H2◦). Indeed, the descent property of objective function values
(H1) is crucial in the framework of convergence analysis in [2], which guarantees that
the sequence of function values {F(xk)} converges decreasingly to F(x∗). Then the KL
property of F at a cluster point x∗ is applicable to establishing the global convergence
of {xk} by deriving the following key relation that, for each k ∈ N,

2‖xk+1 − xk‖ ≤ ‖xk − xk−1‖ + β

α

(
ψ(F(xk) − F(x∗)) − ψ(F(xk+1) − F(x∗))

)
.

(35)

However, for the inexact descentmethod (i.e., satisfying (H1◦) and (H2◦)), the decreasing
property of {F(xk)} to F(x∗) is not satisfied; hence, the KL property (23) is not available
at xk because ψ ′(F(xk)− F(x∗)) is not well defined in the case when F(xk)− F(x∗) is
negative. Even though we assume that the cluster point x∗ is a local minimum of F (in
which ψ ′(F(xk) − F(x∗)) is well defined), the line of convergence analysis in [2] does
not follow for the inexact descent method yet. In particular, a relation similar to (35) can
be obtained only if α‖xk+1 − xk‖2 ≥ ε2k for each k ∈ N, which is essentially the case
of the descent method; otherwise, we cannot derive any relation similar to (35) via the
framework of KL theory. Consequently, the methodology of KL in [2] theory cannot be
directly applied to achieve the global convergence of the inexact descent method, even
if a cluster point of {xk} is a local minimum of F .
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(ii) The methodology of KL theory for exact descent methods proposed in [1] cannot be
directly applied to establish the linear convergence rate of the inexact descent method,
even in the case where {xk} converges to a local minimum x∗ and F is a KL function with
exponent 1

2 at x∗. In fact, relation (35) is crucial in the framework of convergence rate
analysis in [1], which cannot be obtained for the inexact descent method (as explained
in statement (i) of this remark). In this paper, we provide convergence analysis of the
inexact descentmethod and inexact proximal gradient algorithms for the �p regularization
problem (1) beyond the framework of KL theory.

We begin with the following useful properties of the inexact descent method; in particular,
a consistent property that xk has the same support as x∗ when k is large [assertion (ii)] is
useful for providing a uniform decomposition of {xk} in convergence analysis.

Proposition 1 (i) Let {xk} be a sequence satisfying (H1◦) with
∞∑

k=0

ε2k < +∞. (36)

Then
∑∞

k=0 ‖xk+1 − xk‖2 < +∞.
(ii) Let {xk}bea sequence satisfying (H2◦)with limk→∞ εk = 0. Suppose that {xk} converges

to x∗. Then there exists N ∈ N such that

supp(xk) = supp(x∗) for each k ≥ N . (37)

Proof Assertion (i) of this theorem is trivial by the assumption and the fact that F ≥ 0.
Below, we prove assertion (ii). Write

γ :=
(

λp

β + 1 + 4‖A�(Ax∗ − b)‖∞

) 1
1−p

. (38)

By the assumption that {xk} converges to x∗, there exists N ∈ N such that for each k ≥ N

xki �= 0 when i ∈ supp(x∗), and |xki | < γ otherwise. (39)

Fix k ≥ N and i ∈ supp(xk). By the assumption (H2◦), there exists wk ∈ ∂F(xk) such that

‖wk‖ ≤ β‖xk − xk−1‖ + εk < β + 1 (40)

(by the assumptions that limk→∞ εk = 0 and limk→∞ xk = x∗). Noting that i ∈ supp(xk),
we obtain by (8) that

|wk
i | = |2A�

i (Axk − b) + λp|xki |p−1sign(xki )| ≥ λp|xki |p−1 − 4‖A�(Ax∗ − b)‖∞.

This, together with (40) and (38), shows that |xki | > γ when i ∈ supp(xk). This, together
with (39), shows that supp(xk) = supp(x∗) for each k ≥ N . The proof is complete. ��

The main theorem of this section is as follows. The convergence theorem is not only of
independent interest in establishing the linear convergence of inexact descent method, but
also provides a useful approach for the linear convergence study of the inexact PGA in the
next section. Recall that functions F and f are defined by (5) and (7), respectively.

Theorem 2 Let {xk} be a sequence satisfying (H1◦) and {εk} satisfy (36). Suppose one of
limiting points of {xk}, denoted by x∗, is a local minimum of problem (1). Then the following
assertions are true.
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(i) {xk} converges to x∗.
(ii) Suppose further that {xk} satisfies (H2◦) and

lim sup
k→∞

εk+1

εk
< 1. (41)

Then {xk} converges linearly to x∗, that is, there exist C > 0 and η ∈ (0, 1) such that

F(xk) − F(x∗) ≤ Cηk and ‖xk − x∗‖ ≤ Cηk for each k ∈ N. (42)

Proof (i) It follows from Proposition 1(i) that limk→∞ ‖xk+1−xk‖ = 0. By the assumption
that x∗ is a local minimum of problem (1), it follows from Lemma 2 that x∗ is an isolated
critical point of problem (1). Then, we can prove that {xk} converges to x∗ (the proof is
standard; see, e.g., the proof of [10, Proposition 2.3]).

(ii) If x∗ = 0, it follows from Proposition 1(ii) that there exists N ∈ N such that xk = 0
for each k ≥ N , and so the conclusion holds. Then it remains to prove (42) for the case
when x∗ �= 0.
Suppose that x∗ �= 0. Recall that I = supp(x∗) is defined by (6). By the assumption that

x∗ is a local minimum of problem (1), assertions (ii) and (iii) of Theorem 1 are satisfied;
hence, it follows from (17) and (8) that 2A�

I AI + ∇2ϕ(x∗
I ) = ∇2 f (x∗

I ) � 0. This, together
with x∗

I ∈ R
s�= [cf. (6)] and the smoothness of ϕ at x∗

I , implies that there exist ε > 0, δ > 0
and Lϕ > 0 such that (18) holds and

B(x∗
I , δ) ⊆ R

s�= ∩ {y ∈ R
s : ∇2ϕ(y) � −2A�

I AI },
‖∇ϕ(y) − ∇ϕ(z)‖ ≤ Lϕ‖y − z‖ for any y, z ∈ B(x∗

I , δ). (43)

By assertion (i) of this theorem that {xk} converges to x∗, there exists N ∈ N such that (37)
holds [by Proposition 1(ii)] and xkI ∈ B(x∗

I , δ) for each k ≥ N . In particular, the following
relations hold for each k ≥ N :

F(xk+1) ≥ F(x∗) + ε‖xk+1 − x∗‖2, (44)

and

‖∇ϕ(xkI ) − ∇ϕ
(
xk+1
I

)
‖ ≤ Lϕ‖xkI − xk+1

I ‖. (45)

Noting by (8) and (43) that

∇2ϕ(w) ≺ 0 and ∇2 f (w) � 0 for any w ∈ B(x∗
I , δ),

it follows that ϕ is concave and f is convex on B(x∗
I , δ). Fix k ≥ N . Then one has that

〈
∇ϕ(xkI ), x

k
I − xk+1

I

〉
≤ ϕ(xkI ) − ϕ

(
xk+1
I

)
(46)

and

f (xkI ) − f (x∗
I ) ≤

〈
∇ f (xkI ), x

k
I − x∗

I

〉
(47)

(as xkI , x
k+1
I ∈ B(x∗

I , δ)). To proceed, we define

rk := F(xk) − F(x∗) for each k ∈ N, (48)

and then it follows from (37) and (9) that

rk = f (xkI ) − f (x∗
I ). (49)
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Hence, using (47), we obtain that

rk ≤
〈
∇ f (xkI ), x

k
I − x∗

I

〉
=

〈
∇ f (xkI ), x

k
I − xk+1

I

〉
+

〈
∇ f (xkI ), x

k+1
I − x∗

I

〉
. (50)

By (7) and (46), it follows that
〈
∇ f (xkI ), x

k
I − xk+1

I

〉
=

〈
∇h(xkI ), x

k
I − xk+1

I

〉
+

〈
∇ϕ(xkI ), x

k
I − xk+1

I

〉

≤
〈
∇h(xkI ), x

k
I − xk+1

I

〉
+ ϕ(xkI ) − ϕ

(
xk+1
I

)
.

Recall from (7) that ∇h(xkI ) = 2A�
I (AI xkI −b). Then, by (10) (with AI , x

k+1
I , xk+1

I in place
of A, y, x), we have that

〈
∇ f (xkI ), x

k
I − xk+1

I

〉
≤ f (xkI ) − f

(
xk+1
I

)
+ ‖AI (x

k+1
I − xkI )‖2

≤ rk − rk+1 + ‖A‖2‖xk+1 − xk‖2 (51)

[due to (49)]. On the other hand, one has that
〈
∇ f (xkI ), x

k+1
I − x∗

I

〉
=

〈
∇ f

(
xk+1
I

)
, xk+1

I − x∗
I

〉
+

〈
∇ f (xkI )−∇ f

(
xk+1
I

)
, xk+1

I − x∗
I

〉
.

(52)

By the assumption (H2◦), we obtain that
〈
∇ f

(
xk+1
I

)
, xk+1

I − x∗
I

〉
≤ ‖∇ f

(
xk+1
I

)
‖‖xk+1

I − x∗
I ‖

≤ ‖wk+1‖‖xk+1
I − x∗

I ‖≤ β‖xk+1 − xk‖‖xk+1 − x∗‖ + εk‖xk+1 − x∗‖;
while by (7) and (45), we conclude that

〈
∇ f (xkI ) − ∇ f

(
xk+1
I

)
, xk+1

I − x∗
I

〉

=
〈
∇h(xkI ) − ∇h

(
xk+1
I

)
+ ∇ϕ(xkI ) − ∇ϕ

(
xk+1
I

)
, xk+1

I − x∗
I

〉

≤ (2‖A‖2 + Lϕ)‖xk+1
I − xkI ‖‖xk+1

I − x∗
I ‖≤ (2‖A‖2 + Lϕ)‖xk+1 − xk‖‖xk+1 − x∗‖.

Combining the above two inequalities, it follows from (52) that
〈
∇ f (xkI ), x

k+1
I − x∗

I

〉
≤ (

β + 2‖A‖2 + Lϕ

) ‖xk+1 − xk‖‖xk+1 − x∗‖ + εk‖xk+1 − x∗‖.
Let

σ := β + 2‖A‖2 + Lϕ and τ ∈ (0, ε). (53)

Then one has that
〈
∇ f (xkI ), x

k+1
I − x∗

I

〉
≤ σ 2

2τ
‖xk+1 − xk‖2 + τ

2
‖xk+1 − x∗‖2 + 1

2τ
ε2k + τ

2
‖xk+1 − x∗‖2

= σ 2

2τ
‖xk+1 − xk‖2 + τ‖xk+1 − x∗‖2 + 1

2τ
ε2k .

This, together with (50) and (51), shows that

rk ≤ rk − rk+1 +
(

‖A‖2 + σ 2

2τ

)

‖xk+1 − xk‖2 + τ‖xk+1 − x∗‖2 + 1

2τ
ε2k . (54)
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Recalling (48), we obtain by the assumption (H1◦) that

‖xk+1 − xk‖2 ≤ 1

α

(
F(xk) − F(xk+1)

)
+ 1

α
ε2k = 1

α
(rk − rk+1) + 1

α
ε2k ,

and by (44) that

‖xk+1 − x∗‖2 ≤ 1

ε

(
F(xk+1) − F(x∗)

)
= 1

ε
rk+1.

Hence, (54) reduces to

rk ≤ rk − rk+1 + 2τ‖A‖2 + σ 2

2τα
(rk − rk+1) + 2τ‖A‖2 + σ 2

2τα
ε2k + τ

ε
rk+1 + 1

2τ
ε2k ,

that is,

rk+1 ≤
(

1 − 1 − τ
ε

1 + 2τ‖A‖2+σ 2

2τα
− τ

ε

)

rk +
(

2τ‖A‖2 + σ 2 + α

2τα + 2τ‖A‖2 + σ 2 − 2τ 2α 1
ε

)

ε2k . (55)

Let

η̄ := 1 − 1 − τ
ε

1 + 2τ‖A‖2+σ 2

2τα
− τ

ε

and c̄ := 2τ‖A‖2 + σ 2 + α

2τα + 2τ‖A‖2 + σ 2 − 2τ 2α 1
ε

.

Then (55) reduces to

rk+1 ≤ η̄rk + c̄ε2k for each k ≥ N .

One can check that 0 < η̄ < 1 and c̄ > 0 by (53), and note (41). Applying Lemma 1 (with
rk , η̄ and c̄ε2k in place of ak , η and δk), there exist θ ∈ (0, 1) and K > 0 such that

F(xk) − F(x∗) = rk ≤ K θk for each k ≥ N

[by (48)]. Furthermore, using (44), we have that

‖xk − x∗‖ ≤
(
F(xk) − F(x∗)

ε

) 1
2

≤
(
K

ε

) 1
2 (√

θ
)k

for each k ≥ N .

This shows that (42) holds with C := max

{

K ,
( K

ε

) 1
2

}

and η := √
θ . The proof is complete.

��
Remark 4 It is worth noting in (42) that the linear convergence of {F(xk)} to F(x∗) is a direct
consequence of that of {xk} to x∗. Indeed, recalling from [24, Lemma 2] that ‖x‖p

p −‖y‖p
p ≤

‖x − y‖p
p for any x, y ∈ R

n , we obtain by (5) that

F(xk) − F(x∗) ≤ ‖A‖2‖xk − x∗‖2 + λ‖xk − x∗‖p
p.

As an application of Theorem 2 for the case when εk ≡ 0, the linear convergence of
the descent methods investigated in [1,2] for solving the �p regularization problem (1) is
presented in the following theorem.

Theorem 3 Let {xk} be a sequence satisfying (H1) and (H2). Then {xk} converges to a
critical point x∗ of problem (1). Suppose that x∗ is a local minimum of problem (1). Then
{xk} converges linearly to x∗.
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5 Linear convergence of inexact proximal gradient algorithms

The main purpose of this section is to investigate the linear convergence rate of two inexact
PGAs for solving the �p regularization problem (1). Associated to problem (2), we denote
the (inexact) proximal operator of the �p regularizer by

Pv,ε(x) := ε-arg min
y∈Rn

{

λ‖y‖p
p + 1

2v
‖y − x‖2

}

. (56)

In the special case when ε = 0, we write Pv(x) for Pv,0(x) for simplicity. Recall that
functions F and H are defined by (5). It is clear that the iterative formula of Algorithm PGA
is

xk+1 ∈ Pvk

(
xk − vk∇H

(
xk

))
.

Some useful properties of the proximal operator of the �p regularizer are presented as follows.

Proposition 2 Let v > 0, ε > 0, x ∈ R
n, ξ ∈ R

n, y ∈ Pv(x − v∇H(x)) and z ∈
Pv,ε(x − v(∇H(x) + ξ)). Then the following assertions are true.

(i) F(z) − F(x) ≤ − ( 1
2v − ‖A‖2) ‖z − x‖2 − 〈z − x, ξ 〉 + ε.

(ii) For each i ∈ N, the following implication holds

yi �= 0 ⇒ |yi | ≥ (vλp(1 − p))
1

2−p .

Proof (i) Recall thatH andΦ are definedby (5), that is, H(·) = ‖A·−b‖2 andΦ(·) = λ‖·‖p
p .

It follows from (56) that

Φ(z) + 1

2v
‖z − (x − v(∇H(x) + ξ))‖2 ≤ Φ(x) + 1

2v
‖v(∇H(x) + ξ)‖2 + ε,

that is,

Φ(z) − Φ(x) ≤ − 1

2v
‖z − x‖2 −

〈
z − x, 2A�(Ax − b)

〉
− 〈z − x, ξ 〉 + ε.

Combining this with (10), we prove assertion (i) of this theorem.
(ii) Let i ∈ N be such that yi �= 0. Then, by (56) (with ε = 0), one has that

yi ∈ argmin
t∈R

{

λ|t |p + 1

2v
(t − (x − v∇H(x))i )

2
}

.

Thus, using its second-order necessary condition, we obtain that λp(p−1)|yi |p−2+ 1
v

≥
0; consequently, |yi | ≥ (vλp(1 − p))

1
2−p . The proof is complete. ��

Inspired by the ideas in the seminal work of Rockafellar [43], we propose the following
two types of inexact PGAs.

Algorithm IPGA- I. Given an initial point x0 ∈ R
n , a sequence of stepsizes {vk} ⊆ R+

and a sequence of inexact terms {εk} ⊆ R+. For each k ∈ N, having xk , we determine xk+1

by

xk+1 ∈ Pvk ,εk

(
xk − vk∇H

(
xk

))
. (57)
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Algorithm IPGA- II. Given an initial point x0 ∈ R
n , a sequence of stepsizes {vk} ⊆ R+

and a sequence of inexact terms {εk} ⊆ R+. For each k ∈ N, having xk , we determine xk+1

satisfying

dist
(
xk+1,Pvk

(
xk − vk∇H

(
xk

)))
≤ εk . (58)

Remark 5 (i) Algorithms IPGA-I and IPGA-II adopts two popular inexact schemes in the
calculation of proximal operators, respectively: Algorithm IPGA-I (resp., Algorithm
IPGA-II) measures the inexact term by the approximation of proximal regularized func-
tion value (resp., by the distance of the iterate to the exact proximal operator). The latter
type of inexact scheme is commonly considered in theoretical analysis, while the former
one is more attractive to implement in practical applications. Recently, Frankel et al. [22]
proposed an inexact PGA (based on a similar inexact scheme to Algorithm IPGA-II) for
solving the general problem (3).

(ii) Neither Algorithms IPGA-I nor IPGA-II satisfies both conditions (H1◦) and (H2◦) of the
inexact descent method mentioned in Sect. 4. Indeed, if both conditions (H1◦) and (H2◦)
are satisfied, then Lemma 1 ensures a consistent property of the support of {xk} to x∗
[cf. (37)], which is impossible for either Algorithms IPGA-I or IPGA-II. In particular,
Algorithms IPGA-I only satisfies condition (H1◦) (shown in the proof of Theorem 4),
while neither (H1◦) nor (H2◦) can be shown for Algorithms IPGA-II.

Using Theorem 2, the global convergence result of Algorithm IPGA-I is presented in the
following theorem. However, we are not able to prove the global convergence of Algorithm
IPGA-II at this moment.

Theorem 4 Let {xk} be a sequence generated by Algorithm IPGA-I with {vk} satisfying

0 < v ≤ vk ≤ v̄ <
1

2
‖A‖−2 for each k ∈ N. (59)

and {εk} satisfying (36). Suppose that one of limiting points of {xk}, denoted by x∗, is a local
minimum of problem (1). Then {xk} converges to x∗.

Proof In view of Algorithm IPGA-I [cf. (57)] and by Proposition 2(i) (with xk+1, xk , vk , 0,
εk in place of z, x , v, ξ , ε), we obtain that

F(xk+1) − F(xk) ≤ −
(

1

2vk
− ‖A‖2

)

‖xk+1 − xk‖2 + εk

≤ −
(

1

2v̄
− ‖A‖2

)

‖xk+1 − xk‖2 + εk

[by (59)]. Note also by (59) that 1
2v̄ − ‖A‖2 > 0. This shows that {xk} satisfies (H1◦) with

1
2v̄ − ‖A‖2 and √

εk in place of α and εk , respectively. Then the conclusion directly follows
from Theorem 2(i). The proof is complete. ��

Recall that, for the inexact proximal point algorithm (see, e.g., [43,51]), the inexact
term is assumed to have progressively better accuracy to investigate its convergence rate;
specifically, it is assumed that xk+1 ∈ Pvk ,εk (x

k) with εk = o(‖xk+1 − xk‖2) or that
dist

(
xk+1,Pvk (x

k)
) ≤ o(‖xk+1− xk‖). However, we are not able to prove the linear conver-

gence of the inexact PGAs under this assumption of inexact term yet (due to the nonconvexity
of the �p regularized function), and we need some additional assumptions to ensure the linear
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convergence. Recall that I = supp(x∗) is defined by (6). Let {tk} ⊆ R+ and {τk} ⊆ R+. For
Algorithms IPGA-I and IPGA-II, we assume

xk+1
I ∈ Pvk ,εk

((
xk − vk∇H(xk)

)

I

)
with εk ≤ τk‖xk+1

I − xkI ‖2, (60)

xk+1
I c ∈ Pvk ,εk

((
xk − vk∇H(xk)

)

I c

)
with εk ≤ τk‖xk+1

I c − xkI c‖2, (61)

and

dist
(
xk+1
I ,

(
Pvk

(
xk − vk∇H

(
xk

)))

I

)
≤ tk‖xk+1

I − xkI ‖, (62)

dist
(
xk+1
I c ,

(
Pvk

(
xk − vk∇H

(
xk

)))

I c

)
≤ tk‖xk+1

I c − xkI c‖, (63)

respectively. Note that (60)–(61) and (62)–(63) are sufficient conditions for guaranteeing
(57) with εk = tk‖xk+1 − xk‖ and (58) with εk = tk‖xk+1 − xk‖, respectively. (The imple-
mentable strategy of inexact PGAs that conditions (60)–(61) or (62)–(63) are satisfied will
be proposed at the end of this section.) Now, we establish the linear convergence of the above
two inexact PGAs for solving the �p regularization problem under the additional assump-
tions, respectively. Recall that f , h and ϕ are defined by (7). In the special case when tk = 0,
Theorem 5 is reduced to [24, Corollary 17] and shows the linear convergence of the exact
PGA for the �p regularization problem (1).

Theorem 5 Let {xk} be a sequence generated by Algorithm IPGA-II with {vk} satisfying (59).
Suppose that {xk} converges to a local minimum x∗ of problem (1) and that (62) and (63)
are satisfied for each k ∈ N with limk→∞ tk = 0. Then {xk} converges linearly to x∗.

Proof Note that Pvk

(
xk − vk∇H

(
xk

))
is closed for each k ∈ N. Then, by (62) and (63),

one can choose

yk ∈ Pvk

(
xk − vk∇H

(
xk

))
(64)

such that

‖xk+1
I − ykI ‖ ≤ tk‖xk+1

I − xkI ‖ and ‖xk+1
I c − ykI c‖ ≤ tk‖xk+1

I c − xkI c‖ for each k ∈ N.(65)

Noting that x∗
I ∈ R

s�= [cf. (6)] and recalling that f , h and ϕ are defined by (7), there exists

0 < δ <
(
vλp(1 − p)

) 1
2−p such that B(x∗

I , δ) ⊆ R
s�= and

‖∇ϕ(y) − ∇ϕ(z)‖ ≤ Lϕ‖y − z‖ for any y, z ∈ B(x∗
I , δ). (66)

By the assumption that limk→∞ xk = x∗ and I = supp(x∗) [cf. (6)], we have by (65) that
limk→∞ ykI = x∗

I and limk→∞ ykI c = x∗
I c = 0. Then there exists N ∈ N such that

‖xkI − x∗
I ‖ ≤ δ, ‖ykI − x∗

I ‖ ≤ δ and ‖ykI c‖ ≤ δ for each k ≥ N .

Consequently, one sees that

xkI , ykI ∈ B(x∗
I , δ) ⊆ R

s�= and ykI c = 0 for each k ≥ N (67)

[by Proposition 2(ii)], and by (66) that

‖∇ϕ
(
xk+1
I

)
− ∇ϕ(ykI )‖ ≤ Lϕ‖xk+1

I − ykI ‖ for each k ≥ N . (68)
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We first provide an estimate on {xkI c }k≥N . By the assumption that limk→∞ tk = 0, we can
assume, without loss of generality, that tk < 1

2 for each k ≥ N . By (67), we obtain from the
second inequality of (65) that

‖xk+1
I c ‖ ≤ tk‖xk+1

I c − xkI c‖ ≤ tk‖xk+1
I c ‖ + tk‖xkI c‖,

and so,

‖xk+1
I c ‖ ≤ tk

1 − tk
‖xkI c‖ < 2tk‖xkI c‖ for each k ≥ N . (69)

Below, we estimate {xkI }k≥N . To do this, we fix k ≥ N and let τ be a constant such that
0 < τ < 1

4v̄ − 1
2‖A‖2 [recalling (59)]. By (65) and using the triangle inequality, one has that

1

2
‖xk+1

I − xkI ‖ < (1 − tk)‖xk+1
I − xkI ‖ ≤ ‖ykI − xkI ‖ ≤ (1 + tk)‖xk+1

I − xkI ‖

<
3

2
‖xk+1

I − xkI ‖ (70)

(by tk < 1
2 ). By (64), (5) and (7), we check that y

k
I ∈ Pvk

(
xkI − vk

(∇h(xkI ) + 2AI AI c xkI c
))
,

and so, we obtain from Proposition 2(i) (with f , h, AI , ykI , x
k
I , vk , 2A

�
I AI c xkI c , 0 in place of

F , H , A, z, x , v, ξ , ε) that

f (ykI ) − f (xkI ) ≤ −
(

1

2vk
− ‖AI ‖2

)

‖ykI − xkI ‖2 −
〈
ykI − xkI , 2A

�
I AI c x

k
I c

〉

≤ −
(

1

2vk
− ‖A‖2

)

‖ykI − xkI ‖2 + τ‖ykI − xkI ‖2 + 1

τ
‖A‖4‖xkI c‖2

≤ −1

4

(
1

2v̄
− ‖A‖2 − τ

)

‖xk+1
I − xkI ‖2 + 1

τ
‖A‖4‖xkI c‖2 (71)

[by (59) and (70)]. By the smoothness of f on B(x∗
I , δ)(⊆ R

s�=) and (67), there exists L > 0
such that

f (xk+1
I ) − f (ykI ) ≤ ‖∇ f (ykI )‖‖xk+1

I − ykI ‖ + L‖xk+1
I − ykI ‖2. (72)

(by TaylorØs formula). The first-order optimality condition of (64) says that

∇ϕ(ykI ) + 1

vk

(
ykI − xkI + 2vk A

�
I (Axk − b)

)
= 0. (73)

Then we obtain by (7) that

∇ f (ykI ) = 2A�
I (AI y

k
I − b) + ∇ϕ(ykI ) = −

(
1

vk
− 2A�

I AI

)

(ykI − xkI ) − 2A�
I AI c x

k
I c ;

consequently,

‖∇ f (ykI )‖ ≤
(

1

vk
− 2‖A‖2

)

‖ykI − xkI ‖ + 2‖A‖2‖xkI c‖

≤ 3

2

(
1

v̄
− 2‖A‖2

)

‖xk+1
I − xkI ‖ + 2‖A‖2‖xkI c‖

[due to (59) and (70)]. Combing this with (72), we conclude by the first inequality of (65)
that
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f (xk+1
I ) − f (ykI )

≤ 3

2

(
1

v̄
− 2‖A‖2

)

tk‖xk+1
I − xkI ‖2 + 2‖A‖2tk‖xkI c‖‖xk+1

I − xkI ‖ + Lt2k ‖xk+1
I − xkI ‖2

≤
(
3

2

(
1

v̄
− 2‖A‖2

)

tk + t2k (L + τ)

)

‖xk+1
I − xkI ‖2 + 1

τ
‖A‖4‖xkI c‖2. (74)

Recalling that limk→∞ tk = 0, we can assume, without loss of generality, that

3

2

(
1

v̄
− 2‖A‖2

)

tk + t2k (L + τ) ≤ 1

4
τ for each k ≥ N .

This, together with (71) and (74), yields that

f (xk+1
I ) − f (xkI ) ≤ −1

4

(
1

2v̄
− ‖A‖2 − 2τ

)

‖xk+1
I − xkI ‖2 + 2

τ
‖A‖4‖xkI c‖2. (75)

On the other hand, by the smoothness of f on B(x∗
I , δ), we obtain by (67) and (7) that

‖∇ f
(
xk+1
I

)
‖ ≤ ‖∇h(xkI ) + ∇ϕ(ykI )‖ + ‖∇h(xk+1

I ) − ∇h(xkI )‖
+‖∇ϕ(xk+1

I ) − ∇ϕ(ykI )‖. (76)

Note by (73), (70) and (59) that

‖∇h(xkI ) + ∇ϕ(ykI )‖ = ‖ 1

vk
(xkI − ykI ) − 2A�

I AI c x
k
I c‖ ≤ 3

2v
‖xk+1

I − xkI ‖ + 2‖A‖2‖xkI c‖,
‖∇h(xk+1

I ) − ∇h(xkI )‖ ≤ 2‖A‖2‖xk+1
I − xkI ‖,

and by (68) and (65) that

‖∇ϕ(xk+1
I ) − ∇ϕ(ykI )‖ ≤ Lϕ‖xk+1

I − ykI ‖ ≤ Lϕ tk‖xk+1
I − xkI ‖.

Hence, (76) implies that

‖∇ f
(
xk+1
I

)
‖ ≤

(
3

2v
+ 2‖A‖2 + Lϕ tk

)

‖xk+1
I − xkI ‖ + 2‖A‖2‖xkI c‖.

This and (75) show that {xkI }k≥N satisfies (H1◦) and (H2◦) with f , xkI ,
1
4

( 1
2v̄ − ‖A‖2 − 2τ

)
,

(
3
2v + 2‖A‖2 + Lϕ tk

)
and max

{√
2
τ
, 2

}

‖A‖2‖xkI c‖ in place of F , xk α, β and εk , respec-

tively. Furthermore, it follows from (69) that limk→∞
‖xk+1

I c ‖
‖xkI c ‖

≤ limk→∞ 2tk = 0. This

verifies (41) assumed in Theorem 2(ii). Therefore, the assumptions of Theorem 2(ii) are
satisfied, and so it follows that {xkI } converges linearly to x∗

I . Recall from (69) that {xkI c } con-
verges linearly to x∗

I c (=0). Therefore, {xk} converges linearly to x∗. The proof is complete.
��

Remark 6 Frankel et al. [22] considered an inexact PGA similar to Algorithm IPGA-II with
the inexact control being given by

εk = tk dist
(
Pvk

(
xk − vk∇H

(
xk

))
,Pvk

(
xk−1 − vk−1∇H

(
xk−1

)))
.

However, this inexact control would be not convenient to implement for applications because
εk is expressed in terms of Pv(·) that is usually expensive to calculate exactly. In Theorem 5,
we established the linear convergence of Algorithm IPGA-II with the inexact control being
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given by (62) and (63). Our convergence analysis deviates significantly from that of [22], in
which the KL inequality is used as a standard technique.

Theorem 6 Let {xk} be a sequence generated by Algorithm IPGA-I with {vk} satisfying (59).
Suppose that {xk} converges to a global minimum x∗ of problem (1) and that (60) and (61)
are satisfied for each k ∈ N with limk→∞ τk = 0. Then {xk} converges linearly to x∗.

Proof For simplicity, wewrite yk ∈ Pvk (x
k−vk∇H(xk)) for each k ∈ N. By Proposition 2(i)

(with yk , xk , vk , 0, 0 in place of z, x , v, ξ , ε) and by (59), one has that
(

1

2v̄
− ‖A‖2

)

‖yk − xk‖2 ≤ F(xk) − F(yk) ≤ F(xk) − min
x∈Rn

F(x).

Then, by the assumption that {xk} converges to a global minimum x∗ of F , we have that {yk}
also converges to this x∗. By Theorem 1, it follows from (17) that 2A�

I AI + ∇2ϕ(x∗
I ) =

∇2 f (x∗
I ) � 0. This, together with x∗

I ∈ R
s�= [cf. (6)] and the smoothness of ϕ at x∗

I , implies

that there exists 0 < δ <
(
vλp(1 − p)

) 1
2−p such that

B(x∗
I , δ) ⊆ R

s�= ∩ {y ∈ R
s : ∇2ϕ(y) � −2A�

I AI }. (77)

By the convergence of {xk} and {yk} to x∗, there exists N ∈ N such that

xkI , y
k
I ∈ B(x∗

I , δ), xkI c ∈ B(0, δ) and ykI c = 0 for each k ≥ N (78)

[by Proposition 2(ii)]. Fix k ≥ N . Then, by (61) and (56), we have that

ϕ(xk+1
I c ) + 1

2vk
‖xk+1

I c − xkI c + 2vk A
�
I c (Ax

k − b)‖2 ≤ εk + 1

2vk
‖ − xkI c + 2vk A

�
I c (Ax

k − b)‖2.

This implies that

ϕ(xk+1
I c ) ≤ εk + 1

2vk

(
‖xkI c‖2 − ‖xkI c − xk+1

I c ‖2
)

−
〈
xk+1
I c , 2AIc (Ax

k − b)
〉
. (79)

Note that limk→∞ xkI c = 0 and limk→∞ τk = 0. By (79) and (61), there exists K > 0 such
that

‖xk+1
I c ‖p

p ≤ K (‖xk+1
I c ‖ + ‖xkI c‖).

Then it follows from (4) (as p < 1) that
(
1 − K‖xk+1

I c ‖1−p
)

‖xk+1
I c ‖p ≤ ‖xk+1

I c ‖p
p − K‖xk+1

I c ‖ ≤ K‖xkI c‖.

Since limk→∞ xkI c = 0, we assume, without loss of generality, that ‖xk+1
I c ‖ ≤ (2K )

− 1
1−p .

Hence,

‖xk+1
I c ‖p ≤ 2K‖xkI c‖ =

(
2K‖xkI c‖1−p

)
‖xkI c‖p.

Let αk := (
2K‖xkI c‖1−p

) 1
p . Then it follows that

‖xk+1
I c − xkI c‖ ≥ ‖xkI c‖ − ‖xk+1

I c ‖ ≥ 1 − αk

αk
‖xk+1

I c ‖. (80)

On the other hand, let fk : Rs → R be an auxiliary function defined by

fk(y) := ϕ(y) + 1

2vk
‖y −

(
xkI − 2vk A

�
I (Axk − b)

)
‖2 for each y ∈ R

s . (81)

123



Journal of Global Optimization (2021) 79:853–883 875

Obviously, fk is smooth on Rs�= and note by Taylor’s formula of fk at ykI that

fk(y) = fk(y
k
I ) + ∇ fk(y

k
I )(y − ykI ) + 1

2

〈
y − ykI ,∇2 fk(y

k
I )(y − ykI )

〉

+o(‖y − ykI ‖2),∀y ∈ R
s . (82)

By (81), it is clear that ykI ∈ argminy∈Rs fk(y). Its first-order necessary optimality condition
says that∇ fk(ykI ) = 0, and its second-order derivative is∇2 fk(ykI ) = ∇2ϕ(ykI )+ 1

vk
Is , where

Is denotes the identical matrix in R
s×s . Note by (77) and (78) that ∇2ϕ(ykI ) � −2A�

I AI .
Then

∇2 fk(y
k
I ) � 1

vk
Is − 2A�

I AI � 1

v̄
Is − 2A�

I AI � 0

[by (59)]. Hence, letting σ be the smallest eigenvalue of 1
v̄

Is − 2A�
I AI , we obtain by (82)

that

fk(y) ≥ fk(y
k
I ) + σ

2
‖y − ykI ‖2 for any y ∈ B(ykI , 2δ) (83)

(otherwise we can select a smaller δ). By (78), one observes that

‖xk+1
I − ykI ‖ ≤ ‖xk+1

I − x∗
I ‖ + ‖ykI − x∗

I ‖ ≤ 2δ,

and so, (83) and (60) imply that

‖xk+1
I − ykI ‖2 ≤ 2

σ

(
fk(x

k+1
I ) − fk(y

k
I )

)
≤ 2

σ
τk‖xk+1

I − xkI ‖2.

Note that yk ∈ Pvk (x
k) is arbitrary. This, together with (80), shows that {xk} can be seen

as a special sequence generated by Algorithm IPGA-II that satisfies (62) and (63) with
max{ αk

1−αk
, 2

σ
τk} in place of tk . Since limk→∞ τk = 0 and limk→∞ αk = 0 (by the definition

of αk), one has that limk→∞ max{ αk
1−αk

, 2
σ
τk} = 0, and so, the conclusion directly follows

from Theorem 5. ��
It is a natural question how to design the inexact PGA that satisfies (60)–(61) or (62)–

(63). Note that both functions ‖·‖p
p and ‖ · −x‖2 in the proximal operator are separable [see

(56)].We can propose two implementable inexact PGAs, Algorithms IPGA-Ip and IPGA-IIp,
which are the parallel versions of Algorithms IPGA-I and IPGA-II, respectively.

Algorithm IPGA- Ip. Given an initial point x0 ∈ R
n , a sequence of stepsizes {vk} ⊆ R+

and a sequence of nonnegative scalars {εk} ⊆ R+. For each k ∈ N, having xk , we determine
xk+1 by

xk+1
i ∈ Pvk ,εk

((
xk − vk∇H(xk)

)

i

)
with εk = τk‖xk+1

i − xki ‖2 for each i = 1, . . . , n.

Algorithm IPGA- IIp. Given an initial point x0 ∈ R
n , a sequence of stepsizes {vk} ⊆

R+ and a sequence of nonnegative scalars {tk} ⊆ R+. For each k ∈ N, having xk , we
determine xk+1 satisfying

dist
(
xk+1
i ,

(
Pvk

(
xk − vk∇H

(
xk

)))

i

)
≤ tk‖xk+1

i − xki ‖ for each i = 1, . . . , n.

It is easy to verify that Algorithms IPGA-Ip and IPGA-IIp satisfy conditions (60)–(61)
and (62)–(63) respectively, and so, their linear convergence properties follow directly from
Theorems 5 and 6.
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The linear convergence of the exact PGA for the �p regularization problem (1) has been
established by Zeng et al. [57] and Hu et al. [24] under different assumptions. In particular,
[57, Theorem 4] proved the linear convergence of the PGA under a restrictive assumption on
the stepsize v and the regularization order p that

p

2
<

λmin(A�
I AI )

‖A‖2 and
p

4λmin(A�
I AI )

< v <
1

2‖A‖2 , (84)

where I denotes the support of the limiting point x∗ and λmin(·) denotes the smallest eigen-
value of a matrix.While, [24, Corollary 17] obtained the linear convergence of the exact PGA
for each stepsize 0 < v < 1

2‖A‖−2 and regularization order 0 < p < 1 under the assumption
that the limiting point is a local minimum. This work extends the linear convergence theory
to the inexact PGA for the �p regularization problem (1), and particularly, Theorem 5 in this
paper is the same as [24, Corollary 17] in the case when tk = 0.

At the end of this section, two numerical examples are provided to compare the linear
convergence results of the PGA. Example 1 provides a small-dimensional toy where the con-
vergence theory in this paper is available but not the one in [57]; and Example 2 compares the
numerical performance of the exact and inexact PGAs in high-dimensional sparse recovery.
The numerical experiments are implemented in Matlab R2014a and executed on a personal
laptop (Intel Core i7-8550U, 1.80 GHz, 16.00 GB of RAM).

Example 1 Consider the �p regularization problem (1) with A ∈ R
5×10 being an i.i.d. Gaus-

sian ensemble. In a random trial, the linear matrix is

A :=

⎛

⎜
⎜
⎜
⎜
⎝

− 0.44 0.31 0.55 − 0.095 − 0.18 0.36 − 0.026 − 0.17 0.41 − 0.22
0.12 − 0.036 0.018 0.032 0.16 0.60 0.51 0.44 0.097 0.36

− 0.34 − 0.26 − 0.051 0.24 0.64 0.36 − 0.31 − 0.091 − 0.26 − 0.21
0.46 − 0.19 0.26 0.29 − 0.44 0.37 − 0.074 − 0.092 − 0.37 − 0.33

− 0.41 − 0.79 0.086 0.036 − 0.35 − 0.076 0.064 − 0.030 0.090 0.26

⎞

⎟
⎟
⎟
⎟
⎠

with ‖A‖ = 1, and the ground-true sparse solution and the observation are

x̄ := (0.82, 0.64, 0, 0, 0, 0, 0, 0, 0, 0)� and b := (− 0.17, 0.078,− 0.44, 0.26,− 0.84)� ,

respectively. Algorithm PGA is conducted to solve the problem (1) to approach the sparse
solution. In the implementation of the Algorithm PGA, we set the regularization parameter
λ = 0.01, the regularization order p = 0.7, the initial point x0 = 0 and the constant stepsize
vk ≡ v. Three criteria are used to measure the numerical performance of the PGA: the
violation of the first-order optimality condition (15):

FOC =
∥
∥
∥2A�

I (AI xI − b) + λp
((|xi |p−1sign(xi )

)
i∈I

)∥∥
∥ ,

the obedience of the second-order optimality condition (17):

SOC := λmin

(
2A�

I AI + λp(p − 1)diag
((|xi |p−2)

i∈I
))

,

and the relative error to the limiting point x∗:

RE := ‖x − x∗‖
‖x∗‖ .

The stopping criterion of the PGA is set as RE ≤ 1e−16 or the number of iterations is greater
than 200.

The numerical results of the PGAwith v ∈ [0.1, 0.4] for this example are plotted in Fig. 1,
including the FOC, SOC and RE along the number of iterations. It is demonstrated from
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Fig. 1 Numerical results of the exact PGA with different stepsizes for a random trial

Fig. 1c that the PGA converges linearly for this example for all the stepsizes v ∈ [0.1, 0.4].
From Fig. 1a, b, one observes that the optimality conditions (15) and (17) are satisfied, and
thus, the limiting point of the sequence generated by the PGA is a local minimum of problem
(1). Hence, Theorem 5 in this paper (at a special case when tk = 0, also [24, Corollary 17]) is
available to guarantee the linear convergence of the PGA for all the stepsizes v ∈ [0.1, 0.4],
which is consistent with Fig. 1c.

For this sequence of the PGA, one has that I = {1, 2} and λmin(A�
I AI ) = 0.5763, and

thus, (84) is reduced to v ∈ (0.3036, 0.5). Hence, [57, Theorem 4] is able to ensure the
linear convergence of the PGA only for the stepsize v = 0.4 in this example; while the
linear convergence behavior in Fig. 1c when v = 0.1, 0.2 and 0.3 cannot be ensured by [57,
Theorem 4].

Example 2 In this example, we compare the numerical performance of the exact and inexact
PGAs in high-dimensional sparse recovery. The simulation data are generated via the standard
process of compressive sensing. Particularly, the matrix A ∈ R

m×n is randomly generated
with each entry being an i.i.d. Gaussian ensemble and AA� = Im , the ground-true sparse
solution x̄ ∈ R

n is a random s-sparse vector with each nonzero entry drawn from the standard
uniform distribution on (0, 1), and the observation b := Ax̄ + ε, where ε is an additive
Gaussian noise with its standard deviation being 1e-3.

In this experiment, the numbers of samples and variables (m, n) = (2500, 10,000) and the
sparsity s = 400. The exact and inexact PGAs (i.e., Algorithm PGA andAlgorithm IPGA-Ip)
are conducted to solve the problem (1) to approach the sparse solution. In the implementation
of the PGAs, we set the regularization parameter λ = 0.01, the regularization order p = 0.7,
the initial point x0 = 0 and the constant stepsize vk ≡ 0.4. As reported in [36, Theorem 1],
the solution of the proximity operator of the �p regularizer has a threshold value

ϕ(λ, p) := (2 − p) (2(1 − p))−
1−p
2−p λ

1
2−p .

For the component where |zki | is larger than the threshold value, the proximity subproblem
(2) is approached via applying the Newton method to solve the nonlinear equation of its
first-order optimality condition:

λpxi + 1

v
(xi − zki )|xi |2−p = 0.
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Fig. 2 Numerical comparison of the exact and inexact PGAs

The calculation accuracy for the subproblems of the exact and inexact PGAs are τk = 1e-16
and τk = 1√

k
, respectively. The criterion to measure the numerical performance of the PGAs

is the relative error to the ground-true solution x̄ :

RE := ‖x − x̄‖
‖x̄‖ .

The stopping criterion of the PGAs is set as RE ≤ 1e−3 or the number of iterations is greater
than 100.

We conduct 500 random simulations of sparse recovery and the numerical results of
averaging these 500 simulations are illustrated in Fig. 2, including the averaged RE, the
averaged number of Newton steps for subproblems and the averaged CPUtime along the
number of iterations. Two observations are illustrated from Fig. 2: (i) Both the exact and
inexact PGAs converge linearly to the ground-true solution, which are consistent with [24,
Corollary 17] and Theorem 5, respectively. (ii) Although the inexact PGA requires a little
more outer iterations than the exact PGA, however, it costs much less Newton steps (only
one-tenth) in solving the proximity subproblems and thus spends less CPUtime (about half)
than that of the exact PGA. Hence, the inexact PGA is more effective than the exact PGA in
high-dimensional sparse recovery.

6 Extension to infinite dimensional cases

This section extends the results in preceding sections to the infinite-dimensional Hilbert
spaces. In this section, we adopt the following notations. Let H be a Hilbert space, and let
�2 denote the Hilbert space consisting of all square-summable sequences. We consider the
following �p regularized least squares problem in infinite-dimensional Hilbert spaces

min
x∈l2

F(x) := ‖Ax − b‖2 +
∞∑

i=1

λi |xi |p, (85)

where A : �2 → H is a bounded linear operator, and λ := (λi ) is a sequence of weights
satisfying

λi ≥ λ > 0 for each i ∈ N. (86)

We start from some useful properties of the (inexact) descent methods and then present
the linear convergence of (inexact) descent methods and PGA for solving problem (85).
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Proposition 3 Let {xk} ⊆ �2 be a sequence satisfying (H1◦) and (H2◦), and {εk} satisfy (36).
Then there exist N ∈ N and a finite index set J ⊆ N such that

supp(xk) = J for each k ≥ N . (87)

Proof Fix k ∈ N. By (H1◦), one has that

F(xk) ≤ F(xk−1) − α‖xk − xk−1‖2 + ε2k−1 ≤ F(xk−1) + ε2k−1 ≤ F(x0) +
∞∑

i=0

ε2i < +∞

[due to (36)]. Then, it follows from (4) and (86) that

‖xk‖p ≤ ‖xk‖p
p ≤ 1

λ

∞∑

i=1

λi |xki |p ≤ 1

λ
F(xk) < +∞.

Then {xk} is bounded, denoting the upper bound of their norms by M . Let

τ := min

{
1

β
,

(
λp

2 + 2‖A‖2M + 2‖A‖‖b‖
)1−p

}

(> 0). (88)

Note by Proposition 1(i) that limk→∞ ‖xk+1 − xk‖ = 0, which, together with (36), shows
that there exists N ∈ N such that

‖xk+1 − xk‖ ≤ τ and εk < 1 for each k ≥ N . (89)

We claim that the following implication is true for each k ≥ N and i ∈ N

xki �= 0 ⇒ |xki | > τ ; (90)

hence, this, together with (89), implies (87), as desired.
Finally, we complete the proof by showing (90). Fix k > N and i ∈ N, and suppose that

xki �= 0. Then, it follows from (86) and (H2◦) that

λp|xki |p−1 + 2A�
i (Axk − b) ≤ ‖wk‖ ≤ β‖xk − xk−1‖ + εk < 2

[due to (89) and τ ≤ 1
β
by (88)]. Noting that ‖xk‖ ≤ M , we obtain from the above relation

that

|xki | >

(
λp

2 + 2‖A‖2M + 2‖A‖‖b‖
)1−p

≥ τ

[by (88)], which verifies (90), as desired. ��
Remark 7 (i) Problem (85) for the n-dimensional Euclidean space has an equivalent formula

to that of problem (1). Indeed, let ui :=
(

λi
λ

) 1
p
xi and Ki :=

(
λ
λi

) 1
p
Ai for i = 1, . . . , n.

Then, problem (85) is reformulated to minu∈Rn ‖Ku − b‖2 + λ‖u‖p
p that is (1) with K

and u in place of A and x .
(ii) It is easy to verify by the similar proofs that Theorem 1 and Corollary 2 are also true for

problem (85) in the infinite-dimensional Hilbert spaces.

Theorem 7 Let {xk} ⊆ �2 be a sequence satisfying (H1) and (H2). Then {xk} converges to a
critical point x∗ of problem (85). Suppose that x∗ is a local minimum of problem (85). Then
{xk} converges linearly to x∗.
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Proof By the assumptions, it follows from Proposition 3 that there exist N ∈ N and a finite
index set J such that (87) is satisfied. Let f J : R|J | → R be a function denoted by

f J (y) := ‖AJ y − b‖2 +
∑

i∈J

λi |yi |p for any y ∈ R
|J |.

By the assumptions and (87), we can check that {xkJ }k≥N satisfies (H1) and (H2)with xkJ and
f J in place of xk and F . Hence, the convergence of {xkJ } to a critical point x∗

J of f J directly
follows Theorem 3. Let x∗

Jc
= 0. Then, by (87), it follows that {xk} converges to this x∗,

which is a critical point of problem (85). Furthermore, suppose that x∗ is a local minimum of
problem (85). Then x∗

J is also a local minimum of f J , and so, the linear convergence of {xkJ }
to x∗

J also follows from Theorem 3. Then, by (87), we conclude that {xk} converges linearly
to this x∗. ��
Theorem 8 Let {xk} ⊆ �2 be a sequence satisfying (H1◦) and {εk} satisfy (36). Suppose
one of limiting points of {xk}, denoted by x∗, is a local minimum of problem (85). Then the
following assertions are true.

(i) {xk} converges to x∗.
(ii) Suppose further that {xk} satisfies (H2◦) and {εk} satisfies (41). Then {xk} converges

linearly to x∗.

Proof The proofs of assertions (i) and (ii) of this theorem use the lines of analysis similar to
that of assertion (i) of Theorem 2 (recalling from Remark 7(ii) that Corollary 2 is true for the
infinite-dimensional cases) and that of Theorem 7, respectively. The details are omitted. ��

Bredies et al. [10] investigated the PGA for solving problem (85) in infinite-dimensional
Hilbert spaces and proved that the generated sequence converges to a critical point under the
following additional assumptions: (a) {x ∈ �2 : A�Ax = ‖A�A‖x} is finite dimensional,
(b) ‖A�A‖ is not an accumulation point of the eigenvalues of A�A, (c) A satisfies a finite
basis injectivity property, and (d) p is a rational. Dropping these technical assumptions,
we prove the global convergence of the PGA only under the common made assumption on
stepsizes, which significantly improves [10, Theorem 5.1], and further establish its linear
convergence under a simple additional assumption in the following theorem. Recall from [2,
Theorem 5.1] that the sequence {xk} generated by Algorithm PGA satisfies conditions (H1)
and (H2) under the assumption (59). Hence, as an application of Theorem 7, the results in
the following theorem directly follow.

Theorem 9 Let {xk} ⊆ �2 be a sequence generated by Algorithm PGA with {vk} satisfying
(59). Then {xk} converges to a critical point x∗ of problem (85). Furthermore, suppose that
x∗ is a local minimum of problem (85). Then {xk} converges linearly to x∗.

Let x∗ be a local minimum of problem (85). It was reported in [17, Theorem 2.1(i)] that

|x∗
i | ≥

(
λp(1 − p)

2‖Ai‖2
) 1

2−p

for each i ∈ supp(x∗).

This indicates that supp(x∗) is a finite index set. Then, following the proof lines of Theorems
4–6, we can obtain the linear convergence of inexact PGAs for infinite-dimensional Hilbert
spaces, which are provided as follows.

Theorem 10 Let {xk} ⊆ �2 be a sequence generated byAlgorithm IPGA-Iwith {vk} satisfying
(59). Then the following assertions are true.
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(i) Suppose that (36) is satisfied, and that one of limiting points of {xk}, denoted by x∗, is a
local minimum of problem (85). Then {xk} converges to x∗.

(ii) Suppose that {xk} converges to a global minimum x∗ of problem (85) and that (60) and
(61) are satisfied for each k ∈ N with limk→∞ τk = 0. Then {xk} converges linearly to
x∗.

Theorem 11 Let {xk} ⊆ �2 be a sequence generated by Algorithm IPGA-II with {vk} satis-
fying (59). Suppose that {xk} converges to a local minimum x∗ of problem (85) and that (62)
and (63) are satisfied for each k ∈ N with limk→∞ tk = 0. Then {xk} converges linearly to
x∗.

Remark 8 Algorithms IPGA-Ip and IPGA-IIp, the parallel versions of Algorithms IPGA-I
and IPGA-II, are implementable for solving problem (85) in the infinite-dimensional Hilbert
spaces, and the generated sequences share the same linear convergence properties as shown
in Theorems 10 and 11, respectively.
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