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Consider the ℓq-norm regularized composite optimization problem:

min
x∈Rn

F (x) = f (Ax) + λ∥x∥qq, (1)

where
A ∈ Rm×n, q ∈ (0, 1) and λ > 0.
f is twice continuously differentiable with infz∈Rm f (z) > −∞.

∥x∥q := (
∑n

i=1 |xi |q)
1/q denotes the ℓq quasi-norm of x .

Due to the nonconvex, nomsmooth and nonLipschitz property of the ℓq
norm, problem (1) is a class of difficult nonconvex and nonsmooth
optimizaton problems.

Problem (1) first appears in statistics as the bridge penalty regression
[Frank93], and later appears in optimization as a special case of nonsmooth
and nonconvex penalty problems studied by [Luo96] and and [Yang01,
Huang03] for nonlinear optimization problems.
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Literature Review

There are a lot of first-order optimization algorithms to solve problem (1):
Hybrid orthogonal matching pursuit-smoothing gradient method
(OMP-SG) [Chen10]
Reweighted ℓ1 minimization method [Lai13, Lu14, Chen14]
Proximal gradient method [Wright09, Xu12, Zeng16, Hu17, Hu21]

Next, we first focus on proximal gradient method.
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Proximal Gradient Method (PG)

For a proper lower semicontinuous (lsc) function h : Rn → (−∞,∞], its
proximal mapping associated to parameter µ > 0 is defined by

proxµh(x) := argmin
z∈Rn

{ 1
2µ
∥z − x∥2 + h(z)

}
for x ∈ Rn.

When ∇f is Lipschitz continuous with Lipschitz constant L∇f , the proximal
gradient method for solving (1) is shown as follows. The essential part of
PG lies in how to solve (2).

Algorithm 1 (Proximal gradient method)

Initialization: Choose initial point x0 and γ > ∥A∥22L∇f . Let k := 0.
While the termination condition is not satisfied, do

xk+1 ∈ proxγ−1(λ∥·∥qq)(x
k − γ−1∇f (xk)). (2)

k ← k + 1
end while
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When q = 1/2, 2/3, the proximal mapping of ∥x∥qq has a closed-form
solution [Xu12, Cao13, Zeng16, Hu17]. This means that PG is able to
solve (1) for q = 1/2, 2/3 with cheap computation cost.
PG method for solving (1) has a global convergence guarantee if F is
a KL function [Attouch10].
When assuming that the limit point is a local minimizer, a linear
convergence rate of the iterates is obtained in [Xu12, Zeng16, Hu17].
In [Wright09], a class of PGs with nonmonotone line search strategy is
proposed.
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Features of the proximal gradient method:
Weak condition for global convergence: KL property of the objective
function is sufficient.
Cheap computation cost: computing a proximal mapping per iterate.
However, it at most achieves a linear convergence rate.
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Features of the Newton-type method:
The global convergence analysis of Newton-type methods with line
search is limited to the subsequential convergence of the iterates, see,
e.g., [Nocedal06].
Expensive to compute the inverse of the (regularized) Hessian.
Under some regularity conditions (e.g., strongly convex, local error
bound condition, local Lipschitz Hessian), local superlinear
convergence rate is achieved.

For unconstrained smooth optimization, the weakest condition for a
Newton-type method to have a local superlinear convergence rate is a local
error bound condition at local minima [Li04, Ueda10].

It is natural to ask whether it is possible to design a globally convergent
Newton-type method for (1) with a local superlinear convergence rate.
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Proximal Newton-type method

min
x∈Rn

Φ(x) := ϕ(x) + h(x),

where ϕ is convex and twice differentiable and h is convex and not
necessarily differentiable.

The references [Lee14], [Kanzow21], [Mordukhovich22]: Choose
Hk ≻ 0 (an approximation to ∇2ϕ(xk)), solve the following
subproblem for a search direction

∆xk ∈ argmind∇ϕ(xk)⊤d +
1
2
d⊤Hkd + h(xk + d),

and let

xk+1 = xk + tk∆xk .

Global convergence with superlinear rate is achieved!
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Hybrid of PG and quasi-Newton methods

min
x∈Rn

Φ(x) := ϕ(x) + h(x), (3)

where ϕ is twice differentiable and h is not necessarily differentiable. In
[Themelis18], a thorough study of stationarity of (3), criticality and
optimality via the FBE Φγ(x) was given (see also [Poliqun96], [Beck16]
and [Pang17]), and let x̄k be a PG iterate and Select a quasi-Newton
direction ∆xk and let the back-tracking xk+1 = x̄k + tk∆xk satisfy

Φγ−1(xk+1) ≤ Φγ−1(xk)− σγ2∥xk − x̄k∥2.

Global convergence with superlinear rate is also achieved!
See also [Stella17] and [Ahookhosh21] and [Bareilles22] for a hybrid of PG
and Riemannian update on an identified manifold.
————————————–
The forward-backward envelope (FBE) Φγ of Φ:

Φγ(x) = inf
z∈Rn

{
ϕ(x) + ⟨∇ϕ(x), z − x⟩+ 1

2γ
∥z − x∥2 + h(z)

}
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Some Notations

For any given ∅ ≠ S ⊆ {1, . . . , n}, we define |S | as the cardinality of S and
ψ(x) := f (Ax) and g(x) := ∥x∥qq for x ∈ Rn.

Let S = supp(x) := {i |xi ̸= 0} and
ψS(u) := f (ASu) and gS(u) :=

∑
i∈S |ui |q for u ∈ R|S|.

FS(u) := ψS(u) + λgS(u) for u ∈ R|S|.
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Critical point and L-type stationary point

Definition 2.1

A vector x ∈ Rn is called a critical point of F if 0 ∈ ∂F (x), where
∂F (x) denotes the limiting subdifferential of F at x .
A vector x ∈ Rn is called an L-type stationary point of problem (1) if
there exists a constant µ > 0 such that
x ∈ proxµ−1(λg)(x −µ−1∇ψ(x)).

Since g is prox-regular and prox-bounded, one can show that a point x is
an L-type stationary point of problem (1) if and only if 0 ∈ ∂F (x).

Proposition 2.2
For model (1), the set of L-type stationary points coincides with that of
critical points.
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Motivation of HpgSRN

Based on the fact that dist(0, ∂F (x)) = ∥∇Fsupp(x)(xsupp(x))∥, seeking a
point x satisfying 0 ∈ ∂F (x) is equivalent to finding x such that
∥∇Fsupp(x)(xsupp(x))∥ = 0. Given that S := supp(x) is known but x is
unknown, we can turn to find u ∈ R|S| with ui ̸= 0 for all i such that
∥∇FS(u)∥ = 0. Then, x = (u; 0) is our desired point since

∥∇FS(u)∥ = 0 =⇒ 0 ∈ ∂F (x) with x = (u; 0).

Based on this line, we find a critical point of F by the following steps:
(a) Use a PG method to seek a good estimate in some neighborhood of a

potential critical point.
(b) Apply a regularized Newton method in the subspace associated to the

support of the iterate generated by the PG method.
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PGls

The detailed iterate of our proposed algorithm needs the algorithm flow of the PG
method with a monotone line search (PGls), i.e., a monotone version of SpaRSA
[Wright09].

Let x ∈ Rn be the current iterate and µ > 0 be an initial step-size. The PGls
returns a new iterate x+ and the used step-size µ+ such that F (x+) has a certain
decrease.

Algorithm Flow of PGls: [x+, µ+] = G(x , µ; τ̃ , α̃, λ)

Input: x ∈ Rn and parameters µ > 0, τ̃ > 1 and α̃ > 0.
Let l = 0, µl = µ and x l ∈ proxµ−1

l (λg)

(
x − µ−1

l ∇ψ(x)
)
.

while F (x l) > F (x)− (α̃/2)∥x l − x∥2

Let µl+1 = τ̃µl and l ← l + 1;

Seek x l ∈ proxµ−1
l (λg)

(
x − µ−1

l ∇ψ(x)
)
;

end (while)
Let x+ = x l and µ+ = µl .
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A Hybrid of PG and Regularized Newton Method (HpgSRN)

Initialization: Choose τ̃ > 1, α̃ > 0, µmax > µmin > 0. Choose an initial x0 ∈ Rn and a
tolerance ϵ ≥ 0. Let k= 0.
Step 1: proximal gradient step
(S1) Choose an initial step-size µk ∈ [µmin, µmax]. Set [xk , µk ] = G(xk , µk ; τ̃ , α̃, λ).
(S2) If µk∥xk − xk∥∞ ≤ ϵ, output xk ; otherwise go to (S3).
(S3) Let ωk = µk+λq(q−1)|xk |q−2

min . If

sign(xk) = sign(xk) and µk+λq(q−1)|xk |q−2
min ≥

1
2
ωk , (4)

then go to Step 2; otherwise let xk+1 = xk and k ← k + 1. Go to Step 1.
Step 2: subspace regularized Newton step
(S4) Let Sk = supp(xk) and uk = xk

Sk
. Seek a subspace Newton direction ∆uk by

solving G k∆u = −∇FSk (u
k), where G k =∇2FSk (u

k)+(b1ζk+b2∥∇FSk (u
k)∥σ)I .Let

dk
Sk

= ∆uk and dk
Sc
k
= 0.

(S5) Let mk be the smallest nonnegative integer m such that

FSk (u
k+βmdk

Sk ) ≤ FSk (u
k) + ϱβm⟨∇FSk (u

k), dk
Sk ⟩. (5)

(S6) Let αk = βmk and xk+1 = xk + αkd
k and k ← k + 1. Go to Step 1.
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Technical lemmas

For any given γ > 0, s ∈ R, define a real-valued function

hγ,s(t) :=
γ

2
(t − s)2 + λ|t|q for t ∈ R. (6)

It is easy to see that t = 0 is always a local minimizer of hγ,s and that the
absolute value of another possible local minimizer is greater than ν, where
ν :=

(λq(1−q)
γ

) 1
2−q .

Lemma 3.1
For any given 0 < υ < M <∞, there exists a constant ϖ> 0 such that for
any γ > 0 and s ∈ R with |t(γ, s)| ∈ [υ,M],

h′′γ,s(t(γ, s)) = γ + λq(q−1)|t(γ, s)|q−2 ≥ ϖ.
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HpgSRN is Different from PG

From the iterate steps of HpgSRN, the sequence {xk}k∈N consists of two
parts, i.e., {xk}k∈N = {xk}k∈K1 ∪ {xk}k∈K2 , where

K1 :=
{
k ∈ N | xk+1 is generated by Step 1

}
and K2 := N\K1.

In other words, if condition (4) is satisfied in k-th iterate, then k ∈ K2.

Corollary 3.1

There exists k ∈ N such that for any k1, k2 ∈ N with k2 − k1> k ,
[k1, k2] ∩ K2 ̸= ∅.

Corollary 3.1 states that K2 contains infinite indices, so HpgSRN is
different from PG method. In fact, under an additional assumption, we will
improve this result so that after a finite number of steps, the iterates of
HpgSRN always enter into Step 2.
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Technical lemmas

Assumption 1

∇2f is locally Lipschitz continuous on Rm.

Lemma 3.2
Let {xk}k∈N and {xk}k∈N be the sequences yielded by HpgSRN. Then, under
Assumption 1, the following assertions hold.

(i) There exists γ̂ > 0 such that for all k ∈ N, F (xk+1) ≤ F (xk)− γ̂
2 ∥x

k − xk∥2.

(ii) limk→∞ ∥xk − xk∥ = 0.

(iii) There exists c̃ > 0 such that dist(0, ∂F (xk)) ≤ c̃∥xk−xk∥ for all k ∈ K2.

(iv) Each accumulation point of {xk}k∈N is an L-type stationary point of (1).

Among others, (i) states that {F (xk)}k∈N is sufficiently decreasing, while (iii)
reveals the subdifferential gap of F at xk for all k ∈ K2. Part (iv) gives the
subsequential convergence result of the iterate sequence.
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Technical lemmas

Lemma 3.3
Let {xk}k∈N and {xk}k∈N be the sequences given by HpgSRN. Then,
under Assumption 1, the following assertions hold.
(i) There exists an index set S∗ ⊆ [n] such that for all sufficiently large k ,

supp(xk) = supp(xk) = S∗;

and furthermore, every cluster point x∗ of {xk}k∈N satisfies
supp(x∗) = S∗.

(ii) There exists k̂ ∈ N such that for all k ≥ k̂ , k ∈ K2.

The second part of this lemma means that under Assumption 1, after a
finite number of iterates, HpgSRN reduces to a regularized Newton method
for minimizing the function FS∗ , where S∗ is the one in part (i).
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Kurdyka-Łojasiewicz (KL) property

Definition

A proper extended real-valued function h : Rn → (−∞,∞] is said to have the
Kurdyka-Łojasiewicz (KL) property at a point x ∈ dom∂h if there exist
η ∈ (0,∞], a neighborhood U of x , and a continuous concave function
φ : [0, η)→ R+ satisfying

φ(0) = 0, φ is continuously differentiable on (0, η) and φ′(s) > 0, ∀s ∈ (0, η)
(7)

such that for all x ∈ U ∩
{
x ∈Rn | h(x) < h(x) < h(x) + η},

φ′(h(x)− h(x))dist(0, ∂h(x))≥ 1.

If φ can be chosen as φ(s) = c
√
s for some constant c > 0, then h is said to

have the KL property of exponent 1/2 at x . If h has the KL property of exponent
1/2 at each point of dom ∂h, then h is called a KL function of exponent 1/2.
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Convergence rate of objective function value sequence

Proposition 3.4
Suppose that Assumption 1 holds, and that F is a KL function of exponent
1/2. Then {F (xk)}k∈N converges to some value F ∗ in a Q-linear rate.

We only achieve the linear convergence rate of the sequence of
{F (xk)}k∈N here. Later, under an additional assumption, we will show the
linear convergence rate of the iterate sequence {xk}k∈N.
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Convergence rate of iterate sequence

Assumption 2

It holds that lim inf
K2∋k→∞

−⟨∇FSk
(uk ),dk

Sk
⟩

∥∇FSk
(uk )∥∥dk

Sk
∥ > 0, where uk = xkSk .

Theorem 3.5
Suppose Assumptions 1 and 2 hold. The following assertions hold.
(i) If F is a KL function, then

∑∞
k=1 ∥xk+1−xk∥ <∞, and consequently,

{xk}k∈N converges to an L-type stationary point of (1), say x∗.
(ii) If F is a KL function of exponent 1/2 at x∗, then {xk}k∈N converges

R-linearly to x∗.
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Discussion of Assumption 2

Assumption 2 essentially requires that the angle between ∇FSk (uk)
and dk

Sk
is sufficiently away from π/2 and close to π. It is very

common in the subsequential convergence analysis of line search
Newton-type methods (see, e.g., [Nocedal06]), which guarantees that
limk→∞ ∥∇FSk (uk)∥ = 0.
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The authors of [Themelis18] proposed ZeroFPR, a hybrid of PG and
quasi-Newton method for minimizing so-called forward-backward
envelop of a nonsmooth composite problem. They achieve a global
convergence under the condition

∃ a constant ĉ > 0 such that ∥dk∥ ≤ ĉ∥xk − xk∥ for all k. (8)

In fact, Assumption 2 is strictly weaker than (8) in the setting of our
algorithm.

Lemma 3.6
Suppose that Assumption 1 holds. If dk yielded by Step 2 of HpgSRN
satisfies condition (8) for all k ∈ K2, then Assumption 2 holds.
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Discussion of KL Property with Exponent 1/2

The KL property of exponent 1/2 plays a crucial role in achieving the linear
convergence rate of a class of first-order method. The following proposition
establishes the equivalence between the KL property of exponent 1/2 of F
and that of FS .

Proposition 3.7
For any given x ∈ Rn\{0}, F has the KL property of exponent 1/2 at x if
and only if FS with S = supp(x) has the KL property of exponent 1/2 at
u = xS .
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By Proposition 3.7, to check the KL property with exponent 1/2 of F
at x∗, it suffices to verify that of FS∗ at x∗S∗ . Due to the sufficient
smoothness of FS∗ at x∗S∗ , the verification of the latter is easier than
that of the former.
By [Zeng16, Lemma 3], the nonsingularity of ∇2FS∗(x

∗
S∗
) implies the

KL property of exponent 1/2 for FS∗ at x∗S∗ .

Then by Theorem 3.5 (ii), if {xk}k∈N converges to x∗ and ∇2FS∗(x
∗
S∗
)

is nonsingular, then {xk}k∈N converges to x∗ in a linear convergence
rate.

Xiaoqi Yang (PolyU) HpgSRN 16-19 August, 2023, PolyU 29 / 46



Superlinear Convergence of HpgSRN

By Theorem 3.5, if Assumptions 1 and 2 hold and F is a KL function, the
sequence {xk}k∈N is convergent. In the sequel, we denote its limit by x∗.
By Lemma 3.3, supp(x∗) = S∗. Write

u∗ := x∗S∗ and U∗ :=
{
u ∈ R|S∗| | ∇FS∗(u) = 0,∇2FS∗(u) ⪰ 0

}
.

Note that U∗ is not necessarily the set of local minima of FS∗ .
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To achieve the superlinear convergence rate of {xk}k∈N, we need to bound
ζk involved in the matrix Gk by dist(uk ,U∗) as in the following lemma.

Lemma 3.8

Suppose that Assumptions 1 and 2 hold, and that F is a KL function. If
∇2FS∗(u

∗) ⪰ 0, then there exists cH > 0 such that for all sufficiently large
k , ζk ≤ cHdist(uk ,U∗).

It is worth noting that [Ueda10, Lemma 5.2] achieved the result of Lemma
3.7 by a stronger condition ∇2FS∗(u

∗) ≻ 0.
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Theorem 3.9
Suppose that Assumptions 1 and 2 hold, and that F is a KL function. If
∇2FS∗(u

∗) ⪰ 0 and there exist δ > 0 and κ1 > 0 such that for all u ∈ B(u∗, δ),

κ1dist(u,U∗)≤∥∇FS∗(u)∥, (9)

then the sequence {xk}k∈N converges to x∗ in a Q-superlinear rate of order 1+σ.

The proof of the superlinear convergence of E-RNM in [Ueda10] requires the
local optimality of x∗. After checking its proof, we found that the local
optimality of x∗ was only used to achieve the result of Lemma 3.8. Thus the
local optimality of x∗ can be removed.

The current weakest condition for a second-order method to have a local
superlinear convergence rate is “local error bound condition":

kdist(u,X ∗) ≤ ∥∇f (x)∥, ∀x ∈ B(x∗, δ),

where X ∗ is the set of local optimal solutions. See [Ueda10], [Li04], [19].

The local error bound condition (9) is a little stronger than the metric
subregularity of ∇FS∗ at u∗ for the origin because U∗ may be a strict subset
of ∇F−1

S∗
(0), but it does not require the isolatedness of u∗ and its local

optimality.
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We apply HpgSRN to solving the ℓq-norm regularized linear and logistic
regression problems on real data, which respectively take the form of (1)
with f = f1 or f2, where

f1(z) :=
1
2∥z − b∥2

f2(z) :=
∑m

i=1 log
(
1+exp(−bizi )

)
for z ∈ Rm. Here, b ∈ Rm is a given vector. Clearly, such f satisfies
Assumption 1 and the associated F is a KL function. All numerical tests
are conducted on a desktop running in MATLAB R2020b and 64-bit
Windows System with an Intel(R) Core(TM) i7-10700 CPU 2.90GHz and
32.0 GB RAM.
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Description of the Implementation of HpgSRN

The initial step-size µk is chosen by the Barzilai-Borwein (BB) rule,

µk = max
{

10−20,min
{

1020,
⟨xk−xk−1,∇ψ(xk)−∇ψ(xk−1)⟩

∥xk−xk−1∥2
}}

.

For each k ∈ K2, we call the MATLAB function eigs to compute the
approximate smallest eigenvalue of ∇2FSk (u

k), which requires about
O(|Sk |2) flops by [Stewart02]. Since |Sk | is usually much smaller than
n, this computation cost is not expensive.
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In addition, we choose

τ̃ = 10, α̃ = 10−8, σ = 0.5, b1 = 1+10−3, b2 = 10−3, ϱ = 10−4, β = 2.

We solve the linear system in (S4) via a direct method if |Sk | < 500,
otherwise a conjugate gradient method.
Our preliminary tests indicate that (1) with q = 1/2 usually has better
performance than (1) with other q ∈ (0, 1) in terms of the CPU time
and the sparsity. This coincides with the conclusion in [Hu17].
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Description of Comparison

We compare the performance of HpgSRN with that of ZeroFPR
[Themelis18] and that of PGls to check the effect of the additional subspace
regularized Newton step on HpgSRN. The parameters of PGls are chosen to
be the same as those involved in Step 1 of HpgSRN except τ̃ = 2.

For the three algorithms, we adopt the stopping criterion

γ∥xk − proxγ−1λg (x
k − γ−1∇ψ(xk))∥∞ < 10−3 or k ≥ 50000,

where γ = L/0.95 and L is an estimation of the Lipschitz constant of ∇ψ(·).
It is well-known that the Lipschitz constants of A⊤∇f1(A·) and A⊤∇f2(A·)
are ∥A∥2 and 0.25∥A∥2, respectively.

As in ZeroFPR, we choose x0 = 0 as the starting point. Although x0 = 0 is
a local minimizer of F and hence an L-type stationary point. It is not a
good one in terms of objective value; see the difference between F (0) and
the objective function value for each example in tables given later.
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Description of Data Set

The data set used to test HpgSRN on ℓq regularized least square model:

we conduct this experiments with (A, b) from LIBSVM datasets (see
https://www.csie.ntu.edu.tw). As suggested in [Huang10], for housing and
space_ga, we expand their original features with polynomial basis functions.

Explanation of Table 1:

The numerical results including the number of iterations (Iter#), the CPU times in
seconds (Time), the objective function values (Fval) and the cardinality of the
outputs (Nnz). In particular, to check the effect of the regularized Newton steps in
HpgSRN, we record its number of iterations in the form M(N), where M means
the total number of iterates and N means the number of regularized Newton steps.

The second column of Table 1 lists the values of ∥A∥2 and F (0), which reflect the
condition number of the Hessian matrix of the loss function ψ and the quality of
the starting point x0 respectively.

For each dataset, we solve (1) associated to f1 and λ = λc∥A⊤b∥∞ for two
different λc ’s with the three solvers.
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Table 1: Numerical comparisons on ℓq-norm regularized
linear regressions with LIBSVM datasets

Data
(m, n)

∥A∥2

F (0) λc Index HpgSRN ZeroFPR PGls

space_ga9
(3107, 5505)

4.01e3
5.77e3

10−3

Iter# 17(5) 43 180
Time 0.45 0.98 0.93
Fval 36.47 37.24 37.15
Nnz 7 7 6

10−4

Iter# 230(64) 476 3058
Time 2.26 9.03 16.48
Fval 20.93 20.31 21.57
Nnz 15 19 15

housing7
(506, 77520)

3.28e5
1.50e5

10−3

Iter# 639(157) 4164 25133
Time 14.45 2.13e2 4.08e2
Fval 2.25e3 2.57e3 2.56e3
Nnz 27 49 57

10−4

Iter# 1765(485) 18807 50000
Time 49.26 9.81e2 8.59e2
Fval 8.89e2 9.27e2 9.17e2
Nnz 82 123 135

E2006.test
(3308, 72812)

4.79e4
2.46e4

10−4

Iter# 3(0) 3 3
Time 0.03 0.25 0.03
Fval 2.45e2 2.45e2 2.45e2
Nnz 1 1 1

10−5

Iter# 3(0) 4 4
Time 0.05 0.25 0.04
Fval 2.40e2 2.40e2 2.40e2
Nnz 1 1 1
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cont’d

E2006.train
(16087, 150348)

1.91e5
1.03e5

10−4

Iter# 3(0) 3 3
Time 0.09 1.06 0.09
Fval 1.22e3 1.22e3 1.22e3
Nnz 1 1 1

10−5

Iter# 4(0) 4 4
Time 0.11 1.05 0.11
Fval 1.20e3 1.20e3 1.20e3
Nnz 1 1 1

log1p.E2006.test
(3308, 1771946)

1.46e7
2.46e4

10−4

Iter# 372(88) 827 1416
Time 33.54 2.87e2 1.16e2
Fval 2.35e2 2.43e2 2.37e2
Nnz 5 4 6

10−5

Iter# 755(166) 6708 22305
Time 1.01e2 2.28e3 2.30e3
Fval 1.54e2 1.53e2 1.49e2
Nnz 385 460 389

log1p.E2006.train
(16087, 4265669)

5.86e7
1.03e5

10−4

Iter# 286(58) 855 1621
Time 77.95 8.57e2 3.85e2
Fval 1.16e3 1.16e3 1.16e3
Nnz 7 5 4

10−5

Iter# 944(195) 5610 33112
Time 3.14e2 5.26e3 8.83e3
Fval 1.02e3 1.02e3 1.01e3
Nnz 141 184 155
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Description of Data Set

For the ℓq-norm regularized logistic regressions, we also use (A, b) from
LIBSVM datasets. For each data, we solve (1) associated to f2 and
λ = λc max1≤j≤n ∥Aj∥1 for two different λc ’s with the three solvers.
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Numerical comparisons on ℓq-norm regularized logistic
regressions with LIBSVM datasets

Data
(m, n)

∥A∥2

F (0) λc Index HpgSRN ZeroFPR PGls

colon-cancer
(62, 2000)

1.94e4
42.98

10−2

Iter# 48(6) 730 94
Time 0.04 0.74 0.06
Fval 7.97 10.58 7.77
Nnz 10 9 9

10−3

Iter# 94(9) 1853 175
Time 0.07 2.07 0.11
Fval 1.03 1.07 1.07
Nnz 11 12 12

rcv1
(20242, 47236)

4.48e2
1.40e4

10−2

Iter# 65(10) 448 1193
Time 1.00 6.35 11.24
Fval 4.23e3 4.35e3 4.24e3
Nnz 165 167 164

10−3

Iter# 365(96) 2081 5536
Time 7.78 29.27 88.65
Fval 1.28e3 1.53e3 1.27e3
Nnz 704 741 717

news20
(19996, 1355191)

1.73e3
1.39e4

10−2

Iter# 44(6) 170 981
Time 2.65 36.61 53.14
Fval 9.73e3 1.04e4 9.53e3
Nnz 51 42 50

10−3

Iter# 410(99) 1528 18538
Time 41.45 3.44e2 1.43e3
Fval 4.31e3 4.71e3 4.25e3
Nnz 385 371 401
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Conclusion of numerical experiments

To sum up, HpgSRN outperforms the other two algorithms in the following
aspects:

HpgSRN requires the least CPU time for all the test examples
compared to ZeroFPR and PGls, and for those large scale examples,
HpgSRN is at least ten times faster than ZeroFPR and PGls.
The outputs of the objective function value and the sparsity yielded by
HpgSRN have a comparable even better quality. This indicates that
the introduction of second-order steps improves greatly the
performance of the first-order method. We also observe that for most
of examples, the iterates generated by the regularized Newton step
account for about 10%–35% of the total iterates.
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Thank You for Your Attentions!
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