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Abstract: The sparse solutions of under-determined nonlinear measurements arise in the 

sparse inverse covariance selection while maximizing the log-likelihood, quadratic 

compressive sensing in diffraction imaging and sub-wavelength imaging, and nonlinear 

base pursuit. Nearly, all of the optimization theory and algorithms developed for 

compressed sensing signal recovery assume that samples are taken using linear 

measurements and without constraints. Thus it is of great demand to design optimal 

algorithms to solve constrained sparse optimization problems with nonlinear 

measurements. 

In this project, we will address compressed sensing recovery problems in a setting where 

the observations are nonlinear measurements and there are constraints and develop 

optimization theory and algorithms by virtue of constrained lower order regularization 

problems for solving them. We will introduce the extended restricted isometry property 

and extended restricted eigenvalue condition, and apply them to establish the recovery 

bound for the lower order regularization problem of the constrained sparse optimization 

with nonlinear measurements. We will propose a projected proximal gradient method to 

solve the constrained lower order regularization problem, and establish the convergence 

theory by virtue of the projection operator and the Kurdyka-Lojasewicz theory. As 

optimization problems are of a nonconvex structure, it is difficult to establish that our 

algorithms converge to a global solution. However, we will aim to design algorithms to 

find a good enough sparse solution and compare their performance with some existing 

optimization algorithms in terms of computing time, accuracy and successful recovery rate. 

We will also apply our theory and algorithms to solve (group) sparse constrained 

optimization problems arising in portfolio selection and gene regulatory network. The 

practical meaning of the sparcity requirement in the portfolio is that an investor aims to 

invest in a small number of assets in order to avoid the high cost of transaction fees. The 

group sparcity structure arises in prediction, dynamic MRI, and gene finding. We will show 

that exploiting the group sparcity structure can reduce the degrees of freedom in the 

solution, thereby lead to better recovery performance.  


