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Abstract. This paper is concerned with \ell q (0 < q < 1)-norm regularized minimization problems
with a twice continuously differentiable loss function. For this class of nonconvex and nonsmooth
composite problems, many algorithms have been proposed to solve them, most of which are of the
first-order type. In this work, we propose a hybrid of the proximal gradient method and the subspace
regularized Newton method, called HpgSRN. The whole iterate sequence produced by HpgSRN is
proved to have a finite length and to converge to an L-type stationary point under a mild curve-
ratio condition and the Kurdyka--\Lojasiewicz property of the cost function; it converges linearly if a
further Kurdyka--\Lojasiewicz property of exponent 1/2 holds. Moreover, a superlinear convergence
rate for the iterate sequence is also achieved under an additional local error bound condition. Our
convergence results do not require the isolatedness and strict local minimality properties of the
L-stationary point. Numerical comparisons with ZeroFPR, a hybrid of proximal gradient method
and quasi-Newton method for the forward-backward envelope of the cost function, proposed in [A.
Themelis, L. Stella, and P. Patrinos, SIAM J. Optim., 28 (2018), pp. 2274--2303] for the \ell q-norm
regularized linear and logistic regressions on real data, indicate that HpgSRN not only requires much
less computing time but also yields comparable or even better sparsities and objective function values.

Key words. \ell q-norm regularized composite optimization, regularized Newton method, global
convergence, superlinear convergence rate, KL property, local error bound
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1. Introduction. Let A \in \BbbR m\times n be a data matrix, and let f : \BbbR m \rightarrow \BbbR be a
twice continuously differentiable function with cf := infz\in \BbbR m f(z)> - \infty . We consider
the following \ell q (0<q<1)-norm regularized composite optimization problem:

min
x\in \BbbR n

F (x) := f(Ax) + \lambda \| x\| qq,(1.1)

where \lambda > 0 is the regularization parameter and \| x\| q := (
\sum n
i=1 | xi| q)1/q denotes the

\ell q quasi-norm of x. When f(\cdot ) = \| \cdot  - b\| 2 for a vector b \in \BbbR m, problem (1.1) reduces
to the familiar \ell q-norm regularized least squares problem.

Problem (1.1) first appeared in statistics as the bridge penalty regression [20]
and later appeared in optimization as a special case of nonsmooth and nonconvex
penalty problems studied by Luo, Pang, and Ralph [31] and Yang et al. [24, 49] for
nonlinear optimization problems. In signal processing, Chartrand [13] showed early
on that the \ell q (0<q<1)-norm can substantially reduce the number of measurements
required by the \ell 1-norm for exact recovery of signals, which motivates the frequent

*Received by the editors March 7, 2022; accepted for publication (in revised form) February 21,
2023; published electronically August 1, 2023.

https://doi.org/10.1137/22M1482822
Funding: The second author's research was supported by the National Natural Science Foun-

dation of China under project 11971177. The third author's research was partially supported by
Research Grants Council of Hong Kong (PolyU 15217520).

\dagger 
Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong

Kong (yuqia.wu@connect.polyu.hk, mayangxq@polyu.edu.hk).
\ddagger 
School of Mathematics, South China University of Technology, Guangzhou, GuangDong, 510641,

China (shhpan@scut.edu.cn).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1676

D
ow

nl
oa

de
d 

08
/1

5/
23

 to
 1

58
.1

32
.1

75
.5

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1482822
mailto:yuqia.wu@connect.polyu.hk
mailto:mayangxq@polyu.edu.hk
mailto:shhpan@scut.edu.cn


HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1677

use of the \ell q (0 < q < 1)-norm in compressed sensing. Because for any given x \in 
\BbbR n, \| x\| qq \rightarrow \| x\| 0 as q \downarrow 0, where \| x\| 0 denotes the zero-norm (cardinality) of x,
problem (1.1) is often used as a nonconvex surrogate of the zero-norm regularized
problem, and is found to have a wide spectrum of applications in signal and image
processing, statistics, and machine learning (see, e.g., [37, 33, 18, 48, 12]). Inspired
by the wide applications of (1.1), this work aims to propose a globally convergent
subspace regularized Newton method, i.e., a hybrid of the proximal gradient (PG)
method and the subspace regularized Newton method, for solving it.

1.1. Related works. Due to the nonconvexity and non-Lipschitz continuity of
the \ell q-norm, problem (1.1) is a class of difficult nonconvex and nonsmooth optimiza-
tion problems. In the past decade, many first-order methods have been developed for
seeking its critical points. For some special q, say q = 1/2 or 2/3, since the proximal
mapping of the \ell q-norm has a closed-form solution (see Xu et al. [47, 12]), the PG
method becomes a class of popular ones for solving (1.1) with such q. For a general
q \in (0,1), Hu et al. also proposed an exact PG method in [21] and an inexact PG
method in [22] for (1.1). When assuming that the limit point is a local minimizer,
a linear convergence rate was obtained in [21, 22, 47]. In addition, a class of PG
methods with a nonmonotone line search strategy (called SpaRSA) was proposed by
Wright, Nowak, and Figueiredo [45]. For problem (1.1) with a general q \in (0,1), the
reweighted \ell 1-minimization method [30, 15, 26] is another class of common first-order
methods by solving a sequence of weighted \ell 1-norm regularized minimization prob-
lems. To overcome the non-Lipschitz difficulty of the \ell q-norm, Chen, Xu, and Ye [14]
proposed a class of smoothing method by constructing a smooth approximation of
the \ell q-norm and using the steepest descent method to solve the constructed smooth
approximation problem.

As is well known, first-order methods have many advantages such as cheap com-
putational cost in each iterate, weak global convergence conditions, and easy im-
plementation, but their convergence rate is at most linear. Second-order methods
normally have a local superlinear convergence rate, but it is not an easy task to
achieve the global convergence of their whole iterate sequence. For unconstrained
nonconvex and smooth optimization, the global convergence analysis of Newton-type
methods armed with line search is limited to the subsequential convergence of the
iterate sequence (see [34] and references therein), let alone for problem (1.1). As will
be discussed later, Themelis et al. [43, 1] recently provided the global convergence
analysis of Newton-type methods armed with line search for problem (1.1) under the
Kurdyka-\Lojasiewicz (KL) framework, but they assume that the second-order direc-
tions are controlled by the residual, and now it is unclear what condition can ensure
it to hold if Newton directions are adopted. In addition, for unconstrained smooth
optimization problems, to the best of our knowledge, the current weakest condition
for a second-order method to have a local superlinear convergence rate is a local error
bound condition at local minima; see [44, 28, 19]. Therefore, it is natural to ask
whether it is possible to design a globally convergent Newton-type method for prob-
lem (1.1) with a local superlinear convergence rate under a similar local error bound
condition.

In recent years, many researchers have been interested in using second-order meth-
ods to solve the following general nonconvex and nonsmooth composite problem:

min
x\in \BbbR n

\Phi (x) := \phi (x) + h(x),(1.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1678 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

where h : \BbbR n \rightarrow ( - \infty ,\infty ] is a closed proper function and \phi is twice continuously
differentiable on an open subset containing the effective domain of h. For problem
(1.2) with both \phi and h convex, there are some active investigations in this direction.
Lee, Sun, and Saunders [27] proposed an inexact proximal Newton-type method and
achieved the local quadratic convergence rate of the iterate sequence under the strong
convexity of \phi . Yue, Zhou, and So [50] proposed an inexact regularized proximal New-
ton method and established the local linear, superlinear, and quadratic convergence
rate of the iterate sequence (by the approximation degree to the Hessian matrix of
\phi ) under the Luo--Tseng error bound. Mordukhovich et al. [32] proposed a proximal
Newton-type method and obtained the superlinear convergence rate of the iterate
sequence under the metric p (> 1/2)-subregularity of the subdifferential mapping
\partial \Phi . We notice that the inexact proximal Newton-type method in [27] was recently
extended by Kanzow and Lechner [25] to solve problem (1.2) with only a convex
h, which essentially belongs to weakly convex optimization. Their global and local
superlinear convergence results require the local strong convexity of \Phi around any
stationary point.

By following a different line, the forward-backward envelope (FBE) of \Phi has been
extensively investigated for designing a hybrid of PG and second-order methods. For
h being convex with a cheap computable proximal mapping, Stella, Themelis, and
Patrinos [39] combined a PG method and a quasi-Newton method to minimize the
FBE of \Phi and proved the convergence of the whole sequence under the KL property
of \Phi and the superlinear convergence rate under the local strong convexity of the
FBE of \Phi . For (1.2) with \phi being additionally convex and h just having a cheap
computable proximal mapping, Themelis, Ahookhosh, and Patrinos [42] proposed a
hybrid of PG and inexact Newton methods by using the FBE of \Phi (named FBTN) and
proved that dist(xk,\scrX \ast ) converges superlinearly to 0 under an assumption without
requiring the singleton of the solution set \scrX \ast of (1.2). In [43] Themelis, Stella, and
Patrinos used the FBE of \Phi to develop a hybrid framework of PG and quasi-Newton
methods (ZeroFPR) and achieved the global convergence of the iterate sequence by
virtue of the KL property of the FBE, and its local superlinear rate under the Dennis--
Mor\'e condition and the strong local minimum of the limit point. The convergence
rate results in [39, 43] require the isolatedness of the limit point. Very recently,
Ahookhosh, Themelis, and Patrinos [1] utilized the Bregman FBE of \Phi to develop
a more general hybrid framework of PG and second-order methods, BELLA. They
obtained the global convergence of the iterate sequence for the tame functions \phi and
h, and the local superlinear rate of the distance of the iterate sequence to the set of
fixed points of the Bregman FBE by assuming that the second-order directions are
the superlinear ones with order 1 and the KL property of exponent \theta \in (0,1) of \Phi .
Their work greatly improved the results of [39, 43] by removing the isolatedness re-
striction on local minima and established that the second-order directions are indeed
the superlinear ones with order 1 under the assumptions that the limit point is a
strong local minimum (also implying the isolatedness) and a Dennis--Mor\'e condition
holds. It is unclear what conditions are sufficient for second-order directions to be
superlinear without the strong local minimum property. To achieve the global conver-
gence, the search directions in [39, 43, 1] are required to be controlled by the residual
(see (3.6)).

It is worth noting that when \phi and h in (1.2) are convex, the local quadratic or
superlinear convergence to a nonisolated optimal solution of second-order methods
was obtained in [50, 32]. To the best of our knowledge, the paper [1] is the first to
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1679

achieve the superlinear convergence of the distance function of the iterate sequence
without the isolateness assumption for solving problem (1.2) with nonconvex and
nonsmooth h.

In addition, for the case h(x) = \lambda \| x\| 0, Zhou, Pan, and Xiu [52] developed a sub-
space Newton method by solving the stationary equations restricted in the subspace
identified by the proximal mapping of \lambda \| x\| 0, and established the local quadratic con-
vergence rate of the iterate sequence under the local strong convexity of \phi around any
stationary point. Their subspace Newton method relies on the subspaces identified by
a PG method. Recently, Bareilles, Iutzeler, and Malick [4] considered problem (1.2),
where \phi is smooth and h has a cheap computable proximal mapping, and proposed
a hybrid of the PG and Newton methods under the framework of manifolds. Their
algorithm alternates between a PG step and a Riemannian update on an identified
manifold and was proved to have a quadratic convergence rate under a positive def-
initeness assumption on the Riemannian Hessian of the objective function at limit
points. For the unified analysis on manifold identification of any PG methods, we
refer the reader to the work [41].

1.2. Main contributions. In this paper, we propose a hybrid of PG and sub-
space regularized Newton methods (HpgSRN) for problem (1.1). Though problem
(1.1) is a special case of (1.2), our HpgSRN is quite different from ZeroFPR [43] and
BELLA [1]; see the discussions in Remark 3.2(d). For convenience, in what follows,
we write

\psi (x) := f(Ax) and g(x) := \| x\| qq for x\in \BbbR n.

To describe the working flow of HpgSRN, for any given S \subseteq \{ 1,2, . . . , n\} , define

FS(u):=\psi S(u) + \lambda gS(u) with \psi S(u):=f(ASu), gS(u):=
\sum 
i\in S
| ui| q for u\in \BbbR | S| .

(1.3)

By Lemma 2.6, for S = supp(x), such FS is twice continuously differentiable at xS .
As mentioned before, a PG method needs a weak condition for global convergence

and a very cheap computation cost in each iterate but has only a linear convergence
rate. Hence, we use a PG method to seek a good estimate in some neighborhood of
a potential critical point and enhance the convergence speed by using a regularized
Newton method in the subspace associated to the support of the iterate generated
by the PG method. Specifically, with the current xk, the PG step yields xk by
computing

xk \in arg min
x\in \BbbR n

\Bigl\{ 
\psi (xk) + \langle \nabla \psi (xk), x - xk\rangle + \mu k

2
\| x - xk\| 2 + \lambda g(x)

\Bigr\} 
,

where the step-size \mu k depends on the (local) Lipschitz constant of \nabla \psi near xk. Write
Sk := supp(xk) and Sck := \{ 1, . . . , n\} \setminus Sk. If one of the conditions in (3.3) is not satisfied,
let xk+1 :=xk and return to the PG step; otherwise switch to a regularized Newton
step where the Newton direction dk has the form (dkSk

; 0) with

dkSk
:= arg min

dSk
\in \BbbR | Sk| 

\Bigl\{ 
FSk

(uk) + \langle \nabla FSk
(uk), dSk

\rangle + 1

2

\bigl\langle 
(\nabla 2FSk

(uk) + \xi kI)dSk
, dSk

\bigr\rangle \Bigr\} (1.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1680 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

for uk =xkSk
and a constant \xi k such that \nabla 2FSk

(uk) + \xi kI is positive definite. It is
easy to verify that dkSk

is the unique solution of the system of linear equations\bigl( 
\nabla 2FSk

(uk) + \xi kI
\bigr) 
dSk

= - \nabla FSk
(uk).

We perform the Armijo line search along the direction dk to seek an appropriate step-
size \alpha k, set xk+1 := xk +\alpha kd

k, and then return to the PG step to guarantee that the
iterate sequence has a global convergence property.

From the above statement, the iterate sequence \{ xk\} k\in \BbbN of HpgSRN consists of
two parts: the iterates given by the PG step and those generated by the subspace
regularized Newton step. Some switching conditions involving sign(xk) = sign(xk)
decide which step the next iterate xk+1 enters in.

The main contributions of this paper include three aspects:
(i) We propose a hybrid of the PG and subspace regularized Newton methods

for solving problem (1.1). Different from ZeroFPR and BELLA, each iterate
of HpgSRN does not necessarily perform a second-order step until sufficiently
many steps are performed and the computation of the regularized Newton step
fully exploits the subspace structure, which substantially reduces the compu-
tation cost. Numerical comparison with ZeroFPR indicates that HpgSRN
not only requires much less computing time (especially for those problems
with n\gg m) but also yields comparable or even better sparsity and objective
function values.

(ii) For the proposed HpgSRN, we achieve the global convergence of the iterate
sequence under the local Lipschitz continuity of \nabla 2f on \BbbR m (see Assump-
tion 1), the KL property of F , and a curve-ratio condition for the subspace
regularized Newton directions (see Assumption 2). Both Assumptions 1 and 2
are commonly used in the convergence analysis of Newton-type methods with
line search.

(iii) Under Assumptions 1 and 2, if the KL property of F is strengthened to be
the KL property of exponent 1/2, we establish the R-linear convergence rate
of the iterate sequence. If in addition a local error bound condition holds
at the limit point, the iterate sequence is shown to converge superlinearly
with rate 1+\sigma for \sigma \in (0,1/2]. This not only removes the local optimality of
the limit point as required by ZeroFPR and BELLA, but also gets rid of its
isolatedness as BELLA does.

The rest of this paper is organized as follows. Section 2 gives some preliminaries,
including the subdifferential characterization of F and the equivalence between the
KL property of exponent 1/2 of F and that of FS . Section 3 presents the formal
iterate steps of HpgSRN and some auxiliary results. Section 4 provides the global
and local convergence analysis of HpgSRN. Finally, in section 5 we conduct numerical
experiments for HpgSRN on \ell q-norm regularized linear and logistic regressions on
real data and compare its performance with ZeroFPR and the PG method with a
monotone line search (PGls).

1.3. Notation. Throughout this paper, \BbbR n denotes the n-dimensional Euclidean
space, equipped with the standard inner product \langle \cdot , \cdot \rangle and its induced norm \| \cdot \| , and
B denotes the unit ball. I is an identity matrix whose dimension is known from the
context. For an integer k \geq 1, write [k] := \{ 1, . . . , k\} ; and for integers k2 > k1 \geq 1,
write [k1, k2] := \{ k1, . . . , k2\} . For a symmetric matrix H, \lambda min(H) and \| H\| denote
the smallest eigenvalue and the spectral norm of H, respectively, and H \succ 0 means

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1681

that H is positive definite. For a closed set C \subseteq \BbbR n, \Pi C denotes the projection
operator onto C, and dist(x,C) denotes the Euclidean distance from a point x \in \BbbR n
to C. The notation \circ means the Hadamard product operation of vectors. For x\in \BbbR n,
supp(x) := \{ i \in [n] | xi \not = 0\} denotes its support, sign(x) denotes the vector with
[sign(x)]i = sign(xi), and | x| min :=mini\in supp(x) | xi| denotes the smallest absolute value
of the nonzero entries of x. For an index set S \subseteq [n], write Sc := [n]\setminus S and denote by
xS \in \BbbR | S| the vector consisting of those xj with j \in S, and for a matrix A \in \BbbR m\times n,
AS \in \BbbR m\times | S| means the matrix consisting of those columns Aj with j \in S. For a\in \BbbR ,
a+ := max\{ a,0\} .

2. Preliminaries. In this section, we recall some necessary concepts and present
some preliminary results. First, we recall the outer semicontinuity (see [36, Definition
5.4]) and the upper semicontinuity (see [11, p. 266]) of a set-valued mapping.

Definition 2.1. A set-valued mapping \scrF : \BbbR n\rightrightarrows \BbbR m is outer semicontinuous at
x if lim supx\rightarrow x\scrF (x)\subseteq \scrF (x), and is upper semicontinuous at x if for any neighborhood
V of \scrF (x), there exists a neighborhood U of x such that for every x\in U , \scrF (x)\subseteq U .

For a proper lower semicontinuous (lsc) function h: \BbbR n\rightarrow ( - \infty ,\infty ], its proximal
mapping associated to parameter \mu > 0 is defined by

prox\mu h(x) := arg min
z\in \BbbR n

\biggl\{ 
1

2\mu 
\| z  - x\| 2 + h(z)

\biggr\} 
for x\in \BbbR n.

For the proximal mapping of g, from [14, Theorem 2.1] we have the following result.

Lemma 2.2. Fix any \mu > 0 and y \in \BbbR n; if y \in prox\mu g(y), then it holds that

| y| min \geq 
\bigl[ 
\mu q(1 - q)

\bigr] 1
2 - q .

2.1. Stationary point of problem (1.1). Before introducing a stationary
point of (1.1), we characterize the subdifferentials of g. By the expression of g and [36,
Definition 8.3], it is easy to verify that the following result holds, where the notions
of (subdifferential) regularity and the horizon cone can be found in [36, Definitions
7.25 and 3.3].

Lemma 2.3. Fix any x \in \BbbR n. Then, \widehat \partial g(x) = \partial g(x) = T1(x1)\times \cdot \cdot \cdot \times Tn(xn) with
Ti(xi) = \{ qsign(xi)| xi| q - 1\} if xi \not = 0; otherwise Ti(xi) = \BbbR , and \partial \infty g(x) = [\widehat \partial g(x)]\infty ,
where \widehat \partial g(x), \partial g(x) and \partial \infty g(x) denote the regular, limiting (or Mordukhovich), and
horizon subdifferentials of g at x respectively, and [\widehat \partial g(x)]\infty denotes the horizon cone
of \widehat \partial g(x). Consequently, g is a regular function.

Recall that f is continuously differentiable. By combining Lemma 2.3 and [36,
Exercise 8.8], function F is regular and \widehat \partial F (x) = \partial F (x) for all x\in \BbbR n. In what follows,
we call a vector x \in \BbbR n a critical point if 0 \in \partial F (x), and we denote by critF the set
of the critical points of F . Next, we introduce a class of L-type stationary points for
(1.1).

Definition 2.4 (see [6]). A vector x\in \BbbR n is called an L-type stationary point of
problem (1.1) if there exists a constant \mu > 0 such that x\in prox\mu  - 1(\lambda g)(x - \mu  - 1\nabla \psi (x)),
and it is called an \epsilon -approximate L-type stationary point of (1.1) if there exists a
constant \mu > 0 such that minz\in prox\mu  - 1(\lambda g)(x - \mu  - 1\nabla \psi (x)) \mu \| z  - x\| \infty \leq \epsilon .

Remark 2.5. It was shown in [6] that any optimal solution of minimizing a \scrC 1,1
function with group sparsity expression as a constraint or a penalty (or both) is an

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1682 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

L-type stationary point. For (1.1), we claim that the set of L-type stationary points
coincides with that of critical points. Obviously, the set of L-type stationary points is
contained in that of critical points, so it suffices to argue that the converse inclusion
holds. Pick any x \in critF . Define \widetilde g(y) := \lambda g(y + x) + \langle \nabla \psi (x), y + x\rangle for y \in \BbbR n.
Since \lambda g is prox-regular at x for  - \nabla \psi (x) by [35, Example 2.3], the function \widetilde g is
prox-regular at 0 for 0. Since \widetilde g is also prox-bounded1 with the threshold of prox-
boundedness being \infty , by [36, Proposition 8.46(f)] the subgradient inequalities in the
definition of prox-regularity can be taken to be global. That is, there exists \gamma 0 > 0
such that \widetilde g(y)> \widetilde g(0) - \gamma 0

2 \| y\| 
2 for all y \not = 0, which implies that for all y \not = 0 and \gamma > \gamma 0,

\lambda g(y + x) + \gamma 
2 \| y + x - (x - 1

\gamma \nabla \psi (x))\| 2 > \lambda g(x) + \gamma 
2 \| x - (x - 1

\gamma \nabla \psi (x))\| 2. Therefore,

x is the unique minimizer of \lambda g(\cdot ) + \gamma 
2 \| \cdot  - (x - 1

\gamma \nabla \psi (x))\| 2, which by Definition 2.4
means that x is an L-type stationary point of (1.1).

Next, we state some differential properties of F in a subspace.

Lemma 2.6. For the objective function F of (1.1), the following statements hold.
(i) For any given index set S \subseteq [n] and any given x \in \BbbR n\setminus \{ 0\} with supp(x)= S,

the function FS is twice continuously differentiable at xS with

\nabla FS(xS) =A\BbbT 
S\nabla f(ASxS) + \lambda qsign(xS) \circ | xS | q - 1,(2.1a)

\nabla 2FS(xS) =A\BbbT 
S\nabla 2f(ASxS)AS + \lambda q(q - 1)Diag(| xS | q - 2),(2.1b)

and the function gS is three times continuously differentiable at xS with

D3gS(xS)(w) = q(q - 1)(q - 2)Diag(sign(xS) \circ | xS | q - 3 \circ w) \forall w \in \BbbR | S| .

(2.2)

(ii) For any given bounded set C \subseteq \BbbR n and any given constant \kappa > 0, there exist\widehat c1> 0,\widehat c2 > 0, and \widehat c3> 0 such that for all x\in C\setminus \{ 0\} with | x| min \geq \kappa ,

\| \nabla Fsupp(x)(xsupp(x))\| \leq \widehat c1, \| \nabla 2Fsupp(x)(xsupp(x))\| \leq \widehat c2,
\| D3gsupp(x)(xsupp(x))\| \leq \widehat c3.

(iii) For any x\in \BbbR n\setminus \{ 0\} , dist(0, \partial F (x)) = \| \nabla Fsupp(x)(xsupp(x))\| .
Proof. Since parts (i) and (ii) are straightforward, we only prove part (iii). Fix

any x\in \BbbR n\setminus \{ 0\} . Write S = supp(x). From Lemma 2.3 and [36, Exercise 8.8],

\partial F (x) =A\BbbT \nabla f(Ax) + T1(x1)\times \cdot \cdot \cdot \times Tn(xn),

where Ti(xi) has the same expression as in Lemma 2.3. Then, we get dist(0, \partial F (x)) =
\| A\BbbT 

S\nabla f(ASxS) + \lambda q sign(xS) \circ | xS | q - 1\| . Together with (2.1a), the result follows.

2.2. Kurdyka--\Lojasiewicz property. The past ten years have witnessed the
significant role of the Kurdyka-\Lojasiewicz (KL) property of the objective function
in the convergence analysis of first-order algorithms for nonconvex and nonsmooth
optimization problems (see, e.g., [2, 3, 10]). Next we recall its definition and establish
the equivalence between the KL property of exponent 1/2 of F and that of FS .

1For the definitions of prox-boundedness and prox-regularity, see [36, Definitions 1.23 \& 13.27].
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1683

Definition 2.7. A proper extended real-valued function h: \BbbR n\rightarrow ( - \infty ,\infty ] is said
to have the KL property at a point x\in dom\partial h if there exist \eta \in (0,\infty ], a neighborhood
\scrU of x, and a continuous concave function \varphi : [0, \eta )\rightarrow \BbbR + satisfying

\varphi (0) = 0,\varphi is continuously differentiable on (0, \eta ) and \varphi \prime (s)> 0, \forall s\in (0, \eta )(2.3)

such that for all x\in \scrU \cap \{ x\in \BbbR n | h(x)<h(x)<h(x) + \eta \} ,

\varphi \prime (h(x) - h(x))dist(0, \partial h(x))\geq 1.

If \varphi can be chosen as \varphi (s) = c
\surd 
s for some constant c > 0, then h is said to have the

KL property of exponent 1/2 at x. If h has the KL property of exponent 1/2 at each
point of dom\partial h, then h is called a KL function of exponent 1/2.

Remark 2.8. By [2, Lemma 2.1] a proper lsc function h : \BbbR n\rightarrow ( - \infty ,\infty ] has the
KL property of exponent 1/2 at all noncritical points. Thus, to show that it is a
KL function of exponent 1/2, it suffices to check its KL property of exponent 1/2 at
critical points. On the calculation of KL exponent, we refer the readers to the recent
works [29, 46].

The following proposition establishes the equivalence between the KL property of
exponent 1/2 of F and that of FS .

Proposition 2.9. For any given x\in \BbbR n\setminus \{ 0\} , F has the KL property of exponent
1/2 at x if and only if FS with S = supp(x) has the KL property of exponent 1/2 at
u= xS.

Proof. From Lemmas 2.3 and 2.6(iii), one can verify that if x\in \BbbR n\setminus \{ 0\} , x\in critF
if and only if xS \in critFS for S = supp(x). Then, by Remark 2.8, it suffices to consider
the case that x\in critF\setminus \{ 0\} .

Necessity . Since F has the KL property of exponent 1/2 at x, there exist \eta >
0, \varepsilon > 0, and c > 0 such that for all x \in \Gamma (\varepsilon , \eta ):= \{ x \in \BbbR n | \| x - x\| \leq \varepsilon ,F (x)<F (x)<
F (x) + \eta \} ,

dist(0, \partial F (x))\geq c
\sqrt{} 
F (x) - F (x).(2.4)

Since xi \not = 0 for each i\in S, there exists \varepsilon \prime > 0 such that for all z \in \BbbB (x, \varepsilon \prime ), zi \not = 0 with

each i\in S. Set \widetilde \varepsilon := min\{ \varepsilon , \varepsilon \prime \} . Pick any u\in \Gamma S(\widetilde \varepsilon , \eta ):=\{ u\in \BbbR | S| | \| u - u\| \leq \widetilde \varepsilon ,FS(u)<
FS(u)<FS(u)+\eta \} . Let x\in \BbbR n with xS = u and xSc = 0. Clearly, supp(x) = S. From
Lemma 2.6(iii), it follows that dist(0, \partial F (x)) = \| \nabla FS(u)\| . Also, from FS(u) = F (x)
and FS(u) = F (x), we have x\in \Gamma (\varepsilon , \eta ). Along with (2.4), we get

\| \nabla FS(u)\| = dist(0, \partial F (x))\geq c
\sqrt{} 
F (x) - F (x) = c

\sqrt{} 
FS(u) - FS(u).

By the arbitrariness of u in \Gamma S(\varepsilon , \eta ), FS has the KL property of exponent 1/2 at u.
Sufficiency . Since FS has the KL property of exponent 1/2 at u, there are \widetilde \varepsilon >

0, \widetilde \eta > 0, c > 0 such that for all u \in \Gamma S(\widetilde \varepsilon , \widetilde \eta ):=\{ u \in \BbbR | S| | \| u - u\| \leq \widetilde \varepsilon ,FS(u)< FS(u)<
FS(u) + \widetilde \eta \} ,

dist(0, \partial FS(u))\geq c
\sqrt{} 
FS(u) - FS(u).

Since every entry of u is nonzero, by reducing \widetilde \varepsilon if necessary, for any u with \| u - u\| \leq \widetilde \varepsilon ,
its entries are all nonzero. By Lemma 2.6(iii), the last inequality can be rewritten as

\| \nabla FS(u)\| \geq c
\sqrt{} 
FS(u) - FS(u).(2.5)
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1684 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

Algorithm 3.1 ([x+, \mu +] := \scrG (x,\mu ;\widetilde \tau , \widetilde \alpha ,\lambda ))

Input: x\in \BbbR n and parameters \mu > 0,\widetilde \tau > 1, and \widetilde \alpha > 0.
Let l= 0, \mu l = \mu , and xl \in prox\mu  - 1

l (\lambda g)(x - \mu 
 - 1
l \nabla \psi (x)).

while F (xl)>F (x) - (\widetilde \alpha /2)\| xl  - x\| 2
\bullet Let \mu l+1 = \widetilde \tau \mu l and l\leftarrow l+ 1;
\bullet Seek xl \in prox\mu  - 1

l (\lambda g)(x - \mu 
 - 1
l \nabla \psi (x));

end (while)
Let x+ = xl and \mu + = \mu l.

By continuity, there exists \varepsilon \prime > 0 such that for all x\in \BbbB (x, \varepsilon \prime ), supp(x)\supseteq S. Let \widehat \varpi :=

max\| x - x\| \leq 1\| A\BbbT \nabla f(Ax)\| \infty . Set \varepsilon := min
\bigl\{ 

1
4 , \widetilde \varepsilon , \varepsilon \prime , \bigl( \widehat \varpi +1

\lambda q

\bigr) 1
q - 1
\bigr\} 

and \eta := 1
2 min\{ \widetilde \eta ,1\} .

Let T1(\varepsilon , \eta ) := \{ x \in \Gamma (\varepsilon , \eta ) | supp(x) = S\} where \Gamma (\varepsilon , \eta ) is defined as above, and
T2(\varepsilon , \eta ) := \Gamma (\varepsilon , \eta )\setminus T1(\varepsilon , \eta ). Pick any x \in \Gamma (\varepsilon , \eta ). We proceed with the proof via two
cases.

Case 1. x \in T1(\varepsilon , \eta ). Let u = xS . We have u \in \Gamma S(\varepsilon , \eta ) \subseteq \Gamma S(\widetilde \varepsilon , \widetilde \eta ), where the
second inclusion is due to \varepsilon < \~\varepsilon and \eta < \~\eta . From Lemma 2.6(iii) and (2.5),

dist(0, \partial F (x)) = \| \nabla FS(u)\| \geq c
\sqrt{} 
FS(u) - FS(u) = c

\sqrt{} 
F (x) - F (x).

Case 2. x\in T2(\varepsilon , \eta ). Recall that supp(x)\supseteq S. By the definition of T2(\varepsilon , \eta ), there
exists i /\in S such that 0 < | xi| \leq \varepsilon . Write S := supp(x). Since FS is continuously
differentiable at xS by Lemma 2.6(i), for all i\in S\setminus S it holds that

dist(0, \partial F (x))\geq | [\nabla FS(x)]i| =
\bigm| \bigm| A\BbbT 

i\nabla f(Ax) + \lambda qsign(xi)| xi| q - 1
\bigm| \bigm| 

\geq \lambda q| xi| q - 1  - 
\bigm| \bigm| A\BbbT 

i\nabla f(Ax)
\bigm| \bigm| >\lambda q\varepsilon q - 1  - \widehat \varpi \geq 1,

(2.6)

where the last inequality follows by the definition of \varepsilon . Since F (x)<F (x)<F (x) + \eta 
and 0< \eta < 1, we have

\sqrt{} 
F (x) - F (x)< 1. Together with (2.6), we have

dist(0, \partial F (x))>
\sqrt{} 
F (x) - F (x).

From the above two cases and the arbitrariness of x in \Gamma (\varepsilon , \eta ), the function F has the
KL property of exponent 1/2 at x. Thus, the proof is completed.

3. A hybrid of PG and subspace regularized Newton methods. In this
section, we describe the iterate steps of HpgSRN, a hybrid of PG and subspace regular-
ized Newton methods for solving problem (1.1). First, we introduce the basic iterate
of the PG method with a monotone line search (PGls), i.e., a monotone version of
SpaRSA [45]. Let x\in \BbbR n be the current iterate and \mu > 0 be an initial step-size. One
step of the PGls returns a new iterate x+ and the used step-size \mu + such that F (x+)
has a certain decrease.

Remark 3.1. We claim that the number of backtrackings of Algorithm 3.1 is finite.
For this purpose, define \widetilde h\mu ,x(z) := \langle \nabla \psi (x), z - x\rangle + \mu 

2 \| z - x\| 
2 +\lambda g(z) for z \in \BbbR n. For

each l \in \BbbN , from \mu l \geq \mu and xl \in prox\mu  - 1
l (\lambda g)(x - \mu 

 - 1
l \nabla \psi (x)), it follows that

\widetilde h\mu ,x(xl)\leq \langle \nabla \psi (x), xl  - x\rangle + \mu l
2
\| xl  - x\| 2 + \lambda g(xl)\leq \lambda g(x) = \widetilde h\mu ,x(x).(3.1)

Since \widetilde h\mu ,x is continuous and coercive, the set \scrL \widetilde h\mu ,x
:= \{ z \in \BbbR n | \widetilde h\mu ,x(z) \leq \widetilde h\mu ,x(x)\} 

is compact. Since \nabla \psi is continuously differentiable, there exists Lx > 0 such that for
any y,w \in \scrL \widetilde h\mu ,x

, \| \nabla \psi (y) - \nabla \psi (w)\| \leq Lx\| y - w\| . When \mu l \geq Lx+\widetilde \alpha , from x,xl \in \scrL \widetilde h\mu ,x

and the descent lemma [8, Proposition A.24],
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1685

Algorithm 3.2 (a hybrid of PG and subspace regularized Newton methods)

Initialization: Choose \widetilde \tau > 1, \widetilde \alpha > 0, \mu max >\mu min > 0, \sigma \in (0, 12 ], \varrho \in (0, 12 ), \beta \in (0,1),
b1 > 1, and b2 > 0. Choose an initial x0 \in \BbbR n and a tolerance \epsilon \geq 0. Let k= 0.

Step 1: proximal gradient step
(S1) Choose an initial step-size \mu k \in [\mu min, \mu max]. Set [xk, \mu k] = \scrG (xk, \mu k;\widetilde \tau , \widetilde \alpha ,\lambda ).
(S2) If \mu k\| xk  - xk\| \infty \leq \epsilon , output xk;

otherwise go to (S3).
(S3) Let \omega k = \mu k+\lambda q(q - 1)| xk| q - 2

min . If

sign(xk) = sign(xk) and \mu k+\lambda q(q - 1)| xk| q - 2
min\geq 

1

2
\omega k,(3.3)

then go to Step 2;
otherwise let xk+1 = xk and k\leftarrow k+ 1. Go to Step 1.

Step 2: subspace regularized Newton step
(S4) Let Sk = supp(xk) and uk = xkSk

. Seek a subspace Newton direction \Delta uk by

solving Gk\Delta u= - \nabla FSk
(uk), where

Gk=\nabla 2FSk
(uk)+(b1\zeta k+b2\| \nabla FSk

(uk)\| \sigma )I with \zeta k= [ - \lambda min(\nabla 2FSk
(uk))]+.

Let dkSk
= \Delta uk and dkSc

k
= 0.

(S5) Let mk be the smallest nonnegative integer m such that

FSk
(uk+\beta mdkSk

)\leq FSk
(uk) + \varrho \beta m\langle \nabla FSk

(uk), dkSk
\rangle .(3.4)

(S6) Let \alpha k = \beta mk and xk+1 = xk + \alpha kd
k and k\leftarrow k+ 1. Go to Step 1.

F (xl)\leq \psi (x) + \langle \nabla \psi (x), xl - x\rangle + Lx
2
\| xl - x\| 2 + \lambda g(xl)

\leq \psi (x) + \langle \nabla \psi (x), xl - x\rangle + \mu l
2
\| xl - x\| 2 + \lambda g(xl) - \widetilde \alpha 

2
\| xl - x\| 2

\leq \psi (x) + \lambda g(x) - \widetilde \alpha 
2
\| xl - x\| 2 = F (x) - \widetilde \alpha 

2
\| xl - x\| 2,(3.2)

where the last inequality is due to (3.1). This implies that the line search procedure
stops in the lth backtracking. The above arguments only use the Lipschitz continuity
of \nabla \psi on the set \scrL \widetilde h\mu ,x

rather than its global Lipschitz continuity, and the coercivity

of \widetilde h\mu ,x rather than that of g. For more discussion on line search of PG methods in a
general setting, see also [7, 38] for the convex \psi and [16] for the nonconvex \psi .

Now we are in a position to present the detailed iterate steps of our HpgSRN (see
Algorithm 3.2).

Remark 3.2. (a) Algorithm 3.2 uses \mu k\| xk - xk\| \infty \leq \epsilon as the stopping rule, which
by Definition 2.4 means that the output xk is an \epsilon -approximate L-type stationary
point.

(b) Every iterate of Algorithm 3.2 executes Step 1, but does not necessarily per-
form Step 2. Step 1 aims to ensure the convergence of the whole iterate sequence,
while Step 2 is a subspace regularized Newton step used to enhance the convergence
speed whenever the iterates are stable. The first condition in (3.3) aims to check
whether the sign supports of the iterates are stable, while the second one is to en-
sure that | xk| min is sufficiently away from 0; see Lemma 3.5. The switching criterion
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1686 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

(3.3) plays a crucial role in the later convergence analysis. When setting \epsilon = 0 and
Algorithm 3.2 generates an infinite sequence, we will show in Lemma 4.5 that under
Assumption 1, after a finite number of iterates, Algorithm 3.2 reduces to a regularized
Newton method to minimize FS\ast for some S\ast \subseteq [n].

(c) We claim that Algorithm 3.2 is well defined. By Remark 3.1, for each k \in \BbbN ,
the line search step in (S1) is well defined. Next we see that when the iteration goes
from Step 1 to Step 2, it is necessary that Sk \not = \emptyset . As in this case (3.3) is satisfied,
xk \not = 0 must hold. If not, by (3.3), xk = 0. So the termination condition in (S2) is
satisfied and the algorithm stops. Finally it suffices to argue that the line search in
(S5) will terminate after a finite number of backtrackings. By Lemma 2.6(i), FSk

is
continuously differentiable at uk, which along with Gk \succ 0 implies that

\langle \nabla FSk
(uk), dkSk

\rangle = - \langle GkdkSk
, dkSk
\rangle < 0,(3.5)

i.e., dkSk
is a descent direction of FSk

at uk. In addition, FSk
is bounded from below on

\BbbR | Sk| because f is bounded from below on \BbbR m. By following the same arguments as
those for [34, Lemma 3.1], the smallest nonnegative integer mk satisfying (3.4) exists.
Therefore, Algorithm 3.2 is well defined.

From the iterate steps of Algorithm 3.2, the sequence \{ xk\} k\in \BbbN consists of two
parts, i.e., \{ xk\} k\in \BbbN = \{ xk\} k\in \scrK 1 \cup \{ xk\} k\in \scrK 2 , where

\scrK 1 :=
\bigl\{ 
k \in \BbbN | xk+1 is generated by Step 1

\bigr\} 
and \scrK 2 := \BbbN \setminus \scrK 1.

It is clear now that for k \in \scrK 2, Sk \not = \emptyset , that is, xk has a nonempty support.
(d) Although Algorithm 3.2 is a hybrid of PG and second-order methods, it is

not a special case of ZeroFPR [43] and FBTN [42] due to the following four aspects.
First, each iterate of Algorithm 3.2 does not necessarily perform Newton step, while
each iterate of ZeroFPR and FBTN must execute a second-order step. Second, Al-
gorithm 3.2 is using the Armijo line search, which is different from the ones used in
ZeroFPR and FBTN. Let F\gamma denote the forward-backward envelope of F associated
to \gamma > 0, and let \eta > 0 be a constant related to the (local) Lipschitz constant of \nabla \psi .
For (1.1), the line search of ZeroFPR is to seek the smallest nonnegative integer mk

of those m's such that

F\gamma (xk + \beta md
k
) - F\gamma (xk)\leq  - \eta \| xk  - xk\| 2.

Then set xk+1 = xk + \beta mkd
k
, where d

k
is a Newton-type direction at xk rather than

xk; and the line search of FBTN is to seek the smallest nonnegative integer mk of
those m's such that

F\gamma 
\bigl( 
(1 - \beta m)xk + \beta m(xk + dk)

\bigr) 
 - F\gamma (xk)\leq  - \eta \| xk  - xk\| 2,

and then set xk+1 = (1 - \beta mk)xk+\beta mk(xk+dk), where dk is a second-order direction
at xk. We observe that the decrease of the successive iterates for ZeroFPR and
FBTN, i.e., F\gamma (xk+1) - F\gamma (xk), is controlled by  - \| xk  - xk\| 2, while the decrease of
the successive iterates for Step 2 of Algorithm 3.2, i.e., F (xk+1) - F (xk), is controlled
by the curve ratio \alpha k\langle \nabla FSk

(uk), dkSk
\rangle . Third, the line search procedures of ZeroFPR

and FBTN involve computing the forward-backward envelope of F , which means that
prox-gradient evaluations are needed at each backtracking trial and this is not the
case for (S5) of Algorithm 3.2. Finally, the global convergence analysis of ZeroFPR
requires its second-order direction dk to satisfy

\exists a constant \widehat c > 0 such that \| dk\| \leq \widehat c\| xk  - xk\| for all k,(3.6)
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1687

but now it is unclear whether the regularized Newton direction in (S4) satisfies (3.6)
or not.

(e) Our algorithm is similar to the Newton acceleration framework of the PG
method proposed in [4], which first uses the PG method to identify the underlying
manifold substructure of (1.1) and then accelerates it with a Riemannian Newton
method. However, our algorithm is not a special case of this framework due to the
following facts. First, similar to ZeroFPR and FBTN, the framework in [4] executes
a Newton step in each iteration. As discussed in part (d), our algorithm adaptively
executes a Newton step by condition (3.3), which avoids some unnecessary waste in
the second-order step. Second, the Riemannian Hessian was used to yield the Newton
directions in [4], while a regularized one is used in our algorithm to yield the Newton
directions. Third, a quadratic convergence rate of the iterate sequence was established
in [4] by assuming that the Riemannian Hessian is positive definite at the limit point.
However, under weaker conditions we show that the generated sequence is convergent
and has a superlinear convergence rate; see Theorems 4.7 and 4.9, respectively.

To conduct the convergence analysis of Algorithm 3.2 with \epsilon = 0 in the next
section, from now on we assume that xk \not = xk for all k (if not, Algorithm 3.2 yields an
L-type stationary point within a finite number of steps), i.e., Algorithm 3.2 generates
an infinite sequence \{ xk\} k\in \BbbN . The following lemma shows that the sequences \{ xk\} k\in \BbbN 
and \{ xk\} k\in \BbbN are bounded, and the sequence \{ \mu k\} k\in \BbbN is upper bounded. The latter
will be used to derive a uniform lower bound for | xk| min; see Lemma 3.5(i).

Lemma 3.3. The following assertions hold for \{ xk\} k\in \BbbN ,\{ xk\} k\in \BbbN and \{ \mu k\} k\in \BbbN .
(i) The sequence \{ F (xk)\} k\in \BbbN is nonincreasing and convergent, and consequently,
\{ xk\} k\in \BbbN \subseteq \scrL F (x0):=\{ x\in \BbbR n | F (x)\leq F (x0)\} and \{ xk\} k\in \BbbN \subseteq \scrL F (x0).

(ii) \{ xk\} k\in \BbbN and \{ xk\} k\in \BbbN are bounded, the cluster point set of \{ xk\} k\in \BbbN , denoted
by \Omega (x0), is nonempty and compact, and F is constant on \Omega (x0).

(iii) For all k \in \BbbN , \mu k < \widetilde L := max\{ \mu max + 1,\widetilde \tau (2\widehat L+ \widetilde \alpha )\} , where \widehat L is the Lipschitz

constant of \nabla \psi on the set \scrL F (x0) + \tau B with \tau :=
\tau 0+
\surd 
\tau 2
0+2\widetilde cf\mu \mathrm{m}\mathrm{i}\mathrm{n}

\mu \mathrm{m}\mathrm{i}\mathrm{n}
. Here,

\tau 0 := maxx\in \scrL F (x0) \| \nabla \psi (x)\| and \widetilde cf = F (x0) - cf .

Proof. (i) Fix any k \in \BbbN . When k \in \scrK 1, xk+1 = xk, and by Algorithm 3.1,
F (xk+1)\leq F (xk). When k \in \scrK 2, from (3.4) and (3.5) it follows that

FSk
(uk+1)\leq FSk

(uk) + \varrho \beta mk\langle \nabla FSk
(uk), dkSk

\rangle \leq FSk
(uk),

which along with Sk+1 \subseteq Sk implies that F (xk+1)\leq F (xk). The two cases show that
\{ F (xk)\} k\in \BbbN is nonincreasing, which along with the lower boundedness of F means
that \{ F (xk)\} k\in \BbbN is convergent. The nonincreasing behavior of \{ F (xk)\} k\in \BbbN , together
with F (xk) \leq F (xk) for each k \in \BbbN , implies that F (xk) \leq F (xk) \leq F (x0) for each
k \in \BbbN , and consequently, \{ xk\} k\in \BbbN \subseteq \scrL F (x0) and \{ xk\} k\in \BbbN \subseteq \scrL F (x0).

(ii) Since g is coercive and f is lower bounded, the level set \scrL F (x0) is compact. By
part (i), \{ xk\} k\in \BbbN and \{ xk\} k\in \BbbN are bounded, so the set \Omega (x0) is nonempty. Using the
same arguments as in [10, Lemma 5(iii)] yields the compactness of \Omega (x0). Pick any
x\ast \in \Omega (x0). There exists a subsequence \{ xkj\} j\in \BbbN such that limj\rightarrow \infty xkj = x\ast . By the
continuity of F and the convergence of \{ F (xk)\} k\in \BbbN , we have F (x\ast ) = limj\rightarrow \infty F (xkj ) =
F \ast , where F \ast is the limit of \{ F (xk)\} k\in \BbbN . This means that F is constant on the set
\Omega (x0).

(iii) Define K := \{ k \in \BbbN | \mu k >\mu k\} . If K is empty, the desired result holds because
\mu k = \mu k \leq \mu max < \widetilde L for all k \in \BbbN , so we assume that K \not = \emptyset . We first argue that
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1688 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

\| \widehat xk  - xk\| \leq \tau for each k \in K.(3.7)

To this end, write \widehat \mu k := \mu k/\widetilde \tau and \widehat xk := prox\widehat \mu  - 1
k (\lambda g)(x

k - \widehat \mu  - 1
k \nabla \psi (xk)) for each k \in K.

Since \widehat \mu k <\mu k, by Algorithm 3.1 we have F (\widehat xk)>F (xk) - \widetilde \alpha 
2 \| \widehat xk - xk\| 2, which implies

that \widehat xk \not = xk for each k \in K. For each k \in K, from the definition of \widehat xk, we have

\langle \nabla \psi (xk), \widehat xk  - xk\rangle + \widehat \mu k
2
\| \widehat xk  - xk\| 2 + \lambda g(\widehat xk) - \lambda g(xk)\leq 0.(3.8)

By using the Cauchy--Schwarz inequality and the nonnegativity of g, it follows that\widehat \mu k
2
\| \widehat xk  - xk\| 2 \leq \| \nabla \psi (xk)\| \| \widehat xk  - xk\| + \lambda g(xk) - \lambda g(\widehat xk)

\leq \| \nabla \psi (xk)\| \| \widehat xk  - xk\| + F (xk) - \psi (xk)

\leq \| \nabla \psi (xk)\| \| \widehat xk  - xk\| + F (x0) - cf \leq \tau 0\| \widehat xk  - xk\| + \widetilde cf ,
where the third inequality is due to F (xk)\leq F (x0) and \psi (xk)\geq cf , and the last one
is by the definitions of \tau 0 and \widetilde cf . For each k \in K, since \widehat \mu k \geq \mu k \geq \mu min, from the
last inequality, \mu \mathrm{m}\mathrm{i}\mathrm{n}

2 \| \widehat xk  - xk\| 2  - \tau 0\| \widehat xk  - xk\|  - \widetilde cf \leq 0. This, by the definition of \tau ,
implies that inequality (3.7) holds. Now for each k \in K, by the mean-value theorem,
there exists \xi k on the line segment connecting xk and \widehat xk such that F (\widehat xk) - F (xk) =
\langle \nabla \psi (\xi k), \widehat xk  - xk\rangle + \lambda g(\widehat xk) - \lambda g(xk). Substituting this equality into (3.8) and using
F (\widehat xk) - F (xk)> - \widetilde \alpha 

2 \| x
k - \widehat xk\| 2 yields that\widehat \mu k  - \widetilde \alpha 

2
\| xk  - \widehat xk\| 2 < \langle \nabla \psi (\xi k) - \nabla \psi (xk), \widehat xk  - xk\rangle 

\leq \| \nabla \psi (xk) - \nabla \psi (\xi k)\| \| \widehat xk  - xk\| .
From part (i) and (3.7), \{ xk\} k\in K \subseteq \scrL F (x0) and \{ \widehat xk\} k\in K \subseteq \scrL F (x0)+\tau B. Hence,
\{ \xi k\} k\in K \subseteq \scrL F (x0)+\tau B. From the last inequality, for each k \in K,\widehat \mu k  - \widetilde \alpha 

2
\| xk  - \widehat xk\| < \| \nabla \psi (xk) - \nabla \psi (\xi k)\| \leq \widehat L\| xk  - \xi k\| \leq \widehat L\| xk  - \widehat xk\| .

Thus, \widehat \mu k < 2\widehat L+ \widetilde \alpha and \mu k < \widetilde \tau (2\widehat L+ \widetilde \alpha ) for each k \in K. The proof is completed.

For any given \gamma > 0, s\in \BbbR , define a real-valued function

h\gamma ,s(t) :=
\gamma 

2
(t - s)2 + \lambda | t| q for t\in \BbbR .(3.9)

It is easy to see that t = 0 is always a local minimizer of h\gamma ,s and that the absolute

value of another possible local minimizer is greater than \nu , where \nu :=
\bigl( \lambda q(1 - q)

\gamma 

\bigr) 1
2 - q .

In next lemma, we will establish the existence of a uniform lower bound \varpi of h\prime \prime \gamma ,s
at its nonzero global minimizer for any \gamma > 0 and s \in \BbbR . We will show that the
existence of such \varpi will ultimately lead to the validity of the second condition of (3.3)
for some k in any large enough interval and hence, together with the validity of the
first condition of (3.3), the infinite cardinality of \scrK 2. Indeed, if for all the integers k
in any large enough interval, xk+1 is produced by Step 1, then the sufficient decrease
property in (S1) of Step 1 implies that

F (xk) - F (xk+1)\geq \widetilde \alpha 
2
\| xk  - xk+1\| 2 (with xk+1 = xk).

Summing this up for all such integers, it follows from the lower boundedness of F
that

\sum 
\| xk  - xk+1\| 2 is bounded. Thus, for some integer k, \| xk  - xk+1\| should

be sufficiently small. By using an integral mean-value theorem, | xk| q - 2
min  - | xk| 

q - 2
min is

bounded by \| xk  - \=xk\| . Therefore | xk| q - 2
min  - | xk| 

q - 2
min should be sufficiently small. If

so, it is true that \varpi 
2 +\lambda q(q - 1)(| xk| q - 2

min  - | xk| 
q - 2
min )\geq 0, which implies that the second

condition of (3.3) holds for some integer k.
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1689

Lemma 3.4. For any given 0 < \upsilon <M <\infty , there exists a constant \varpi > 0 such
that for any \gamma > 0 and s\in \BbbR with t(\gamma , s)\in arg mint\in \BbbR h\gamma ,s(t) and | t(\gamma , s)| \in [\upsilon ,M ],

h\prime \prime \gamma ,s(t(\gamma , s)) = \gamma + \lambda q(q - 1)| t(\gamma , s)| q - 2 \geq \varpi .

Proof. Suppose that the conclusion does not hold. Then, there exist sequences
\{ \gamma k\} \subset \BbbR ++ and \{ sk\} \subset \BbbR with | t(\gamma k, sk)| \in [\upsilon ,M ] such that h\prime \prime \gamma k,sk(t(\gamma k, sk))\leq 1

k for
all k \in \BbbN . For each k \in \BbbN , write tk := t(\gamma k, sk) and \vargamma k := h\gamma k,sk . Clearly, there exists
k \in \BbbN such that for all k > k, \vargamma \prime \prime k(tk) < \kappa \upsilon 

10 := \varepsilon , where \kappa := \lambda q(q - 1)(q - 2)Mq - 3. By
the expression of \vargamma k, for any t with | t| \in (0,M ], the following inequality holds:

| \vargamma \prime k\prime \prime (t)| = \lambda q(q - 1)(q - 2)| t| q - 3 \geq \kappa .(3.10)

Fix any k > k. We proceed the arguments by tk \in [\upsilon ,M ] and tk \in [ - M, - \upsilon ].
Case 1. tk \in [\upsilon ,M ]. Since \vargamma \prime \prime k(tk) < \varepsilon and \vargamma \prime \prime \prime k (t) > \kappa for t \in (0,M ], by the

integral mean-value theorem, \vargamma \prime \prime k(tk)>\vargamma \prime \prime k(tk - \varepsilon 
\kappa )+\varepsilon , which by \vargamma \prime \prime k(tk)< \varepsilon implies that

\vargamma \prime \prime k(tk - \varepsilon 
\kappa )< 0. Together with \vargamma \prime \prime k(tk)> 0 (see [21, Lemma 14]), there exists 0< \delta < \varepsilon 

\kappa 
such that \vargamma \prime \prime k(tk - \delta )= 0. Recall that \vargamma \prime k\prime \prime (t)>\kappa > 0 for all t\in (0,M ]. Then,

\vargamma \prime \prime k(t)< 0 for t\in (0, tk - \delta ) and \vargamma \prime \prime k(t)> 0 for t\in (tk - \delta ,M ].(3.11)

Note that \vargamma \prime k(tk) = 0. This, along with the second inequality in (3.11), implies that
\vargamma \prime k(tk - \delta )< 0. Also, since 0<\vargamma \prime \prime k(t)< \varepsilon for all t \in (tk - \delta , tk), from the integral mean-
value theorem, \vargamma \prime k(tk - \delta ) > \vargamma \prime k(tk) - \varepsilon \delta =  - \varepsilon \delta , and then \vargamma \prime k(tk - \delta ) \in ( - \varepsilon \delta ,0). Next
we argue that there exists a point \~tk \in (tk - \delta  - 

\sqrt{} 
2\varepsilon \delta /\kappa , tk - \delta ) such that \vargamma \prime k(\~tk) = 0,

which along with the first inequality in (3.11) implies that

\vargamma \prime k(t)> 0 for t\in (0, \~tk) and \vargamma \prime k(t)< 0 for t\in (\~tk, tk  - \delta ).(3.12)

Indeed, for any t\in (0, tk - \delta ), using \vargamma \prime \prime k(tk - \delta ) = 0 and inequality (3.10) yields that

 - \varepsilon \delta < \vargamma \prime k(tk - \delta ) = \vargamma \prime k(t) +

\int tk - \delta 

t

\vargamma \prime \prime k(s)ds= \vargamma \prime k(t) +

\int tk - \delta 

t

\bigl[ 
\vargamma \prime \prime k(s) - \vargamma \prime \prime k(tk - \delta )

\bigr] 
ds

\leq \vargamma \prime k(t) +

\int tk - \delta 

t

\kappa (s - tk + \delta )ds= \vargamma \prime k(t) - \kappa 

2
(t - tk + \delta )2,

which implies that \vargamma \prime k(t) > 0 for all t \leq tk - \delta  - 
\sqrt{} 

2\varepsilon \delta /\kappa . Along with \vargamma \prime k(tk - \delta ) < 0,

there exists \~tk \in (tk - \delta  - 
\sqrt{} 

2\varepsilon \delta 
\kappa , tk - \delta ) such that \vargamma \prime k(\~tk) = 0.

From (3.11) we deduce that \vargamma \prime k is decreasing in (\~tk, tk - \delta ) and is increasing in
(tk - \delta , tk), which means that \vargamma \prime k(t)\geq \vargamma \prime k(tk  - \delta )> - \varepsilon \delta for all t\in (\~tk, tk). Then,

\vargamma k(tk) - \vargamma k(\~tk) =

\int tk

\~tk

\vargamma \prime k(s)ds > - \varepsilon \delta (tk  - \~tk)> - \varepsilon \delta 

\Biggl( 
\delta +

\sqrt{} 
2\varepsilon \delta 

\kappa 

\Biggr) 
(3.13)

> - 
\biggl( 
\varepsilon 3

\kappa 2
+
\surd 

2
\varepsilon 3

\kappa 2

\biggr) 
> - 3

\varepsilon 3

\kappa 2
= - 3\kappa 

1000
\upsilon 3,

where the third inequality is due to 0< \delta < \varepsilon 
\kappa . On the other hand, we have

\vargamma k(\~tk) - \vargamma k(0) =

\int \~tk

0

\int s

\~tk

\vargamma \prime \prime k(\tau )d\tau ds=

\int \~tk

0

\int s

\~tk

[\vargamma \prime \prime k(\tau ) - \vargamma \prime \prime k(tk - \delta )]d\tau ds

\geq 
\int \~tk

0

\int s

\~tk

\kappa (\tau  - tk + \delta )d\tau ds=

\int \~tk

0

\kappa 

2
s2  - \kappa 

2
\~t2k + \kappa (tk - \delta )(\~tk - s)ds

=
\kappa 

6
\~t3k  - 

\kappa 

2
\~t3k +

\kappa \~t2k
2

(tk - \delta )\geq 
\kappa 

6
\~t3k \geq 

\kappa 

6

\Bigl( 
tk - \delta  - 

\sqrt{} 
2\varepsilon \delta 

\kappa 

\Bigr) 3
\geq \kappa 

6

\Bigl( 
\upsilon  - 3\varepsilon 

\kappa 

\Bigr) 3
,(3.14)
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1690 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

where the first equality is due to \vargamma \prime k(\~tk) = 0, the second one is using \vargamma \prime \prime k(tk - \delta ) = 0,
the first inequality is using (3.10), and the last inequality is due to 0 < \delta < \varepsilon 

\kappa and
tk \geq \upsilon . Thus, from (3.13) and (3.14) and \varepsilon := \kappa \upsilon 

10 , we have \vargamma k(tk) - \vargamma k(0)> 465\kappa 
6000\upsilon 

3 > 0,
contradicting that tk is a global minimizer of \vargamma k = h\gamma k,sk . The conclusion then holds.

Case 2. tk \in [ - M, - \upsilon ]. By using arguments similar to those for Case 1, one can
verify that the conclusion holds. Here, the details are omitted.

To provide a sufficient condition for the switching condition (3.3), we introduce
the following notation, which will be used in the subsequent analysis:

Sk := supp(xk) and uk := xk
Sk

for each k \in \BbbN .

Lemma 3.5. Let \{ xk\} k\in \BbbN and \{ xk\} k\in \BbbN be generated by Algorithm 3.2, and write

\nu := [\widetilde L - 1\lambda q(1 - q)]
1

2 - q . Then, the following statements hold.
(i) | xk| min > \nu for all k \in \BbbN , and | xk| min > \nu for all k \in \scrK 2.

(ii) \omega k \geq \varpi for all k \in \BbbN , where \varpi is the one in Lemma 3.4 with v = \nu and

M =
\bigl( F (x0) - cf

\lambda 

\bigr) 1
q .

(iii) For each k \in \BbbN , if | xk| min >
\nu 
2 and \| xk - xk\| \leq min

\bigl\{ 
\nu 
3 ,

2q - 3\varpi 
2\lambda q(1 - q)(2 - q)\nu q - 3

\bigr\} 
,

then condition (3.3) holds.

Proof. (i) By using Lemma 2.2 with \mu = \mu  - 1
k \lambda and y = xk  - \mu  - 1

k \nabla \psi (xk) for each

k \in \BbbN and noting that \mu min \leq \mu k < \widetilde L from Lemma 3.3(iii), we have | xk| min > \nu for all
k. To argue that | xk| min > \nu for all k \in \scrK 2, we only need to prove that | xk| min > \nu 
if xk satisfies condition (3.3). Indeed, the second condition in (3.3) is equivalent to
| xk| q - 2

min \leq 
\mu k

2\lambda q(1 - q) + 1
2 | x

k| q - 2
min , which by \mu k < \widetilde L and the definition of \nu means that

| xk| q - 2
min <

\widetilde L
2\lambda q(1 - q)

+
1

2
\nu q - 2 = \nu q - 2,

where the equality is using the expression of \nu . Thus, | xk| min > \nu for all k \in \scrK 2.
(ii) From Algorithm 3.1, F (xk)\leq F (xk) for each k \in \BbbN . Then,

cf + \lambda \| xk\| qq \leq \psi (xk) + \lambda \| xk\| qq = F (xk)\leq F (xk)\leq F (x0),

which implies that \| xk\| qq \leq \lambda  - 1(F (x0) - cf ), and then | xki | \leq 
\bigl( F (x0) - cf

\lambda 

\bigr) 1/q
for each

i \in Sk. In addition, from part (i), | xki | > \nu for each i \in Sk. For each k, let yk :=
xk - \mu  - 1

k \nabla \psi (xk). Then, xki \in arg mint\in \BbbR h\mu k,y
k
i
(t) for each i \in Sk, where h\mu k,y

k
i

is

defined by (3.9). Now by invoking Lemma 3.4 with \upsilon = \nu , M =
\bigl( F (x0) - cf

\lambda 

\bigr) 1
q , and

t(\mu k, y
k
i ) = xki for all i\in Sk, we obtain \omega k = \mu k + \lambda q(q - 1)| xk| q - 2

min \geq \varpi .
(iii) Fix any k \in \BbbN . We first prove that the equality in (3.3) holds. From part (i),

| xk| min > \nu , while from the given condition, | xk| min >
\nu 
2 . If there exists an index i\in [n]

such that sign(xki ) \not = sign(xki ), then \| xk - xk\| \geq | xki  - xki | > \nu 
2 , which is in contradiction

to \| xk - xk\| < \nu /3. Thus, sign(xk) = sign(xk), and hence Sk = Sk. For the inequality
in (3.3), from part (ii), it suffices to argue that \varpi 

2 +\lambda q(q - 1)(| xk| q - 2
min  - | xk| 

q - 2
min )\geq 0 or

| xk| q - 2
min  - | xk| 

q - 2
min \leq \varpi 

2\lambda q(1 - q) . Indeed, by invoking the integral mean-value theorem,

| xk| q - 2
min - | x

k| q - 2
min =

\int | xk| \mathrm{m}\mathrm{i}\mathrm{n}

| xk| \mathrm{m}\mathrm{i}\mathrm{n}

(2 - q)tq - 3dt

\leq (2 - q)
\bigl( 

min\{ | xk| min, | xk| min\} 
\bigr) q - 3\bigm| \bigm| | xk| min - | xk| min

\bigm| \bigm| 
< (2 - q)(\nu /2)q - 3

\bigm| \bigm| | xk| min - | xk| min

\bigm| \bigm| \leq (2 - q)(\nu /2)q - 3\| xk  - xk\| \leq \varpi 

2\lambda q(1 - q)
,
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1691

where the second inequality is by | xk| min > \nu and | xk| min >
\nu 
2 , the third one is due to

Sk = Sk, and the last one is using \| xk  - xk\| < 2q - 3\varpi 
2\lambda q(1 - q)(2 - q)\nu q - 3 .

From Lemma 3.5, we obtain the following corollary, stating that \scrK 2 contains
infinite indices, so HpgSRN is different from the PG method. In the next section, we
improve this result so that after a finite number of steps, the iterates of Algorithm 3.2
always enter into Step 2.

Corollary 3.6. There exists k \in \BbbN such that for any k1, k2 \in \BbbN with k2 - k1>k,
[k1, k2]\cap \scrK 2 \not = \emptyset , so \scrK 2 is an infinite set, and Algorithm 3.2 is different from the PG
method.

Proof. Let \delta = min\{ \nu 3 ,
2q - 3\varpi 

2\lambda q(1 - q)(2 - q)\nu q - 3

\bigr\} 
and k = \lceil 2(F (x0) - cf )\widetilde \alpha \delta 2 \rceil . We argue by

contradiction that the result holds. If not, there must exist \widehat k1,\widehat k2 \in \BbbN with \widehat k2 - \widehat k1 >k
such that [\widehat k1,\widehat k2] \cap \scrK 2 = \emptyset . Clearly, [\widehat k1,\widehat k2] \subseteq \scrK 1. By the definition of \scrK 1, for every
k - 1\in [\widehat k1,\widehat k2 - 1], xk is obtained by the PG step, which by Lemma 3.5(i) implies that
| xk| min > \nu and then \| xk  - xk\| \geq \delta must hold (if not, by Lemma 3.5(iii), [\widehat k1+1,\widehat k2]
would contain an index of \scrK 2). For every k \in [\widehat k1,\widehat k2] \subset \scrK 1, we also have xk+1 = xk.
By Algorithm 3.1, for every k \in [\widehat k1,\widehat k2], F (xk+1)\leq F (xk) - \widetilde \alpha 

2 \| x
k  - xk\| 2, and then

2
\bigl( 
F (x

\widehat k1+1) - cf )\widetilde \alpha \geq 
2
\bigl( 
F (x

\widehat k1+1) - F (x
\widehat k2+1)

\bigr) 
\widetilde \alpha \geq 

\widehat k2\sum 
i=\widehat k1+1

\| xk  - xk\| 2 \geq (\widehat k2  - \widehat k1)\delta 2,

where the last inequality is due to \| xk  - xk\| \geq \delta for every k \in [\widehat k1+1,\widehat k2]. Together

with F (x
\widehat k1+1) \leq F (x0), we obtain \widehat k2  - \widehat k1 \leq 2(F (x0) - cf )\widetilde \alpha \delta 2 \leq k, a contradiction of the

given condition \widehat k2  - \widehat k1 >k. The proof is then completed.

4. Convergence analysis. In this part, we analyze the convergence rate of the
objective function value sequence \{ F (xk)\} k\in \BbbN and establish the global convergence of
the iterate sequence \{ xk\} k\in \BbbN and its superlinear convergence rate. Throughout this
section, we write

rk :=\nabla FSk
(uk) and Hk :=\nabla 2FSk

(uk) for each k \in \scrK 2.

First, we give several technical lemmas that are used for the subsequent convergence
analysis. The following lemma states that the subsequences \{ rk\} k\in \scrK 2 and \{ dk\} k\in \scrK 2

are bounded, and the subsequence \{ rk\} k\in \scrK 2 is lower bounded by \{ \| uk  - uk\| \} k\in \scrK 2 .
The latter is crucial to control F (xk+1) - F (xk) by using  - \| xk - xk\| 2; see Lemma 4.3.

Lemma 4.1. Let \{ xk\} k\in \BbbN be generated by Algorithm 3.2. The following hold.
(i) There exists a constant rmax > 0 such that \| rk\| \leq rmax and \| dk\| \leq b - 1

2 r1 - \sigma max

for all k \in \scrK 2.
(ii) For each k \in \scrK 2, \| rk\| \geq \varpi 

4 \| u
k - uk\| , where \varpi is the same as in Lemma 3.4.

Proof. (i) Fix any k \in \scrK 2. By Remark 3.2(c), we know that Sk \not = \emptyset . From
Lemma 3.5(i), | xki | > \nu for all i \in Sk. By invoking Lemma 2.6(ii) with \kappa = \nu /2 and
C = \{ z \in \scrL F (x0) | | zi| \geq \nu /2 for all i \in Sk\} , there exists rmax > 0 (independent of k)
such that \| rk\| \leq rmax. Together with \lambda min(Gk)\geq b2\| rk\| \sigma , it follows that

\| dk\| = \| dkSk
\| \leq \| (Gk) - 1\| \| rk\| \leq b - 1

2 \| rk\| 1 - \sigma \leq b
 - 1
2 r1 - \sigma max .(4.1)

(ii) Fix any k \in \scrK 2. Write Bk := ASk
and vk := uk - \mu  - 1

k B\BbbT 
k\nabla f(Bku

k). Let

hk(u) :=
\sum | Sk| 
i=1 h\mu k,v

k
i
(ui) for u \in \BbbR | Sk| , where h\mu k,v

k
i

is the function defined in (3.9)
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1692 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

with (\gamma , s) = (\mu k, v
k
i ). From (3.3), sign(xk) = sign(xk), and then Sk = Sk. Therefore,

we have uk \in arg minu\in \BbbR | Sk| hk(u), whose optimality condition is given by

0 =\nabla hk(uk) = \mu k(uk - vk) + \lambda qsign(uk) \circ | uk| q - 1.(4.2)

In addition, by combining Lemma 3.5(ii) and the inequality in (3.3), it holds that

\varpi /2\leq \omega k/2\leq \mu k + \lambda q(q - 1)| xk| q - 2
min = \mu k + \lambda q(q - 1)| uk| q - 2

min = h\prime \prime \mu k,v
k
i
(| uk| min).(4.3)

Define the index sets \scrI k1 :=\{ i \in [| Sk| ] | uki > 0\} and \scrI k2 := [| Sk| ]\setminus \scrI k1 . For each i \in [| Sk| ],
write \widetilde uki := sign(uki ) min\{ | uki | , | uki | \} . Note that each h\mu k,v

k
i

is smooth at any t \not = 0,
and h\prime \prime 

\mu k,v
k
i

is nonincreasing at ( - \infty ,0) and nondecreasing at (0,\infty ). From (4.3) and

Lemma 3.5(ii), it follows that h\prime \prime 
\mu k,v

k
i
(\widetilde uki )\geq \varpi /2 for all i \in [| Sk| ]. Consequently, there

exists \varepsilon > 0 such that for each i\in \scrI k1 , h\prime \prime 
\mu k,v

k
i
(t)> \varpi 

4 when t\in (\widetilde uki - \varepsilon ,\infty ); and for each

i\in \scrI k2 , h\prime \prime 
\mu k,v

k
i
(t)> \varpi 

4 when t\in ( - \infty , \widetilde uki + \varepsilon ). Define

\Omega k :=
\bigl\{ 
u\in \BbbR | Sk| | ui> \widetilde uki  - \varepsilon for i\in \scrI k1 and ui < - \widetilde uki + \varepsilon for i\in \scrI k2

\bigr\} 
.

Then, hk is twice continuously differentiable on the convex set \Omega k with \nabla 2hk(u)\succ \varpi 
4 I

for all u \in \Omega k, which implies that \widetilde hk(u):= hk(u) - \varpi 
8 \| u - v

k\| 2 is strongly convex on

the set \Omega k. From (4.2) and the expression of \widetilde hk, clearly, \nabla \widetilde hk(uk) = \varpi 
4 (vk - uk). Let\widehat uk := uk + 4

\varpi \nabla \widetilde hk(uk). By the convexity of \widetilde hk on \Omega k and uk, uk \in \Omega k, we have

0\leq \langle \nabla \widetilde hk(uk) - \nabla \widetilde hk(uk), uk  - uk\rangle = \varpi 

4
\langle (vk  - uk) - (\widehat uk  - uk), uk  - uk\rangle ,

which implies that \| uk  - uk\| \leq \| vk  - \widehat uk\| = \| uk  - \mu  - 1
k B\BbbT 

k\nabla f(Bku
k) - \widehat uk\| . Together

with \varpi 
4 (\widehat uk - uk) =\nabla \widetilde hk(uk) = (\mu k - \varpi 

4 )(uk - vk) + \lambda qsign(uk) \circ | uk| q - 1, it follows that

\| rk\| =
\bigm\| \bigm\| B\BbbT 

k\nabla f(Bku
k) + \lambda qsign(uk) \circ | uk| q - 1

\bigm\| \bigm\| 
=
\bigm\| \bigm\| B\BbbT 

k\nabla f(Bku
k) - 

\Bigl( 
\mu k  - 

\varpi 

4

\Bigr) 
(uk  - vk) +

\varpi 

4
(uk - \widehat uk)

\bigm\| \bigm\| 
=
\varpi 

4
\| \mu  - 1

k B\BbbT 
k\nabla f(Bku

k) - uk + \widehat uk\| \geq \varpi 

4
\| uk  - uk\| ,

where the third equality is by the definition of vk. The proof is completed.

Assumption 1. \nabla 2f is locally Lipschitz continuous on \BbbR m.

Assumption 1 is a common one in the convergence analysis of Newton-type meth-
ods (see, e.g., [32]). By the Heine--Borel open covering theorem, one can show that
under Assumption 1 the Hessian \nabla 2f is Lipschitz continuous on any compact subset of
\BbbR m. We next use this fact to prove that \{ \alpha k\} k\in \scrK 2

has a uniform lower bound, which
will be employed to establish the sufficient decrease of \{ F (xk)\} k\in \BbbN ; see Lemma 4.3.

Lemma 4.2. Under Assumption 1 there is \alpha > 0 such that for all k \in \scrK 2, \alpha k \geq \alpha .
Proof. Let C :=\scrL F (x0) + 1

2\nu \BbbB . It is easy to check that A(C) is a compact subset
of \BbbR m. By invoking Assumption 1, there exists a constant L\nabla 2f > 0 such that

\| \nabla 2f(Ay) - \nabla 2f(Az)\| \leq L\nabla 2f\| A(y - z)\| \forall y, z \in C.(4.4)

Fix any integer m\geq 0 with \beta m \leq min
\bigl\{ 

1, 12\nu b2r
\sigma  - 1
max

\bigr\} 
, where \nu is the same as the one

in Lemma 3.5. Fix any k \in \scrK 2. From dkSc
k

= 0, | xki | > \nu for all i \in Sk (Lemma 3.5(i))
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1693

and Lemma 4.1(i), we have sign(xk+ \tau \beta mdk) = sign(xk) and | xk+\tau \beta mdk| min >
\nu 
2 for

all \tau \in [0,1]. By Lemma 2.6(i), FSk
is twice continuously differentiable on an open

set containing the line segment between uk and uk+\beta mdkSk
. From the mean-value

theorem,

FSk
(uk+\beta mdkSk) - FSk

(uk) - \langle rk, \beta mdkSk
\rangle 

=
1

2
\beta 2m\langle \nabla 2FSk

(uk+\tau k\beta 
mdkSk

)dkSk
, dkSk
\rangle for some \tau k \in [0,1].(4.5)

Note that xk+ \tau \beta mdk \in C for all \tau \in [0,1] by Lemma 4.1(i). By using Lemma 2.6(ii)
with \kappa = \nu /2, there exists a constant \widehat c3 > 0 (independent of k) such that

\| \nabla 2gSk
(uk) - \nabla 2gSk

(uk+\tau k\beta 
mdkSk

)\| \leq 
\int \tau k

0

\| D3gSk
(uk+t\beta mdkSk

)\beta mdkSk
\| dt

\leq \tau k\widehat c3\beta m\| dkSk
\| .

In addition, since xk, xk + \tau k\beta 
mdk \in C, using inequality (4.4) with y = xk and z =

xk+\tau k\beta 
mdk and noting that supp(xk) = supp(xk+ \tau k\beta 

mdk) = Sk, we have

\| A\BbbT 
Sk
\nabla 2f(ASk

uk)ASk
 - A\BbbT 

Sk
\nabla 2f(ASk

(uk+\tau k\beta 
mdkSk

))ASk
\| \leq \tau kL\nabla 2f\| ASk

\| 3\beta m\| dkSk
\| .

From the last two inequalities with the expression of \nabla 2FSk
, it follows that

\| \nabla 2FSk
(uk) - \nabla 2FSk

(uk+\tau k\beta 
mdkSk

)\| \leq (L\nabla 2f\| ASk
\| 3+\lambda \widehat c3)\beta m\| dkSk

\| .(4.6)

Combining (4.5)--(4.6) with (S4) of Algorithm 3.2 and recalling that Hk =\nabla 2FSk
(uk),

we obtain

FSk
(uk) - FSk

(uk+\beta mdkSk
) + \varrho \beta m\langle rk, dkSk

\rangle 
= (1 - \varrho )\beta m

\bigl\langle 
(Hk+b1\zeta kI+b2\| rk\| \sigma I)dkSk

, dkSk

\bigr\rangle 
 - 1

2
\beta 2m\langle dkSk

,\nabla 2FSk
(uk+\tau k\beta 

mdkSk
)dkSk
\rangle 

\geq 1

2
b2\beta 

m\| rk\| \sigma \| dkSk
\| 2 +

1

2
\beta 2m

\bigl\langle \bigl( 
Hk - \nabla 2FSk

(uk+\tau k\beta 
mdkSk

)
\bigr) 
dkSk

, dkSk

\bigr\rangle 
\geq 1

2
b2\beta 

m\| rk\| \sigma \| dkSk
\| 2  - 1

2
(L\nabla 2f\| ASk

\| 3+\lambda \widehat c3)\beta 3m\| dkSk
\| 3

=
1

2
\beta m\| dkSk

\| 3
\Bigl( 
b2
\| rk\| \sigma 

\| dkSk
\| 
 - \widetilde c3\beta 2m

\Bigr) 
with \widetilde c3 :=L\nabla 2f\| ASk

\| 3+\lambda \widehat c3,(4.7)

where the first equality is using rk = - GkdkSk
by (S4), and the first inequality is due

to Hk + b1\zeta kI \succeq 0, \varrho \in (0, 12 ], and \zeta k \geq 0. By the definition of dkSk
and Lemma 4.1(i),

\| dkSk
\| 

\| rk\| \sigma 
\leq \| (G

k) - 1\| \| rk\| 
\| rk\| \sigma 

\leq \| r
k\| 1 - 2\sigma 

b2
\leq r1 - 2\sigma 

max

b2
.(4.8)

The above arguments demonstrate that whenever \beta m \leq min
\bigl\{ 

1, 12\nu b2r
\sigma  - 1
max ,

b2\surd \widetilde c3r1 - 2\sigma 
\mathrm{m}\mathrm{a}\mathrm{x}

\bigr\} 
,

FSk
(uk) - FSk

(uk + \beta mdkSk
) + \varrho \beta m\langle rk, dkSk

\rangle \geq 0.

Let \alpha := \beta min
\bigl\{ 

1, 12\nu b2r
\sigma  - 1
max ,

b2\surd \widetilde c3r1 - 2\sigma 
\mathrm{m}\mathrm{a}\mathrm{x}

\bigr\} 
. Then, for all k \in \scrK 2, \alpha k \geq \alpha .
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1694 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

4.1. Convergence rate of objective function value sequence. We have
achieved the convergence of the sequence \{ F (xk)\} k\in \BbbN in Lemma 3.3(i). To establish
its convergence rate, we need two technical lemmas. Among others, Lemma 4.3 states
that \{ F (xk)\} k\in \BbbN is sufficiently decreasing under Assumption 1, while Lemma 4.4
reveals that under Assumption 1 the subsequence \{ dk\} k\in \scrK 2

converges to 0.

Lemma 4.3. Let \{ xk\} k\in \BbbN and \{ xk\} k\in \BbbN be the sequences yielded by Algorithm 3.2.
Then, under Assumption 1, the following assertions hold.

(i) There exists \widehat \gamma > 0 such that for all k \in \BbbN , F (xk+1)\leq F (xk) - \widehat \gamma 
2 \| x

k  - xk\| 2.
(ii) limk\rightarrow \infty \| xk  - xk\| = 0.

(iii) Every element of \Omega (x0) is an L-type stationary point of (1.1).

Proof. (i)--(ii) By Lemma 3.3(i), \{ xk\} k\in \BbbN is contained in the compact set \scrL F (x0),
while | xk| min > \nu for all k \in \scrK 2 by Lemma 3.5(i). Then, by invoking Lemma 2.6(ii)
with C =\scrL F (x0) and \kappa = \nu , there exists \widehat c2 > 0 (independent of k) such that \| Hk\| =
\| \nabla 2FSk

(uk)\| \leq \widehat c2 for all k \in \scrK 2. Together with the expression of Gk in (S4) and
Lemma 4.1(i), for all k \in \scrK 2,

Gk \preceq [(1+b1)\| Hk\| + b2\| rk\| \sigma ]I \preceq [(1+b1)\widehat c2 + b2r
\sigma 
max]I.(4.9)

From the line search step in (3.4), Lemma 4.1(ii), and Lemma 4.2, for all k \in \scrK 2,

F (xk+1) - F (xk)\leq \alpha k\varrho \langle rk, dkSk
\rangle = - \alpha k\varrho \langle rk, (Gk) - 1rk\rangle 

\leq  - \varrho \alpha 

(1+b1)\widehat c2 + b2r\sigma max

\| rk\| 2 \leq  - \varrho \alpha \varpi 2

16[(1+b1)\widehat c2 + b2r\sigma max]
\| xk  - xk\| 2,(4.10)

where the last inequality is using sign(xk) = sign(xk) implied by k \in \scrK 2. In addition,
by (S1) of Algorithms 3.2 and 3.1, F (xk+1) \leq F (xk)  - \widetilde \alpha 

2 \| x
k  - xk\| 2 for all k \in \scrK 1.

Along with the last inequality, part (i) holds with \widehat \gamma =min
\bigl\{ \varrho \alpha \varpi 2

8[(1+b1)\widehat c2+b2r\sigma \mathrm{m}\mathrm{a}\mathrm{x}]
, \widetilde \alpha \bigr\} . From

part (i) and the convergence of \{ F (xk)\} k\in \BbbN , we obtain part (ii).
(iii) Pick any x\ast \in \Omega (x0). There exists a subsequence \{ xkj\} j\in \BbbN such that xkj \rightarrow x\ast 

as j \rightarrow \infty . From part (ii), limj\rightarrow \infty xkj = x\ast . For each j \in \BbbN , from (S1) we have

xkj \in prox\mu  - 1
kj

(\lambda g)(x
kj - \mu  - 1

kj
\nabla \psi (xkj )); while by Lemma 3.3(iii), \mu kj \in [\mu min, \widetilde L). We

assume that \mu kj \rightarrow \mu \ast (if necessary taking a subsequence). Define the mapping

\scrF (\mu ,x) := prox\mu  - 1(\lambda g)(x - \mu  - 1\nabla \psi (x)) for x \in \BbbR n and \mu \in [\mu min, \widetilde L). By [11, Propo-
sition 4.4], the mapping \scrF is upper semicontinuous, so it is outer semicontinuous at
(\mu \ast , x

\ast ) by [17, pp. 138--139]. Thus, x\ast \in prox\mu  - 1
\ast (\lambda g)(x

\ast  - \mu  - 1
\ast \nabla \psi (x\ast )), and the result

follows.

Lemma 4.4. Let \{ xk\} k\in \BbbN and \{ xk\} k\in \BbbN be the sequences given by Algorithm 3.2.
Then, under Assumption 1 there exists a constant \widehat c2 > 0 such that for all k \in \scrK 2,

dist(0, \partial F (xk))\leq \widetilde c2\| xk - xk\| with \widetilde c2 = \widehat L+ \widetilde L+ \widehat c2,
and consequently, lim\scrK 2\ni k\rightarrow \infty \| rk\| = 0 and lim\scrK 2\ni k\rightarrow \infty \| dk\| = 0.

Proof. Fix any k \in \scrK 2. Since xk \in prox\mu  - 1
k (\lambda g)(x

k - \mu  - 1
k \nabla \psi (xk)), by [36, Exercise

8.8], we have 0\in \nabla \psi (xk) + \mu k(xk  - xk) + \lambda \partial g(xk), which implies that

\nabla \psi (xk) - \nabla \psi (xk) + \mu k(xk  - xk)\in \partial F (xk).

Recall that \nabla \psi is Lipschitz continuous on the compact set \scrL F (x0) with Lipschitz
constant not more than \widehat L, which is the same as the one appearing in the proof of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1695

Lemma 3.3(iii). Then, \| \nabla \psi (xk)  - \nabla \psi (xk)\| \leq \widehat L\| xk  - xk\| . Together with the last
inclusion, using \mu k < \widetilde L by Lemma 3.3(iii) yields that

\| \nabla FSk
(uk)\| = dist(0, \partial F (xk))\leq (\widehat L+ \widetilde L)\| xk  - xk\| .(4.11)

Let C be a bounded open convex set containing \scrL F (x0). By Lemma 3.3(i) and
the convexity of C, uk + \tau (uk - uk) \in C for all \tau \in [0,1]. Recall that k \in \scrK 2.
Hence, xk \not = 0 and sign(uk) = sign(uk). Together with Lemma 3.5(i), for all \tau \in 
[0,1], we have | uk + \tau (uk - uk)| min \geq \nu and sign(uk + \tau (uk - uk)) = sign(uk). By
Lemma 2.6(ii), there exists a constant \widehat c2 > 0 (independent of k) such that for all
\tau \in [0,1], \| \nabla 2FSk

(uk+\tau (uk - uk))\| \leq \widehat c2. Note that dist(0, \partial F (xk)) = \| rk\| and

\| rk\| = \| rk - \nabla FSk
(uk) +\nabla FSk

(uk)\| \leq \| rk - \nabla FSk
(uk)\| + \| \nabla FSk

(uk)\| 

\leq 
\int 1

0

\| \nabla 2FSk
(uk+\tau (uk - uk))(uk - uk)\| d\tau + \| \nabla FSk

(uk)\| 

\leq \widehat c2\| uk - uk\| + \| \nabla FSk
(uk)\| \leq 

\bigl[ 
(\widehat L+ \widetilde L) + \widehat c2\bigr] \| xk  - xk\| ,(4.12)

where the last inequality is due to (4.11). The first part of the conclusions follows.
From (4.12), Lemma 4.3(ii), and (4.1), we obtain the second part.

To achieve the linear convergence rate of the objective sequence \{ F (xk)\} k\in \BbbN , we
first argue that for all sufficiently large k, the support of the iterate xk is stable, and
k \in \scrK 2. The latter means that after a finite number of iterates, Algorithm 3.2 reduces
to a regularized Newton method for minimizing the function FS\ast , where S\ast is defined
below in Lemma 4.5(i).

Lemma 4.5. Let \{ xk\} k\in \BbbN and \{ xk\} k\in \BbbN be the sequences given by Algorithm 3.2.
Then, under Assumption 1, the following assertions hold.

(i) There exists an index set S\ast \subseteq [n] such that for all sufficiently large k,

supp(xk) = supp(xk) = S\ast ;

furthermore, every cluster point x\ast of \{ xk\} k\in \BbbN satisfies supp(x\ast ) = S\ast .
(ii) There exists \widehat k \in \BbbN such that for all k\geq \widehat k, k \in \scrK 2.

Proof. (i) First we argue that | xk| min >
\nu 
2 for all sufficiently large k. Indeed, by

Lemma 3.5(i), if k  - 1 \in \scrK 1, i.e., xk = xk - 1, we have | xk| min \geq \nu . If k  - 1 \in \scrK 2,
we have | xk - 1| min \geq \nu , while by Lemma 4.4, for all sufficiently large k, \| dk - 1\| < \nu 

3 ,
which along with xk = xk - 1+ \alpha kd

k, \alpha k \in (0,1], dkSc
k

= 0, and | xk - 1| min \geq \nu implies

that | xk| min >
\nu 
2 . Next we argue that for all sufficiently large k, supp(xk) = supp(xk).

Indeed, by Lemma 4.3(ii), for all sufficiently large k, \| xk  - xk\| < \nu 
3 . Hence, for

every i \in supp(xk), we have | xki | \geq | xki |  - | xki  - xki | > \nu 
2  - 

\nu 
3 > 0, which implies that

supp(xk) \subseteq supp(xk); and for every i \in supp(xk), we have | xki | > | xki |  - \nu 
3 > 0, which

implies that supp(xk) \subseteq supp(xk). Thus, supp(xk) = supp(xk) holds for all k large
enough. It remains to show that for all k large enough, supp(xk) = supp(xk+1). For
all sufficiently large k \in \scrK 1, the conclusion holds since xk+1 = xk and supp(xk) =
supp(xk). For all sufficiently large k \in \scrK 2, by Lemma 4.4, we have \| dk\| < \nu 

3 and then
\| xk+1 - xk\| < \nu 

3 , and the conclusion follows by the above arguments. To sum up,
supp(xk+1) = supp(xk) = supp(xk) holds for all sufficiently large k. Since | xk| min >

\nu 
2

for all sufficiently large k, following a similar arguments as above we have every cluster
point x\ast of \{ xk\} satisfies supp(x\ast ) = S\ast .
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1696 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

(ii) By the proof of part (i), we have | xk| min > \nu 
2 for all sufficiently large k.

Together with Lemmas 4.3(ii) and 3.5(iii), the two conditions in (3.3) are satisfied for
all k large enough, so there exists \widehat k \in \BbbN such that for all k\geq \widehat k, k \in \scrK 2.

Now we are in a position to achieve the Q-linear convergence rate of the objective
value sequence \{ F (xk)\} k\in \BbbN under the KL property of the exponent 1/2 of F .

Proposition 4.6. Suppose that Assumption 1 holds and that F is a KL function
of exponent 1/2. Then \{ F (xk)\} k\in \BbbN converges to some value F \ast in a Q-linear rate.

Proof. If there exists some k \in \BbbN such that F (xk) = F (xk+1), by Lemma 4.3(i),
we have xk = xk, and the stopping condition in (S2) is satisfied, so \{ xk\} k\in \BbbN converges
to an L-type stationary point within a finite number of steps. Hence, it suffices to
consider that F (xk)>F (xk+1) for all k \in \BbbN . Since F is assumed to be a KL function
of exponent 1/2, by [10, Lemma 6] and Lemma 3.3(ii), there exist \varepsilon > 0 and \eta > 0 such
that for all x\in \Omega (x0) and all z \in \{ x\in \BbbR n | dist(x,\Omega (x0))< \varepsilon \} \cap [F (x)<F <F (x) +\eta ],

\varphi \prime (F (z) - F (x))dist(0, \partial F (z))\geq 1,(4.13)

where \varphi (t) = c
\surd 
t for some c > 0. Let x\ast be a cluster point of \{ xk\} k\in \BbbN . Clearly,

limk\rightarrow \infty dist(xk,\Omega (x0)) = 0. Along with limk\rightarrow \infty F (xk) = F (x\ast ), for all sufficiently
large k, xk \in \{ x\in \BbbR n | dist(x,\Omega (x0))< \varepsilon \} \cap [F (x\ast )<F <F (x\ast ) + \eta ], and then

c

2
(F (xk) - F (x\ast )) - 1/2dist(0, \partial F (xk))\geq 1.

Let \Delta k = F (xk) - F (x\ast ) for each k. By Lemma 4.5(ii), when k > \widehat k, k \in \scrK 2. Com-
bining the above inequality with Lemma 4.4 yields that for all k > \widehat k (if necessary by
increasing \widehat k),

4c - 2 \leq 
\bigl[ 
(\Delta k) - 1/2dist(0, \partial F (xk))

\bigr] 2 \leq \widetilde c22(\Delta k) - 1\| xk  - xk\| 2

\leq 2\widetilde c22\widehat \gamma  - 1(\Delta k) - 1[F (xk) - F (xk+1)] = 2\widetilde c22\widehat \gamma  - 1(\Delta k) - 1(\Delta k  - \Delta k+1),

where the third inequality is due to Lemma 4.3(i). The last inequality along with
0 < \Delta k+1 < \Delta k implies that \rho = 1  - 2\widehat \gamma 

(c\widetilde c2)2 \in (0,1). Then, for all k \geq \widehat k, we have

\Delta k+1 \leq \rho \Delta k, so that \{ F (xk)\} k\in \BbbN converges to F \ast = F (x\ast ) at a Q-linear rate.

4.2. Convergence analysis of iterate sequence. In order to achieve the con-
vergence of the sequence \{ xk\} k\in \BbbN , we also need the following assumption.

Assumption 2. It holds that lim inf\scrK 2\ni k\rightarrow \infty 
 - \langle rk,dkSk

\rangle 
\| rk\| \| dkSk

\| > 0.

Assumption 2 is very common in the global convergence analysis of line search
Newton-type methods (see, e.g., [34]), which essentially requires that the angle be-
tween rk and dkSk

is sufficiently away from \pi /2 and close to \pi . Note that the early
global convergence analysis of Newton-type methods aims to achieve limk\rightarrow \infty \| rk\| = 0
under Assumption 2. Here, under this assumption, we establish the convergence of
the whole iterate sequence for the KL function F .

Theorem 4.7. Suppose Assumptions 1 and 2 hold. The following assertions
hold.

(i) If F is a KL function, then
\sum \infty 
k=1 \| xk+1 - xk\| <\infty , and consequently, \{ xk\} k\in \BbbN 

converges to an L-type stationary point of (1.1), say x\ast .
(ii) If F is a KL function of exponent 1/2 at x\ast , then \{ xk\} k\in \BbbN converges R-

linearly to x\ast .
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1697

Proof. (i) By the proof of Proposition 4.6, it suffices to consider the case where
F (xk) > F (xk+1) for all k. Let x\ast be a cluster point of \{ xk\} k\in \BbbN . Following an
argument similar to the proof of Proposition 4.6, we have, for sufficiently large k,

\varphi \prime (F (xk) - F (x\ast ))dist(0, \partial F (xk))\geq 1.(4.14)

By Assumption 2, there exists cmin > 0 such that for all sufficiently large k \in \scrK 2,

 - \langle rk, dkSk
\rangle > cmin\| rk\| \| dkSk

\| .(4.15)

By Lemma 4.5, there exists \widehat k \in \BbbN such that for all k \geq \widehat k, k \in \scrK 2 and Sk = Sk+1.
Together with (3.4) and (4.15), if necessary by increasing \widehat k, for all k\geq \widehat k, we have

F (xk) - F (xk+1)

\| rk\| 
\geq 
 - \varrho \alpha k\langle rk, dkSk

\rangle 
\| rk\| 

\geq \varrho cmin\| \alpha kdkSk
\| = \varrho cmin\| xk+1  - xk\| .(4.16)

In addition, from the concavity of \varphi on [0, \eta ), for all k > \widehat k, it holds that

\varphi (F (xk) - F (x\ast )) - \varphi (F (xk+1) - F (x\ast ))\geq \varphi \prime (F (xk) - F (x\ast ))(F (xk) - F (xk+1)).

(4.17)

For each k, let \=\Delta k := \varphi (F (xk) - F (x\ast )). From (4.14) and (4.16)--(4.17), if possibe
enlarging \widehat k, we have, for all k\geq \widehat k,

\=\Delta k  - \=\Delta k+1 \geq \varphi \prime (F (xk) - F (x\ast ))(F (xk) - F (xk+1))

\geq F (xk) - F (xk+1)

dist(0, \partial F (xk))
=
F (xk) - F (xk+1)

\| rk\| 
\geq \varrho cmin\| xk+1  - xk\| .

Summing this inequality from \widehat k to any k > \widehat k yields that

k\sum 
j=\widehat k
\| xj+1 - xj\| \leq 1

\varrho cmin

k\sum 
j=\widehat k

( \=\Delta j - \=\Delta j+1) =
1

\varrho cmin
( \=\Delta \widehat k - \=\Delta k+1)\leq 1

\varrho cmin

\=\Delta \widehat k.
Passing the limit k\rightarrow \infty to this inequality yields that

\sum \infty 
j=\widehat k \| xj+1 - xj\| <\infty . Thus

the sequence \{ xk\} converges. By Lemma 4.3(iii), the desired result then follows.
(ii) For each k \in \BbbN , write \Delta k := F (xk) - F (x\ast ). From Lemma 4.5 and the proof

of Proposition 4.6, there exists \widehat k such that for all k > \widehat k, k \in \scrK 2 and \Delta k+1 \leq \rho \Delta k.
From this recursion formula,

F (xk) - F (x\ast )\leq \Delta \widehat k\rho k - \widehat k.(4.18)

By (4.1) and Lemma 4.4, for all k \geq \widehat k, \| dk\| \leq b - 1
2 \widetilde c1 - \sigma 2 \| xk  - xk\| 1 - \sigma . Together with

part (i), Lemma 4.3(i), and (4.18), for all k\geq \widehat k it holds that

\| xk  - x\ast \| \leq 
\infty \sum 
j=k

\| xj  - xj+1\| =

\infty \sum 
j=k

\alpha j\| dj\| \leq 
\infty \sum 
j=k

\| dj\| \leq b - 1
2 \widetilde c1 - \sigma 2

\infty \sum 
j=k

\| xj  - xj\| 1 - \sigma 

\leq b - 1
2 \widetilde c1 - \sigma 2

\infty \sum 
j=k

\Bigl( 2(F (xj) - F (xj+1))\widehat \gamma \Bigr) 1 - \sigma 
2

\leq b - 1
2 \widetilde c1 - \sigma 2

\biggl( 
2\Delta \widehat k\widehat \gamma \rho \widehat k

\biggr) 1 - \sigma 
2

\infty \sum 
j=k

\rho 
(1 - \sigma )j

2 \leq 
\biggl( 

2\Delta \widehat k\widehat \gamma \rho \widehat k
\biggr) 1 - \sigma 

2 \widetilde c1 - \sigma 2

b2(1 - \rho 1/4)
\rho k/4.

This means that the sequence \{ xk\} k\in \BbbN converges to x\ast in an R-linear rate.
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1698 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

By Proposition 2.9, to check the KL property with exponent 1/2 of F at x\ast , it
suffices to verify that of FS\ast at x\ast S\ast 

, and due to the sufficient smoothness of FS\ast at
x\ast S\ast 

, the verification of the latter is easier than that of the former. By [51, Lemma 3],
the nonsingularity of \nabla 2FS\ast (x\ast S\ast 

) implies the KL property of exponent 1/2 for FS\ast at
x\ast S\ast 

.
By Theorem 4.7, if Assumptions 1--2 hold and F is a KL function, the sequence

\{ xk\} k\in \BbbN is convergent. In what follows, we denote its limit by x\ast . By Lemma 4.5(i),
supp(x\ast ) = S\ast . Write

u\ast := x\ast S\ast 
and \scrU \ast :=

\bigl\{ 
u\in \BbbR | S\ast | | \nabla FS\ast (u) = 0,\nabla 2FS\ast (u)\succeq 0

\bigr\} 
.

To achieve the superlinear convergence rate of \{ xk\} k\in \BbbN , we need to bound \zeta k involved
in the matrix Gk by dist(uk,\scrU \ast ) as in the following lemma.

Lemma 4.8. Suppose that Assumptions 1 and 2 hold, and that F is a KL function.
If \nabla 2FS\ast (u\ast ) \succeq 0, then there exists cH > 0 such that for all sufficiently large k,
\zeta k \leq cHdist(uk,\scrU \ast ).

Proof. By the proof of Lemma 4.5(i), we have | x\ast | min \geq \nu 
2 . Fix any \varepsilon < \nu 

4 . From

Lemma 4.5 and Theorem 4.7(i), there exists \widetilde k \in \BbbN such that for all k > \widetilde k, k \in \scrK 2,
Sk = S\ast , and uk \in \BbbB (u\ast , \varepsilon /2). By following the proof of Lemma 4.2, there exists
cH > 0 such that for any u\prime , u\prime \prime \in \BbbB (u\ast , \varepsilon ),

\| \nabla 2FS\ast (u\prime ) - \nabla 2FS\ast (u\prime \prime )\| \leq cH\| u\prime  - u\prime \prime \| .(4.19)

Fix any k > \widetilde k. When \lambda min(\nabla 2FSk
(uk)) > 0, the desired result is trivial, so it suffices

to consider the case \lambda min(\nabla 2FSk
(uk)) \leq 0. Pick any \widetilde uk \in \Pi \scrU \ast (uk). Since u\ast \in 

\scrU \ast , one can deduce that \| \widetilde uk  - u\ast \| \leq \| \widetilde uk  - uk\| + \| uk  - u\ast \| \leq 2\| uk  - u\ast \| \leq \varepsilon . If
\lambda min(\nabla 2FSk

(\widetilde uk)) = 0, then by Weyl's inequality [9, Corollary III.2.6] we have \zeta k =
 - \lambda min(\nabla 2FSk

(uk)) \leq \| \nabla 2FSk
(\widetilde uk) - \nabla 2FSk

(uk)\| , which together with (4.19) implies
that \zeta k \leq cH\| uk - \widetilde uk\| = cHdist(uk,\scrU \ast ). Now suppose that \lambda min(\nabla 2FSk

(\widetilde uk))> 0. Let
\phi k(t) := \lambda min[\nabla 2FSk

(uk+t(\widetilde uk - uk))] for t \geq 0. Clearly, \phi k is continuous on an open
interval containing [0,1]. Note that \phi k(0)< 0 and \phi k(1)> 0. There necessarily exists
tk \in (0,1) such that \phi k(tk) = 0. Consequently, by Weyl's inequality,

\zeta k =
\bigl[ 
\lambda min(\nabla 2FSk

(uk+tk(\widetilde uk - uk))) - \lambda min(\nabla 2FSk
(uk))

\bigr] 
\leq \| \nabla 2FSk

(uk+tk(\widetilde uk - uk)) - \nabla 2FSk
(uk)\| \leq cH\| \widetilde uk - uk\| .

This shows that the desired result holds. The proof is completed.

Ueda and Yamashita obtained a similar result in [44, Lemma 5.2] under the
condition that \scrU \ast is the set of local minima of FS\ast . Here, we remove the local
optimality of \scrU \ast and provide a simpler proof. Based on this result, we establish the
superlinear convergence rate of \{ xk\} k\in \BbbN under a local error bound condition.

Theorem 4.9. Suppose that Assumptions 1 and 2 hold and that F is a KL
function. If \nabla 2FS\ast (u\ast ) \succeq 0 and there exist \delta > 0 and \kappa 1 > 0 such that for all
u\in \BbbB (u\ast , \delta )

\kappa 1dist(u,\scrU \ast )\leq \| \nabla FS\ast (u)\| ,(4.20)

then the sequence \{ xk\} k\in \BbbN converges to x\ast in a Q-superlinear rate of order 1+\sigma .
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1699

Proof. By Theorem 4.7 and Lemma 4.5, there exists \widetilde k \in \BbbN such that for all k\geq \widetilde k,
k \in \scrK 2 and Sk = S\ast . By comparing the iterate steps of Algorithm 3.2 for k \geq \widetilde k with
those of E-RNM proposed in [44], we conclude that the sequence \{ uk\} k\geq \widetilde k is the same
as the one generated by E-RNM of [44]. By Lemma 4.8, there exists a constant cH > 0
such that for all k \geq \widetilde k (if necessary by increasing \widetilde k), \zeta k \leq cHdist(uk,\scrU \ast ). Then, by
[44, Theorem 5.1] dist(uk,\scrU \ast ) converges to 0 superlinearly with rate 1+\sigma .

Write \scrX \ast := \{ x \in \BbbR n | xS\ast \in \scrU \ast , xSc
\ast 

= 0\} . For all k \geq \widetilde k, from Sk = S\ast , clearly,
dist(xk,\scrX \ast ) = dist(uk,\scrU \ast ). Consequently, dist(xk,\scrX \ast ) converges to 0 superlinearly
with rate 1+\sigma , i.e., for all k\geq \widetilde k (if necessary by enlarging \widetilde k),

dist(xk+1,\scrX \ast ) =O([dist(xk,\scrX \ast )]1+\sigma ).(4.21)

Also, by [44, Lemma 5.3] there exists a constant c0 > 0 such that for all k \geq \widetilde k (if
necessary by increasing \widetilde k),

\| dkSk
\| = \| dkS\ast 

\| \leq c0dist(uk,\scrU \ast ) = c0dist(xk,\scrX \ast ).(4.22)

For each k\geq \widetilde k, pick any \widetilde xk \in \Pi \scrX \ast (xk). By the definition of \scrX \ast , supp(\widetilde xk)\subseteq S\ast ; while
from limk\rightarrow \infty xk = x\ast , we have supp(\widetilde xk)\supseteq S\ast for all k\geq \widetilde k (if necessary by increasing\widetilde k). Then, for all k \geq \widetilde k, supp(\widetilde xk) = S\ast . In addition, by (4.21) there exists \rho \in (0,1)
such that dist(xk+1,\scrX \ast ) \leq \rho dist(xk,\scrX \ast ) for all k > \widetilde k. Together with (4.22), for all
k\geq \widetilde k it holds that

\| xk  - x\ast \| \leq 
\infty \sum 
j=k

\| xj - xj+1\| \leq 
\infty \sum 
j=k

\| djSj
\| \leq c0

\infty \sum 
j=k

dist(xj ,\scrX \ast )

< c0

\left(  \infty \sum 
j=k

\rho j - k

\right)  dist(xk,\scrX \ast ) =
c0

1 - \rho 
dist(xk,\scrX \ast ).

By combining this inequality and (4.21), it follows that for all k > \widetilde k,

\| xk  - x\ast \| \leq c0
1 - \rho 

dist(xk,\scrX \ast ) =O([dist(xk - 1,\scrX \ast )]1+\sigma )\leq O(\| xk - 1 - x\ast \| 1+\sigma ).

The desired conclusion then follows. The proof is completed.

Remark 4.10. (a) The local error bound condition (4.20) is a little stronger than
the metric subregularity of\nabla FS\ast at u\ast for the origin because \scrU \ast may be a strict subset
of \nabla F - 1

S\ast 
(0), but it does not require the isolatedness of u\ast and its local optimality.

(b) The proof of the superlinear convergence of E-RNM in [44] relies on Assump-
tion 5.1 therein, which requires the local optimality of x\ast . After checking its proof,
we found that the local optimality of x\ast was only used to achieve [44, Lemma 5.2].
Thus, by following the same arguments as those for Lemma 4.8, the local optimality
of x\ast in their Assumption 5.1 can be removed.

To conclude this section, we take a closer look at Assumption 2. The following
lemma shows that if the regularized Newton direction dk from Step 2 satisfies condition
(3.6) for all k \in \scrK 2, Assumption 2 necessarily holds. Together with Example 1 later,
we conclude that Assumption 2 is weaker than condition (3.6) for our regularized
Newton direction dk.

Lemma 4.11. Suppose that Assumption 1 holds. If dk yielded by Step 2 of Algo-
rithm 3.2 satisfies condition (3.6) for all k \in \scrK 2, then Assumption 2 holds.
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1700 YUQIA WU, SHAOHUA PAN, AND XIAOQI YANG

Proof. By Lemma 3.3, \{ xk\} k\in \BbbN is bounded. Let x\ast be an arbitrary accumulation
point of \{ xk\} k\in \BbbN . Then, there exists a subsequence \{ xkj\} j\in \BbbN with kj \in \scrK 2 such
that limj\rightarrow \infty xkj = x\ast . By Lemma 4.5, for all sufficiently large j \in \BbbN , supp(xkj ) =
supp(x\ast ) = S\ast . Write s = | S\ast | . From the continuity, the sequence \{ Gkj\} j\in \BbbN is
convergent and let G\ast = limj\rightarrow \infty Gkj . Clearly, G\ast is an s \times s positive semidefinite
matrix. Let \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda s \geq 0 be the eigenvalues of G\ast . For each j \in \BbbN , let
\lambda 
kj
1 \geq \lambda 

kj
2 \geq \cdot \cdot \cdot \geq \lambda 

kj
s > 0 be the eigenvalues of the s\times s positive definite matrix Gkj .

Then, for each i\in [s], limj\rightarrow \infty \lambda 
kj
i = \lambda i.

Case 1. \lambda s > 0. Now the matrix G\ast is positive definite. Also, for all sufficiently
large j \in \BbbN , \lambda 

kj
s > \lambda s

2 and 0<\lambda 
kj
1 \leq 3\lambda 1

2 . Consequently, for all sufficiently large j \in \BbbN ,

 - \langle rkj , dkjSkj
\rangle 

\| rkj\| \| dkjSkj
\| 

=
\langle GkjdkjSkj

, d
kj
Skj
\rangle 

\| GkjdkjSkj
\| \| dkjSkj

\| 
\geq 
\lambda 
kj
s \| dkjSkj

\| 2

\lambda 
kj
1 \| d

kj
Skj
\| 2
\geq \lambda s

3\lambda 1
> 0.(4.23)

Case 2. \lambda s = 0. Now there exists t\in [s] such that \lambda i = 0 for i= t, . . . , s and \lambda i > 0

for i = 1, . . . , t  - 1. Fix any 0 < \varepsilon < min\{ \varpi 8\widehat c , \varpi 
4\widehat c\surd s - t+1

\} . From limj\rightarrow \infty \lambda 
kj
i = \lambda i for

each i\in [s] and Gkj \succ 0 for each j \in \BbbN , for all sufficiently large j \in \BbbN ,

0<\lambda 
kj
i < \varepsilon for i= t, . . . , s and

1

2
\lambda i <\lambda 

kj
i <

3

2
\lambda i for i= 1, . . . , t - 1.(4.24)

We claim that t > 1. If not, t = 1, by Lemma 4.1(ii), \| dkj\| = \| (Gkj ) - 1rkj\| \geq 
\| rkj \| 
\lambda 
kj
1

\geq \varpi 

4\lambda 
kj
1

\| xkj  - xkj\| \geq \varpi 
4\varepsilon \| x

kj  - xkj\| , which along with \varepsilon \leq \varpi 
8\widehat c implies that

\| dkj\| > 2\widehat c\| xkj  - xkj\| , a contradiction to condition (3.6). Now let Gkj have the

eigenvalue decomposition given by Gkj = (V kj )\BbbT diag(\lambda 
kj
1 , . . . , \lambda 

kj
s )V kj , where V kj is

an s\times s orthogonal matrix. For each j \in \BbbN , since the column vectors v
kj
1 , . . . , v

kj
s of

the matrix V kj are linearly independent, there exist \gamma 
kj
1 , . . . , \gamma 

kj
s \in \BbbR such that

rkj

\| rkj\| 
=

s\sum 
i=1

\gamma 
kj
i v

kj
i with

s\sum 
i=1

(\gamma 
kj
i )2 = 1.(4.25)

Together with the definition of d
kj
Skj

, it follows that

d
kj
Skj

\| rkj\| 
=
 - (Gkj ) - 1rkj

\| rkj\| 
= - 

s\sum 
i=1

\gamma 
kj
i

\lambda 
kj
i

v
kj
i .(4.26)

By combining condition (3.6) and Lemma 4.1(ii), for each j \in \BbbN , we have

\| dkjSkj
\| = \| dkj\| \leq (4\widehat c/\varpi )\| rkj\| ,(4.27)

which by (4.26) means that
\sum s
i=1

\bigl( 
\gamma 
kj
i /\lambda 

kj
i

\bigr) 2 \leq 16\widehat c2
\varpi 2 . This by (4.24) implies that for all

sufficiently large j \in \BbbN , \gamma 
kj
i \leq 4\varepsilon \widehat c

\varpi with i \in \{ t, . . . , s\} . Together with
\sum s
i=1(\gamma 

kj
i )2 = 1,

we obtain that
\sum t - 1
i=1(\gamma 

kj
i )2 \geq 1 - 16(s - t+1)\varepsilon 2\widehat c2

\varpi 2 and then for all sufficiently large j \in \BbbN ,

there exists lj \in \{ 1, . . . , t - 1\} such that (\gamma 
kj
lj

)2 \geq \varpi 2 - 16(s - t+1)\varepsilon 2\widehat c2
\varpi 2(t - 1) . Thus, for all

sufficiently large j \in \BbbN , it follows from (4.25)--(4.27) that

 - \langle rkj , dkjSkj
\rangle 

\| rkj\| \| dkjSkj
\| 
\geq \varpi 

4\widehat c
s\sum 
i=1

(\gamma 
kj
i )2

\lambda 
kj
i

\geq 
\varpi (\gamma 

kj
lj

)2

4\widehat c\lambda kjlj \geq \varpi 2  - 16(s - t+ 1)\varepsilon 2\widehat c2
6\widehat c\lambda lj\varpi (t - 1)

> 0,
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HpgSRN FOR \ell q-NORM COMPOSITE OPTIMIZATION 1701

where the third inequality is also using \lambda 
kj
l \leq 

3
2\lambda l by (4.24), and the last one is by

0< \varepsilon < \varpi 
4\widehat c\surd s - t+1

. From the last inequality and (4.23), we obtain the conclusion.

The example below shows that the inverse of Lemma 4.11 does not hold.

Example 1. Consider the problem mint\in \BbbR f(t) + | t| 12 with f defined as follows:

f(t):=

\left\{   
49
8 t

2  - 67
4 t+ 85

8 if t\in ( - \infty ,1),

(t - 2)4  - t 1
2 if t\in [1,4),

1537
64 t2  - 5132

32 t+ 1085
4 if t\in [4,\infty ).

We use Algorithm 3.2 with \widetilde \tau = 2, \widetilde \alpha = 1, \mu min = 40, \widetilde L = 49 and \sigma = 1
3 , b2 = 1, \varrho =

10 - 4, \beta = 1
2 , t

0 = 2.1 to seek a critical point of this problem. From the iterates
of Algorithm 3.2, the generated sequence \{ tk\} satisfies limt\rightarrow \infty tk = 2. When tk

is sufficiently close to 2, all the iterates are from the regularized Newton step and

| dk| = | 4(tk - 2)3

12(tk - 2)2+4
1
3 (tk - 2)

| = O(| tk  - 2| 2), while by Lemmas 4.1(ii) and 4.4 we have

| tk  - tk| = O(| f \prime (tk)| ) = O(| tk  - 2| 3). Then, | tk  - tk| = o(| dk| ) and the condition in
(3.6) does not hold for all sufficiently large k. However, Assumption 2 always holds

because  - dkf \prime (tk)
| dk| | f \prime (tk)| = 1 for all k.

5. Numerical experiments. In this section we apply HpgSRN to solving the
\ell q-norm regularized linear and logistic regression problems on real data, which re-
spectively take the form of (1.1) with f = f1 or f2, where f1(z) := 1

2\| z  - b\| 
2 and

f2(z):=
\sum m
i=1 log(1+exp( - bizi)) for z \in \BbbR m. Here, b \in \BbbR m is a given vector. Clearly,

such f satisfies Assumption 1 and the associated F is a KL function. All numerical
tests are conducted on a desktop running in MATLAB R2020b on a 64-bit Windows
System with an Intel(R) Core(TM) i7-10700 CPU 2.90 GHz and 32.0 GB RAM. The
MATLAB code is available at https://github.com/YuqiaWU/HpgSRN.

5.1. Implementation of HpgSRN. In Algorithm 3.2, we set \mu 0 = 1 and when
k\geq 1, \mu k is chosen by the Barzilai--Borwein (BB) rule [5], that is,

\mu k = max

\biggl\{ 
\mu min,min

\biggl\{ 
\mu max,

\langle xk - xk - 1,\nabla \psi (xk) - \nabla \psi (xk - 1)\rangle 
\| xk - xk - 1\| 2

\biggr\} \biggr\} 
with \mu min=10 - 20 and \mu max=1020. For each k \in \scrK 2, we call the MATLAB function eigs
to compute the approximate smallest eigenvalue of \nabla 2FSk

(uk), which requires about
O(| Sk| 2) flops by [40]. Since | Sk| is usually much smaller than n, this computation
cost is not expensive. In addition, we choose

\widetilde \tau = 10, \widetilde \alpha = 10 - 8, \sigma = 0.5, b1 = 1 + 10 - 8, b2 = 10 - 3, \varrho = 10 - 4, \beta = 2.

During the testing, we solve the linear system in (S4) via a direct method if | Sk| < 500
and otherwise a conjugate gradient method. The direct method for computing the
inverse of the Gk needs about O(| Sk| 3) flops, so that HpgSRN is well adapted to high
dimensional problems if | Sk| is small. Our preliminary tests indicate that (1.1) with
q= 1/2 usually has better performance than (1.1) with other q \in (0,1) in terms of the
CPU time and the sparsity. This coincides with the conclusion in [21, 48]. Inspired
by this, we choose q = 1/2 for the subsequent numerical testing. The parameter \lambda in
(1.1) is specified in the corresponding experiments.

We compare the performance of HpgSRN with that of ZeroFPR [43]. The code
package of ZeroFPR is downloaded from http://github.com/kul-forbes/ForBES. Con-
sider that the iterate steps of PG method with a monotone line search (PGls), a
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monotone version of SpaRSA [45], are the same as those of Algorithm 3.1 with the
above BB rule for updating \mu k. We also compare the performance of HpgSRN with
that of PGls to check the effect of the additional subspace regularized Newton step
on HpgSRN. The parameters of PGls are chosen to be the same as those involved
in Step 1 of HpgSRN except \widetilde \tau = 2. For the three algorithms, we adopt the same
stopping criterion \gamma \| xk  - prox\gamma  - 1(\lambda g)(x

k  - \gamma  - 1\nabla \psi (xk))\| \infty < 10 - 3 or k \geq 50000,
where \gamma = L/0.95 and L is an estimation of the Lipschitz constant of \nabla \psi (\cdot ). It is
well known that the Lipschitz constants of A\BbbT \nabla f1(A\cdot ) and A\BbbT \nabla f2(A\cdot ) are \| A\| 2 and
0.25\| A\| 2, respectively. We use the following MATLAB code to estimate the spectral
norm of A:

Amap = @(x) A * x; ATmap = @(x) A'*x; AATmap = @(x) Amap(ATmap(x));
eigsopt.issym= 1; L= eigs(AATmap, m, 1, 'LA', eigsopt).

As in ZeroFPR, we choose x0 = 0 as the starting point. Although x0 = 0 is a local
minimizer of F and hence an L-type stationary point by [1, Theorem 4.4], it is not a
good one in terms of objective value; see the difference between F (0) and Fval, the
objective value of the output, for each example in Tables 1 and 2. It is worth noting
that equipped with such an initial point, Algorithm 3.2 may stop in the first iteration,
and in this case, x0 is regarded as an acceptable solution.

In the next two subsections, we will conduct the experiments on real data and
report the numerical results including the number of iterations (Iter\#), the CPU
times in seconds (Time), the objective function values (Fval), and the cardinality of
the outputs (Nnz). In particular, to check the effect of the regularized Newton steps
in HpgSRN, we record its number of iterations in the form M(N), where M means
the total number of iterates and N means the number of regularized Newton steps.

5.2. \ell \bfitq -norm regularized linear regression. We conduct the experiments
for the \ell q-norm regularized linear regressions with (A,b) from LIBSVM datasets (see
https://www.csie.ntu.edu.tw). As suggested in [23], for housing and space ga, we
expand their original features with polynomial basis functions. The second column
of Table 1 lists the values of \| A\| 2 and F (0), which reflect the condition number of
the Hessian matrix of the loss function \psi and the quality of the starting point x0

respectively. For each dataset, we solve (1.1) associated to f1 and \lambda = \lambda c\| A\BbbT b\| \infty for
two different \lambda c's with the three solvers.

From Table 1, we see that for all test examples HpgSRN spends much less time
than ZeroFPR and PGls. For example, for log1p.E2006.train with \lambda c = 10 - 5,
ZeroFPR and PGls require more than one hour to yield an output, but HpgSRN
returns an output within only 314s. In terms of the objective function value and
sparsity, the outputs of HpgSRN are comparable with those of ZeroFPR and PGls,
and even in some examples, these outputs of HpgSRN are better. For example, for
housing7 with both \lambda c's the objective function values of HpgSRN are better than
those of ZeroFPR and PGls, and the sparsity of HpgSRN is much less.

5.3. \ell \bfitq -norm regularized logistic regression. We conduct the experiments
for the \ell q-norm regularized logistic regressions with (A,b) from LIBSVM datasets.
For each data, we solve (1.1) associated to f2 and \lambda = \lambda cmax1\leq j\leq n \| Aj\| 1 for two
different \lambda c's with the three solvers. Table 2 records their numerical results. We see
that in terms of CPU time, HpgSRN is still the best one among the three solvers;
in terms of the quality of the other outputs, HpgSRN has a comparable performance
with ZeroFPR and PGls.
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Table 1
Numerical comparisons on \ell \bfitq -norm regularized linear regressions with LIBSVM datasets.

Data (m,n) \| A\| 2F (0) \lambda c Index HpgSRN ZeroFPR PGls

Iter\# 17(5) 43 180

10 - 3 Time 0.45 0.98 0.93

Fval 36.47 37.24 37.15
space ga9 4.01e3 Nnz 7 7 6

(3107,5505) 5.77e3 Iter\# 230(64) 476 3058

10 - 4 Time 2.26 9.03 16.48

Fval 20.93 20.31 21.57
Nnz 15 19 15

Iter\# 639(157) 4164 25133

10 - 3 Time 14.45 2.13e2 4.08e2

Fval 2.25e3 2.57e3 2.56e3
housing7 3.28e5 Nnz 27 49 57

(506,77520) 1.50e5 Iter\# 1765(485) 18807 50000

10 - 4 Time 49.26 9.81e2 8.59e2

Fval 8.89e2 9.27e2 9.17e2

Nnz 82 123 135

Iter\# 3(0) 3 3

10 - 4 Time 0.03 0.25 0.03

Fval 2.45e2 2.45e2 2.45e2

E2006.test 4.79e4 Nnz 1 1 1

(3308,72812) 2.46e4 Iter\# 3(0) 4 4

10 - 5 Time 0.05 0.25 0.04
Fval 2.40e2 2.40e2 2.40e2

Nnz 1 1 1

Iter\# 3(0) 3 3

10 - 4 Time 0.09 1.06 0.09
Fval 1.22e3 1.22e3 1.22e3

E2006.train 1.91e5 Nnz 1 1 1

(16087,150348) 1.03e5 Iter\# 4(0) 4 4

10 - 5 Time 0.11 1.05 0.11
Fval 1.20e3 1.20e3 1.20e3

Nnz 1 1 1

Iter\# 372(88) 827 1416

10 - 4 Time 33.54 2.87e2 1.16e2
Fval 2.35e2 2.43e2 2.37e2

log1p.E2006.test 1.46e7 Nnz 5 4 6

(3308,1771946) 2.46e4 Iter\# 755(166) 6708 22305

10 - 5 Time 1.01e2 2.28e3 2.30e3
Fval 1.54e2 1.53e2 1.49e2
Nnz 385 460 389

Iter\# 286(58) 855 1621

10 - 4 Time 77.95 8.57e2 3.85e2

Fval 1.16e3 1.16e3 1.16e3
log1p.E2006.train 5.86e7 Nnz 7 5 4

(16087,4265669) 1.03e5 Iter\# 944(195) 5610 33112

10 - 5 Time 3.14e2 5.26e3 8.83e3

Fval 1.02e3 1.02e3 1.01e3

Nnz 141 184 155
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Table 2
Numerical comparisons on \ell q-norm regularized logistic regressions with LIBSVM datasets.

Data (m,n) \| A\| 2F (0) \lambda c Index HpgSRN ZeroFPR PGls

Iter\# 48(6) 730 94

10 - 2 Time 0.04 0.74 0.06

Fval 7.97 10.58 7.77
colon-cancer 1.94e4 Nnz 10 9 9

(62,2000) 42.98 Iter\# 94(9) 1853 175

10 - 3 Time 0.07 2.07 0.11

Fval 1.03 1.07 1.07

Nnz 11 12 12

Iter\# 65(10) 448 1193

10 - 2 Time 1.00 6.35 11.24

Fval 4.23e3 4.35e3 4.24e3
rcv1 4.48e2 Nnz 165 167 164

(20242,47236) 1.40e4 Iter\# 365(96) 2081 5536

10 - 3 Time 7.78 29.27 88.65

Fval 1.28e3 1.53e3 1.27e3
Nnz 704 741 717

Iter\# 44(6) 170 981

10 - 2 Time 2.65 36.61 53.14

Fval 9.73e3 1.04e4 9.53e3
news20 1.73e3 Nnz 51 42 50

(19996,1355191) 1.39e4 Iter\# 410(99) 1528 18538

10 - 3 Time 41.45 3.44e2 1.43e3

Fval 4.31e3 4.71e3 4.25e3

Nnz 385 371 401

To sum up, HpgSRN requires the least CPU time for all the test examples com-
pared to ZeroFPR and PGls, and for those large scale examples, HpgSRN is at least
ten times faster than ZeroFPR and PGls. The outputs of the objective function value
and the sparsity yielded by HpgSRN have a comparable even better quality. This in-
dicates that the introduction of second-order steps greatly improves the performance
of the first-order method. We also observe that for most of examples, the iterates
generated by the regularized Newton step account for about 10\%--35\% of the total
iterates.

6. Conclusion. For the \ell q-norm regularized composite problem (1.1), we pro-
posed a globally convergent regularized Newton method by exploiting the special
structures of the \ell q-norm. This is another attempt to combine a first-order method
and a second-order method while maintaining the good properties of both methods.
We not only established the convergence of the whole iterate sequence under a mild
curve-ratio condition and the KL property of F , but also achieved a superlinear con-
vergence rate under an additional local error bound condition. In particular, the local
superlinear convergence result requires neither the isolatedness of the limit point nor
its local minimum property.

Acknowledgments. The authors are grateful to the associate editor and two
reviewers for their valuable suggestions and remarks, which allowed them to improve
the original presentation of the paper.
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