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Literature Review

In many applications, the underlying data usually can be represented
approximately by a linear system

Ax = b + ε.

 !
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Literature Review

The sparse optimization problem can be modeled as

min ‖x‖0

s.t. ‖Ax − b‖2 ≤ ε.

The `q regularization model (0 ≤ q ≤ 1):

minx∈Rn ‖Ax − b‖2
2 + λ‖x‖q

q, where ‖x‖q =
(∑n

i=1 |xi |q
)1/q

.

Main questions:

1 How far is the solution of the regularization problem from that of the
original sparse optimization problem?

2 How to design the efficient numerical algorithms for the `1

regularization problem?

3 How to employ the sparse optimization technique to application fields.
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Literature Review

The `1 regularization model has attracted much attention and has
been accepted as a most useful tool for the sparse optimization
problem, which is widely applied in compressive sensing, image
science, machine learning, system biology, etc.

Recovery bound for `1 regularization:

‖x∗(`1)− x̄‖2
2 = O(λ2s),

under the assumption of restricted isometry property (RIP) or
restricted eigenvalue condition (REC).
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Literature Review

Existing Algorithms

`1 regularization model:

`1 Magic [Candes, Romberg and Tao 2006]

LARs [Efron, Hastie, Johnstone and Tibshirani 2004]

GPSR and SpaRSA [Figueiredo, Nowak and Wright 2007,2009]

ISTA [Daubechies, Defrise and De Mol 2004], APG [Nesterov 2013],
FISTA [Beck and Teboulle 2009], PGH [Xiao and Zhang 2013]

ADMM [Yang and Zhang 2011; He and Yuan 2012,2013]

`q regularization model:

Reweight scheme [Chartrand 2007,2008; Lai and Yin 2012,2013]

Smoothing approach [Chen and Ye, 2010,2012]

IHTA (Half) [Xu et al. 2012]

`0 regularization model:

Reweight `1 [Candes, Wakin and Boyd 2008]

IHTA (Hard) [Blumensath and Davies 2008,2009]
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Literature Review

Lower Order Regularization

`q regularization:

[Chartrand and Staneva 2007,2008]: a weaker RIP is sufficient to
guarantee perfect recovery;

[Xu, Chang, Xu, and Zhang. 2012]: admits a significantly stronger
sparsity promoting capability;

[Qin, Hu, Xu, Yalamanchili, and Wang 2014]: achieves a more reliable
solution in biological sense.

Our objectives:

The recovery bound for the `q regularization model.

Linear convergence of numerical algorithm.

Application to structured sparse optimization and real applications.
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Nonconvex Regularization Method Recovery Bound

The `q regularization model (0 ≤ q ≤ 1):

minx∈Rn ‖Ax − b‖2
2 + λ‖x‖q

q, where ‖x‖q =
(∑n

i=1 |xi |q
)1/q

.

I(x ; t): the subset of {1, . . . , n} corresponding to the first t largest
coordinates in absolute value of x in Ic .

Definition (REC, Bickel, Ritov and Tsybakov 2009)

The restricted eigenvalue condition relative to (s, t) (REC(s, t)) is said to
be satisfied if

φ(s, t) := min
{‖Ax‖2

‖xT ‖2
: |I| ≤ s, ‖xIc‖1 ≤ ‖xI‖1, T = I(x ; t) ∪ I

}
> 0.

Definition (q-REC)

The q-restricted eigenvalue condition relative to (s, t) (q-REC(s, t)) is
said to be satisfied if

φq(s, t) := min
{‖Ax‖2

‖xT ‖2
: |I| ≤ s, ‖xIc‖q ≤ ‖xI‖q, T = I(x ; t)∪I

}
> 0.
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Nonconvex Regularization Method Recovery Bound

(a) REC (b) 1/2-REC (c) 0-REC

Figure 1: The geometric interpretation of the RECs: the q-REC holds if and only
if the null space of A does not intersect the gray region.

Proposition

Let 0 ≤ q1 ≤ q2 ≤ 1. Then

q2-REC(s, t) ⇒ q1-REC(s, t).
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Nonconvex Regularization Method Recovery Bound

Theorem (Oracle Inequality and Global Recovery Bound)

Notations:

0 ≤ q ≤ 1, Ax̄ = b, S := supp(x̄), s := |supp(x̄)|;
x∗ be a global minimum of the `q regularization problem, K be the
smallest integer such that 2K−1q ≥ 1.

Assumptions:

q-REC(s, s) holds.

Conclusions:

oracle inequality:

‖Ax∗−Ax̄‖2
2 +λ‖x∗Sc‖q

q ≤ λ
2

2−q s(1−2−K ) 2
2−q /φ

2q
2−q
q (s, s) = O(λ

2
2−q s),

global recovery bound:

‖x∗ − x̄‖2
2 ≤ 2λ

2
2−q s

q−2
q

+(1−2−K ) 4
q(2−q) /φ

4
2−q
q (s, s) = O(λ

2
2−q s).
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Nonconvex Regularization Method Recovery Bound

Example

A =

(
2 3 1
2 1 3

)
, b =

(
2
2

)
.

This A satisfies the 1/2-REC(1,1), but not REC(1,1).
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‖x∗(`1/2)− x̄‖22

2λ4/3

Estimated Error
Recovery Bound

Figure 2: The illustration of the recovery bound and estimated error.
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Nonconvex Regularization Method Recovery Bound

Let x̄ = (x̄S , 0).

to construct a smooth path by applying an implicit theorem to the
function H : Rs+1 → Rs :

H(z , λ) = 2A>S (ASz − b) + λq

|z1|q−1sign(z1)
...

|zs |q−1sign(zs)

 .

to apply following first-order growth condition:

‖Ac
Sy‖2

2+2〈ASξ(λ)−b,Ac
Sy〉−2ε0‖y‖2

2+λ‖y‖q
q ≥ ε‖y‖2 ∀y ∈ B(0, δ).

to show that the path is a local optimal one.

to verify

‖x∗(λ)−x̄‖2
2 = ‖ξ(λ)−x̄S‖2

2 ≤ λ2q2s‖(A>SAS)−1‖2 max
x̄i 6=0

(
|x̄i |2(q−1)

)
.

via a first-order condition.
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Nonconvex Regularization Method Recovery Bound

Let x̄ = (x̄S , 0).

to construct a smooth path by applying an implicit theorem to the
function H : Rs+1 → Rs :

H(z , λ) = 2A>S (ASz − b) + λq

|z1|q−1sign(z1)
...

|zs |q−1sign(zs)

 .

to apply following first-order growth condition:

‖Ac
Sy‖2

2+2〈ASξ(λ)−b,Ac
Sy〉−2ε0‖y‖2

2+λ‖y‖q
q ≥ ε‖y‖2 ∀y ∈ B(0, δ).

to show that the path is a local optimal one.

to verify

‖x∗(λ)−x̄‖2
2 = ‖ξ(λ)−x̄S‖2

2 ≤ λ2q2s‖(A>SAS)−1‖2 max
x̄i 6=0

(
|x̄i |2(q−1)

)
.

via a first-order condition.

Xiaoqi YANG () LOR-SO 14 / 45



Nonconvex Regularization Method Recovery Bound

Let x̄ = (x̄S , 0).

to construct a smooth path by applying an implicit theorem to the
function H : Rs+1 → Rs :

H(z , λ) = 2A>S (ASz − b) + λq

|z1|q−1sign(z1)
...

|zs |q−1sign(zs)

 .

to apply following first-order growth condition:

‖Ac
Sy‖2

2+2〈ASξ(λ)−b,Ac
Sy〉−2ε0‖y‖2

2+λ‖y‖q
q ≥ ε‖y‖2 ∀y ∈ B(0, δ).

to show that the path is a local optimal one.

to verify

‖x∗(λ)−x̄‖2
2 = ‖ξ(λ)−x̄S‖2

2 ≤ λ2q2s‖(A>SAS)−1‖2 max
x̄i 6=0

(
|x̄i |2(q−1)

)
.

via a first-order condition.

Xiaoqi YANG () LOR-SO 14 / 45



Nonconvex Regularization Method Recovery Bound

Theorem (Local Recovery Bound)

Notations:

0 < q < 1, Ax̄ = b, S := supp(x̄).

Assumptions:

The columns of AS are linearly independent.

Conclusion:

there exist κ > 0 and a path of local minima of the lq regularization
problem, x∗(λ), such that, for λ < κ,

‖x∗(λ)− x̄‖2
2 ≤ λ2q2s‖(A>SAS)−1‖2 max

x̄i 6=0

(
|x̄i |2(q−1)

)
= O(λ2s).
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Nonconvex Regularization Method Proximal Gradient Algorithm

The nonsmooth composite optimization problem

min
x∈Rn

F (x) := f (x) + φ(x),

Proximal gradient algorithm (PGA):

zk = xk − v∇f (xk ),

xk+1 ∈ Arg min
x∈Rn
{φ(x) +

1

2v
‖x − zk‖2

2}.

Convex composite optimization: ISTA, APG, FISTA, PGH.
Nonconvex composite optimization:

Kurdyka- Lojasewicz (KL) theory [Bolte, Sabach and Teboulle 2013]

majorization-minimization (MM) scheme [Mairal 2013]

coordinate gradient descent (CGD) method [Tseng and Yun 2009]

successive upper-bound minimization (SUM) approach [Razaviyayn,
Hong and Luo 2013]
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Nonconvex Regularization Method Proximal Gradient Algorithm

The `q regularization problem

min
x∈Rn
‖Ax − b‖2

2 + λ‖x‖q
q.

Theorem (Global Convergence of PGA)

Let {xk} be a sequence generated by the PGA with v < 1
2‖A‖−2

2 . Then
the following statements hold:

(i) if q = 1, then {xk} converges to a global minimizer of the `1

regularization problem,

(ii) if q = 0, then {xk} converges to a local minimizer of the `0

regularization problem,

(iii) if 0 < q < 1, then {xk} converges to a critical point of the `q

regularization problem.
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Nonconvex Regularization Method Proximal Gradient Algorithm

The linear convergence of PGA for solving the `1 regularization:

[Hale, Yin and Zhang 2008] under one of the assumptions:

A|J is injective; or

Strict complementarity condition (SCC): supp(x∗) = J,

where

J := {k ∈ N : |(A>(Ax∗ − b))k | =
λ

2
}.

[Bredies and Lorenz 2008] for infinite-dimensional Hilbert spaces.
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Nonconvex Regularization Method Proximal Gradient Algorithm

Lemma (second-order sufficient condition and second-order growth
condition)

Notations: x∗ ∈ Rn \ {0}; I = supp(x∗).
Conclusion: the following statements are equivalent:

x∗ is a local minimum of the lq regularization problem;

the following first- and second-order conditions hold:

2A>I (AI x∗I − b) + λq
(
(|x∗i |q−1sign(x∗i ))i∈I

)
= 0,

2A>I AI + λq(q − 1)diag
(
|x∗i |q−2)i∈I

)
� 0; (1)

the second-order growth condition holds at x∗:

F (x) ≥ F (x∗) + ε‖x − x∗‖2
2 for any x ∈ B(x∗, δ).

Remarks: Second-order necessary condition (1) (with �) is obtained in
Chen et al (2010).
Second order growth condition is established for a convex composite
problem g(M(x)) in Bonnans and Shapiro (2000).Xiaoqi YANG () LOR-SO 19 / 45



Nonconvex Regularization Method Proximal Gradient Algorithm

Lemma (second-order sufficient condition and second-order growth
condition)

Notations: x∗ ∈ Rn \ {0}; I = supp(x∗).
Conclusion: the following statements are equivalent:

x∗ is a local minimum of the lq regularization problem;

the following first- and second-order conditions hold:

2A>I (AI x∗I − b) + λq
(
(|x∗i |q−1sign(x∗i ))i∈I

)
= 0,

2A>I AI + λq(q − 1)diag
(
|x∗i |q−2)i∈I

)
� 0; (1)

the second-order growth condition holds at x∗:

F (x) ≥ F (x∗) + ε‖x − x∗‖2
2 for any x ∈ B(x∗, δ).

Remarks: Second-order necessary condition (1) (with �) is obtained in
Chen et al (2010).
Second order growth condition is established for a convex composite
problem g(M(x)) in Bonnans and Shapiro (2000).Xiaoqi YANG () LOR-SO 19 / 45



Nonconvex Regularization Method Proximal Gradient Algorithm

Lemma (second-order sufficient condition and second-order growth
condition)

Notations: x∗ ∈ Rn \ {0}; I = supp(x∗).
Conclusion: the following statements are equivalent:

x∗ is a local minimum of the lq regularization problem;

the following first- and second-order conditions hold:

2A>I (AI x∗I − b) + λq
(
(|x∗i |q−1sign(x∗i ))i∈I

)
= 0,

2A>I AI + λq(q − 1)diag
(
|x∗i |q−2)i∈I

)
� 0; (1)

the second-order growth condition holds at x∗:

F (x) ≥ F (x∗) + ε‖x − x∗‖2
2 for any x ∈ B(x∗, δ).

Remarks: Second-order necessary condition (1) (with �) is obtained in
Chen et al (2010).
Second order growth condition is established for a convex composite
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Nonconvex Regularization Method Proximal Gradient Algorithm

Theorem (Linear Convergence of PGA for `q regularization)

Notations:

0 < q < 1;

F (x) := ‖Ax − b‖2
2 + λ‖x‖q

q;

{xk} be a sequence generated by the PGA (converging to x∗).

Assumptions:

x∗ is a local minimum of F .

Conclusion:

Linear convergence: Then there exist C > 0 and η ∈ (0, 1) such that

F (xk )−F (x∗) ≤ Cηk and ‖xk − x∗‖2 ≤ Cηk , for any k ∈ N.
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Group Sparse Optimization

Recently, enhancing the recoverability due to the special structures
has become an active topic in the sparse optimization.

Group sparse structure: the solution has a natural grouping of its
components, and the components within each group are likely to be
either all zeros or all nonzeros. The grouping information is usually
pre-defined based on prior knowledge of specific problems.

The group Lasso [Yuan and Lin 2006]:

min
x∈Rn
‖Ax − b‖2

2 + λ‖x‖2,1,

where ‖x‖2,1 =
∑r

i=1 ‖xGi
‖. The group Lasso has been applied in

multifactor analysis-of-variance, multi-task learning, dynamic MRI and
gene finding.
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Group Sparse Optimization

Sparsity VS Group Sparsity
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Group Sparse Optimization

`p,q Regularization Method

The `p,q regularization model (p ≥ 1, 0 < q ≤ 1):

min
x∈Rn
‖Ax − b‖2

2 + λ‖x‖q
p,q,

where x := (x>G1
, · · · , x>Gr

)> and

‖x‖p,q =
( r∑

i=1

‖xGi
‖q

p

)1/q
.

‖x‖p,p = ‖x‖p,

when max |Gi | = 1, ‖x‖p,q = ‖x‖q.
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Group Sparse Optimization

Theorem (Oracle Result and Recovery Bound)

Notations:

0 ≤ q ≤ 1 ≤ p ≤ 2;

Ax̄ = b, S :=
{

i ∈ {1, . . . , r} : x̄Gi
6= 0
}

, S := |S|;
x∗ be a global minimum of the `p,q regularization problem, K be the
smallest integer such that 2K−1p ≥ 1.

Assumptions:

(p, q)-GREC(S , S) holds.

Conclusion:

oracle inequality:

‖Ax∗−Ax̄‖2
2+λ‖x∗GSc ‖q

p,q ≤ λ
2

2−q S (1−2−K ) 2
2−q /φ

2q
2−q
p,q (S ,S) = O(λ

2
2−q S),

recovery bound:

‖x∗ − x̄‖2
2 ≤ 2λ

2
2−q S

q−2
q

+(1−2−K ) 4
q(2−q) /φ

4
2−q
p,q (S ,S) = O(λ

2
2−q S).

Xiaoqi YANG () LOR-SO 27 / 45



Group Sparse Optimization

Theorem (Oracle Result and Recovery Bound)

Notations:

0 ≤ q ≤ 1 ≤ p ≤ 2;

Ax̄ = b, S :=
{

i ∈ {1, . . . , r} : x̄Gi
6= 0
}

, S := |S|;
x∗ be a global minimum of the `p,q regularization problem, K be the
smallest integer such that 2K−1p ≥ 1.

Assumptions:

(p, q)-GREC(S , S) holds.

Conclusion:

oracle inequality:

‖Ax∗−Ax̄‖2
2+λ‖x∗GSc ‖q

p,q ≤ λ
2

2−q S (1−2−K ) 2
2−q /φ

2q
2−q
p,q (S ,S) = O(λ

2
2−q S),

recovery bound:

‖x∗ − x̄‖2
2 ≤ 2λ

2
2−q S

q−2
q

+(1−2−K ) 4
q(2−q) /φ

4
2−q
p,q (S ,S) = O(λ

2
2−q S).

Xiaoqi YANG () LOR-SO 27 / 45



Group Sparse Optimization

Theorem (Linear Convergence of PGA for `1,q regularization)

Notations:

0 < q < 1;

F (x) := ‖Ax − b‖2
2 + λ‖x‖q

1,q;

{xk} be a sequence generated by the PGA (converging to x∗).

Assumptions:

x∗ is a local minimum of F ;

any nonzero group of x∗ is active.

Conclusion:

Linear convergence: Then there exist C > 0 and η ∈ (0, 1) such that

F (xk )−F (x∗) ≤ Cηk and ‖xk − x∗‖2 ≤ Cηk , for any k ∈ N.
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Group Sparse Optimization

Lemma (Analytical formulae of proximal optimization subproblems.)

Let z ∈ Rl , v > 0 and the proximal regularization
Rp,q(x) := λ‖x‖q

p + 1
2v ‖x − z‖2

2. Then the proximal operator

Pp,q(z) ∈ arg min
x∈Rl
{Rp,q(x)} = arg min

x∈Rl
{λ‖x‖q

p +
1

2v
‖x − z‖2

2}

has the following analytical formula:

(i) if p = 2 and q = 1, then

P2,1(z) =

{
z − vλ

‖z‖2
z , ‖z‖2 > vλ,

0, otherwise,

(ii) if p ≥ 1 and q = 0, then

Pp,0(z) =


z , ‖z‖2 >

√
2vλ,

0 or z , ‖z‖2 =
√

2vλ,

0, ‖z‖2 <
√

2vλ,
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Group Sparse Optimization

Lemma (Con’t)

(iii) if p = 2 and q = 1/2, then

P2,1/2(z) =


16‖z‖3/2

2 cos3(π
3
−ψ(z)

3
)

3
√

3vλ+16‖z‖3/2
2 cos3(π

3
−ψ(z)

3
)
z , ‖z‖2 >

3
2 (vλ)2/3,

0 or
16‖z‖3/2

2 cos3(π
3
−ψ(z)

3
)

3
√

3vλ+16‖z‖3/2
2 cos3(π

3
−ψ(z)

3
)
z , ‖z‖2 = 3

2 (vλ)2/3,

0, ‖z‖2 <
3
2 (vλ)2/3,

with ψ(z) = arccos
(

vλ
4 ( 3
‖z‖2

)3/2
)
,

(iv) if p = 1 and q = 1/2, then

P1,1/2(z) =


z̃ , R1,1/2(z̃) < R1,1/2(0),

0 or z̃ , R1,1/2(z̃) = R1,1/2(0),
0, R1,1/2(z̃) > R1,1/2(0),

where z̃ = z −
√

3vλsgn(z)

4
√
‖z‖1 cos(π

3
− ξ(z)

3
)
, and ξ(z) = arccos

(
vλl

4 ( 3
‖z‖1

)3/2
)
.
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Applications

Variation of PGA-GSO when varying the regularization
order q
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Applications

Comparison of PGA-GSO with the state-of-arts algorithms

0 5 10 15 20 25
0

20

40

60

80

100

R
at

e 
of

 S
uc

ce
ss

 (
%

)

Sparsity Level (%)

 

 
SL0

SPGL1

YALL1

`1-Magic

OMP

CoSaMP

FoBa

MultiFoBa

GBM

LqRecovery

HardTA

HalfTA

PGM(`2,1/2 )

Xiaoqi YANG () LOR-SO 33 / 45



Applications

Sensitivity analysis on group size
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Applications

Phase diagram study of `p,q regularization
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Applications Gene Transcriptional Regulation

TF

Promoter Target gene

TF regulates a target gene by 

co-binding on its promoter

TF

Promoter Target gene

TF regulates a target gene by 

co-binding on its promoter
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Applications Gene Transcriptional Regulation

False positive rate (1−Specificity)
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Applications Gene Transcriptional Regulation

TF complex

Promoter Target gene

TF complex regulates a 

target gene by co-binding on 

its promoter
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Applications Gene Transcriptional Regulation
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Applications Gene Transcriptional Regulation

Workflow of gene regulatory network inference
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Applications Gene Transcriptional Regulation

ROC curves and AUCs of PGA-GSO on mESC gene
regulatory network inference
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Applications Cell Fate Conversion

Master Regulator Inference (Group Lq)

http://jbkim.unist.ac.kr/board/list.sko?boardId=pe_MBL&menuCd=PE02001000000

Pou5f1, Klf4, Sox2, Myc
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Applications Cell Fate Conversion

Donor cell Target cell

vs

Perturbations in Target cell

AX = B + 

Differentially 
expressed genes

Target genes
TFs

ChIP-seq/chip

Solution

Master Regulator Inference (Group Lq)
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Thank You for Your Attention.
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