Lower-order Regularization for Sparse Optimization with Applications

Xiaoqi YANG

Department of Applied Mathematics,
Hong Kong Polytechnic University (mayangxq@polyu.edu.hk)

Joint with
Yaohua HU (SZU), Chong LI (ZJU),
Kaiwen MENG (SWJTU), Jing QIN(SZU)

Outline

(1) Literature Review
(2) Nonconvex Regularization Method

- Recovery Bound
- Proximal Gradient Algorithm
(3) Group Sparse Optimization
(4) Applications
- Gene Transcriptional Regulation
- Cell Fate Conversion

(1) Literature Review

(2) Nonconvex Regularization Method

(3) Group Sparse Optimization

4 Applications

In many applications, the underlying data usually can be represented approximately by a linear system

$$
A x=b+\varepsilon
$$

The sparse optimization problem can be modeled as
$\min \|x\|_{0}$
s.t. $\|A x-b\|_{2} \leq \epsilon$.

The ℓ_{q} regularization model $(0 \leq q \leq 1)$:

Main questions:

(1) How far is the solution of the regularization problem from that of the original sparse optimization problem?
(2) How to design the efficient numerical algorithms for the ℓ_{1} regularization problem?
(3) How to employ the sparse optimization technique to application fields.

The sparse optimization problem can be modeled as

\min	$\\|x\\|_{0}$
s.t.	$\\|A x-b\\|_{2} \leq \epsilon$.

The ℓ_{q} regularization model $(0 \leq q \leq 1)$:
$\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q}$, where $\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q}$.

Main questions:
a How far is the solution of the regularization problem from that of the original sparse optimization problem?
(2) How to design the efficient numerical algorithms for the ℓ_{1} regularization problem?
(3) How to employ the sparse optimization technique to application fields.

The sparse optimization problem can be modeled as

\min	$\\|x\\|_{0}$
s.t.	$\\|A x-b\\|_{2} \leq \epsilon$.

The ℓ_{q} regularization model $(0 \leq q \leq 1)$:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q}, \text { where }\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q} .
$$

Main questions:
(1) How far is the solution of the regularization problem from that of the original sparse optimization problem?
(2) How to design the efficient numerical algorithms for the ℓ_{1} regularization problem?
(3) How to employ the sparse optimization technique to application fields.

The sparse optimization problem can be modeled as

$$
\begin{array}{cl}
\min & \|x\|_{0} \\
\text { s.t. } & \|A x-b\|_{2} \leq \epsilon .
\end{array}
$$

The ℓ_{q} regularization model $(0 \leq q \leq 1)$:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q}, \text { where }\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q} .
$$

Main questions:
(1) How far is the solution of the regularization problem from that of the original sparse optimization problem?
(2) How to design the efficient numerical algorithms for the ℓ_{1} regularization problem?
(3) How to employ the sparse optimization technique to application fields.

The sparse optimization problem can be modeled as

$$
\begin{array}{cl}
\min & \|x\|_{0} \\
\text { s.t. } & \|A x-b\|_{2} \leq \epsilon
\end{array}
$$

The ℓ_{q} regularization model $(0 \leq q \leq 1)$:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q}, \text { where }\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q} .
$$

Main questions:
(1) How far is the solution of the regularization problem from that of the original sparse optimization problem?
(2) How to design the efficient numerical algorithms for the ℓ_{1} regularization problem?
(3) How to employ the sparse optimization technique to application fields.

- The ℓ_{1} regularization model has attracted much attention and has been accepted as a most useful tool for the sparse optimization problem, which is widely applied in compressive sensing, image science, machine learning, system biology, etc.
- Recovery bound for ℓ_{1} regularization:

$$
\left\|x^{*}\left(l_{1}\right)-\bar{x}\right\|_{2}^{2}=O\left(\lambda^{2} s\right)
$$

under the assumption of restricted isometry property (RIP) or restricted eigenvalue condition (REC).

- The ℓ_{1} regularization model has attracted much attention and has been accepted as a most useful tool for the sparse optimization problem, which is widely applied in compressive sensing, image science, machine learning, system biology, etc.
- Recovery bound for ℓ_{1} regularization:

$$
\left\|x^{*}\left(\ell_{1}\right)-\bar{x}\right\|_{2}^{2}=O\left(\lambda^{2} s\right)
$$

under the assumption of restricted isometry property (RIP) or restricted eigenvalue condition (REC).

Existing Algorithms

ℓ_{1} regularization model:

- ℓ_{1} Magic [Candes, Romberg and Tao 2006]
- LARs [Efron, Hastie, Johnstone and Tibshirani 2004]
- GPSR and SpaRSA [Figueiredo, Nowak and Wright 2007,2009]
- ISTA [Daubechies, Defrise and De Mol 2004], APG [Nesterov 2013], FISTA [Beck and Teboulle 2009], PGH [Xiao and Zhang 2013]
- ADMM [Yang and Zhang 2011; He and Yuan 2012,2013]
- Reweight scheme [Chartrand 2007,2008; Lai and Yin 2012,2013]
- Smoothing approach [Chen and Ye, 2010,2012]
- IHTA (Half) [Xu et al. 2012]
regularization model:
- Reweight ℓ_{1} [Candes, Wakin and Boyd 2008]
- IHTA (Hard) [Blumensath and Davies 2008,2009]

Existing Algorithms

ℓ_{1} regularization model:

- ℓ_{1} Magic [Candes, Romberg and Tao 2006]
- LARs [Efron, Hastie, Johnstone and Tibshirani 2004]
- GPSR and SpaRSA [Figueiredo, Nowak and Wright 2007,2009]
- ISTA [Daubechies, Defrise and De Mol 2004], APG [Nesterov 2013], FISTA [Beck and Teboulle 2009], PGH [Xiao and Zhang 2013]
- ADMM [Yang and Zhang 2011; He and Yuan 2012,2013]
ℓ_{q} regularization model:
- Reweight scheme [Chartrand 2007,2008; Lai and Yin 2012,2013]
- Smoothing approach [Chen and Ye, 2010,2012]
- IHTA (Half) [Xu et al. 2012]
ℓ_{0} regularization model:
- Reweight ℓ_{1} [Candes, Wakin and Boyd 2008]
- IHTA (Hard) [Blumensath and Davies 2008,2009]

Existing Algorithms

ℓ_{1} regularization model:

- ℓ_{1} Magic [Candès, Romberg and Tao 2006]
- LARs [Efron, Hastie, Johnstone and Tibshirani 2004]
- GPSR and SpaRSA [Figueiredo, Nowak and Wright 2007,2009]
- ISTA [Daubechies, Defrise and De Mol 2004], APG [Nesterov 2013], FISTA [Beck and Teboulle 2009], PGH [Xiao and Zhang 2013]
- ADMM [Yang and Zhang 2011; He and Yuan 2012,2013]
ℓ_{q} regularization model:
- Reweight scheme [Chartrand 2007,2008; Lai and Yin 2012,2013]
- Smoothing approach [Chen and Ye, 2010,2012,2014]
- IHTA (Half) [Xu et al. 2012]
ℓ_{0} regularization model:
- Reweight ℓ_{1} [Candes, Wakin and Boyd 2008]
- IHTA (Hard) [Blumensath and Davies 2008,2009]

Lower Order Regularization

ℓ_{q} regularization:

- [Chartrand and Staneva 2007,2008]: a weaker RIP is sufficient to guarantee perfect recovery;
- [Xu, Chang, Xu, and Zhang. 2012]: admits a significantly stronger sparsity promoting capability;
- [Qin, Hu, Xu, Yalamanchili, and Wang 2014]: achieves a more reliable solution in biological sense.
Our objectives:
- The recovery bound for the ℓ_{q} regularization model
- Linear convergence of numerical algorithm
- Application to structured sparse optimization and real applications

Lower Order Regularization

ℓ_{q} regularization:

- [Chartrand and Staneva 2007,2008]: a weaker RIP is sufficient to guarantee perfect recovery;
- [Xu, Chang, Xu, and Zhang. 2012]: admits a significantly stronger sparsity promoting capability;
- [Qin, Hu, Xu, Yalamanchili, and Wang 2014]: achieves a more reliable solution in biological sense.
Our objectives:
- The recovery bound for the ℓ_{q} regularization model.
- Linear convergence of numerical algorithm.
- Application to structured sparse optimization and real applications.

(1) Literature Review

(2) Nonconvex Regularization Method

3 Group Sparse Optimization

4 Applications

The ℓ_{q} regularization model $(0 \leq q \leq 1)$:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q}, \text { where }\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q} .
$$

$\mathcal{I}(x ; t)$: the subset of $\{1, \ldots, n\}$ corresponding to the first t largest
coordinates in absolute value of x in \mathcal{I}^{c}
Definition (RFC Bickel Ritov and Tsybakov 2009)
The restricted eigenvalue condition relative to $(s, t)(\operatorname{REC}(s, t))$ is said to be satisfied if

The q-restricted eigenvalue condition relative to $(s, t)(q$ - $\operatorname{REC}(s, t))$ is said to be satisfied if

The ℓ_{q} regularization model $(0 \leq q \leq 1)$:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q} \text {, where }\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q}
$$

$\mathcal{I}(x ; t)$: the subset of $\{1, \ldots, n\}$ corresponding to the first t largest coordinates in absolute value of x in \mathcal{I}^{c}.

The restricted eigenvalue condition relative to $(s, t)(\operatorname{REC}(s, t))$ is said to be satisfied if

\square
The q-restricted eigenvalue condition relative to $(s, t)(q-\operatorname{REC}(s, t))$ is said to be satisfied if

The ℓ_{q} regularization model $(0 \leq q \leq 1)$:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q} \text {, where }\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q}
$$

$\mathcal{I}(x ; t)$: the subset of $\{1, \ldots, n\}$ corresponding to the first t largest coordinates in absolute value of x in \mathcal{I}^{c}.

Definition (REC, Bickel, Ritov and Tsybakov 2009)

The restricted eigenvalue condition relative to $(s, t)(\operatorname{REC}(s, t))$ is said to be satisfied if

$$
\phi(s, t):=\min \left\{\frac{\|A x\|_{2}}{\left\|x_{\mathcal{T}}\right\|_{2}}:|\mathcal{I}| \leq s,\left\|x_{\mathcal{I}^{c}}\right\|_{1} \leq\left\|x_{\mathcal{I}}\right\|_{1}, \mathcal{T}=\mathcal{I}(x ; t) \cup \mathcal{I}\right\}>0 .
$$

The ℓ_{q} regularization model $(0 \leq q \leq 1)$:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q}, \text { where }\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q}
$$

$\mathcal{I}(x ; t)$: the subset of $\{1, \ldots, n\}$ corresponding to the first t largest coordinates in absolute value of x in \mathcal{I}^{c}.

Definition (REC, Bickel, Ritov and Tsybakov 2009)

The restricted eigenvalue condition relative to $(s, t)(\operatorname{REC}(s, t))$ is said to be satisfied if

$$
\phi(s, t):=\min \left\{\frac{\|A x\|_{2}}{\left\|x_{\mathcal{T}}\right\|_{2}}:|\mathcal{I}| \leq s,\left\|x_{\mathcal{I}}\right\|_{1} \leq\left\|x_{\mathcal{I}}\right\|_{1}, \mathcal{T}=\mathcal{I}(x ; t) \cup \mathcal{I}\right\}>0 .
$$

Definition (q-REC)

The q-restricted eigenvalue condition relative to $(s, t)(q-\operatorname{REC}(s, t))$ is said to be satisfied if

$$
\phi_{q}(s, t):=\min \left\{\frac{\|A x\|_{2}}{\left\|x_{\mathcal{T}}\right\|_{2}}:|\mathcal{I}| \leq s,\left\|x_{\mathcal{I}^{c}}\right\|_{q} \leq\left\|x_{\mathcal{I}}\right\|_{q}, \mathcal{T}=\mathcal{I}(x ; t) \cup \mathcal{I}\right\}>0
$$

Figure 1: The geometric interpretation of the RECs: the q-REC holds if and only if the null space of A does not intersect the gray region.

(a) REC
(b) $1 / 2-$ REC
(c) 0-REC

Figure 1: The geometric interpretation of the RECs: the q-REC holds if and only if the null space of A does not intersect the gray region.

Proposition

Let $0 \leq q_{1} \leq q_{2} \leq 1$. Then

$$
q_{2}-\operatorname{REC}(s, t) \quad \Rightarrow \quad q_{1}-\operatorname{REC}(s, t) .
$$

Theorem (Oracle Inequality and Global Recovery Bound)

Notations:

- $0 \leq q \leq 1, A \bar{x}=b, \mathcal{S}:=\operatorname{supp}(\bar{x}), s:=|\operatorname{supp}(\bar{x})| ;$
- x^{*} be a global minimum of the ℓ_{q} regularization problem, K be the smallest integer such that $2^{K-1} q \geq 1$.
Assumptions:
- q-REC($s, s)$ holds.
- oracle inequality:

Theorem (Oracle Inequality and Global Recovery Bound)

Notations:

- $0 \leq q \leq 1, A \bar{x}=b, \mathcal{S}:=\operatorname{supp}(\bar{x}), s:=|\operatorname{supp}(\bar{x})| ;$
- x^{*} be a global minimum of the ℓ_{q} regularization problem, K be the smallest integer such that $2^{K-1} q \geq 1$.
Assumptions:
- q-REC($s, s)$ holds.

Conclusions:

- oracle inequality:

$$
\left\|A x^{*}-A \bar{x}\right\|_{2}^{2}+\lambda\left\|x_{\mathcal{S}^{c}}^{*}\right\|_{q}^{q} \leq \lambda^{\frac{2}{2-q}} s^{\left(1-2^{-\kappa}\right) \frac{2}{2-q}} / \phi_{q}^{\frac{2 q}{2-q}}(s, s)=O\left(\lambda^{\frac{2}{2-q}} s\right)
$$

- global recovery bound:

$$
\left\|x^{*}-\bar{x}\right\|_{2}^{2} \leq 2 \lambda^{\frac{2}{2-q}} S^{\frac{q-2}{q}+\left(1-2^{-K}\right) \frac{4}{q(2-q)}} / \phi_{q}^{\frac{4}{2-q}}(s, s)=O\left(\lambda^{\frac{2}{2-q}} s\right) .
$$

Example

$$
A=\left(\begin{array}{lll}
2 & 3 & 1 \\
2 & 1 & 3
\end{array}\right), \quad b=\binom{2}{2} .
$$

This A satisfies the $1 / 2-\operatorname{REC}(1,1)$, but not $\operatorname{REC}(1,1)$.

Figure 2: The illustration of the recovery bound and estimated error.

Let $\bar{x}=\left(\bar{x}_{\mathcal{S}}, 0\right)$.

- to construct a smooth path by applying an implicit theorem to the function $H: \mathbb{R}^{s+1} \rightarrow \mathbb{R}^{s}$:

$$
H(z, \lambda)=2 A_{\mathcal{S}}^{\top}\left(A_{\mathcal{S}} z-b\right)+\lambda q\left(\begin{array}{c}
\left|z_{1}\right|^{q-1} \operatorname{sign}\left(z_{1}\right) \\
\vdots \\
\left|z_{s}\right|^{q-1} \operatorname{sign}\left(z_{s}\right)
\end{array}\right) .
$$

- to apply following first-order growth condition: $\left\|A_{\mathcal{S}}^{c} y\right\|_{2}^{2}+2\left\langle A_{\mathcal{S}} \xi(\lambda)-b, A_{\mathcal{S}}^{c} y\right\rangle-2 \epsilon_{0}\|y\|_{2}^{2}+\lambda\|y\|_{q}^{q} \geq \epsilon\|y\|_{2} \quad \forall y \in \mathbf{B}(0, \delta)$. to show that the path is a local optimal one.
- to verify

via a first-order condition.

Let $\bar{x}=\left(\bar{x}_{\mathcal{S}}, 0\right)$.

- to construct a smooth path by applying an implicit theorem to the function $H: \mathbb{R}^{s+1} \rightarrow \mathbb{R}^{s}$:

$$
H(z, \lambda)=2 A_{\mathcal{S}}^{\top}\left(A_{\mathcal{S}} z-b\right)+\lambda q\left(\begin{array}{c}
\left|z_{1}\right|^{q-1} \operatorname{sign}\left(z_{1}\right) \\
\vdots \\
\left|z_{s}\right|^{q-1} \operatorname{sign}\left(z_{s}\right)
\end{array}\right) .
$$

- to apply following first-order growth condition:

$$
\left\|A_{\mathcal{S}}^{c} y\right\|_{2}^{2}+2\left\langle A_{\mathcal{S}} \xi(\lambda)-b, A_{\mathcal{S}}^{c} y\right\rangle-2 \epsilon_{0}\|y\|_{2}^{2}+\lambda\|y\|_{q}^{q} \geq \epsilon\|y\|_{2} \quad \forall y \in \mathbf{B}(0, \delta)
$$

to show that the path is a local optimal one.

Let $\bar{x}=\left(\bar{x}_{\mathcal{S}}, 0\right)$.

- to construct a smooth path by applying an implicit theorem to the function $H: \mathbb{R}^{s+1} \rightarrow \mathbb{R}^{s}$:

$$
H(z, \lambda)=2 A_{\mathcal{S}}^{\top}\left(A_{\mathcal{S}} z-b\right)+\lambda q\left(\begin{array}{c}
\left|z_{1}\right|^{q-1} \operatorname{sign}\left(z_{1}\right) \\
\vdots \\
\left|z_{s}\right|^{q-1} \operatorname{sign}\left(z_{s}\right)
\end{array}\right) .
$$

- to apply following first-order growth condition:

$$
\left\|A_{\mathcal{S}}^{c} y\right\|_{2}^{2}+2\left\langle A_{\mathcal{S}} \xi(\lambda)-b, A_{\mathcal{S}}^{c} y\right\rangle-2 \epsilon_{0}\|y\|_{2}^{2}+\lambda\|y\|_{q}^{q} \geq \epsilon\|y\|_{2} \quad \forall y \in \mathbf{B}(0, \delta)
$$

to show that the path is a local optimal one.

- to verify

$$
\left\|x^{*}(\lambda)-\bar{x}\right\|_{2}^{2}=\left\|\xi(\lambda)-\bar{x}_{\mathcal{S}}\right\|_{2}^{2} \leq \lambda^{2} q^{2} s\left\|\left(A_{\mathcal{S}}^{\top} A_{\mathcal{S}}\right)^{-1}\right\|^{2} \max _{\bar{x}_{i} \neq 0}\left(\left|\bar{x}_{i}\right|^{2(q-1)}\right)
$$

via a first-order condition.

Theorem (Local Recovery Bound)
Notations:

- $0<q<1, A \bar{x}=b, \mathcal{S}:=\operatorname{supp}(\bar{x})$.

Assumptions:

- The columns of $A_{\mathcal{S}}$ are linearly independent.

Conclusion.

- there exist $\kappa>0$ and a path of local minima of the I_{q} regularization problem, $x^{*}(\lambda)$, such that, for $\lambda<\kappa$,

$$
\left\|x^{*}(\lambda)-\bar{x}\right\|_{2}^{2} \leq \lambda^{2} q^{2} s\left\|\left(A_{S}^{\top} A_{S}\right)^{-1}\right\|^{2} \max _{\bar{x}_{i} \neq 0}\left(\left|\bar{x}_{i}\right|^{2(q-1)}\right)=O\left(\lambda^{2} s\right) .
$$

Theorem (Local Recovery Bound)

Notations:

- $0<q<1, A \bar{x}=b, \mathcal{S}:=\operatorname{supp}(\bar{x})$.

Assumptions:

- The columns of $A_{\mathcal{S}}$ are linearly independent.

Conclusion:

- there exist $\kappa>0$ and a path of local minima of the I_{q} regularization problem, $x^{*}(\lambda)$, such that, for $\lambda<\kappa$,

$$
\left\|x^{*}(\lambda)-\bar{x}\right\|_{2}^{2} \leq \lambda^{2} q^{2} s\left\|\left(A_{\mathcal{S}}^{\top} A_{\mathcal{S}}\right)^{-1}\right\|^{2} \max _{\bar{x}_{i} \neq 0}\left(\left|\bar{x}_{i}\right|^{2(q-1)}\right)=O\left(\lambda^{2} s\right) .
$$

The nonsmooth composite optimization problem

$$
\min _{x \in \mathbb{R}^{n}} F(x):=f(x)+\phi(x),
$$

Proximal gradient algorithm (PGA):

$$
\begin{aligned}
z^{k} & =x^{k}-v \nabla f\left(x^{k}\right) \\
x^{k+1} & \in \operatorname{Arg} \min _{x \in \mathbb{R}^{n}}\left\{\phi(x)+\frac{1}{2 v}\left\|x-z^{k}\right\|_{2}^{2}\right\} .
\end{aligned}
$$

Convex composite optimization: ISTA, APG, FISTA, PGH

Nonconvex composite optimization:

- Kurdyka-Łojasewicz (KL) theory [Bolte, Sabach and Teboulle 2013]
- majorization-minimization (MM) scheme [Mairal 2013]
- coordinate gradient descent (CGD) method [Tseng and Yun 2009]
- successive upper-bound minimization (SUM) approach [Razaviyayn, Hong and Luo 2013]

The nonsmooth composite optimization problem

$$
\min _{x \in \mathbb{R}^{n}} F(x):=f(x)+\phi(x)
$$

Proximal gradient algorithm (PGA):

$$
\begin{aligned}
z^{k} & =x^{k}-v \nabla f\left(x^{k}\right), \\
x^{k+1} & \in \operatorname{Arg} \min _{x \in \mathbb{R}^{n}}\left\{\phi(x)+\frac{1}{2 v}\left\|x-z^{k}\right\|_{2}^{2}\right\} .
\end{aligned}
$$

Convex composite optimization: ISTA, APG, FISTA, PGH.
Nonconvex composite optimization:

- Kurdyka-Łojasewicz (KL) theory [Bolte, Sabach and Teboulle 2013]
- majorization-minimization (MM) scheme [Mairal 2013]
- coordinate gradient descent (CGD) method [Tseng and Yun 2009]
- successive upper-bound minimization (SUM) approach [Razaviyayn, Hong and Luo 2013]

The ℓ_{q} regularization problem

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q} .
$$

Theorem (Global Convergence of PGA)

Let $\left\{x^{k}\right\}$ be a sequence generated by the $P G A$ with $v<\frac{1}{2}\|A\|_{2}^{-2}$. Then the following statements hold:
(i) if $q=1$, then $\left\{x^{k}\right\}$ converges to a global minimizer of the ℓ_{1} regularization problem,
(ii) if $q=0$, then $\left\{x^{k}\right\}$ converges to a local minimizer of the ℓ_{0} regularization problem,
(iii) if $0<q<1$, then $\left\{x^{k}\right\}$ converges to a critical point of the ℓ_{q} regularization problem.

The linear convergence of PGA for solving the ℓ_{1} regularization:
[Hale, Yin and Zhang 2008] under one of the assumptions:

- $\left.A\right|_{J}$ is injective; or
- Strict complementarity condition $(\mathrm{SCC}): \operatorname{supp}\left(x^{*}\right)=J$, where

$$
J:=\left\{k \in \mathbb{N}:\left|\left(A^{\top}\left(A x^{*}-b\right)\right)_{k}\right|=\frac{\lambda}{2}\right\} .
$$

[Bredies and Lorenz 2008] for infinite-dimensional Hilbert spaces.

Lemma (second-order sufficient condition and second-order growth condition)

Notations: $x^{*} \in R^{n} \backslash\{0\} ; I=\operatorname{supp}\left(x^{*}\right)$.
Conclusion: the following statements are equivalent:

- x^{*} is a local minimum of the I_{q} regularization problem;
- the following first- and second-order conditions hold:

$$
\begin{align*}
& 2 A_{l}^{\top}\left(A_{I} x_{I}^{*}-b\right)+\lambda q\left(\left(\left|x_{i}^{*}\right|^{q-1} \operatorname{sign}\left(x_{i}^{*}\right)\right)_{i \in I}\right)=0, \\
& \left.2 A_{l}^{\top} A_{l}+\lambda q(q-1) \operatorname{diag}\left(\left|x_{i}^{*}\right|^{q-2}\right)_{i \in 1}\right) \succ 0 \tag{1}
\end{align*}
$$

- the second-order growth condition holds at x^{*} :

$$
F(x) \geq F\left(x^{*}\right)+\varepsilon\left\|x-x^{*}\right\|_{2}^{2} \text { for any } x \in B^{\prime}\left(x^{*}, \delta\right) .
$$

[^0]Lemma (second-order sufficient condition and second-order growth condition)

Notations: $x^{*} \in R^{n} \backslash\{0\} ; I=\operatorname{supp}\left(x^{*}\right)$.
Conclusion: the following statements are equivalent:

- x^{*} is a local minimum of the I_{q} regularization problem;
- the following first- and second-order conditions hold:

$$
\begin{aligned}
& 2 A_{l}^{\top}\left(A_{I} x_{I}^{*}-b\right)+\lambda q\left(\left(\left|x_{i}^{*}\right|^{q-1} \operatorname{sign}\left(x_{i}^{*}\right)\right)_{i \in I}\right)=0, \\
& \left.2 A_{1}^{\top} A_{I}+\lambda q(q-1) \operatorname{diag}\left(\left|x_{i}^{*}\right|^{q-2}\right)_{i \in 1}\right) \succ 0 ;
\end{aligned}
$$

- the second-order growth condition holds at x^{*}
\square
Remarks: Second-order necessary condition (1) (with \succeq) is obtained in Chen et al (2010)
Second order growth condition is established for a convex composite

Lemma (second-order sufficient condition and second-order growth condition)

Notations: $x^{*} \in R^{n} \backslash\{0\} ; I=\operatorname{supp}\left(x^{*}\right)$.
Conclusion: the following statements are equivalent:

- x^{*} is a local minimum of the I_{q} regularization problem;
- the following first- and second-order conditions hold:

$$
\begin{align*}
& 2 A_{l}^{\top}\left(A_{I} x_{I}^{*}-b\right)+\lambda q\left(\left(\left|x_{i}^{*}\right|^{q-1} \operatorname{sign}\left(x_{i}^{*}\right)\right)_{i \in I}\right)=0, \\
& \left.2 A_{l}^{\top} A_{I}+\lambda q(q-1) \operatorname{diag}\left(\left|x_{i}^{*}\right|^{q-2}\right)_{i \in I}\right) \succ 0 \tag{1}
\end{align*}
$$

- the second-order growth condition holds at x^{*} :

$$
F(x) \geq F\left(x^{*}\right)+\varepsilon\left\|x-x^{*}\right\|_{2}^{2} \quad \text { for any } x \in B\left(x^{*}, \delta\right)
$$

Remarks:

 Chen et al (2010)Lemma (second-order sufficient condition and second-order growth condition)

Notations: $x^{*} \in R^{n} \backslash\{0\} ; I=\operatorname{supp}\left(x^{*}\right)$.
Conclusion: the following statements are equivalent:

- x^{*} is a local minimum of the I_{q} regularization problem;
- the following first- and second-order conditions hold:

$$
\begin{align*}
& 2 A_{l}^{\top}\left(A_{I} x_{I}^{*}-b\right)+\lambda q\left(\left(\left|x_{i}^{*}\right|^{q-1} \operatorname{sign}\left(x_{i}^{*}\right)\right)_{i \in I}\right)=0, \\
& \left.2 A_{I}^{\top} A_{I}+\lambda q(q-1) \operatorname{diag}\left(\left|x_{i}^{*}\right|^{q-2}\right)_{i \in I}\right) \succ 0 ; \tag{1}
\end{align*}
$$

- the second-order growth condition holds at x^{*} :

$$
F(x) \geq F\left(x^{*}\right)+\varepsilon\left\|x-x^{*}\right\|_{2}^{2} \quad \text { for any } x \in B\left(x^{*}, \delta\right) .
$$

Remarks

 Chen et al (2010)Second order growth condition is established for a convex composite

Lemma (second-order sufficient condition and second-order growth condition)

Notations: $x^{*} \in R^{n} \backslash\{0\} ; I=\operatorname{supp}\left(x^{*}\right)$.
Conclusion: the following statements are equivalent:

- x^{*} is a local minimum of the I_{q} regularization problem;
- the following first- and second-order conditions hold:

$$
\begin{align*}
& 2 A_{l}^{\top}\left(A_{I} x_{l}^{*}-b\right)+\lambda q\left(\left(\left|x_{i}^{*}\right|^{q-1} \operatorname{sign}\left(x_{i}^{*}\right)\right)_{i \in I}\right)=0, \\
& \left.2 A_{l}^{\top} A_{I}+\lambda q(q-1) \operatorname{diag}\left(\left|x_{i}^{*}\right|^{q-2}\right)_{i \in I}\right) \succ 0 ; \tag{1}
\end{align*}
$$

- the second-order growth condition holds at x^{*} :

$$
F(x) \geq F\left(x^{*}\right)+\varepsilon\left\|x-x^{*}\right\|_{2}^{2} \quad \text { for any } x \in B\left(x^{*}, \delta\right) .
$$

Remarks: Second-order necessary condition (1) (with \succeq) is obtained in Chen et al (2010).

Lemma (second-order sufficient condition and second-order growth condition)

Notations: $x^{*} \in R^{n} \backslash\{0\} ; I=\operatorname{supp}\left(x^{*}\right)$.
Conclusion: the following statements are equivalent:

- x^{*} is a local minimum of the I_{q} regularization problem;
- the following first- and second-order conditions hold:

$$
\begin{align*}
& 2 A_{l}^{\top}\left(A_{I} x_{I}^{*}-b\right)+\lambda q\left(\left(\left|x_{i}^{*}\right|^{q-1} \operatorname{sign}\left(x_{i}^{*}\right)\right)_{i \in I}\right)=0, \\
& \left.2 A_{l}^{\top} A_{I}+\lambda q(q-1) \operatorname{diag}\left(\left|x_{i}^{*}\right|^{q-2}\right)_{i \in I}\right) \succ 0 ; \tag{1}
\end{align*}
$$

- the second-order growth condition holds at x^{*} :

$$
F(x) \geq F\left(x^{*}\right)+\varepsilon\left\|x-x^{*}\right\|_{2}^{2} \quad \text { for any } x \in B\left(x^{*}, \delta\right) .
$$

Remarks: Second-order necessary condition (1) (with \succeq) is obtained in Chen et al (2010).
Second order growth condition is established for a convex composite

Theorem (Linear Convergence of PGA for ℓ_{q} regularization)
Notations:

- $0<q<1$;
- $F(x):=\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q}$;
- $\left\{x^{k}\right\}$ be a sequence generated by the PGA (converging to x^{*}).

Assumptions:

- x^{*} is a local minimum of F.

Conclusion.

- Linear convergence: Then there exist $C>0$ and $\eta \in(0,1)$ such that $F\left(x^{k}\right)-F\left(x^{*}\right) \leq C \eta^{k}$

Theorem (Linear Convergence of PGA for ℓ_{q} regularization)

Notations:

- $0<q<1$;
- $F(x):=\|A x-b\|_{2}^{2}+\lambda\|x\|_{q}^{q}$;
- $\left\{x^{k}\right\}$ be a sequence generated by the PGA (converging to x^{*}).

Assumptions:

- x^{*} is a local minimum of F.

Conclusion:

- Linear convergence: Then there exist $C>0$ and $\eta \in(0,1)$ such that

$$
F\left(x^{k}\right)-F\left(x^{*}\right) \leq C \eta^{k} \quad \text { and } \quad\left\|x^{k}-x^{*}\right\|_{2} \leq C \eta^{k}, \quad \text { for any } k \in \mathbb{N} .
$$

(1) Literature Review

(2) Nonconvex Regularization Method

(3) Group Sparse Optimization

4 Applications

- Recently, enhancing the recoverability due to the special structures has become an active topic in the sparse optimization.
- Group sparse structure: the solution has a natural grouping of its components, and the components within each group are likely to be either all zeros or all nonzeros. The grouping information is usually pre-defined based on prior knowledge of specific problems.
- The group Lasso [Yuan and Lin 2006]:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{2,1},
$$

where $\|x\|_{2,1}=\sum_{i=1}^{r}\left\|x_{\mathcal{G}_{i}}\right\|$. The group Lasso has been applied in multifactor analysis-of-variance, multi-task learning, dynamic MRI and gene finding.

Sparsity
 Group Sparsity

Sparsity
 VS
 Group Sparsity

- Recently, enhancing the recoverability due to the special structures has become an active topic in the sparse optimization.
- Group sparse structure: the solution has a natural grouping of its components, and the components within each group are likely to be either all zeros or all nonzeros. The grouping information is usually pre-defined based on prior knowledge of specific problems.
- The group Lasso [Yuan and Lin 2006]:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{2,1}
$$

where $\|x\|_{2,1}=\sum_{i=1}^{r}\left\|x_{\mathcal{G}_{i}}\right\|$.

- The group Lasso has been applied in multifactor analysis-of-variance, multi-task learning, dynamic MRI and gene finding.

$\ell_{p, q}$ Regularization Method

The $\ell_{p, q}$ regularization model $(p \geq 1,0<q \leq 1)$:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{p, q}^{q},
$$

where $x:=\left(x_{\mathcal{G}_{1}}^{\top}, \cdots, x_{\mathcal{G}_{r}}^{\top}\right)^{\top}$ and

$$
\|x\|_{p, q}=\left(\sum_{i=1}^{r}\left\|x_{\mathcal{G}_{i}}\right\|_{p}^{q}\right)^{1 / q} .
$$

- $\|x\|_{p, p}=\|x\|_{p}$,
- when $\max \left|\mathcal{G}_{i}\right|=1,\|x\|_{p, q}=\|x\|_{q}$.

Theorem (Oracle Result and Recovery Bound)
Notations:

- $0 \leq q \leq 1 \leq p \leq 2$;
- $A \bar{x}=b, \mathcal{S}:=\left\{i \in\{1, \ldots, r\}: \bar{x}_{\mathcal{G}_{i}} \neq 0\right\}, S:=|\mathcal{S}|$;
- x^{*} be a global minimum of the $\ell_{p, q}$ regularization problem, K be the smallest integer such that $2^{K-1} p \geq 1$.
Assumptions:
- $(p, q)-\operatorname{GREC}(S, S)$ holds.

Theorem (Oracle Result and Recovery Bound)

Notations:

- $0 \leq q \leq 1 \leq p \leq 2$;
- $A \bar{x}=b, \mathcal{S}:=\left\{i \in\{1, \ldots, r\}: \bar{x}_{\mathcal{G}_{i}} \neq 0\right\}, S:=|\mathcal{S}|$;
- x^{*} be a global minimum of the $\ell_{p, q}$ regularization problem, K be the smallest integer such that $2^{K-1} p \geq 1$.
Assumptions:
- (p, q)- $\operatorname{GREC}(S, S)$ holds.

Conclusion:

- oracle inequality:

$$
\left\|A x^{*}-A \bar{x}\right\|_{2}^{2}+\lambda\left\|x_{\mathcal{G}_{\mathcal{S}^{C}}}^{*}\right\|_{p, q}^{q} \leq \lambda^{\frac{2}{2-q}} S^{\left(1-2^{-\kappa}\right) \frac{2}{2-q}} / \phi_{p, q}^{\frac{2 q}{2-q}}(S, S)=O\left(\lambda^{\frac{2}{2-q}} S\right),
$$

- recovery bound:

$$
\left\|x_{\text {Xiaoqi YANG }}^{\|}-\bar{x}\right\|_{2}^{2} \leq 2 \lambda^{\frac{2}{2-q}} S^{\frac{q-2}{q}+\left(1-2^{-K}\right) \frac{4}{q(2-q)}} / \phi_{D, a}^{\frac{4}{2-q}}(S, S)=O\left(\lambda^{\frac{2}{2-q}} S\right)
$$

Theorem (Linear Convergence of PGA for $\ell_{1, q}$ regularization)

Notations:

- $0<q<1$;
- $F(x):=\|A x-b\|_{2}^{2}+\lambda\|x\|_{1, q}^{q}$;
- $\left\{x^{k}\right\}$ be a sequence generated by the PGA (converging to x^{*}).

Assumptions:

- x^{*} is a local minimum of F;
- any nonzero group of x^{*} is active.
- Linear convergence: Then there exist $C>0$ and $\eta \in(0,1)$ such that

Theorem (Linear Convergence of PGA for $\ell_{1, q}$ regularization)

Notations:

- $0<q<1$;
- $F(x):=\|A x-b\|_{2}^{2}+\lambda\|x\|_{1, q}^{q}$;
- $\left\{x^{k}\right\}$ be a sequence generated by the PGA (converging to x^{*}).

Assumptions:

- x^{*} is a local minimum of F;
- any nonzero group of x^{*} is active.

Conclusion:

- Linear convergence: Then there exist $C>0$ and $\eta \in(0,1)$ such that

$$
F\left(x^{k}\right)-F\left(x^{*}\right) \leq C \eta^{k} \quad \text { and } \quad\left\|x^{k}-x^{*}\right\|_{2} \leq C \eta^{k}, \quad \text { for any } k \in \mathbb{N} .
$$

Lemma (Analytical formulae of proximal optimization subproblems.)

Let $z \in \mathbb{R}^{\prime}, v>0$ and the proximal regularization
$R_{p, q}(x):=\lambda\|x\|_{p}^{q}+\frac{1}{2 v}\|x-z\|_{2}^{2}$. Then the proximal operator

$$
P_{p, q}(z) \in \arg \min _{x \in \mathbb{R}^{\prime}}\left\{R_{p, q}(x)\right\}=\arg \min _{x \in \mathbb{R}^{\prime}}\left\{\lambda\|x\|_{p}^{q}+\frac{1}{2 v}\|x-z\|_{2}^{2}\right\}
$$

has the following analytical formula:
(i) if $p=2$ and $q=1$, then

$$
P_{2,1}(z)=\left\{\begin{array}{cc}
z-\frac{v \lambda}{\|z\|_{2}} z, & \|z\|_{2}>v \lambda, \\
0, & \text { otherwise }
\end{array}\right.
$$

(ii) if $p \geq 1$ and $q=0$, then

$$
P_{p, 0}(z)=\left\{\begin{array}{cl}
z, & \|z\|_{2}>\sqrt{2 v \lambda} \\
0 \text { or } z, & \|z\|_{2}=\sqrt{2 v \lambda} \\
0, & \|z\|_{2}<\sqrt{2 v \lambda}
\end{array}\right.
$$

Lemma (Con't)

(iii) if $p=2$ and $q=1 / 2$, then

$$
P_{2,1 / 2}(z)=\left\{\begin{array}{cl}
\frac{16\|z\|_{2}^{3 / 2} \cos ^{3}\left(\frac{\pi}{3}-\frac{\psi(z)}{3}\right)}{3 \sqrt{3} v \lambda+16\|z\|_{2}^{3 / 2} \cos ^{3}\left(\frac{\pi}{3}-\frac{\psi(z)}{3}\right)} z, & \|z\|_{2}>\frac{3}{2}(v \lambda)^{2 / 3} \\
0 \text { or } \frac{16\|z\|_{2}^{3 / 2} \cos ^{3}\left(\frac{\pi}{3}-\frac{\psi(z)}{3}\right)}{3 \sqrt{3} v \lambda+16\|z\|_{2}^{3 / 2} \cos ^{3}\left(\frac{\pi}{3}-\frac{\psi(z)}{3}\right)} z, & \|z\|_{2}=\frac{3}{2}(v \lambda)^{2 / 3} \\
0, & \|z\|_{2}<\frac{3}{2}(v \lambda)^{2 / 3}
\end{array}\right.
$$

with $\psi(z)=\arccos \left(\frac{v \lambda}{4}\left(\frac{3}{\|z\|_{2}}\right)^{3 / 2}\right)$,
(iv) if $p=1$ and $q=1 / 2$, then

$$
P_{1,1 / 2}(z)=\left\{\begin{array}{cl}
\tilde{z}, & R_{1,1 / 2}(\tilde{z})<R_{1,1 / 2}(0) \\
0 \text { or } \tilde{z}, & R_{1,1 / 2}(\tilde{z})=R_{1,1 / 2}(0) \\
0, & R_{1,1 / 2}(\tilde{z})>R_{1,1 / 2}(0)
\end{array}\right.
$$

where $\tilde{z}=z-\frac{\sqrt{3} v \lambda \operatorname{sgn}(z)}{4 \sqrt{\|z\|_{1}} \cos \left(\frac{\pi}{3}-\frac{\xi(z)}{3}\right)}$, and $\xi(z)=\arccos \left(\frac{v \lambda l}{4}\left(\frac{3}{\|z\|_{1}}\right)^{3 / 2}\right)$.

(1) Literature Review

(2) Nonconvex Regularization Method

3 Group Sparse Optimization
(4) Applications

Variation of PGA-GSO when varying the regularization order q

Comparison of PGA-GSO with the state-of-arts algorithms

Sensitivity analysis on group size

Phase diagram study of $\ell_{p, q}$ regularization

Workflow of gene regulatory network inference

ROC curves and AUCs of PGA-GSO on mESC gene regulatory network inference

(a) Evaluation with high-throughput golden standard.

(b) Evaluation with literature-based lowthroughput golden standard.

Master Regulator Inference (Group L_{q})

Master Regulator Inference (Group L_{q})

國 Yaohua Hu，Chong Li，Kaiwen Meng，Jing Qin and Xiaoqi Yang．Group sparse optimization via $\ell_{p, q}$ regularization．Journal of Machine Learning Research，18：1－52， 2017.
固 Jinhua Wang，Yaohua Hu，Chong Li and Jen－Chih Yao．Linear convergence of CQ algorithms and applications in gene regulatory network inference． Inverse Problems，33（5）：055017， 2017.
䍰 Lufang Zhang，Yaohua Hu，C．Li and Jen－Chih Yao．A new linear convergence result for iterative soft thresholding algorithm．Optimization， accepted for publication．
回 Jing Qin，Yaohua Hu，Jen－Chih Yao，Yiming Qin，Ka Hou Chu，Junwen Wang．Group Sparse Optimization：AnIntegrative OMICs Method to Predict Master Transcription Factors for Cell Fate Conversion，Nucleic Acids Research，in revision．
围 Jing Qin，Yaohua Hu，Feng Xu，Harry Yalamanchili，and Junwen Wang． Inferring gene regulatory networks by integrating ChIP－seq／chip and transcriptome data via LASSO－type regularization methods．Methods， 67（3）：294－303， 2014.
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37:1705-1732, 2009.
J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, pages 1-36, 2013.
E. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51:4203-4215, 2005.
R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 24:1-14, 2008.

X . Chen, F. Xu , and Y . Ye. Lower bound theory of nonzero entries in solutions of $\ell_{2}-\ell_{p}$ minimization. SIAM Journal on Scientific Computing, 32(5):2832-2852, 2010.
D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(8):1289-1306, 2006.
E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for ℓ_{1}-minimization: Methodology and convergence. SIAM Journal on Optimization, 19(3): 1107-1130, 2008.
Z. Xu, X. Chang, F. Xu , and H . Zhang. $L_{1 / 2}$ regularization: A thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning Systems, 23:1013-1027, 2012.
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of The Royal Statistical Society, series B, 68:49-67, 2006.

Thank You for Your Attention.

[^0]: Remarks: Second-order necessary condition (1) (with \succeq) is obtained in Chen et al (2010)
 Second order growth condition is established for a convex composite

