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Literature Review

In many applications, the underlying data usually can be represented
approximately by a linear system

Ax =b+e.
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Literature Review

The sparse optimization problem can be modeled as

min  []x]lo
sit.  [[Ax — b2 <e.

The ¢, regularization model (0 < g < 1):
_ 5 q n \Y9
minxes | Ax — b|3 + Allx|§, where [ixllq = (27 xi17)

Main questions:

© How far is the solution of the regularization problem from that of the
original sparse optimization problem?

@ How to design the efficient numerical algorithms for the ¢4
regularization problem?

© How to employ the sparse optimization technique to application fields.
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@ The /1 regularization model has attracted much attention and has
been accepted as a most useful tool for the sparse optimization
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Literature Review

@ The /1 regularization model has attracted much attention and has
been accepted as a most useful tool for the sparse optimization
problem, which is widely applied in compressive sensing, image
science, machine learning, system biology, etc.

@ Recovery bound for ¢ regularization:
Ix*(f2) = %[I3 = O(Ns),

under the assumption of restricted isometry property (RIP) or
restricted eigenvalue condition (REC).



Existing Algorithms

{1 regularization model:
@ /1 Magic [Candes, Romberg and Tao 2006]
o LARs [Efron, Hastie, Johnstone and Tibshirani 2004]
e GPSR and SpaRSA [Figueiredo, Nowak and Wright 2007,2009]

o ISTA [Daubechies, Defrise and De Mol 2004], APG [Nesterov 2013],
FISTA [Beck and Teboulle 2009], PGH [Xiao and Zhang 2013]

e ADMM [Yang and Zhang 2011; He and Yuan 2012,2013]
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o ISTA [Daubechies, Defrise and De Mol 2004], APG [Nesterov 2013],
FISTA [Beck and Teboulle 2009], PGH [Xiao and Zhang 2013]

e ADMM [Yang and Zhang 2011; He and Yuan 2012,2013]
{4 regularization model:
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Existing Algorithms

{1 regularization model:
°
°

@ ISTA [Daubechies, Defrise and De Mol 2004], APG [Nesterov 2013],
FISTA [Beck and Teboulle 2009], PGH [Xiao and Zhang 2013]

°
{4 regularization model:
°
°
e IHTA (Half) [Xu et al. 2012]
{o regularization model:
°
e IHTA (Hard) [Blumensath and Davies 2008,2009]
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Lower Order Regularization

{4 regularization:

o [Chartrand and Staneva 2007,2008]: a weaker RIP is sufficient to
guarantee perfect recovery;

@ [Xu, Chang, Xu, and Zhang. 2012]: admits a significantly stronger
sparsity promoting capability;

@ [Qin, Hu, Xu, Yalamanchili, and Wang 2014]: achieves a more reliable
solution in biological sense.



Lower Order Regularization

{4 regularization:

o [Chartrand and Staneva 2007,2008]: a weaker RIP is sufficient to
guarantee perfect recovery;

@ [Xu, Chang, Xu, and Zhang. 2012]: admits a significantly stronger
sparsity promoting capability;

@ [Qin, Hu, Xu, Yalamanchili, and Wang 2014]: achieves a more reliable
solution in biological sense.

Our objectives:
@ The recovery bound for the /4 regularization model.
@ Linear convergence of numerical algorithm.

@ Application to structured sparse optimization and real applications.
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Z(x; t): the subset of {1,...,n} corresponding to the first t largest
coordinates in absolute value of x in Z°€.
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RecoperviBn
The /4 regularization model (0 < g < 1):

i 1/q
minxen | Ax = bJ3 + Allx|§, where [ixllq = (27 xil7)

Z(x; t): the subset of {1,...,n} corresponding to the first t largest
coordinates in absolute value of x in Z°€.
Definition (REC, Bickel, Ritov and Tsybakov 2009)

The restricted eigenvalue condition relative to (s, t) (REC(s, t)) is said to
be satisfied if

[| Ax||2
712

(s, t) = min { NZ) < s, Ixzelln < xzll, T = Z(x; t) uz} > 0.

v

Definition (g-REC)

The g-restricted eigenvalue condition relative to (s, t) (g-REC(s, t)) is
said to be satisfied if

[ A2
(s, t) := min { TR 2 P P e t)UI} > 0.
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Nonconvex Regularization Method Recovery Bound

(a) REC (b) 1/2-REC (c) 0-REC

Figure 1: The geometric interpretation of the RECs: the g-REC holds if and only
if the null space of A does not intersect the gray region.
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Nonconvex Regularization Method Recovery Bound

(a) REC (b) 1/2-REC (c) 0-REC

Figure 1: The geometric interpretation of the RECs: the g-REC holds if and only
if the null space of A does not intersect the gray region.

Proposition
Let0 < g1 < gop<1. Then

¢2-REC(s,t) = q1-REC(s, t).
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Nonconvex Regularization Method Recovery Bound

Theorem (Oracle Inequality and Global Recovery Bound)

Notations:

0 0<g<1, Ax=b, S :=supp(x), s := |supp(X)|;
@ x* be a global minimum of the {, regularization problem, K be the
smallest integer such that 2K~1q > 1.
Assumptions:

e g-REC(s,s) holds.
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Nonconvex Regularization Method Recovery Bound

Theorem (Oracle Inequality and Global Recovery Bound)

Notations:

0 0<g<1, Ax=b, S :=supp(x), s:=

@ x* be a global minimum of the {, regularization problem, K be the

smallest integer such that 2K~1q > 1.
Assumptions:
e g-REC(s,s) holds.
Conclusions:

@ oracle inequality:

2 _
|AX* — AX|3+ Al x5 |9 < Az=as(172

e global recovery bound:

—2 _ _4
Ix* — %|3 < 237as"7 T0720Tg /627 (s,5) = O(ATws).

2q
755 /92 (s, 5) = O(AZ9s),

supp(X)

1
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Nonconvex Regularization Method Recovery Bound

Example

(20 0)

This A satisfies the 1/2-REC(1,1), but not REC(1,1).

l[2*(¢1/2) — 73

Estimated Error | ]
—#— Recovery Bound

0 0.2 0.4 0.6 0.8 1

Figure 2: The illustration of the recovery bound and estimated error.
DRSO
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Recovery Bound
Let x = (xs,0).
@ to construct a smooth path by applying an implicit theorem to the
function H : R5T1 — Rs:
|z1]9 sign(z1)
H(z,\) = 2AL(Asz — b) + A\q :
‘25|q_15ign(25)
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Recovery Bound
Let x = ()_(3, 0)
@ to construct a smooth path by applying an implicit theorem to the
function H : R5T1 — Rs:

|21|9 'sign(z1)
H(z,\) = 2AL(Asz — b) + A\q :
‘25|q_15ign(25)

@ to apply following first-order growth condition:
IASYI3+2(Asé(X)—b, ASy) —2eoly I3+ Al (1§ = ellyll2 ¥y € B(0,6).

to show that the path is a local optimal one.

@ to verify
() =%[8 = 60 ~%s 3 < Xasl|(AFAs) P max (1% )

via a first-order condition.
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Nonconvex Regularization Method Recovery Bound

Theorem (Local Recovery Bound)

Notations:
0 0<g<1 Ax=b, S :=supp(x).
Assumptions:

@ The columns of As are linearly independent.




Nonconvex Regularization Method Recovery Bound

Theorem (Local Recovery Bound)

Notations:

0 0<g<1 Ax=b, S :=supp(x).
Assumptions:

@ The columns of As are linearly independent.

Conclusion:

@ there exist k > 0 and a path of local minima of the I, regularization
problem, x*(\), such that, for A < k,

(%) = X[ < Xq?sl| (AT As) > max (%% = O(¥%s).

1

v
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Nonconvex Regularization Method Proximal Gradient Algorithm

The nonsmooth composite optimization problem

min F(x) == F(x) + 6(x),

Proximal gradient algorithm (PGA):
2 = XK vVF(xh),

1
k+1 A . Lo kg2
X e Arg min{0(x) + o_llx — 213
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The nonsmooth composite optimization problem

min F(x) 1= £(x) + (),

Proximal gradient algorithm (PGA):
2 = XK vVF(xh),

1
k+1 A . Lo kg2
X e Arg min{0(x) + o_llx — 213

Convex composite optimization: ISTA, APG, FISTA, PGH.
Nonconvex composite optimization:

o Kurdyka-tojasewicz (KL) theory [Bolte, Sabach and Teboulle 2013]
@ majorization-minimization (MM) scheme [Mairal 2013]
@ coordinate gradient descent (CGD) method [Tseng and Yun 2009]

@ successive upper-bound minimization (SUM) approach [Razaviyayn,
Hong and Luo 2013]



Nonconvex Regularization Method Proximal Gradient Algorithm

The ¢, regularization problem

in [|[Ax — b2 + \||x]|9.
XrgﬁgnH x — bll5 + Al x|g

Theorem (Global Convergence of PGA)

Let {x*} be a sequence generated by the PGA with v < %||A||52. Then
the following statements hold:

(i) if g =1, then {x} converges to a global minimizer of the (1
regularization problem,
(ii) if g =0, then {x*} converges to a local minimizer of the (g
regularization problem,
(iii) if0 < g < 1, then {xX} converges to a critical point of the {
regularization problem.
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Nonconvex Regularization Method Proximal Gradient Algorithm

The linear convergence of PGA for solving the /1 regularization:
[Hale, Yin and Zhang 2008] under one of the assumptions:

e A|, is injective; or

@ Strict complementarity condition (SCC): supp(x*) = J,
where

J:={keN:|(AT(Ax* = b))k| = %

.

[Bredies and Lorenz 2008] for infinite-dimensional Hilbert spaces.



Nonconvex Regularization Method Proximal Gradient Algorithm

Lemma (second-order sufficient condition and second-order growth
condition)

Notations: x* € R"\ {0}, | = supp(x*).
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Nonconvex Regularization Method Proximal Gradient Algorithm

Lemma (second-order sufficient condition and second-order growth
condition)

Notations: x* € R"\ {0}, | = supp(x*).
Conclusion: the following statements are equivalent:
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o the following first- and second-order conditions hold:
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Nonconvex Regularization Method Proximal Gradient Algorithm

Lemma (second-order sufficient condition and second-order growth
condition)

Notations: x* € R"\ {0}, | = supp(x*).
Conclusion: the following statements are equivalent:
@ x* is a local minimum of the I, regularization problem;

o the following first- and second-order conditions hold:
2A7 (Arxi = b) +Aq (1719 sign(x[))ier) = 0,

2A] A+ Aq(q — 1)diag (Ix}197%)ies) = 0; (1)

@ the second-order growth condition holds at x*:

F(x) > F(x*) +e|lx — x*||3 for any x € B(x*,9).

Remarks: Second-order necessary condition (1) (with ) is obtained in
Chen et al (2010).
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Nonconvex Regularization Method Proximal Gradient Algorithm

Lemma (second-order sufficient condition and second-order growth
condition)

Notations: x* € R"\ {0}, | = supp(x*).
Conclusion: the following statements are equivalent:
@ x* is a local minimum of the I, regularization problem;

o the following first- and second-order conditions hold:
2A7 (Arxi = b) +Aq (1719 sign(x[))ier) = 0,

2A] A+ Aq(q — 1)diag (Ix}197%)ies) = 0; (1)

@ the second-order growth condition holds at x*:

F(x) > F(x*) +e|lx — x*||3 for any x € B(x*,9).

Remarks: Second-order necessary condition (1) (with ) is obtained in
Chen et al (2010).
Second order growth condition is established for a convex composite

L o D innn ~nd Claiea /DNNNN
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Nonconvex Regularization Method Proximal Gradient Algorithm

Theorem (Linear Convergence of PGA for ¢, regularization)

Notations:
e 0<g<l;
o F(x) = [/Ax — b3+ Allx
o {x*} be a sequence generated by the PGA (converging to x*).

q.
qr

Assumptions:

@ x* js a local minimum of F.




Nonconvex Regularization Method Proximal Gradient Algorithm

Theorem (Linear Convergence of PGA for ¢, regularization)

Notations:
e 0<g<l;
o F(x) = [|Ax — b3 + Allx||%;
o {x*} be a sequence generated by the PGA (converging to x*).
Assumptions:

@ x* js a local minimum of F.

Conclusion:

@ Linear convergence: Then there exist C > 0 and ) € (0,1) such that

F(x¥)— F(x*) < Cpk and ||x*—x*||a < Cn¥, for any k € N.
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Group Sparse Optimization

@ Recently, enhancing the recoverability due to the special structures
has become an active topic in the sparse optimization.

@ Group sparse structure: the solution has a natural grouping of its
components, and the components within each group are likely to be
either all zeros or all nonzeros. The grouping information is usually
pre-defined based on prior knowledge of specific problems.
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Group Sparse Optimization

Sparsity VS Group Sparsity
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Group Sparse Optimization
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Group Sparse Optimization

@ Recently, enhancing the recoverability due to the special structures
has become an active topic in the sparse optimization.

@ Group sparse structure: the solution has a natural grouping of its
components, and the components within each group are likely to be
either all zeros or all nonzeros. The grouping information is usually
pre-defined based on prior knowledge of specific problems.

@ The group Lasso [Yuan and Lin 2006]:
min | Ax = bl[3 + Allx]|2,1,
x€eRN
where [Ixl21 = 371y [lxg, -

@ The group Lasso has been applied in multifactor analysis-of-variance,
multi-task learning, dynamic MRI and gene finding.
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p.q Regularization Method

The £, ¢ regularization model (p > 1, 0 < g < 1):

) 2 q
XrQIIRnnHAX b||2+)‘HXHp,q’

where x := (ngl,--- ,ngr)T

4 1/q
Ixlog = (D Ixailig)
i=1

and

o [Ixllp.p = lIx[lp,

e when max |G| =1, ||x|/p,qg = [|X]lq-

Xiaogi YANG () LOR-SO
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Group Sparse Optimization

Theorem (Oracle Result and Recovery Bound)

Notations:
00<g<1<p<2
e Ax=b8:={ie{l,....,r}:x #0},5:=|S
@ x* be a global minimum of the {,, o regularization problem, K be the
smallest integer such that 2K~1p > 1.

1

Assumptions:
e (p,q)-GREC(S,S) holds.
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Group Sparse Optimization

Theorem (Oracle Result and Recovery Bound)

Notations:
00<g<1<p<2
e Ax=b8:={ie{l,....,r}:x #0},5:=|S

@ x* be a global minimum of the {,, o regularization problem, K be the
smallest integer such that 2K~1p > 1.

1

Assumptions:
e (p,q)-GREC(S,S) holds.
Conclusion:

@ oracle inequality:

_ 29
JAx —ARIB+M 15 < A0 /6530 (5, 5) = O(AT3S),

@ recovery bound:

-2 — _4
X" — % Zi <2755 T2 970 (5, §) = O(AZR S).
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Group Sparse Optimization

Theorem (Linear Convergence of PGA for /1 4 regularization)

Notations:

e 0<g<l;

o F(x):= [[Ax = bl3 + Alx|1{ 5/

o {x*} be a sequence generated by the PGA (converging to x*).
Assumptions:

@ x* is a local minimum of F;

@ any nonzero group of x* is active.
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Group Sparse Optimization

Theorem (Linear Convergence of PGA for /1 4 regularization)

Notations:
e 0<g<l;
o F(x):= ||Ax = bll5 + AlIx|I{ ,;

o {x*} be a sequence generated by the PGA (converging to x*).
Assumptions:

@ x* is a local minimum of F;

@ any nonzero group of x* is active.

Conclusion:

o Linear convergence: Then there exist C > 0 and ) € (0,1) such that

F(x¥) = F(x*) < Cn* and ||x* —x*||o < Cn¥, for any k € N.
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Lemma (Analytical formulae of proximal optimization subproblems.)

Let z € R!, v > 0 and the proximal regularization
Rp.q(x) := Allx|| + 5 ||x — z||3. Then the proximal operator

1
Pr.q(2) € arg min{Rp,q(x)} = arg min{Al|x|[3 + >-|lx — 23}

has the following analytical formula:
(i) ifp=2and g =1, then

_ VA
Pyi(z) =% Tel® Izll2 > vA
0, otherwise,

(ii) ifp>1 and q =0, then

z, llz]]2 > V2vA,
Ppoo(z) =< 0o0r z, |z|2=V2vA,
0, llzll < Vv,

Xiaogi YANG () LOR-SO
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Group Sparse Optimization

Lemma (Con't)
(iii) if p=2 and q = 1/2, then
16|23/ cos®( T — £2) 3 2/3
VA6 con (5~ Izlle > 2(vA)"
Py1/2(2) = 16]|z]13/% cos3( % — 22 3 2/3
Qe 3v3vA+16) 2] cos3(§—w§2))z’ Izl2 = 5 (vA)™,
0, Iz]l2 < §(vA)?3,
: vA(_3 \3/2
with (z) = arccos( () / ),
(iv) if p=1and g =1/2, then
Z,  Ru12(2) < Ry12(0),
Pi1/2(z) = q0or 2, Ryq/5(2) = Ry1/2(0),
0,  Ri12(2) > Ry1/2(0),
where 3 = z — —Y3vAen(z) and &(z) = arccos ("A’( 3 )3/2)
Iz]l1 cos(Z—22)” IER :

Xiaogi YANG () LOR-SO
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Applications

o Applications
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Variation of PGA-GSO when varying the regularization
order g

Rate of Success (%)

10
Sparsity Level (%)
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Applications

Comparison of PGA-GSO with the state-of-arts algorithms
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Applications

Sensitivity analysis on group size
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Applications

Phase diagram study of ¢, , regularization
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Applications Gene Transcriptional Regulation

TF
@ TF regulates a target gene by
co-binding on its promoter
Promoter Target gene
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Applications Gene Transcriptional Regulation

A B,
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Applications Gene Transcriptional Regulation

TF complex
O TF complex regulates a

_.‘O target gene by co-binding on

its promoter

Promoter Target gene
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Applications

Gene Transcriptional Regulation

TF complex

e

Promoter Target gene

target gene by co-binding on

TF complex regulates a

its promoter

O O

<5

O
o O

@00

Gene regulatory network
controlled by TF complex

O Targets
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Workflow of gene regulatory network inference
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ROC curves and AUCs of PGA-GSO on mESC gene
regulatory network inference
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Master Regulator Inference (Group L)
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