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Abstract

A survey of linear isometries for unitarily invariant norms on real or complex rectangular

matrices is given which includes some latest development on the topic. A result on isometries

for unitarily invariant norms without the linearity assumption is presented. Related results

and problems are discussed.
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1 Introduction

Let Mm,n(IF) (respectively, Mn(IF)) be the set of m × n (respectively, n × n) matrices over

IF = IR or C. We will use the notation Mm,n and Mn if the discussion is valid for both real

or complex matrices. Furthermore, we will assume that 2 ≤ m ≤ n in our discussion.

Denote by

Uk = {U ∈ Mk(IF) : U∗U = Ik}

the group of k × k orthogonal or unitary matrices according to IF = IR or C. A norm ‖ · ‖
on Mm,n is unitarily invariant if

‖UAV ‖ = ‖A‖

for any A ∈ Mm,n and unitary matrices U ∈ Um and V ∈ Un. Common examples of unitarily

invariant norms include:

1. The operator norm Mm,n defined by

‖A‖op = sup{`2(Ax) : x ∈ IFn, `2(x) ≤ 1}.

2. The trace norm on Mn defined by

‖A‖tr = tr |A|,

where |A| is the unique positive semi-definite matrix satisfying |A|2 = A∗A.
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3. The Frobenius norm on Mm,n defined by

‖A‖F = {tr (AA∗)}1/2.

Denote the singular values of A ∈ Mm,n by

s1(A) ≥ · · · ≥ sm(A),

which are the nonnegative square roots of eigenvalues of the matrix AA∗. By the singular

value decomposition, for every A ∈ Mm,n there are matrices U ∈ Um and V ∈ Un such that

that A = UDV where D ∈ Mm,n with (j, j) entry equal to sj(A) for j = 1, . . . ,m, and all

other entries equal to zero. Thus, for any unitarily invariant norm ‖·‖ on Mm,n, ‖A‖ = ‖D‖.

A norm f : IR1×m → IR is a symmetric gauge function if f(x) = f(x̂) for any x̂ obtained

from x by permuting the entries and changing signs of the entries. Von Neumann [50] (see

also [40]) showed that there is a one-one correspondence between a unitarily invariant norm

‖ · ‖ on Mm,n and a symmetric gauge function f : IR1×m → IR such that

‖A‖ = f(s1(A), . . . , sm(A)).

For example, the symmetric gauge functions corresponding to the operator norm, the trace

norm, and the Frobenius norm are f(x) = `∞(x), `1(x), and `2(x), respectively. More gener-

ally, one has the Schatten p-norm on Mm,n defined by

Sp(A) = `p(s1(A), . . . , sm(A)).

Another important class of unitarily invariant norms are the Ky Fan k-norms on Mm,n with

1 ≤ k ≤ m defined by

Fk(A) =
k∑

j=1

sj(A).

The dominance theorem of Ky Fan asserts that two matrices A, B ∈ Mm,n satisfy

‖A‖ ≤ ‖B‖ for all unitarily invariant norm ‖ · ‖

if and only if

Fk(A) ≤ Fk(B) for all k = 1, . . . ,m;

see [15]. Suppose ‖ · ‖ is a norm on Mm,n. A linear map φ : Mm,n → Mm,n is an (linear)

isometry for ‖ · ‖ if

‖φ(A)‖ = ‖A‖ for all A ∈ Mm,n.
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One readily checks that the collection of all isometries for ‖ · ‖ is a group of invertible

operators acting on Mm,n. Such a group is called the isometry group of ‖ · ‖.
In this paper, we give a survey of results and proof techniques in the study of isometries

for unitarily invariant norms; see Section 2. Then we characterize φ : Mm,n → Mm,n such

that

‖φ(A)− φ(B)‖ = ‖A−B‖ for all A, B ∈ Mm,n

without the linearity assumption in Section 3. In section 4, we discuss some related results

and problems.

2 A brief survey of results and proof techniques

In [47], Schur proved that an analytic mapping φ on Mm,n(C) satisfies

‖φ(A)‖op = ‖A‖op for all A ∈ Mm,n(C) (1)

if and only if there are unitary matrices U and V such that φ has the following standard

form:

(S1) A 7→ UAV , or

(S2) m = n and A 7→ UAtV .

The proof was rather computational, and a consequence was that the analytic map φ satis-

fying (1) is actually linear. Russo [45] proved that a linear isometry φ for the trace norm on

Mn(C) must have the form (S1) or (S2). His proof used the fact that a trace norm isometry

satisfies φ(E) = E , where

E = {xy∗ : x, y ∈ Cn, `2(x) = `2(y) = 1}

is the set of extreme points of the unit ball

B = {A ∈ Mn(C) : ‖A‖tr ≤ 1}.

In fact, one can use the result in [36] to deduce that a linear map satisfying φ(E) = E has

the form (S1) or (S2).

This idea can be applied to characterize linear isometries for the operator norm on Mn(C).

Such isometries φ must satisfy φ(Un) = Un, where Un is the set of extreme points of the unit

ball of the operator norm on Mn(C). One can then use the result of [35] concerning linear

maps mapping the set of unitary matrices into itself to deduce that an isometry for the

operator norm has the form (S1) or (S2).
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A similar idea can be found in an earlier paper of Kadison [25], in which he characterized

surjective isometries from a C∗-algebra to another C∗-algebra. A key step is to show that

the extreme points of the unit ball are maximal partial isometries satisfying a certain equa-

tion. In his subsequent paper [26], he used state preserving maps to study positive linear

isomorphisms between C∗-algebras.

In case of matrix algebras and spaces, it is easy to describe the technique in terms of the

dual transformation and dual norm as follows. Equip Mm,n with the usual inner product

(A, B) = tr AB∗. For any norm ‖ · ‖ and linear map φ : Mm,n → Mm,n, the dual norm of

‖ · ‖ is defined by

‖A‖∗ = sup{|(A, X)| : ‖X‖ ≤ 1},

and the dual transformation of φ is the unique linear map φ∗ : Mm,n → Mm,n such that

(φ(A), B) = (A, φ∗(B)) for all A, B ∈ Mm,n.

It is then easy to verify the following.

Proposition 2.1 Suppose ‖ · ‖ is a norm on Mm,n and φ : Mm,n → Mm,n is a linear map.

Let B = {A ∈ Mm,n : ‖A‖ ≤ 1}. Then the following are equivalent.

(a) φ is an isometry for ‖ · ‖.
(b) φ(S) = S, where S = B, the boundary of B, or the set of extreme points of B.

(c) φ∗ is an isometry for ‖ · ‖∗.
(d) φ∗(S∗) = S∗, where S∗ is the unit ball, the unit sphere, or the set of the extreme

points of the unit ball of ‖ · ‖∗ in Mm,n.

The above proposition is actually valid for general finite dimensional normed vector

spaces. Relating to our previous discussion, one can check that ‖ · ‖op and ‖ · ‖tr are dual to

each other on Mn. Also, the dual transformation of a linear map in the form (S1) and (S2)

will be of the form

B 7→ U∗BV ∗ and B 7→ V BtU,

respectively. Thus, using duality and extreme point techniques together with the real analog

of the results on unitary matrix preservers and rank one matrix preservers, we have the

following result for both real and complex matrices.

Proposition 2.2 The following conditions are equivalent for a linear map φ : Mn → Mn.

(a) φ is an isometry for the operator norm or the trace norm.

(b) φ(S) = S for S = Un or {xy∗ : x, y ∈ IFn, x∗x = y∗y = 1}.
(c) φ has the form (S1) or (S2).
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While the focus of this paper is on matrix spaces, it is interesting to note that the ideas

of studying extreme points, dual transformations, and linear maps leaving invariant rank

one Hermitian idempotents, etc. have been used to treat infinite dimensional problems; see

[11, 25, 46].

Suppose 1 < k < n. Grone and Marcus [19] proved that linear isometries for the Ky-

Fan k-norm on Mn(C) have the form (S1) or (S2). In their proof, they showed that the

extreme points of the unit ball of the Ky Fan k-norm in Mn(C) consists of matrices of the

form k−1V with V ∈ Un and (rank one) matrices with singular values 1, 0, . . . , 0. Then they

showed that each of the two types of extreme points are mapped to themselves under a

linear isometry. The result will then follow (see Proposition 2.2). In [17], Grone extended

the result in [35] to rectangular matrices by showing that a linear map mapping the set

{X ∈ Mm,n(C) : X∗X = Im} into itself has the form (S1) or (S2). Consequently, he could

extend the result in [19] to rectangular matrices in [18]; see also [16].

Grone and Marcus in their paper [19] proposed the study of the isometries for the (p, k)

norm on Mm,n(C) defined by

Np,k(A) =


k∑

j=1

(sj(A))p


1/p

for a given k ∈ {1, . . . ,m} and p ∈ [1,∞]. Evidently, N1,k is the Ky Fan k-norm, and Nm,p is

the Schatten p-norm. In particular, Nm,2 is the Frobenius norm, and the isometries are just

unitary operators on Mm,n(C). For Schatten p-norm with p 6= 2 on Mn(C), it follows from a

more general result of Arazy [2] (see also [3]) that the isometries are again of the standard

form (S1) or (S2). A key idea of the proof in [2] was to show that if certain norm inequalities

for Schatten p-norms become equalities for A, B ∈ Mn, then A and B are disjoint in the

sense that AB∗ = 0n = BA∗; see McCarthy [38]. As a result, an isometry will preserve

“disjoint” matrices, and one can then deduce that it is of the standard form. In [31], Li and

Tsing showed that isometries for other (p, k) norms on Mm,n(C) are always of the standard

form. Their proof used the idea in [2] and certain special features of the boundary of the

unit ball of Mm,n(C) with respect to the (p, k) norm.

The results on (p, k) norms described above were on complex matrices. One might think

that the corresponding results for real matrices could be obtained in a similar way. It turns

out that there was a surprise. In [24] (see also [8] and [13]) the authors showed that a linear

isometry for the Ky Fan k-norm on Mn(IR) either has the standard form (S1), (S2), or the

following special form:
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(S3) (IF, n, k) = (IR, 4, 2), and the isometry is a composition of a mapping of the standard

form (S1) or (S2) with a mapping of form

A 7→ (A + B1AC1 + B2AC2 + B3AC3)/2

or

A 7→ (DA + B1DAC1 + B2DAC2 + B3DAC3)/2,

where D = diag (−1, 1, 1, 1) and

B1 =
(

1 0
0 1

)
⊗
(

0 −1
1 0

)
, C1 =

(
1 0
0 −1

)
⊗
(

0 1
−1 0

)
,

B2 =
(

0 −1
1 0

)
⊗
(

1 0
0 −1

)
, C2 =

(
0 1
−1 0

)
⊗
(

1 0
0 1

)
,

B3 =
(

0 −1
1 0

)
⊗
(

0 1
1 0

)
, C3 =

(
0 1
1 0

)
⊗
(

0 1
−1 0

)
.

Here ⊗ denotes the Kronecker product (xij) ⊗ Y = (xijY ). In [24], the authors used the

extreme point techniques and showed that the extreme points of the unit ball of Mn(IR)

consists of three connected components, namely, the set E1 of the set of rank one matrices

with singular values 1, 0, . . . , 0, (ii) the set E2 of matrices of the form k−1X where X ∈ Un

with positive determinant, and (iii) the set E2 of matrices of the form k−1Y where Y ∈ Un

with negative determinant. If (n, k) 6= (4, 2), one can show that an isometry will maps E1

to E1; so the isometry has the standard form (S1) or (S2). If (n, k) = (4, 2), an isometry

can indeed permute the connected components E1, E2, E3. The special maps in (S3) will help

correct the situation. That is, a composition of the given non-standard isometry with one

of the special maps in (S3) will give a standard isometry that maps E1 onto E1. Note that

each of the sets {I4, B1, B2, B3} and {I4, C1, C2, C3} form a basis for the noncommutative

algebra of real quaternions in M4(IR). In fact, the proofs in both [24] and [13] depended

on the theory of real quaternions; see [8] for an elementary computational proof using the

symbolic computer package - Mathematica.

Let c = (c1, . . . , cm) be nonzero with c1 ≥ · · · ≥ cm ≥ 0. The c-spectral norm Nc on

Mm,n(IF) is defined by

Nc(A) =
m∑

j=1

cjsj(A).

When c1 = · · · = ck = 1 > 0 = ck+1 = · · · = cm, Nc reduces to the Ky Fan k-norm.

Furthermore, the c-spectral norms can be viewed as the building blocks of unitarily invariant
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norms because for every unitarily invariant norm ‖ · ‖ on Mm,n(IF) there is a compact set

S ⊆ IR1×m such that

‖A‖ = max{Nc(A) : c ∈ S};

see [21, 28]. In [32], Li and Tsing studied linear maps φ such that

Nd(φ(A)) = Nc(A) for all A ∈ Mm,n, (2)

for two nonnegative nonzero vectors c, d ∈ IR1×m. It was shown that such a linear map φ

exists if and only if

φ∗(O(d)) = O(c), (3)

where O(c) (respectively, O(d)) consists of matrices A ∈ Mm,n such that (s1(A), . . . , sm(A))

equals c (respectively, equals d). Furthermore, (3) holds if and only if c and d are multiple

of each other. So, after normalization, one may assume that c = d. In such case, an

linear map satisfying (2) has the form (S1), (S2), or (S3) provided Mm,n = Mn(IR) and

c1 = c2 + c3 > 0 = c4. The study of c-spectral norms have been extended to the infinite

dimensional space in [7].

One may wonder whether there are other special isometries for unitarily invariant norms

on Mm,n. It turns out that the exceptional case can only happen in M4(IR) with the form

(S3). The following theorem was proved in [33].

Theorem 2.3 Suppose ‖ · ‖ is a unitarily invariant norm on Mm,n, which is not a multiple

of the Frobenius norm. An isometry for ‖ · ‖ has the form (S1), (S2), or (S3).

The proof was done by geometrical arguments. First, it was shown that an isometry φ

for a unitarily invariant ‖ · ‖ on Mm,n must also be an isometry for the Frobenius norm. As

a result, if B and BF are the unit balls of ‖ · ‖ and the Frobenius norm, then φ(aB ∩ bBF ) =

aB ∩ bBF for any a, b > 0. Furthermore, φ will be an isometry for the unitarily invariant
norm

N(A) = sup{|(A, X)| : X ∈ aB ∩ bBF}

in case aB ∩ bBF 6= ∅. Suppose ‖ · ‖ is not a multiple of the Frobenius norm. By a suitable

choice of a and b, the set E1 of matrices A ∈ Mm,n with singular values 1, 0, . . . , 0, will be a

maximal connected component of the set of extreme points of the unit ball of N , and one can

show that φ(E1) = E1 so that φ has the standard form (S1) or (S2) unless Mm,n = M4(IR).

In the exceptional case, φ(E1) can be E1, E2, or E3, where

E2 = {X/2 : X ∈ U4, det(X) = 1} or E3 = {Y/2 : Y ∈ U4, det(Y ) = −1}
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as defined above. If φ(E1) 6= E1, then φ is of the form (S3).

In [14], an alternative proof of Theorem 2.3 was given using a group theoretic approach.

First, note that the set of all isometries for a norm form a group G. For a unitarily invariant

norm ‖ · ‖ on Mm,n, the isometry group G is a subgroup of Umn: the group of unitary or

orthogonal operators on Mm,n depending on IF = C or IR. Moreover, G contains the group

Um ∗ Un: the group of operators of the form (S1). Using some theory of Lie groups, one

can determine all possible compact groups in Umn that contains Um ∗ Un. It turns out that

the only possibilities are (a) Umn, (b) Um ∗ Un, (c) the group generated by Um ∗ Un and the

transposition operator X 7→ X t in case m = n, or (d) the group generated by U4 ∗ U4, the

transposition operator, and the special operators in (S3) if Mm,n = M4(IR). Consequently,

these are the only possible isometry groups of a unitarily invariant norm on Mm,n.

In an earlier paper [49], Sourour characterized isometries for unitarily invariant norms

on normed ideals of compact operators (with the suitable convergence conditions). He used

the fact that an isometry for the norm has the form exp(iH) where H is a norm Hermitian

operator in the norm ideal. In [27], Li considered real linear maps on Mn(C) leaving the Ky

Fan k-norm invariant. This result will be further discussed and extended in the next section.

3 Isometries without the linearity assumption

In this section, we characterize mapping φ : Mm,n → Mm,n satisfying

‖φ(A)− φ(B)‖ = ‖A−B‖ for all A, B ∈ Mm,n. (4)

Here we do not impose any linearity assumption on φ. Nevertheless, by the result of

Charzyński in [9], if φ satisfies (4), then the map T (A) = φ(A) − φ(0) is real linear and

satisfies

‖T (A)‖ = ‖A‖ for all A ∈ Mm,n. (5)

Thus, we can focus on real linear maps satisfying (5). In the real case, the result reduces to

Theorem 2.3. We will prove the following theorem for the complex case.

Theorem 3.1 Let ‖ · ‖ be a unitarily invariant norm on Mm,n(C), and let T : Mm,n(C) →
Mm,n(C) be an additive or real linear map. Then T satisfies (5) if and only if there exist

U ∈ Um and V ∈ Un such that one of the following holds.

(a) T has the form

A 7→ UAV or A 7→ UAV.
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(b) m = n and T has the form

A 7→ UAtV or A 7→ UA∗V.

(c) ‖ · ‖ is a multiple of the Frobenius norm, that is, ‖A‖ = γ(tr AA∗)
1
2 for some γ > 0,

and T is a real orthogonal transformation on Mm,n(C) with respect to the inner product

(A, B) = Re(tr AB∗).

By Theorem 3.1 and the previous discussion, we immediately get the following.

Theorem 3.2 Let ‖ · ‖ be a unitarily invariant norm on Mm,n(C). A map φ : Mm,n(C) →
Mm,n(C) satisfies

‖φ(A)− φ(B)‖ = ‖A−B‖ for all A, B ∈ Mm,n(C) (6)

if and only if there exist S ∈ Mm,n(C), U ∈ Um and V ∈ Un such that one of the following

holds.

(a) φ has the form

A 7→ UAV + S or A 7→ UAV + S.

(b) m = n and φ has the form

A 7→ UAtV + S or A 7→ UA∗V + S.

(c) ‖·‖ is a multiple of the Frobenius norm, that is, ‖A‖ = γ(tr AA∗)
1
2 for some γ > 0, and

the map A 7→ φ(A) − S is a real orthogonal transformation on Mm,n(C) with respect

to the inner product (A, B) = Re(tr AB∗).

To prove Theorem 3.1, we need several auxiliary results. We shall use {E11, E12, . . . , Emn}
to denote the standard basis for Mm,n, and let i =

√
−1.

Lemma 3.3 Let ‖ · ‖ be a unitarily invariant norm on Mm,n(C) such that ‖ · ‖ is not a

multiple of the Frobenius norm. If T satisfies (5), then

(a) T preserves the real inner product (X, Y ) = Re(tr XY ∗) and the Frobenius norm on

Mm,n(C), and

(b) T maps the set of matrices with singular values 1, 0, . . . , 0 onto itself.
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Proof. Our proof is an adaptation and modification of that in [33]. Yet, there are

some technical details required different treatment. We give the details for the sake of

completeness.

(a) Let G be the group of all real linear operators on Mm,n(C) satisfying (5). For any

X ∈ Mm and Y ∈ Mn, let TX,Y and T c
X,Y be the operators of the form

A 7→ XAY and A 7→ XAY

respectively. Evidently,

G0 = {TU,V : U ∈ Um, V ∈ Un} ∪ {T c
U,V : U ∈ Um, V ∈ Un} ⊆ G.

One can find 2m2 (real) linearly independent elements U in Um, and n2 linearly independent

elements V in Un to get (2m2)(n2) linearly independent operators of the form TU,V , and also

(2m2)(n2) linearly independent operators of the form T c
U,V . Combining these two sets of

operators, we get 4m2n2 real linear operators on Mm,n(C) which form a basis for the algebra

of all real linear operators on Mm,n(C). Thus, the real linear span of the set G0 equals the

set of all real linear operators on Mm,n(C).

Because G is a bounded group of operators, by the result of Auerbach [6], (see [12] for an

elementary proof), there is an invertible real linear operator S : Mm,n(C) → Mm,n(C) such

that

SGS−1 = {STS−1 : T ∈ G}

is a subgroup of the real orthogonal group of operators on Mm,n(C) with respect to the real

inner product (A, B) = Re(tr (AB∗)). Then for any T ∈ G0,

(STS−1)∗(STS−1) = (S−1)∗T ∗(S∗S)TS−1

is the identity map on Mm,n(C), where T ∗ is the dual transformation of T . Since T ∗ = T−1

for every T ∈ G0, it follows that

(S∗S)T = T (S∗S) for all T ∈ G.

Since the real span of G0 equals the set of all real linear operators, S∗S is a scalar map. As

S∗S is positive definite, there is a positive k such that k(S∗S) is the identity map. Then
√

kS is real orthogonal. Hence,

SGS−1 = (
√

kS)G(
√

kS)−1 = G
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is a subgroup of the set of all real orthogonal operators. That is, every operator in G

preserves the real inner product on Mm,n(C) and the Frobenius norm.

(b) Since ‖ · ‖ is not a multiple of the Frobenius norm, there exists R ∈ Mm,n(C) such

that ‖R‖F = 1 = ‖E11‖F and ‖R‖ 6= ‖E11‖. Let r = ‖R‖ 6= ‖E11‖. We define another

unitary invariant norm N(·) by

N(A) = max{|(A, X)| : X ∈ BF ∩ rB} = max

{
m∑

i=1

si(A)si(X) : X ∈ BF ∩ rB
}

,

where B and BF are the unit balls of ‖ · ‖ and the Frobenius norm respectively. Note that

T is real orthogonal and T (BF ∩ rB) = BF ∩ rB, then

N(T (A)) = max{|(T (A), X)| : X ∈ BF ∩ rB}

= max{|(T (A), T (X))| : X ∈ BF ∩ rB}

= max{|(A, X)| : X ∈ BF ∩ rB}

= N(A).

Let S(A) = {UAV : U ∈ Um, V ∈ Un} and

Ω = {A ∈ Mm,n(C) : ‖A‖F = ‖E11‖F and N(A) = N(E11)}.

Then S(E11) ⊆ Ω and T (Ω) = Ω. We claim that S(E11) is a maximum connected component

of Ω. Clearly, S(E11) is connected and is a closed subset of Ω. It remains to show that S(E11)

is open in Ω. To this end, take any matrix A ∈ S(E11) and let Z be a matrix in the boundary

of BF ∩ rB such that

N(A) = (A, Z) =
m∑

i=1

si(A)si(Z) = s1(Z).

Note that ‖Z‖F = 1 and ‖Z‖ = r 6= ‖E11‖, Z has at least two nonzero singular values.

Hence, s2(Z) > 0. Let ε = s2(Z)[(m− 1)s1(Z)]−1 > 0. Suppose B ∈ Ω and ‖B − A‖F < ε.

Then

s2(B) = s2(B)− s2(A) ≤
(

m∑
i=1

(si(B)− si(A))2

)1/2

≤ ‖B − A‖F < ε.

Since B ∈ Ω, we have
∑m

i=1 si(B)2 = ‖B‖2
F = 1. Clearly, N(A) = N(B). As

N(A) = s1(Z) = s1(Z)
m∑

i=1

si(B)2 ≤ s1(Z)s1(B)2 + (m− 1)s1(Z)s2(B)2 and

N(B) ≥
m∑

i=1

si(B)si(Z) ≥ s1(Z)s1(B) + s2(Z)s2(B) ≥ s1(Z)s1(B)2 + s2(Z)s2(B),
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we conclude that (m− 1)s1(Z)s2(B)2 ≥ s2(Z)s2(B). So s2(B) = 0; otherwise,

s2(Z)s2(B) = (m− 1)s1(Z)s2(B)ε > (m− 1)s1(Z)s2(B)2 ≥ s2(Z)s2(B).

As a result, B ∈ S(E11) and hence S(E11) is open. Note that S(E11) is a real differentiable

manifold in Mm,n(C). The tangent space TE11(S(E11)) of the manifold S(E11) at E11 consists

of X ∈ Mm,n(C) such that there is a smooth curve f : (−d, d) → S(E11) satisfying

f(t) = E11 + tX + O(t2) ∈ S(E11).

For any H = H∗ ∈ Mm(C) and K = K∗ ∈ Mn(C),

f(t) = eitHE11 + E11e
itK = E11 + it(HE11 + E11K) + O(t2), t ∈ IR

is a curve in S(E11); conversely, X ∈ TE11(S(E11)) implies that E11 + tX + h(t) ∈ S(E11)

for some smooth function h(t) of order t2 and hence X has imaginary (1, 1) entry, and zero

(i, j) entries if i ≥ 1 or j ≥ 1. Thus, we see that

TE11(S(E11)) = {i(HE11 + E11K) : H = H∗ ∈ Mm(C), K = K∗ ∈ Mn(C)}

is a real linear space of dimension 2(m + n)− 3.

Now, since T (Ω) = Ω and T is a homeomorphism, there is a maximal connected compo-

nent C of Ω such that T (C) = S(E11). On the other hand, let A = T (E11). As S(E11) is a

maximal connected component of Ω containing T−1(A) and

S(A) = {UAV : U ∈ Um, V ∈ Un}

is a connected subset of Ω, T−1(S(A)) ⊆ S(E11). By the singular value decomposition, there

exist U ∈ Um and V ∈ Un such that A = U(
∑m

j=1 sj(A)Ejj)V . Let

A′ = U

s1(A)E12 + s2(A)E21 +
m∑

j=3

sj(A)Ejj

V.

Then A′ ∈ S(A). Thus, both T−1(A) and T−1(A′) are in S(E11), it follows that the rank of

the matrix T−1(A−A′) is at most 2. Let C = T−1((A−A′)/‖A−A′‖2). Then C is at most

rank 2. Because (A− A′)/‖A− A′‖2 is in S(E11), we see that C ∈ T−1(S(E11)) = C.

Suppose C has rank 2. By the singular value decomposition, there exist U1 ∈ Um and

V1 ∈ Un such that C = U1(s1(C)E11 + s2(C)E22)V1. As T (C) ∈ S(E11), there exist U2 ∈ Um

and V2 ∈ Un such that T (C) = U2E11V2. We may assume that U1 = U2 = Im and V1 = V2 =
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In, i.e., C = s1(C)E11 + s2(C)E22 and T (C) = E11; otherwise, replace T by the mapping

X 7→ U∗
2 T (U1XV1)V

∗
2 . Since T is a bijective linear map such that T (C) = S(E11), T will map

the tangent space TC(C) of C at C onto TE11(S(E11)). Because C is a maximal connected

component of Ω containing C and S(C) is a connected set of Ω, we see that S(C) ⊆ C.

Moreover, for any t ∈ IR, H = H∗ ∈ Mm(C) and G = G∗ ∈ Mn(C),

g(t) = eitHCeitG = C + it(HC + CG) + O(t2) ∈ S(C) ⊆ C.

So, the tangent space of TC(C) at C contains the space

TC(S(C)) = {i(HC + CG) : H = H∗ ∈ Mm(C), G = G∗ ∈ Mn(C)}.

Since T is bijective linear and T (TC(S(C))) ⊆ TE11(S(E11)),

2(m + n)− 3 = dim TE11(S(E11))

≥ dim TC(S(C))

=
{

4(m + n)− 12 if s1(C) = s2(C),
4(m + n)− 10 if s1(C) > s2(C).

We check that the above inequality holds if and only if m = n = 2 and s1(C) = s2(C). In

this case, it is impossible to have C = S(C) as

dim TC(S(C)) = 4 < 5 = dim TE11(S(E11)).

Therefore, C must contain some matrices C ′ with s1(C
′) > s2(C

′) > 0. However, using the

similar argument on C ′ instead of C, we get

6 = dim TC′(S(C ′)) ≤ dim TE11(S(E11)) = 5,

which is impossible.

By the above arguments, C must be a rank one matrix in Ω, and hence C ∈ S(E11).

Since both C and S(E11) are maximal connected components of Ω containing C, we conclude

that C = S(E11).

To complete the proof of Theorem 3.1, we need one more result, namely, Theorem 3.5,

concerning real linear maps L : Mm,n(C) → Mm,n(C) mapping rank one matrices to rank one

matrices. Note that when m = n, a characterization of bijective additive maps preserving

rank one matrices in both directions was given by Omladič and Šemrl [44].

We begin with the following observation, the proof of which is straightforward and will

be omitted.
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Lemma 3.4 Suppose P ∈ Mm(C) and Q ∈ Mn(C) are invertible. Then for any rank one

matrix E ∈ Mm,n(C), if there is a nonzero γ ∈ C such that E + γPE11Q is also rank one,

then either

E = P

(
m∑

i=1

αiEi1

)
Q or E = P

 n∑
j=1

βjE1j

Q for some αi, βj ∈ C. (7)

Theorem 3.5 Denote by R the set of rank one matrices in Mm,n(C). If L : Mm,n(C) →
Mm,n(C) is real linear such that

A ∈ Mm,n(C) satisfies A ∈ R if and only if L(A) ∈ R, (8)

then L is either linear or conjugate linear. Consequently, a real linear map L : Mm,n(C) →
Mm,n(C) satisfies (8) if and only if there are invertible matrices P ∈ Mm(C) and Q ∈ Mn(C)

such that

(a) L has the form

A 7→ PAQ or A 7→ PAQ.

(b) m = n and L has the form

A 7→ PAtQ or A 7→ PA∗Q.

Proof. First, we show that for any matrix R ∈ R, there is nonzero µR ∈ C\IR such that

L(iR) = µRL(R). (9)

Since L is real linear, it is sufficient to show the claim holds for all rank one matrices with

operator norm one. Now take any matrix R in R with operator norm one. Then we can

write R = XE11Y for some X ∈ Um and Y ∈ Un. Since L satisfies (8), there are U ∈ Um

and V ∈ Un such that L(R) = U(γE11)V . Let

R0 = X(iE11)Y = iR, R1 = XE12Y and R2 = XE21Y.

Since Ri, (Ri + R) ∈ R, we see that L(Ri), L(Ri) + L(R) = L(Ri) + U(γE11)V ∈ R for

i = 0, 1, 2. By Lemma 3.4, L(Ri) = UEiV where Ei has the form (7). On the other hand,

because R0 + R1 and R0 + R2 have rank one, we see that E0 + E1 and E0 + E2 also have

rank one.
Suppose E0 has the form

∑m
i=1 αiEi1 with some α2, . . . , αm not equal to zero. Then

E1 and E2 must also be of the same form, and E1 + E2 is a rank one matrix. But then
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L maps the rank two matrix (R1 + R2) to the rank one matrix U(E1 + E2)V , which is

impossible. Similarly, we can show that E0 cannot be of the form
∑n

j=1 βjE1j with some

β2, . . . , βn not equal to zero. Therefore, E0 = µRE11 for some nonzero µR ∈ C. Hence,

L(iR) = µRUE11V = µRL(R).

Note that µR must not be in IR; otherwise

L(iR− µRR) = L(iR)− L(µRR) = µRL(R)− µRL(R) = 0,

contradicting the fact that L maps rank one matrices to rank one matrices.

Next we show that L(Eii) 6= αL(Eij) for all α ∈ C. Suppose there is α ∈ C such that

L(Eii) = αL(Eij). As µEij
/∈ IR, there exist a, b ∈ IR such that a + bµEij

= α. Then

L(Eii − (a + bi)Eij) = L(Eii)− aL(Eij)− bL(iEij)

= L(Eii)− (a + bµEij
)L(Eij) = αL(Eij)− (a + bµEij

)L(Eij) = 0.

Again this is impossible as Eii − (a + bi)Eij is a rank one matrix.

Finally we show that there is µ ∈ {i,−i} such that T (iEij) = µT (Eij) for all i, j. To

see this, consider R = Eii, Eij, (Eii + Eij) and (−iEii + Eij) in (9). For simplicity, we write

µii = µEii
, µij = µEij

, µ1 = µ(Eii+Eij) and µ2 = µ(−iEii+Eij). Then

µiiL(Eii) + µijL(Eij) = L(i(Eii + Eij)) = µ1L(Eii + Eij) = µ1L(Eii) + µ1L(Eij)

and

L(Eii) + µijL(Eij) = L(i(−iEii + Eij)) = µ2L(−iEii + Eij) = −µ2µiiL(Eii) + µ2L(Eij).

Thus,

(µii − µ1)L(Eii) = (µ1 − µij)L(Eij) and (1 + µ2µii)L(Eii) = (µ2 − µij)L(Eij).

Since L(Eii) 6= αL(Eij) for all α ∈ C, we must have µii = µij = µ1 = µ2 and µ2
ii = −1.

Considering Eii and Eji in a similar way, we show that µii = µji. Take µ to be the common

value of µij, then µ2 = −1 and L(iEij) = µL(Eij) for all i, j. Since L is real linear, we

conclude that either L(αEij) = αL(Eij) for all α ∈ C and Eij, or L(αEij) = αL(Eij) for all

α ∈ C and Eij. Hence, L is either linear or conjugate linear.

Now, if L is linear, then we can apply the result in [37] (see also [39]) to conclude that (a)

or (b) holds; if L is conjugate linear, we can apply the result in [37] to the map A 7→ L(A)

and conclude that (a) or (b) holds. So, we get the necessity of the second assertion in the

theorem. The sufficiency of the assertion is clear.
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Proof of Theorem 3.1. The sufficiency part is clear. We consider the necessity part. If T

is additive, then T (qA) = qT (A) for all rational numbers q. For any real number r, there

exists a sequence of rational numbers {rk} approaching r. Then

‖T (rA)− rT (A)‖ ≤ ‖T (rA)− T (rkA)‖+ ‖T (rkA)− rT (A)‖

= ‖rA− rkA‖+ ‖rkT (A)− rT (A)‖

= |r − rk|‖A‖+ |rk − r|‖T (A)‖

will approach to 0 when rk tends to r, i.e., T is real linear.

Suppose ‖ · ‖ is a multiple of the Frobenius norm, Then clearly T preserves ‖ · ‖ if and

only if T is an orthogonal transformation on Mm,n(C).

Suppose ‖ · ‖ is not a multiple of the Frobenius norm, and T satisfies (5). By Lemma 3.3

(b), T (S(E11)) = S(E11). So, A ∈ Mm,n(C) has rank one if and only if T (A) has rank one.

By Theorem 3.5, T is either linear or conjugate linear. Applying the result of [33] to T if T

is linear, or to the map A 7→ T (A) if T is conjugate linear, we have the conclusion.

4 Related results and problems

There are many interesting results and problems that deserve further research. We briefly

mention some of them in the following.

First, there are study of unitarily invariant norms on other matrix and operator algebras

or spaces. Moore and Trent [42] (see also [5]) characterized surjective isometries for the op-

erator norm on nest algebras; Anoussis and Katavolos [1] characterized surjective isometries

for the Schatten p-norms on nest algebras; Li, Šemrl, and Sourour [30] characterized surjec-

tive isometries for Ky Fan k-norms for block triangular matrix algebras, which can be viewed

as all finite dimensional nest algebras. The problem of characterizing surjective isometries

for general unitarily invariant norms on nest algebras (finite or infinite dimensional) is still
open.

Related results on operator norm isometries on other algebras and spaces can be found

in [4, 22, 23, 41, 43, 48]. It would be interesting to formulate and extend the results to other

unitarily invariant norms.

Another direction is to study the isometry problems without the surjectivity assumption.

In [10], the authors studied linear map φ : Mm(C) → Mn(C) such that

‖φ(A)‖op = ‖A‖op for all A ∈ Mm(C). (10)
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If φ has the form

A 7→ U [A⊕ g(A)]V or A 7→ U [At ⊕ g(A)]V (11)

for some U, V ∈ Un and contractive linear map g : Mm(C) → Mn−m(C), then (10) holds.

However, the converse may not hold in general. It was shown that if n ≤ 2m − 1 and φ

satisfies (10) then condition (11) holds. If n ≥ 2m there are linear maps satisfying (10) but

not (11). The problem of characterizing linear maps φ : Mm(C) → Mn(C) satisfying (10) is

still open. Also, not much is known about the real case.

While the structure of operator norm preserving maps between two matrix spaces is

rather complicated, the corresponding problem for Ky Fan k-norms are more tractable for

k > 1. Li, Poon, and Sze [29] showed that for positive integers k and k′ with k′ > 1. A

linear map φ : Mm,n(C) → Mr,s(C) satisfies

Fk(φ(A)) = Fk′(A) for all A ∈ Mm,n(C) (12)

if and only if there are nonnegative integer a and b and partial isometries P and Q of suitable

dimensions such that one of the following holds.

(a) k′ < m, k′(a + b) = k, and φ has the form

A 7→ (a + b)−1P ∗[(Ia ⊗ A)⊕ (Ib ⊗ At)]Q.

(b) k′ = m, k′(a + b) ≤ k, and φ has the form

A 7→ P ∗[(Da ⊗ A)⊕ (Db ⊗ At)]Q,

where Da and Db are positive diagonal matrices such that tr (Da ⊕Db) = 1.

It would be interesting to see whether the same conclusion holds for other unitarily

invariant norms, and for the real case.
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