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Gorazd Lešnjak∗, Nung-Sing Sze

Faculty of Electrical Engineering and Computer Science
University of Maribor

2000 Maribor, Smetanova 17
Slovenia

Department of Mathematics
University of Hong Kong

Hong Kong

E-mail: gorazd.lesnjak@uni-mb.si, NungSingSze@graduate.hku.hk

Abstract

We show that every injective Jordan semi-triple map on the algebra Mn(F) of
all n×n matrices with entries in a field F (i.e. a map Φ : Mn(F) → Mn(F) satisfying

Φ(ABA) = Φ(A)Φ(B)Φ(A)

for every A and B in Mn(F) ) is given by an injective multiplicative map of Mn(F)
or by its negative. Hence, there exist σ ∈ {−1, 1} ∩ F, an injective homomorphism
ϕ of F and an invertible T ∈ Mn(F) such that either

Φ(A) = σT−1AϕT for all A ∈ Mn(F), or
Φ(A) = σT−1At

ϕT for all A ∈ Mn(F).

Here, Aϕ is the image of A under ϕ applied entrywise.
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1. Introduction and the main result

Let R and R′ be rings and φ : R→ R′ be a transformation. The map φ is called a
Jordan homomorphism if it is additive and satisfies the condition

φ(xy + yx) = φ(x)φ(y) + φ(y)φ(x)

for every x, y in R. Rings with Jordan structure have been paid a lot of attention,
moreover, Jordan operator algebras belong to the mathematical foundations of quantum
mechanics [6]. Every ring homomorphism or antihomomorphism (i.e., an additive map φ
with φ(xy) = φ(y)φ(x) ) is a Jordan homomorphism. If the ring R′ is 2-torsion free (i.e.,
2x = 0 implies x = 0) then each Jordan homomorphism φ : R→ R′ is a Jordan triple
homomorphism [3], i.e., an additive map satisfying

φ(xyx) = φ(x)φ(y)φ(x) (∗)

for all x and y in R. Without additivity such a map is called a Jordan (semi)triple map.
It is quite interesting how different structures of a ring, for example, the multiplicative

and the additive structure, are interrelated. Molnár has proved [6] that in the case of
standard operator algebras acting on infinite dimensional Banach spaces every bijective
map satisfying (∗) is linear or conjugate linear and continuous. Also for n > 2 the general
form of such bijective mappings on matrix algebras Mn of all n×n complex matrices has
been given there. The proof was functional-analytic in its spirit and depended on a deep
result of Ovchinnikov [7]. Recently, Lu [5] presented a purely algebraic proof that works
also in the dimension 2. Let us mention that a further generalization is given in [4].

In this paper we show that in the case of the algebra Mn(F) of all square matrices over
an arbitrary field F a result of this sort can be obtained for injective Jordan semi-triple
maps.

We introduce some further notations that we shall use in the sequel. For a matrix
A ∈ Mn(F) and a homomorphism ϕ of the underlying field let Aϕ be the matrix obtained
by applying ϕ entrywise, i.e. [Aϕ]jk = ϕ(ajk). Note that this notation covers also the
complex conjugation. Now we can state the main result of the paper.

Theorem 1 Let n > 1. An injective mapping Φ : Mn(F) → Mn(F) is a Jordan semi-
triple map if and only if there exist an element σ ∈ {−1, 1} ∩ F, an invertible matrix
T ∈ Mn(F) and an injective homomorphism ϕ of F such that either

Φ(A) = σTAϕT−1 for all A ∈ Mn(F), or
Φ(A) = σTAt

ϕT−1 for all A ∈ Mn(F).

In other words, an injective Jordan semi-triple map stems either from a multiplicative
map of Mn(F) or its negative.The result seems natural as it is easy to check that similar-
ities, monomorphisms of underlying field applied entrywise, transposition and changing
the sign are injective Jordan semi-triple maps. Before proceeding to the proof we collect
some helpful and easy verifiable facts about Jordan semi-triple maps.
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Proposition 2 Let A and B be rings and Φ : A → B be a Jordan semi-triple map. Then
Φ sends idempotents to tripotents and moreover, if 1 ∈ A and j = Φ(1) ∈ B, then

1. j2 is an idempotent in B satisfying Φ(a) = jΦ(a)j = j3Φ(a)j = j2Φ(a) = Φ(a)j2 for
all a ∈ A (in particular, j2Φ(a)j2 = Φ(a)),
2. j commutes with Φ(a) for every a ∈ A,
3. Φ2(p) = jΦ(p) is an idempotent in B for each idempotent p ∈ A, and
4. a map Ψ : A → B, defined for all a ∈ A by Ψ(a) = jΦ(a), is a Jordan semi-triple
map, which is injective if and only if Φ is injective.

If z = Φ(0), then Φ(a)z = zΦ(a) = z2 is an idempotent for all a ∈ A and results analogous
to those above hold for the map a 7−→ j(Φ(a)− z) = Ψ(a)− z2.

Proof. The first assertion is evident from the definition of j. Use jΦ(a) = j3Φ(a)j2 =
jΦ(a)j2 = Φ(a)j to see the second. The third follows from Φ2(p) = Φ(1p1)Φ(p) =
jΦ(p)jΦ(p) = jΦ(p1p) = jΦ(p). A hint about z: Φ(a)z = Φ(a)Φ(0a0) = (Φ(a)z)2 =
Φ(a0a)z = z2.

Next we present a useful fact valid for injective mappings of the above form. Let p and
q be idempotents in a ring A. We write p ≺ q if and only if qpq = p 6= q. It follows that
if Φ is injective, then for any strictly increasing chain p1 ≺ p2 ≺ . . . ≺ pk of idempotents
in a ring A their corresponding images Ψ(pj), where Ψ is defined in Proposition 2, form
a strictly increasing chain of idempotents in B. In the case of (complex or real) matrix
algebras we deduce the following corollary that is formulated here for complex matrices
only.

Corollary 3 Let n > 1, m ∈ N and Φ : Mn → Mm be an injective Jordan semi-triple
map. Then m ≥ n. In the case m = n, for each idempotent p ∈ Mn the rank of the
idempotent Ψ(p) is equal to the rank of p. In particular, Ψ(0) = Φ(0) = 0 and Ψ(I) = I.

The description of Jordan semi-triple maps in the case when F is either C or R reads
as follows.

Proposition 4 A mapping φ : F → F satisfies the condition φ(a2b) = φ2(a)φ(b) for all
a and b in F if and only if φ(ab) = φ(1)φ(a)φ(b) for all a and b in F. This means that
either φ is multiplicative (including the cases φ ≡ 0 and φ ≡ 1) or −φ is a multiplicative
map (including the case φ ≡ −1).

Proof. From φ(1) = φ3(1) it follows that φ(1) ∈ {−1, 0, 1}. In the case φ(1) = 0 the
conclusion follows immediately: for each a ∈ F one has φ(a) = φ(1)2φ(a) = 0. On the
other hand, if φ(1) 6= 0 then φ(ab) = φ(c2b) = φ2(c)φ(b) for any c with c2 = a and a in C
or R+. Also, φ(a) = φ(c21) = φ2(c)φ(1) = φ2(c)φ−1(1) and the result follows for complex
scalars or in the real case when at least one of factors is positive. If both factors are
negative then we use the fact that for a negative d there exists c ∈ R such that d = −c2

and hence, φ(d) = φ(−1)φ2(c) = φ(−1)φ(1)φ(−d). A simple identity φ2(−1)φ(1) = φ(1)
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implies φ2(−1) = 1 and the chain of equalities φ(ab) = φ((−a)(−b)) = φ(1)φ(−a)φ(−b) =
φ(1)φ2(−1)φ2(1)φ(a)φ(b) finishing the proof

Remark. If φ is also additive, then it is a (ring) homomorphism of F, and hence, it is
trivial in the real case [1], p. 57. Even in the case when φ is injective there are a lot of such
nontrivial monomorphisms in the complex case, see [1], p. 59. Considering the algebra
Mn(R) of all real n×n matrices, the characterization of injective Jordan semi-triple maps
reads as follows.

Theorem 5 An injective mapping Φ : Mn(R) → Mn(R), n > 1, is a Jordan semi-triple
map if and only if there exist a number σ ∈ {−1, 1} and an invertible matrix T ∈ Mn(R)
such that either

Φ(A) = σTAT−1 for all A ∈ Mn(R), or
Φ(A) = σTAtT−1 for all A ∈ Mn(R).

2. The proof
The main idea is to use the induction on n after proving the result for 2× 2 matrices.

For any 1 ≤ j, k ≤ n we write Ejk for the matrix having 1 as its (j, k)-th entry and zeros
elsewhere.

Let Ψ : Mn(F) → Mn(F) be a map associated to Φ as before. From Proposition 2
we know that it is an injective Jordan semi-triple map if Φ is. Moreover, the following
observation is helpful:

Lemma 6 If there exist an invertible matrix T in Mn(F) and a map ϕ of F with
ϕ(0) = 0 and ϕ(1) = 1 such that Ψ : Mn(F) → Mn(F) has the form

A 7→ TAϕT−1 or A 7→ TAt
ϕT−1,

then Φ(In) = σIn, where σ ∈ {−1, 1} ∩ F. Thus, Φ has either the form A 7→ σTAϕT−1

or A 7→ σTAt
ϕT−1.

Proof. Let X = Φ(In). Since X2 = Φ(In)Φ(In) = Ψ(In) = In , X is invertible and
X = X−1. By Proposition 2, X commutes with Φ(A) for all A ∈ Mn(F). It follows that
X−1 = X commutes with Ψ(A) for all A ∈ Mn(F). If Ψ has the form described, X must
be a scalar matrix. As X2 = In, X = σIn and hence, Φ(.) = XΨ(.) has the asserted
form.

Therefore, in order to prove Theorem 1, it suffices to prove that Ψ has the form given
in the lemma above. From Proposition 2 and Corollary 3, Ψ has the following useful
properties:

(a) For any idempotent A ∈ Mn(F), Ψ(A) is an idempotent of the same rank as A.
(b) Ψ(0n) = 0n and Ψ(In) = In.
(c) for any A ∈ Mn(F) one has Ψ(A2) = Ψ(A)2.

Now, the proof of Theorem 1 is given in two steps.
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Step 1. The proof for M2(F).
The matrix E11 is an idempotent of rank 1. By the above property (a), Ψ(E11) is a rank

one idempotent. There exists an invertible 2× 2 matrix S such that Ψ(E11) = SE11S
−1.

By replacing Ψ with the map A 7→ S−1Ψ(A)S, we may assume that Ψ(E11) = E11.
Using the properties (b) and (c) we see that Ψ(E12)

2 = Ψ(E2
12) = Ψ(0) = 0. Thus,

Ψ(E12) is a nonzero nilpotent because of injectivity, and hence its rank is 1. From this
and the following fact

E11Ψ(E12)E11 = Ψ(E11)Ψ(E12)Ψ(E11) = Ψ(E11E12E11) = Ψ(0) = 0

we conclude that either Ψ(E12) = aE12 or Ψ(E12) = aE21 for some nonzero a ∈ F. Let
D = diag(a, 1). Replacing Ψ with the map A 7−→ D−1Ψ(A)D (or A 7−→ D−1Ψ(A)tD,
respectively) we may further assume that Ψ(E12) = E12.

Similarly, we check that Ψ(E21) is a rank one nilpotent. Then we use

Ψ(E11)Ψ(E21)Ψ(E11) = Ψ(0) = 0 and Ψ(E12)Ψ(E21)Ψ(E12) = Ψ(E12) = E12

to verify that Ψ(E21) = E21. Next, as Ψ(E22) is a rank one idempotent satisfying
Ψ(A)Ψ(E22)Ψ(A) = 0 for A ∈ {E11, E12, E21}, we deduce that Ψ(E22) = E22.

Now for any A = (aij) ∈ M2(F), let B = (bij) = Ψ(A). Then

bijEji = EjiBEji = Ψ(Eji)Ψ(A)Ψ(Eji) = Ψ(EjiAEji) = Ψ(aijEji).

Thus, the (i, j)-th entry of Ψ(A) depends on the (i, j)-th entry of A only. Therefore, we
may write

Ψ(

[
a11 a12

a21 a22

]
) =

[
ϕ11(a11) ϕ12(a12)
ϕ21(a21) ϕ22(a22)

]
for some maps ϕij on F. Furthermore, from Ψ(Eij) = Eij for all i, j ∈ {1, 2} we conclude
that ϕij(0) = 0 and ϕij(1) = 1. Let J = E11 + E12 + E21 + E22. Then Ψ(J) = J and for
any a ∈ F

ϕ11(a)J = J(ϕ11(a)E11)J = Ψ(J)Ψ(aE11)Ψ(J) = Ψ(aJE11J) = Ψ(aJ) =

[
ϕ11(a) ϕ12(a)
ϕ21(a) ϕ22(a)

]
.

Therefore, ϕ11 = ϕ12 = ϕ21 = ϕ22. We label this common map by ϕ and it follows that
Ψ(A) = Aϕ for every A ∈ M2(F). It remains to prove that ϕ is an endomorphism of the
underlying field F.

For any a, b ∈ F, let A = aE11 + bE12. Then Ψ(A) = ϕ(a)E11 + ϕ(b)E12. Since

ϕ(a)2E11 + ϕ(a)ϕ(b)E12 = Ψ(A)2 = Ψ(A2) = ϕ(a2)E11 + ϕ(ab)E12

and

(ϕ(a) + ϕ(b))J = Ψ(J)Ψ(A)Ψ(J) = Ψ(JAJ) = Ψ((a + b)J) = ϕ(a + b)J,

we have ϕ(ab) = ϕ(a)ϕ(b) and ϕ(a + b) = ϕ(a) + ϕ(b).

Step 2. The induction
Let P = In−1 ⊕ [0]. Then P is a rank n− 1 idempotent, so as Ψ(P ) by the property

(a). There exists an invertible matrix S ∈ Mn(F) such that Ψ(P ) = SPS−1. Replacing
Ψ by the map A 7−→ S−1Ψ(A)S we may assume that Ψ(P ) = P .
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For any Â ∈ Mn−1(F) let A = Â⊕ [0]. Then PAP = A implies

PΨ(A)P = Ψ(P )Ψ(A)Ψ(P ) = Ψ(PAP ) = Ψ(A).

It follows that Ψ(Â ⊕ [0]) = Ψ(A) = X̂ ⊕ [0] for some matrix X̂ ∈ Mn−1(F). Define

the map Ψ̂ on Mn−1(F) by Ψ̂(Â) = X̂. It is easy to check that Ψ̂ is an injective Jordan

semi-triple map on Mn−1(F). Furthermore, Ψ(P ) = P implies Ψ̂(In−1) = In−1. By the

induction hypothesis there is an invertible T̂ ∈ Mn−1(F) and a nonzero endomorphism ϕ

on F such that Ψ̂ has either the form

Â 7−→ T̂ ÂϕT̂−1 or Â 7−→ T̂ Ât
ϕT̂−1.

Let T be the matrix T̂ ⊕ [1]. Replacing Ψ by either the map A 7−→ T−1Ψ(A)T or

A 7−→ (T−1Ψ(A)T )t, we may further assume that Ψ̂(Â) = Âϕ for all Â ∈ Mn−1(F). This

is equivalent to Ψ(Â ⊕ [0]) = Âϕ ⊕ [0]. Also, for any A =

[
A11 A12

A21 A22

]
∈ Mn(F) with

A11 ∈ Mn−1(F) we have PAP = A11 ⊕ [0]. Thus,

PΨ(A)P = Ψ(P )Ψ(A)Ψ(P ) = Ψ(PAP ) = (A11)ϕ ⊕ [0] . (∗∗)

Let us define matrices Ri for each i ∈ {1, 2, . . . , n− 1} by R1 = In−Eii−Enn+Ein+Eni.
Let i be arbitrary, but fixed. From (∗∗) we have PΨ(Ri)P = (In−1 − Eii) ⊕ [0]. Then

there exist x, y ∈ Fn−1and z ∈ F such that Ψ(Ri) =

[
In−1 − Eii x

yt z

]
. From the equality

Ψ(Ri)
2 = Ψ(R2

i ) = Ψ(In) = In we get In−1 − Eii + xyt = In−1 and ytx + z2 = 1. These
equalities imply that xyt = Eii and z2 = 1− ytx = 1− tr(xyt) = 0. Hence, only the i-th
entries of x and y are nonzero and their product is 1. Denote x by ai. It follows that
Ψ(Ri) = In−Eii−Enn+aiEin+a−1

i Eni. Next, take any two distinct i, j ∈ {1, 2, . . . , n− 1}.
From RiRjRi = In − Eii − Ejj + Eij + Eji we get using (∗∗)

Ψ(In−Eii−Ejj +Eij +Eji) = Ψ(Ri)Ψ(Rj)Ψ(Ri) = In−Eii−Ejj + a−1
i ajEij + aia

−1
j Eji,

which implies that ai = aj. Let D = In−1 ⊕ [a1]. Replacing Ψ by the map A 7−→
DΨ(A)D−1 we may further assume that Ψ(Ri) = Ri for all i ∈ {1, 2, . . . , n− 1}.

Let us fix some i ∈ {1, 2, . . . , n− 1} again. As n > 2, there is another j ∈ {1, 2, . . . , n− 1}
such that Ein = RjEijRj and Eni = RjEjiRj.Then for any a ∈ F ,

Ψ(aEin) = Ψ(Rj)Ψ(aEij)Ψ(Rj) = Rjϕ(a)EijRj = ϕ(a)Ein

and
Ψ(aEni) = Ψ(Rj)Ψ(aEji)Ψ(Rj) = Rjϕ(a)EjiRj = ϕ(a)Eni.

Also we have

Ψ(aEnn) = Ψ(R1)Ψ(aE11)Ψ(R1) = R1ϕ(a)E11R1 = ϕ(a)Enn.

Together with (∗∗) these equalities imply that Ψ(aEij) = ϕ(a)Eij for all i, j ∈ {1, 2, . . . , n− 1}
and a ∈ F.

Finally, for any A = (aij) ∈ Mn(F) let B = (bij) = Ψ(A). Then

bijEji = EjiBEji = Ψ(Eji)Ψ(A)Ψ(Eji) = Ψ(EjiAEji) = Ψ(aijEji) = ϕ(aij)Eji,
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i.e., bij = ϕ(aij). Thus, Ψ(A) = Aϕ, and hence the proof is complete.
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