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Motivating Example
Minimum norm solutions:

• In sparse optimization:

min ‖x‖1
s.t. ‖b−Ax‖ ≤ σ.
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Motivating Example
Minimum norm solutions:

• In sparse optimization:

min ‖x‖1
s.t. ‖b−Ax‖ ≤ σ.

• More generally, minimization of atomic norm (Chandrasekaran et al. ’12)

‖x‖A = inf{λ ≥ 0 : x ∈ λ convA},

where A is a set of “atoms” characterizing the notion of sparsity:

? A = {±ei : i = 1, ..., n} ⇒ ‖x‖A =
∑n
i=1 |xi|.

? A = unit norm rank 1 matrices ⇒ ‖X‖A =
∑n
i=1 σi(X).
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Gauges

• Gauges are generalizations of norms: nonnegative convex positively
homogeneous functions that are zero at the origin.

• κ(x) = inf{λ ≥ 0 : x ∈ λU} for some convex set U .

• Polar gauge generalizes dual norm:

κ◦(y) = inf{λ > 0 : 〈x, y〉 ≤ λκ(x) ∀x}
= sup{〈x, y〉 : κ(x) ≤ 1}.

• Generalized Cauchy inequality: for all x ∈ domκ and y ∈ domκ◦,

〈x, y〉 ≤ κ(x)κ◦(y).
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Gauge Optimization

vp := min κ(x)
s.t. ρ(b−Ax) ≤ σ. (Pρ)

• κ is a gauge.

• ρ is a closed gauge with ρ−1(0) = {0}, 0 ≤ σ < ρ(b).

• Lagrange and gauge dual problems:

v` := max 〈b, y〉 − σρ◦(y)
s.t. κ◦(A∗y) ≤ 1.

vg := min κ◦(A∗y)
s.t. 〈b, y〉 − σρ◦(y) ≥ 1.
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Gauge Optimization

vp := min κ(x)
s.t. ρ(b−Ax) ≤ σ. (Pρ)

• κ is a gauge.

• ρ is a closed gauge with ρ−1(0) = {0}, 0 ≤ σ < ρ(b).

• Lagrange and gauge dual problems:

v` := max 〈b, y〉 − σρ◦(y)
s.t. κ◦(A∗y) ≤ 1.

vg := min κ◦(A∗y)
s.t. 〈b, y〉 − σρ◦(y) ≥ 1.

• The role of objective and constraint is reversed in the gauge dual.
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Outline

• Further examples on gauge optimization problems

• Gauge duality theory: general framework

• Gauge duality theory: structured problem

• Conic gauge optimization and its dual
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Example 2
Conic gauge optimization:

• In conic optimization:
min 〈c, x〉
s.t. Ax = b, x ∈ K.

If c ∈ K∗, then 〈c, ·〉+ δK(·) is a gauge.

• Examples: SDP relaxation of max-cut, phase retrieval...
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Example 2
Conic gauge optimization:

• In conic optimization:
min 〈c, x〉
s.t. Ax = b, x ∈ K.

If c ∈ K∗, then 〈c, ·〉+ δK(·) is a gauge.

• Examples: SDP relaxation of max-cut, phase retrieval...

• More generally, let ŷ be feasible for the dual, i.e., c−A∗ŷ ∈ K∗, then
ĉ := c−A∗ŷ ∈ K∗ and

min 〈ĉ, x〉+ δK(x)
s.t. Ax = b

is a gauge optimization problem.
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Example 3
Submodular functions:

Let V = {1, . . . , n} and f : 2V → R with f(∅) = 0. The Lovàsz extension
(Lovàsz ’83) is:

f̂(x) =

n∑
k=1

xjk[f({j1, . . . , jk})− f({j1, . . . , jk−1})],

where xj1 ≥ xj2 ≥ · · · ≥ xjn. Then f̂ + δRn+ is a gauge if:

• f is submodular (so that f̂ is convex):

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) ∀A,B ⊆ V ; and

• A ⊆ B ⇒ f(A) ≤ f(B).
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Gauge Duality Framework
Let C be a closed convex set not containing the origin, and define its anti-polar

C′ = {u : 〈u, x〉 ≥ 1 ∀x ∈ C}.

Freund (’87) defined the following primal-dual gauge pairs:

vp := min κ(x)
s.t. x ∈ C, (P)

vg := min κ◦(u)
s.t. u ∈ C′. (D)
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Gauge Duality Framework
Let C be a closed convex set not containing the origin, and define its anti-polar

C′ = {u : 〈u, x〉 ≥ 1 ∀x ∈ C}.

Freund (’87) defined the following primal-dual gauge pairs:

vp := min κ(x)
s.t. x ∈ C, (P)

vg := min κ◦(u)
s.t. u ∈ C′. (D)

Fact (Freund ’87): [Weak duality] Suppose that domκ◦ ∩ C′ 6= ∅ and
domκ ∩ C 6= ∅. Then vpvg ≥ 1.
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Gauge Duality Framework
Strong duality?
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Gauge Duality Framework
Strong duality?

Fact (Friedlander, Macêdo, P. ’13): [Strong duality I] Suppose that domκ◦ ∩ C′ 6= ∅
and ri domκ ∩ ri C 6= ∅. Then vpvg = 1 and vg is attained.
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Gauge Duality Framework
Strong duality?

Fact (Friedlander, Macêdo, P. ’13): [Strong duality I] Suppose that domκ◦ ∩ C′ 6= ∅
and ri domκ ∩ ri C 6= ∅. Then vpvg = 1 and vg is attained.

Consider the bi-dual:
min κ◦◦(x)
s.t. x ∈ C′′, (bi-D)

and observe that C′′ =
⋃
λ≥1 λC.
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Gauge Duality Framework
Strong duality?

Fact (Friedlander, Macêdo, P. ’13): [Strong duality I] Suppose that domκ◦ ∩ C′ 6= ∅
and ri domκ ∩ ri C 6= ∅. Then vpvg = 1 and vg is attained.

Consider the bi-dual:
min κ◦◦(x)
s.t. x ∈ C′′, (bi-D)

and observe that C′′ =
⋃
λ≥1 λC.

Fact (Freund ’87, Friedlander, Macêdo, P. ’13): [Strong duality II] Suppose that κ is
closed, ri domκ◦ ∩ ri C′ 6= ∅ and ri domκ ∩ ri C 6= ∅. Then vpvg = 1 and both
values are attained.
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Anti-polar Calculus
Let D := {u : ρ(b− u) ≤ σ}. Then

C = {x : ρ(b−Ax) ≤ σ} = A−1D.

Fact:
D′ = {y : 〈b, y〉 − σρ◦(y) ≥ 1}.
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Anti-polar Calculus
Let D := {u : ρ(b− u) ≤ σ}. Then

C = {x : ρ(b−Ax) ≤ σ} = A−1D.

Fact:
D′ = {y : 〈b, y〉 − σρ◦(y) ≥ 1}.

Fact:
(A−1D)′ = cl(A∗D′).

If, in addition, riD ∩ RangeA 6= ∅, then

(A−1D)′ = A∗D′ = {A∗y : 〈b, y〉 − σρ◦(y) ≥ 1}.
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Strong Duality
Consider the following primal-dual gauge pairs:

vp := min κ(x)
s.t. ρ(b−Ax) ≤ σ, (Pρ)

vg := min κ◦(A∗y)
s.t. 〈b, y〉 − σρ◦(y) ≥ 1.

(Dρ)
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Let D := {u : ρ(b− u) ≤ σ} so that primal feasible set is A−1D.

Fact: Suppose that domκ◦ ∩A∗D′ 6= ∅ and ri domκ ∩A−1riD 6= ∅. Then
vpvg = 1 and vg is attained.
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Strong Duality
Consider the following primal-dual gauge pairs:

vp := min κ(x)
s.t. ρ(b−Ax) ≤ σ, (Pρ)

vg := min κ◦(A∗y)
s.t. 〈b, y〉 − σρ◦(y) ≥ 1.

(Dρ)

Let D := {u : ρ(b− u) ≤ σ} so that primal feasible set is A−1D.

Fact: Suppose that domκ◦ ∩A∗D′ 6= ∅ and ri domκ ∩A−1riD 6= ∅. Then
vpvg = 1 and vg is attained.

Unlike the Lagrange dual, the gauge dual (Dρ) has a complicated objective
and simple constraint.
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Conic Gauge Optimization Revisited
Nonnegative SDP

Let C � 0 and consider

min tr(CX) + δ·�0(X)
s.t. A(X) = b.
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Conic Gauge Optimization Revisited
Nonnegative SDP

Let C � 0 and consider

min tr(CX) + δ·�0(X)
s.t. A(X) = b.

The polar of this objective is

κ◦(U) = inf{α ≥ 0 : αC − U ∈ Sn+} = max{0, λmax(U,C)}.

Aside, domκ◦ = R+C − Sn+: not closed for any nonzero C (Ramana, Tunçel,
Wolkowicz ’97).
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Conic Gauge Optimization Revisited
Nonnegative SDP (cont.)

If C = I, then vpvg = 1 and vp is attained:

vp = min tr(X) + δ·�0(X)
s.t. A(X) = b,

vg = min λmax(A∗y)
s.t. 〈b, y〉 = 1.
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Conic Gauge Optimization Revisited
Nonnegative SDP (cont.)

If C = I, then vpvg = 1 and vp is attained:

vp = min tr(X) + δ·�0(X)
s.t. A(X) = b,

vg = min λmax(A∗y)
s.t. 〈b, y〉 = 1.

• The dual feasible set is easy to project onto. Can even be eliminated.

• The gauge dual is an eigenvalue optimization problem.
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Conic Gauge Optimization Revisited
Let c ∈ intK∗ and consider

min 〈c, x〉+ δK(x)
s.t. Ax = b.

The polar of this objective is

κ◦(u) = inf{α ≥ 0 : αc− u ∈ K∗}.



GAUGE OPTIMIZATION AND DUALITY 13

Conic Gauge Optimization Revisited
Let c ∈ intK∗ and consider

min 〈c, x〉+ δK(x)
s.t. Ax = b.

The polar of this objective is

κ◦(u) = inf{α ≥ 0 : αc− u ∈ K∗}.

Example: Second-order cone L =
{
x =

(
x0 x̄T

)T ∈ Rn+1 : x0 ≥ ‖x̄‖
}
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Conic Gauge Optimization Revisited
Let c ∈ intK∗ and consider

min 〈c, x〉+ δK(x)
s.t. Ax = b.

The polar of this objective is

κ◦(u) = inf{α ≥ 0 : αc− u ∈ K∗}.

Example: Second-order cone L =
{
x =

(
x0 x̄T

)T ∈ Rn+1 : x0 ≥ ‖x̄‖
}

Idea: Find a linear map that maps c to something simple and keeps L.
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Conic Gauge Optimization Revisited
Nonnegative SOCP

A classical result for symmetric cones: There exists (explicit formula) d ∈ intL
with Qdc = e0, where

Qd =

[
‖d‖2 2d0d̄

T

2d0d̄ (d20 − ‖d̄‖2)I + 2d̄d̄T

]
is invertible and QdL = L.
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Conic Gauge Optimization Revisited
Nonnegative SOCP

A classical result for symmetric cones: There exists (explicit formula) d ∈ intL
with Qdc = e0, where

Qd =

[
‖d‖2 2d0d̄

T

2d0d̄ (d20 − ‖d̄‖2)I + 2d̄d̄T

]
is invertible and QdL = L.

αc− u ∈ L ⇔ αe0 −Qdu ∈ L ⇔ α− (Qdu)0 ≥ ‖Qdu‖.
Gauge Dual:

min (QdA
∗y)0 + ‖QdA∗y‖

s.t. 〈b, y〉 = 1.
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Future Directions

• Develop algorithms for solving gauge dual, exploiting the “simplicity” of
constraints

• Sensitivity analysis
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Conclusion

• Gauge optimization framework captures a wide range of applications.

• The gauge dual leads to a nonsmooth problem over a simple set.

• Strong duality holds under conditions similar to standard CQ in Lagrange
duality theory.

Reference:
M. Friedlander, I. Macêdo and T. K. Pong.
Gauge Optimization and Duality.
Available at http://arxiv.org/abs/1310.2639.
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