Gauge Optimization and Duality

Ting Kei Pong PIMS Postdoctoral Fellow Department of Computer Science University of British Columbia Vancouver

WCOM, Spring May 2014 (Joint work with Michael Friedlander and Ives Macêdo)

Motivating Example

Minimum norm solutions:

• In sparse optimization:

$$\begin{array}{ll} \min & \|x\|_1 \\ \text{s.t.} & \|b - Ax\| \le \sigma. \end{array}$$

Motivating Example

Minimum norm solutions:

• In sparse optimization:

$$\begin{array}{ll} \min & \|x\|_1 \\ \text{s.t.} & \|b - Ax\| \le \sigma. \end{array}$$

• More generally, minimization of atomic norm (Chandrasekaran et al. '12)

$$||x||_{\mathcal{A}} = \inf\{\lambda \ge 0 : x \in \lambda \operatorname{conv} \mathcal{A}\},\$$

where \mathcal{A} is a set of "atoms" characterizing the notion of sparsity:

Gauges

- Gauges are generalizations of norms: nonnegative convex positively homogeneous functions that are zero at the origin.
- $\kappa(x) = \inf\{\lambda \ge 0 : x \in \lambda U\}$ for some convex set U.
- Polar gauge generalizes dual norm:

$$\kappa^{\circ}(y) = \inf\{\lambda > 0 : \langle x, y \rangle \le \lambda \kappa(x) \ \forall x\}$$
$$= \sup\{\langle x, y \rangle : \kappa(x) \le 1\}.$$

• Generalized Cauchy inequality: for all $x \in \operatorname{dom} \kappa$ and $y \in \operatorname{dom} \kappa^{\circ}$,

$$\langle x, y \rangle \le \kappa(x) \kappa^{\circ}(y).$$

Gauge Optimization

$$v_p := \min_{\text{s.t.}} \kappa(x)$$

s.t. $\rho(b - Ax) \le \sigma.$ (P_{\rho})

- κ is a gauge.
- ρ is a closed gauge with $\rho^{-1}(0) = \{0\}, 0 \le \sigma < \rho(b).$
- Lagrange and gauge dual problems:

$$v_{\ell} := \max \quad \langle b, y \rangle - \sigma \rho^{\circ}(y) \qquad v_g := \min \quad \kappa^{\circ}(A^*y)$$

s.t.
$$\kappa^{\circ}(A^*y) \le 1. \qquad \text{s.t.} \quad \langle b, y \rangle - \sigma \rho^{\circ}(y) \ge 1.$$

Gauge Optimization

$$v_p := \min_{\text{s.t.}} \kappa(x)$$

s.t. $\rho(b - Ax) \le \sigma.$ (P_{\rho})

- κ is a gauge.
- ρ is a closed gauge with $\rho^{-1}(0) = \{0\}, 0 \le \sigma < \rho(b).$
- Lagrange and gauge dual problems:

$$v_{\ell} := \max \quad \langle b, y \rangle - \sigma \rho^{\circ}(y) \qquad v_g := \min \quad \kappa^{\circ}(A^*y)$$

s.t.
$$\kappa^{\circ}(A^*y) \le 1. \qquad \text{s.t.} \quad \langle b, y \rangle - \sigma \rho^{\circ}(y) \ge 1.$$

• The role of objective and constraint is reversed in the gauge dual.

Outline

- Further examples on gauge optimization problems
- Gauge duality theory: general framework
- Gauge duality theory: structured problem
- Conic gauge optimization and its dual

Example 2

Conic gauge optimization:

• In conic optimization:

$$\begin{array}{ll} \min & \langle c, x \rangle \\ \text{s.t.} & Ax = b, \ x \in \mathcal{K}. \end{array}$$

If $c \in \mathcal{K}^*$, then $\langle c, \cdot \rangle + \delta_{\mathcal{K}}(\cdot)$ is a gauge.

• Examples: SDP relaxation of max-cut, phase retrieval...

Example 2

Conic gauge optimization:

• In conic optimization:

$$\begin{array}{ll} \min & \langle c, x \rangle \\ \text{s.t.} & Ax = b, \ x \in \mathcal{K}. \end{array}$$

If $c \in \mathcal{K}^*$, then $\langle c, \cdot \rangle + \delta_{\mathcal{K}}(\cdot)$ is a gauge.

- Examples: SDP relaxation of max-cut, phase retrieval...
- More generally, let \hat{y} be feasible for the dual, i.e., $c A^* \hat{y} \in \mathcal{K}^*$, then $\hat{c} := c A^* \hat{y} \in \mathcal{K}^*$ and

 $\begin{array}{ll} \min & \langle \hat{c}, x \rangle + \delta_{\mathcal{K}}(x) \\ \text{s.t.} & Ax = b \end{array}$

is a gauge optimization problem.

Example 3

Submodular functions:

Let $V = \{1, ..., n\}$ and $f : 2^V \to \mathbb{R}$ with $f(\emptyset) = 0$. The Lovàsz extension (Lovàsz '83) is:

$$\widehat{f}(x) = \sum_{k=1}^{n} x_{j_k} [f(\{j_1, \dots, j_k\}) - f(\{j_1, \dots, j_{k-1}\})],$$

where $x_{j_1} \ge x_{j_2} \ge \cdots \ge x_{j_n}$. Then $\widehat{f} + \delta_{\mathbb{R}^n_+}$ is a gauge if:

• f is submodular (so that \hat{f} is convex):

 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \ \forall A, B \subseteq V;$ and

• $A \subseteq B \Rightarrow f(A) \leq f(B)$.

Let \mathcal{C} be a closed convex set not containing the origin, and define its anti-polar

 $\mathcal{C}' = \{ u : \langle u, x \rangle \ge 1 \ \forall x \in \mathcal{C} \}.$

Freund ('87) defined the following primal-dual gauge pairs:

$$v_p := \min_{\text{s.t.}} \kappa(x)$$
s.t. $x \in \mathcal{C}$, (P)

$$v_g := \min_{\text{s.t.}} \kappa^{\circ}(u)$$
(D)

Let C be a closed convex set not containing the origin, and define its anti-polar

 $\mathcal{C}' = \{ u : \langle u, x \rangle \ge 1 \ \forall x \in \mathcal{C} \}.$

Freund ('87) defined the following primal-dual gauge pairs:

$$v_p := \min_{\text{s.t.}} \kappa(x)$$
s.t. $x \in \mathcal{C}$, (P)

$$v_g := \min_{\text{s.t.}} \kappa^{\circ}(u)$$
(D)
s.t. $u \in \mathcal{C}'.$

Fact (Freund '87): [Weak duality] Suppose that dom $\kappa^{\circ} \cap C' \neq \emptyset$ and dom $\kappa \cap C \neq \emptyset$. Then $v_p v_g \ge 1$.

GAUGE OPTIMIZATION AND DUALITY

Gauge Duality Framework

Strong duality?

Strong duality?

Fact (Friedlander, Macêdo, P. '13): [Strong duality I] Suppose that dom $\kappa^{\circ} \cap C' \neq \emptyset$ and $\operatorname{ri} \operatorname{dom} \kappa \cap \operatorname{ri} C \neq \emptyset$. Then $v_p v_g = 1$ and v_g is attained.

Strong duality?

Fact (Friedlander, Macêdo, P. '13): [Strong duality I] Suppose that dom $\kappa^{\circ} \cap C' \neq \emptyset$ and $\operatorname{ri} \operatorname{dom} \kappa \cap \operatorname{ri} C \neq \emptyset$. Then $v_p v_g = 1$ and v_g is attained.

Consider the bi-dual:

$$\begin{array}{ll} \min & \kappa^{\circ\circ}(x) \\ \text{s.t.} & x \in \mathcal{C}'', \end{array} \tag{bi-D}$$

and observe that $C'' = \bigcup_{\lambda \ge 1} \lambda C$.

Strong duality?

Fact (Friedlander, Macêdo, P. '13): [Strong duality I] Suppose that dom $\kappa^{\circ} \cap C' \neq \emptyset$ and $\operatorname{ri} \operatorname{dom} \kappa \cap \operatorname{ri} C \neq \emptyset$. Then $v_p v_g = 1$ and v_g is attained.

Consider the bi-dual:

$$\begin{array}{ll} \min & \kappa^{\circ\circ}(x) \\ \text{s.t.} & x \in \mathcal{C}'', \end{array} \tag{bi-D}$$

and observe that $C'' = \bigcup_{\lambda \ge 1} \lambda C$.

Fact (Freund '87, Friedlander, Macêdo, P. '13): [Strong duality II] Suppose that κ is closed, $\operatorname{ri} \operatorname{dom} \kappa^{\circ} \cap \operatorname{ri} \mathcal{C}' \neq \emptyset$ and $\operatorname{ri} \operatorname{dom} \kappa \cap \operatorname{ri} \mathcal{C} \neq \emptyset$. Then $v_p v_g = 1$ and both values are attained.

Anti-polar Calculus

Let $\mathcal{D} := \{u : \rho(b-u) \leq \sigma\}$. Then

$$\mathcal{C} = \{x : \rho(b - Ax) \le \sigma\} = A^{-1}\mathcal{D}.$$

Fact:

$$\mathcal{D}' = \{ y : \langle b, y \rangle - \sigma \rho^{\circ}(y) \ge 1 \}.$$

Anti-polar Calculus

Let $\mathcal{D} := \{u : \rho(b-u) \leq \sigma\}$. Then

$$\mathcal{C} = \{x: \ \rho(b - Ax) \le \sigma\} = A^{-1}\mathcal{D}.$$

Fact:

$$\mathcal{D}' = \{ y : \langle b, y \rangle - \sigma \rho^{\circ}(y) \ge 1 \}.$$

Fact:

$$(A^{-1}\mathcal{D})' = \operatorname{cl}(A^*\mathcal{D}').$$

If, in addition, $\operatorname{ri} \mathcal{D} \cap \operatorname{Range} A \neq \emptyset$, then

$$(A^{-1}\mathcal{D})' = A^*\mathcal{D}' = \{A^*y : \langle b, y \rangle - \sigma \rho^{\circ}(y) \ge 1\}.$$

Strong Duality

Consider the following primal-dual gauge pairs:

$$v_p := \min_{\text{s.t.}} \kappa(x) \quad (\mathsf{P}_{\rho})$$

s.t. $\rho(b - Ax) \le \sigma,$

$$v_g := \min_{\text{s.t.}} \kappa^{\circ}(A^*y)$$

s.t. $\langle b, y \rangle - \sigma \rho^{\circ}(y) \ge 1.$ (D_{ρ})

Strong Duality

Consider the following primal-dual gauge pairs:

$$v_p := \min_{\text{s.t.}} \kappa(x)$$
(P_{\rho})
s.t. $\rho(b - Ax) \le \sigma$,

$$v_g := \min_{\text{s.t.}} \kappa^{\circ}(A^*y)$$

s.t. $\langle b, y \rangle - \sigma \rho^{\circ}(y) \ge 1.$ (D_{ρ})

Let $\mathcal{D} := \{u : \rho(b-u) \leq \sigma\}$ so that primal feasible set is $A^{-1}\mathcal{D}$.

Fact: Suppose that dom $\kappa^{\circ} \cap A^* \mathcal{D}' \neq \emptyset$ and $\operatorname{ri} \operatorname{dom} \kappa \cap A^{-1} \operatorname{ri} \mathcal{D} \neq \emptyset$. Then $v_p v_g = 1$ and v_g is attained.

Strong Duality

Consider the following primal-dual gauge pairs:

$$v_p := \min_{\text{s.t.}} \kappa(x)$$
(P_{\rho})
s.t. $\rho(b - Ax) \le \sigma$,

$$v_g := \min_{\text{s.t.}} \kappa^{\circ}(A^*y)$$

s.t. $\langle b, y \rangle - \sigma \rho^{\circ}(y) \ge 1.$ (D_{ρ})

Let $\mathcal{D} := \{u : \rho(b-u) \leq \sigma\}$ so that primal feasible set is $A^{-1}\mathcal{D}$.

Fact: Suppose that dom $\kappa^{\circ} \cap A^* \mathcal{D}' \neq \emptyset$ and $\operatorname{ri} \operatorname{dom} \kappa \cap A^{-1} \operatorname{ri} \mathcal{D} \neq \emptyset$. Then $v_p v_g = 1$ and v_g is attained.

Unlike the Lagrange dual, the gauge dual (D_{ρ}) has a complicated objective and simple constraint.

Nonnegative SDP

Let $C \succeq 0$ and consider

min $\operatorname{tr}(CX) + \delta_{\geq 0}(X)$ s.t. $\mathcal{A}(X) = b.$

Nonnegative SDP

Let $C \succeq 0$ and consider

min
$$\operatorname{tr}(CX) + \delta_{\succeq 0}(X)$$

s.t. $\mathcal{A}(X) = b.$

The polar of this objective is

$$\kappa^{\circ}(U) = \inf\{\alpha \ge 0 : \alpha C - U \in \mathcal{S}^n_+\} = \max\{0, \lambda_{\max}(U, C)\}.$$

Aside, dom $\kappa^{\circ} = \mathbb{R}_{+}C - S_{+}^{n}$: not closed for any nonzero C (Ramana, Tunçel, Wolkowicz '97).

Nonnegative SDP (cont.)

If C = I, then $v_p v_g = 1$ and v_p is attained:

$$v_p = \min \operatorname{tr}(X) + \delta_{\geq 0}(X)$$

s.t. $\mathcal{A}(X) = b,$

$$v_g = \min \quad \lambda_{\max}(\mathcal{A}^* y)$$

s.t. $\langle b, y \rangle = 1.$

Nonnegative SDP (cont.)

If C = I, then $v_p v_g = 1$ and v_p is attained:

$$v_p = \min \operatorname{tr}(X) + \delta_{\geq 0}(X)$$

s.t. $\mathcal{A}(X) = b$,

$$v_g = \min \quad \lambda_{\max}(\mathcal{A}^* y)$$

s.t. $\langle b, y \rangle = 1.$

- The dual feasible set is easy to project onto. Can even be eliminated.
- The gauge dual is an eigenvalue optimization problem.

Let $c \in \operatorname{int} \mathcal{K}^*$ and consider

$$\begin{array}{ll} \min & \langle c, x \rangle + \delta_{\mathcal{K}}(x) \\ \text{s.t.} & Ax = b. \end{array}$$

The polar of this objective is

$$\kappa^{\circ}(u) = \inf\{\alpha \ge 0 : \alpha c - u \in \mathcal{K}^*\}.$$

Let $c \in \operatorname{int} \mathcal{K}^*$ and consider

$$\begin{array}{ll} \min & \langle c, x \rangle + \delta_{\mathcal{K}}(x) \\ \text{s.t.} & Ax = b. \end{array}$$

The polar of this objective is

$$\kappa^{\circ}(u) = \inf\{\alpha \ge 0 : \alpha c - u \in \mathcal{K}^*\}.$$

Example: Second-order cone $\mathcal{L} = \left\{ x = \begin{pmatrix} x_0 & \bar{x}^T \end{pmatrix}^T \in \mathbb{R}^{n+1} : x_0 \ge \|\bar{x}\| \right\}$

Let $c \in \operatorname{int} \mathcal{K}^*$ and consider

$$\begin{array}{ll} \min & \langle c, x \rangle + \delta_{\mathcal{K}}(x) \\ \text{s.t.} & Ax = b. \end{array}$$

The polar of this objective is

$$\kappa^{\circ}(u) = \inf\{\alpha \ge 0 : \alpha c - u \in \mathcal{K}^*\}.$$

Example: Second-order cone $\mathcal{L} = \left\{ x = \begin{pmatrix} x_0 & \bar{x}^T \end{pmatrix}^T \in \mathbb{R}^{n+1} : x_0 \ge \|\bar{x}\| \right\}$

Idea: Find a linear map that maps c to something simple and keeps \mathcal{L} .

Nonnegative SOCP

A classical result for symmetric cones: There exists (explicit formula) $d \in \operatorname{int} \mathcal{L}$ with $Q_d c = e_0$, where

$$Q_d = \begin{bmatrix} \|d\|^2 & 2d_0 \bar{d}^T \\ 2d_0 \bar{d} & (d_0^2 - \|\bar{d}\|^2)I + 2\bar{d}\bar{d}^T \end{bmatrix}$$

is invertible and $Q_d \mathcal{L} = \mathcal{L}$.

Nonnegative SOCP

A classical result for symmetric cones: There exists (explicit formula) $d \in \operatorname{int} \mathcal{L}$ with $Q_d c = e_0$, where

$$Q_d = \begin{bmatrix} \|d\|^2 & 2d_0 \bar{d}^T \\ 2d_0 \bar{d} & (d_0^2 - \|\bar{d}\|^2)I + 2\bar{d}\bar{d}^T \end{bmatrix}$$

is invertible and $Q_d \mathcal{L} = \mathcal{L}$.

$$\alpha c - u \in \mathcal{L} \Leftrightarrow \alpha e_0 - Q_d u \in \mathcal{L} \Leftrightarrow \alpha - (Q_d u)_0 \ge \|\overline{Q_d u}\|.$$

Gauge Dual:

$$\begin{array}{ll} \min & (Q_d A^* y)_0 + \| \overline{Q_d A^* y} \| \\ \text{s.t.} & \langle b, y \rangle = 1. \end{array}$$

Future Directions

- Develop algorithms for solving gauge dual, exploiting the "simplicity" of constraints
- Sensitivity analysis

Conclusion

- Gauge optimization framework captures a wide range of applications.
- The gauge dual leads to a nonsmooth problem over a simple set.
- Strong duality holds under conditions similar to standard CQ in Lagrange duality theory.

Reference: M. Friedlander, I. Macêdo and T. K. Pong. *Gauge Optimization and Duality*. Available at http://arxiv.org/abs/1310.2639. Thanks for coming!