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Sensor Network Localization

Basic Problem:

2
e nPIS Z1,..., Ty, Tint1s-es Ty IN R
SeI?SrOI'S an;ﬁors

e Know last n — m pts (‘anchors’) x,,.1,...,x, and Eucl. dist. estimate for
some pairs of ‘neighboring’ pts (i.e. within ‘radio range’)

dij >0 V(i,j7) € A,
with A C {(i,j):1<i<j <nl}.

e Estimate the first m pts (‘sensors’) z1, ..., x,,.
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b0 zensars, 4 anchors, radio range = 0.25
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Optimization Problem Formulation

Up = mm Z ‘HZCi—CIZjHQ—d?j’ .
(i,5)€A
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Optimization Problem Formulation

v, = minm Z ‘Hxi_iﬂjHQ—d?j’-
(4,5)€A

e Objective function is nonconvex. m can be large (m > 1000).

e Problem is NP-hard (reduction from PARTITION).
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Optimization Problem Formulation

v, = minm Z ‘sz’_iﬂjHQ—d?j’-
(4,5)€A

e Objective function is nonconvex. m can be large (m > 1000).

e Problem is NP-hard (reduction from PARTITION).

e Aim 1: Tractability — use a convex relaxation.

e Aim 2: Identify sensors correctly positioned by relaxation.
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Equivalent Reformulation

Let X = [z ---x,,]. Notice that

y X7T

_ y7 _
Y =X"X & Z—[X 7

] = 0,rank(Z) = 2

Equivalent reformulation:

’Up = mZin Z \ym — 237?%’ —+ Hg;jHQ _ d,%j
(i,7)€.Aa
2
+ Z |y — 2ui5 + 55 — di|
(i,7)€.A3

Yy X71

s.t. 4 = [X 7

] = 0, rank(Z) = 2.
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SDP Relaxation

Let X = [z;---x,,]. Notice that

Yy X71

_ v7 _
Y=X"X & Z—[X 7

] = 0,rank(Z) = 2

SDP relaxation (Biswas, Ye '03):

Vg = mZin Z ‘ym — 2.:13?1'@- -+ Hx]HQ — d?j‘
(i,7)€.A
+ Z Y — 2uij + 55 — di|
(i,7)€.AS3

Yy X7T

s.t. /4 = [X 7

B
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ESDP Relaxation

ESDP relaxation (Wang, Zheng, Boyd, Ye '08):

Uy - mZin Z ]ym — 2:6?:167; -+ ||£UjH2 — d,?j
(¢,5) €A
2
+ Z i — 235 + yj5 — di;
(2,5)€A®
y X7
s.t. Z = [X 7 ]
[ Ui Yij SL‘;TF_
yij Yi; i | =0 V(i,j) € A*
KNS R
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Alternative Problem Formulation

e Objective is a nonconvex degree 4 polynomial,

e Use convex relaxation — sum of squares technique.
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Sparse-SOS Relaxation

|dea: Linearization.
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Sparse-SOS Relaxation
ldea: Linearization.
For (¢,7) € A%,
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Sparse-SOS Relaxation

|dea: Linearization.
For (i,5) € A®,

4 ,__ 1 2 1
i = {1 =z T

{1 u, u,e
1 1

For (i,7) € A%,

fj::{ 1 ozl 22

1

{1 ug wu

;o e’

T Y(a})?

2\2 1.2 1,212
(z5)* ;] T
Ugr2y2  Ugly? Upl 2,142

J 171 17157y
1,.2 142 ,.2)2

Ul 2
1 1

U(py2(22)2 |
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Moment Matrix

ldea: Linearization of the outer product matrix by monomials up to degree 2,
7;- Here shows M (u) for (i,7) € A%
)

(21
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Sparse-SOS Relaxation

Sparse-SOS relaxation (Nie '09):

. : S S ij
Uspsos T muln J J Ps Uo

s.t. Mﬁfj(u) =0 V(i,j) e A

where

(i = 5" = dj)* = 3 plo(@) ¥(i.j) € A

UEB%

10
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Properties of Relaxations

Assume that every connected component contains an anchor. Let pos(-)
denote the set of sensor positions (C R?) obtained by solving the relaxation

()-

e pos(ESDP), pos(sSOS) and pos(SDP) are compact convex sets.
e When d;; = ||z, —z; || for all (i, j) € A (noiseless case),

pos(SDP) C pos(ESDP), (Wang et al. '08)

pos(sSOS) C pos(ESDP). (Gouveia, P '10)

11
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(local exactness):

e Define tr;(Z) := y;; — ||x;]|* for SDP and ESDP relaxations, and
Tri(u) 1= U2 + U2z — (u,1)? — (u,2)? for the sSOS relaxation.

e |In the noiseless case,

12
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(local exactness):

e Define tr;(Z) := y;; — ||x;]|* for SDP and ESDP relaxations, and
Tri(u) 1= U2 + U2z — (u,1)? — (u,2)? for the sSOS relaxation.

e |In the noiseless case,

If tr;(Z) = 0 for some Z € ri(Sol(SDP)), then z; is invariant over
pos(SDP) (Tseng '07).

12



CONVEX OPTIMIZATION FOR SNL AND MTL 12

(local exactness):

e Define tr;(Z) := y;; — ||x;]|* for SDP and ESDP relaxations, and
Tri(u) 1= U2 + U2z — (u,1)? — (u,2)? for the sSOS relaxation.

e |In the noiseless case,

If tr;(Z) = 0 for some Z € ri(Sol(SDP)), then z; is invariant over
pos(SDP) (Tseng '07).

If tr;(Z) = 0 for some Z € ri(Sol(ESDP)), then x; is invariant over
pos(ESDP) (Wang et al. '08); the converse also holds (P, Tseng '10).
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(local exactness):

e Define tr;(Z) := y;; — ||x;]|* for SDP and ESDP relaxations, and
Tri(u) 1= U2 + U2z — (u,1)? — (u,2)? for the sSOS relaxation.

e |In the noiseless case,

If tr;(Z) = 0 for some Z € ri(Sol(SDP)), then z; is invariant over
pos(SDP) (Tseng '07).

If tr;(Z) = 0 for some Z € ri(Sol(ESDP)), then x; is invariant over
pos(ESDP) (Wang et al. '08); the converse also holds (P, Tseng '10).

If Tr;(u) = 0 for some u € ri(Sol(sSOS)), then (u_1,u_2)? is invariant over
pos(sSOS) (Gouveia, P '10).
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Numerical Example: SDP Vs Sparse-SOS

13
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Numerical Example: SDP Vs Sparse-SOS
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In practice, there are measurement noises:

+ 52’]’

true true
dzzj:sz' — Ly H2

What can we say in this case? (P, Tseng '10)

v(i,J)

c A.

15
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In practice, there are measurement noises:

true true
dzzj:Hxi — Ly H2

What can we say in this case? (P, Tseng '10)

e Individual trace test fails for ESDP relaxation.

e p-ESDP is proposed. For a particular solution Z*,

true

T, T, St (7)) ~0,

(2 1

when noise is small.

c A.

e A fast distributed algorithm is proposed for solving Z*.

15
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Multi-task Learning

e Given training data set {(x1,9}), ..., (xp,y))} CR" x {=1,1}, I =1,...,m
(m = number of tasks).

e Find linear predictors w; = by

m p
iy (: 'z, - ygw) ),
=1 =1

where W = |w; - - - wy,] and Q is a regularization term (capture relation
between predictors).

16
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Nuclear Norm Minimization

e Using nuclear norm as regularization; minimizing rank (Fazel, Hindi, Boyd 01)

m D
- ( o, —yw) sl

=1 \1=1

where |||, := Z?j{m’”} a;(W); or

, 1
vi= minp(W):= S| AW = B|i + pl[W].,
A e RP" B e RPX™ W € R™"™™,
e Typical problem dimension: 50 < m < 100, 1000 < n,p < 3000.

e Algorithms: IPM, first-order method...

17
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Proximal Gradient Algorithm

e Solves
h* = min h(z) = f(z) + Q(x),

with f convex smooth, V f Lipschitz continuous, @ “simple” closed convex.

e Initialize x € dom @@, compute

TV = argymin{Wf(fIJ), y— )+ Qy) + %Hy — z||*}

o Complexity: h(xg) — h* = 0(%).

18
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1st Algorithm

0. Choose any W. Set L = Lp := Amax(ATA). Go to step 1.

1. Compute the SVD:

1
W — Z(ATAW — A'B) = RDS*.

2. Update
new __ . ﬁ T
W —RmaX{D LI,O}S |

19
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1st Algorithm

0. Choose any W. Set L = Lp := Amax(ATA). Go to step 1.

1. Compute the SVD:

1
W — Z(ATAW — A'B) = RDS*.

2. Update
new __ . ﬁ T
W —RmaX{D LI,O}S |

Can we apply Nesterov’s acceleration scheme?

19
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PAPG: Primal Accelerated Proximal Gradient Method
0. Choose any W. Initialize W_=W,0_=60=1. Set L = Lp. Go to step 1.

1. Set

Y=W+<9i_—9) (W —W_).

2. Compute the SVD:

1
Y — E(ATAY — A'B) = RDS".

3. Update
new __ o ﬁ T new __
W —Rmax{ L[,O}S , WX W,

 VOEF 467 — ¢?
— ¥ |

HHGW

o= = 0.
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About PAPG:

o Complexity: p(Wy) — v = O(3%).

o Lp = Amax(ATA). If AT A has large eigenvalues, the algorithm is slow.

21
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o Lp = Amax(ATA). If AT A has large eigenvalues, the algorithm is slow.

Consider dual problem instead?
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About PAPG:

o Complexity: p(Wy) — v = O(3%).

o Lp = Amax(ATA). If AT A has large eigenvalues, the algorithm is slow.

Consider dual problem instead?
(P, Tseng, Ji, Ye '09): The problem can be reduced to
Nt T 2 T
v=min AW - R"B|% + pu||W],
%%

where A=R[A 0] ST, AeRP*", RTR=Tand STS =1.

21
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Derivation of the Dual Problem

Let rank(A) = n. We have
!
v =min_||AW — Bl[& + p| W]

:min( |AW — B||% 4+ max (- A,W})
W ATA=p2T

1
= min max <—||AW — B||% — (A, W})
W ATA=<p21 \ 2

1
= max min <—||AW — B||% — (A, W})
ATA=p2T W\ 2

1
= — min (A, (ATA)TA) + ((ATA)"TAT B, A) + constant

ATA=pu21 2
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1
p(W) = ][ AW — B + W),
1
d(A) := §<A, (AT A)7TA) 4 (AT A)"tAT B, A) + constant.

Then p(W) + d(A) > 0 forany W and ATA < p?I.

23
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1
p(W) i= S| AW = B3 + u| W],
1

d(A) := 5<A, (AT A)7TA) 4 (AT A)"tAT B, A) + constant.

Then p(W) + d(A) > 0 forany W and ATA < p?I.

(P, Tseng, Ji, Ye '09).
If W* is the primal optimal solution, then the dual optimal solution is

A* = AT (AW* — B).
If A* is the dual optimal solution, then the primal optimal solution is

W* = (ATA)~Y(A* + ATB).

23
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DAGP: Dual Accelerated Gradient Projection Method

0. Choose any A satisfying A”A < p21. Initialize A_ = Aand §_ = 0 = 1. Set

L=Lp:= /\min(lATA)' Go to Step 1.

1. Set
0

d=A+ (9——9> (A—A).
2. Compute the SVD

> %(ATA)_l(cb + ATB) = RDST.

3. Update

AW = Rmin{D, uI}S*, AW =A,
VO 44020
= > ,

HHGW

0" = 6.
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4. (Termination test) Compute W = (AT A)~1(A"Y + AT B). If

p(W) + d(A"eY) < tol,
[d(Arew)| 41

terminate. Else, go to Step 1.

25
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4. (Termination test) Compute W = (AT A)~1(A"Y + AT B). If

p(W) + d(A"eY) < tol,
[d(Arew)| 41

terminate. Else, go to Step 1.

Alternative termination criterion (Tseng '09): Initialize W = 0 and update
Wt=(1-0W+6ATA)~(®+ AT'B). Then

0<p(WT)+d(A"™) < °Lp max —HF A2
T =<p2T 2

25
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About DAGP:

o Complexity d(Ay) — v = O(4R).

o Lp= /\min(lATAV If AT A has small eigenvalue, the algorithm is slow.

e Complexity bound on duality gap. No such bounds known for the primal
algorithm.

e DAGP requires a reduction. PAPG does not necessarily require a reduction
first.

26
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Simulation Results

e Compare PAPG and DAGP.

e Generate A with entries uniformly in [0, 1], B with entries uniformly in

(1,1},

e Terminate PAPG when

pW'Vdn(e;;V))'ﬁ(A) < 0.001 (checked every 500 iterations); or

|Wrew — W < 1078 (checked every iteration).

e Terminate DAGP when

min + new . .
{p(%éigv)ﬁfdm ) < 0.001 (checked every 500 iterations); or

AP — A||p < 108 (checked every iteration).

27



CONVEX OPTIMIZATION FOR SNL AND MTL

Simulation Results

mXmnXp Lp Lp red L (PAPG)iter/cpu/gap | (DAGP)iter/cpu/gap
50 x 2000 x 1500 | 8e5 | 3e-1 9e1 100 2000/8e2/6e-4 459/3e2/5e-15
50 x 2000 x 1500 | 8e5 | 3e-1 9e1 1 max/2e3/4e-1 12/1e2/2e-13
50 x 2000 x 3500 | 2e6 | 6e-2 | 1e2 | 100 2500/2e3/3e-4 85/2e2/2e-15
50 x 2000 x 3500 | 2e6 | 6e-2 | 1e2 1 max/3e3/3e-3 7/2e2/3e-15
50 x 3000 x 1500 | 1e6 | 5e-2 | 1e2 | 100 3500/1e3/8e-4 81/2e2/7e-15
50 x 3000 x 1500 | 1e6 | 5e-2 | 1e2 1 max/2e3/4e-1 7/2e2/5e-13
50 x 3000 x 3500 | 3e6 | 6e-1 3e2 | 100 2500/3e3/1e-3 500/1e3/6e-16
50 x 3000 x 3500 | 3e6 | 6e-1 3e2 1 max/6e3/3e-2 10/5e2/2e-15

e Matlab codes run on an HP DL360 workstation, running RedHat Linux 3.5,
Matlab 7.2. Time in seconds (CPU), relative duality gap (gap).

e Initialize PAPG at W = 0, DAGP at A = 0.
e PAPG works better when Lp is small and n is large.

e DAGP works better when L is small and p is small.
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Other Work & Extensions
Other work:

e Algorithms for Optimal Experimental Design and computing Dantzig
selector (with Zhaosong Lu and Yong Zhang).

e Convex reformulation and algorithm for finding minimal condition number
(with Zhaosong Lu).

Ongoing/Future work:

e Algorithms for nuclear norm minimization with special linear structure (with
Maryam Fazel, Defeng Sun and Paul Tseng).

e Graph structure uniquely localized by solving SOS relaxation (with Joao
Gouveia).

Thanks for coming! £



