Efficient Solutions for Large Scale Trust Region Subproblem

Ting Kei Pong Combinatorics & Optimization, University of Waterloo Waterloo

13th Midwest Optimization Meeting Oct 2011 (Ongoing work with Henry Wolkowicz, Heng Ye)

Outline

- Trust region subproblem and its properties.
- Easy case and hard cases.
- Rendl-Wolkowicz algorithm.
- Hard case: shift and deflate.
- Easy case: bracketing Newton's method...
- Numerical results.

Trust Region Subproblem (TRS)

$$q^* := \min q(x) := x^T A x - 2a^T x$$

s.t. $||x|| \le s$,

where $A \in \mathcal{S}^n$, $a \in \mathbb{R}^n$, s > 0.

Applications: TR methods for unconstr. min., subproblems for constrained optimization, regularization of ill-posed problems...

Trust Region Subproblem (TRS)

$$q^* := \min q(x) := x^T A x - 2a^T x$$

s.t. $||x|| \le s$,

where $A \in \mathcal{S}^n$, $a \in \mathbb{R}^n$, s > 0.

Applications: TR methods for unconstr. min., subproblems for constrained optimization, regularization of ill-posed problems...

Fact 1 (Gay '81; More, Sorensen '83): x^* is optimal for TRS iff $\exists \lambda^*$ s.t.

$(A - \lambda^* I)x^* = a,$)
$A - \lambda^* I \succeq 0, \lambda^* \le 0,$	Ĵ
$\ x^*\ ^2 \le s^2,$	-
$\lambda^*(s^2 - \ x^*\ ^2) = 0.$	

dual feasibility

primal feasibility complementary slackness

MoSo Algorithm Framework for TRS

Suppose $A - \lambda^* I \succ 0$.

- Define $x(\lambda) = (A \lambda I)^{-1}a$.
- Solve $\psi(\lambda) := \|x(\lambda)\|^2 s^2 = 0$.
- Maintain $A \lambda I \succ 0$, $\lambda \leq 0$.

Remarks:

- Solve less nonlinear $\phi(\lambda) := \frac{1}{s} \frac{1}{\|x(\lambda)\|} = 0$ (Reinsch '67; Hebden '73).
- Each iteration involves a Cholesky decomposition of $A \lambda^k I$.

Easy/Hard Cases for TRS

Let $A = Q\Lambda Q^T$ be eigenvalue decomposition; $\gamma = Q^T a$.

$$\psi(\lambda) = \|x(\lambda)\|^2 - s^2 = \sum_{j=1}^n \frac{\gamma_j^2}{(\lambda_j(A) - \lambda)^2} - s^2.$$

Easy case	Hard case 1	Hard case 2
$a \notin \mathcal{R}(A - \lambda_{\min}(A)I)$ $(\Rightarrow \lambda^* < \lambda_{\min}(A))$	$a \perp \mathcal{N}(A - \lambda_{\min}(A)I)$ but $\lambda^* < \lambda_{\min}(A)$	$\begin{aligned} a \perp \mathcal{N}(A - \lambda_{\min}(A)I) \\ \text{and} \\ \lambda^* &= \lambda_{\min}(A) \\ \text{(i) } \ (A - \lambda^*I)^{\dagger}a\ = s \text{ or } \lambda^* = 0 \\ \text{(ii) } \ (A - \lambda^*I)^{\dagger}a\ < s, \lambda^* < 0 \end{aligned}$

Rendl-Wolkowicz Algorithm

Consider equality constrained problem $\mu^* = \min_{||x||=s} x^T A x - 2a^T x$.

$$\begin{split} \mu^* &= \min_{||x||=s, \ y_0^2=1} x^T A x - 2y_0 a^T x \\ &= \max_{t} \min_{||x||=s, \ y_0^2=1} x^T A x - 2y_0 a^T x + t y_0^2 - t \\ &\geq \max_{t} \min_{||x||^2+y_0^2=s^2+1} x^T A x - 2y_0 a^T x + t y_0^2 - t \quad ** \text{ eig prob } ** \\ &= \max_{t,\lambda} \min_{x,y_0} x^T A x - 2y_0 a^T x + t y_0^2 - t + \lambda(||x||^2 + y_0^2 - s^2 - 1) \\ &= \max_{r,\lambda} \min_{x,y_0} x^T A x - 2y_0 a^T x + r y_0^2 - r + \lambda(||x||^2 - s^2) \\ &= \max_{\lambda} \min_{x,y_0^2=1} x^T A x - 2y_0 a^T x + \lambda(||x||^2 - s^2) = \mu^*. \end{split}$$

Rendl-Wolkowicz Algorithm

From the eig prob:

$$\mu^* = \max_t \min_{\substack{||x||^2 + y_0^2 = s^2 + 1 \\ (s^2 + 1)\lambda_{\min}(D(t))}} x^T A x - 2y_0 a^T x + t y_0^2 - t$$

where

$$D(t) = \begin{pmatrix} t & -a^T \\ -a & A \end{pmatrix}.$$

Observe that the candidate for interior solution is $A^{-1}a$, when $A \succ 0$.

Let t^* be the global maximizer of k(t).

Observe that the candidate for interior solution is $A^{-1}a$, when $A \succ 0$.

Let t^* be the global maximizer of k(t).

Fact 2 (Rendl, Wolkowicz '97): If $\lambda_{\min}(D(t^*))$ is simple, $y(t^*) = \begin{pmatrix} y_0(t^*) \\ w(t^*) \end{pmatrix}$ is the normalized eigenvector for $\lambda_{\min}(D(t^*))$, then $y_0(t^*) \neq 0$ and

$$\frac{1}{|y_0(t^*)|} \|w(t^*)\| = s.$$

Observe that the candidate for interior solution is $A^{-1}a$, when $A \succ 0$.

Let t^* be the global maximizer of k(t).

Fact 2 (Rendl, Wolkowicz '97): If $\lambda_{\min}(D(t^*))$ is simple, $y(t^*) = \begin{pmatrix} y_0(t^*) \\ w(t^*) \end{pmatrix}$ is the normalized eigenvector for $\lambda_{\min}(D(t^*))$, then $y_0(t^*) \neq 0$ and

$$\frac{1}{|y_0(t^*)|} \|w(t^*)\| = s.$$

Note: $\lambda_{\min}(D(t^*))$ is simple for easy case and hard case 1.

k(t) in Easy Case

k(t) in Hard Case 1

k(t) in Hard Case 2

Hard Case is Easiest: Shift and Deflate

Fact 3 (Fortin, Wolkowicz '03): Let $A = \sum_{i=1}^{n} \lambda_i(A) v_i v_i^T = Q \Lambda Q^T$ be the orthogonal spectral decomposition of A; $\gamma_i = (Q^T a)_i$

$$S_1 = \{i : \gamma_i \neq 0, \lambda_i(A) = \lambda_{\min}(A)\}$$

$$S_2 = \{i : \gamma_i = 0, \lambda_i(A) = \lambda_{\min}(A)\}$$

- Let $x(\lambda^*) = (A \lambda^* I)^{\dagger} a$, then $(x(\lambda^*), \lambda^* - \lambda_{\min}(A))$ solves TRS with $A - \lambda_{\min}(A)I$ in place of $A \Leftrightarrow$ (x^*, λ^*) solves TRS, where $x^* = x(\lambda^*) + z, z \in \mathcal{N}(A - \lambda^* I)$ and $||x^*|| = s$.
- If $\lambda_{\min}(A) \ge 0$, then (x^*, λ^*) solves TRS $\Leftrightarrow (x^*, \lambda^*)$ solves TRS when A is replaced by $A + \sum_{i \in S_2} \alpha_i v_i v_i^T$, with $\alpha_i \ge 0$.

Solving Hard Case 2 Explicitly

- Use Lanczos, find $\lambda_{\min}(A), v_1$; assume possible hard case: $\lambda_{\min}(A) < 0 \text{ and } v_1^T a = 0$;
- Shift: $A \leftarrow A \lambda_{\min}(A)I \succeq 0$;
- Deflate: $A \leftarrow A + \alpha_1 v v^T$, $||A|| > \alpha_1 >> 0$. Repeat deflation as long as $\lambda_{\min}(A) = 0$ and $v^T a = 0$;
- If v^Ta ≠ 0, we are in easy case; otherwise, A ≻ 0, calculate x̄ = A⁻¹a using prec. conj grad.
 If ||x(λ*)|| > s, we are in hard case 1; otherwise ||x(λ*)|| ≤ s, then we have an explicit solution:

$$||x^*|| = ||x(\lambda^*) + \beta v_1|| = s, \quad v_1 \in \mathcal{N}(A_{\text{orig}} - \lambda^* I).$$

Maximizing k(t)

- Bracketing Newton's Method (Ben-Israel ,Levin '01).
- Triangle Interpolation.
- Vertical Cut.
- Inverse Linear Interpolation.

Bracketing Newton

Takes one Newton step for solving $k(t) = M_j$, where M_j is an estimate of the optimal value from previous iterates.

Triangle Interpolation

Vertical Cut

Inverse Linear Interpolation

Simulations

- Compare RW with and without shift+deflate on hard case 2 instances.
- For n = 3000, 6000, ..., 30000, generate 10 hard instances:

Simulations

Conclusion & Future work

- After shift and deflation, hard case becomes easy.
- k(t) can be maximized efficiently by simple techniques.
- More numerical tests...
- Fast algorithm for solving Generalized TRS:

$$q^* := \min \quad q(x) := x^T A x - 2a^T x$$

s.t.
$$\ell \le q_1(x) := x^T B x - 2b^T x \le u.$$