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Outline

• Trust region subproblem and its properties.

• Easy case and hard cases.

• Rendl-Wolkowicz algorithm.

• Hard case: shift and deflate.

• Easy case: bracketing Newton’s method...

• Numerical results.
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Trust Region Subproblem (TRS)

q∗ := min q(x) := xTAx− 2aTx

s.t. ‖x‖ ≤ s,

where A ∈ Sn, a ∈ Rn, s > 0.

Applications: TR methods for unconstr. min., subproblems for constrained
optimization, regularization of ill-posed problems...
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Trust Region Subproblem (TRS)

q∗ := min q(x) := xTAx− 2aTx

s.t. ‖x‖ ≤ s,

where A ∈ Sn, a ∈ Rn, s > 0.

Applications: TR methods for unconstr. min., subproblems for constrained
optimization, regularization of ill-posed problems...

Fact 1 (Gay ’81; More, Sorensen ’83): x∗ is optimal for TRS iff ∃λ∗ s.t.

(A− λ∗I)x∗ = a,
A− λ∗I � 0, λ∗ ≤ 0,

}
dual feasibility

‖x∗‖2 ≤ s2, primal feasibility
λ∗(s2 − ‖x∗‖2) = 0. complementary slackness
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MoSo Algorithm Framework for TRS
Suppose A− λ∗I � 0.

• Define x(λ) = (A− λI)−1a.

• Solve ψ(λ) := ‖x(λ)‖2 − s2 = 0.

• Maintain A− λI � 0, λ ≤ 0.

Remarks:

• Solve less nonlinear φ(λ) := 1
s −

1
‖x(λ)‖ = 0 (Reinsch ’67; Hebden ’73).

• Each iteration involves a Cholesky decomposition of A− λkI.
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Easy/Hard Cases for TRS
Let A = QΛQT be eigenvalue decomposition; γ = QTa.

ψ(λ) = ‖x(λ)‖2 − s2 =

n∑
j=1

γ2j
(λj(A)− λ)2

− s2.

Easy case Hard case 1 Hard case 2

a /∈ R(A− λmin(A)I) a⊥N (A− λmin(A)I) a⊥N (A− λmin(A)I)
but and

(⇒ λ∗ < λmin(A)) λ∗ < λmin(A) λ∗ = λmin(A)
(i) ‖(A− λ∗I)†a‖ = s or λ∗ = 0
(ii) ‖(A− λ∗I)†a‖ < s, λ∗ < 0
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Rendl-Wolkowicz Algorithm
Consider equality constrained problem µ∗ = min

||x||=s
xTAx− 2aTx.

µ∗ = min
||x||=s, y20=1

xTAx− 2y0a
Tx

= max
t

min
||x||=s, y20=1

xTAx− 2y0a
Tx+ ty20 − t

≥ max
t

min
||x||2+y20=s2+1

xTAx− 2y0a
Tx+ ty20 − t ∗ ∗ eig prob ∗ ∗

= max
t,λ

min
x,y0

xTAx− 2y0a
Tx+ ty20 − t+ λ(||x||2 + y20 − s2 − 1)

= max
r,λ

min
x,y0

xTAx− 2y0a
Tx+ ry20 − r + λ(||x||2 − s2)

= max
λ

min
x,y20=1

xTAx− 2y0a
Tx+ λ(||x||2 − s2) = µ∗.
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Rendl-Wolkowicz Algorithm

From the eig prob:

µ∗ = max
t

min
||x||2+y20=s2+1

xTAx− 2y0a
Tx+ ty20︸ ︷︷ ︸

(s2+1)λmin(D(t))

− t

= max
t
k(t) := (s2 + 1)λmin(D(t))− t

where

D(t) =

(
t −aT
−a A

)
.
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Observe that the candidate for interior solution is A−1a, when A � 0.

Let t∗ be the global maximizer of k(t).
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Observe that the candidate for interior solution is A−1a, when A � 0.

Let t∗ be the global maximizer of k(t).

Fact 2 (Rendl, Wolkowicz ’97): If λmin(D(t∗)) is simple, y(t∗) =

(
y0(t

∗)
w(t∗)

)
is the

normalized eigenvector for λmin(D(t∗)), then y0(t∗) 6= 0 and

1

|y0(t∗)|
‖w(t∗)‖ = s.
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Observe that the candidate for interior solution is A−1a, when A � 0.

Let t∗ be the global maximizer of k(t).

Fact 2 (Rendl, Wolkowicz ’97): If λmin(D(t∗)) is simple, y(t∗) =

(
y0(t

∗)
w(t∗)

)
is the

normalized eigenvector for λmin(D(t∗)), then y0(t∗) 6= 0 and

1

|y0(t∗)|
‖w(t∗)‖ = s.

Note: λmin(D(t∗)) is simple for easy case and hard case 1.
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k(t) in Easy Case
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k(t) in Hard Case 1



LARGE SCALE TRUST REGION SUBPROBLEM 10

k(t) in Hard Case 2
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Hard Case is Easiest: Shift and Deflate
Fact 3 (Fortin, Wolkowicz ’03): Let A =

∑n
i=1 λi(A)viv

T
i = QΛQT be the

orthogonal spectral decomposition of A; γi = (QTa)i

S1 = {i : γi 6= 0, λi(A) = λmin(A)}
S2 = {i : γi = 0, λi(A) = λmin(A)}

• Let x(λ∗) = (A− λ∗I)†a, then
(x(λ∗), λ∗ − λmin(A)) solves TRS with A− λmin(A)I in place of A⇔
(x∗, λ∗) solves TRS, where x∗ = x(λ∗) + z, z ∈ N (A− λ∗I) and ‖x∗‖ = s.

• If λmin(A) ≥ 0, then
(x∗, λ∗) solves TRS⇔ (x∗, λ∗) solves TRS when A is replaced by
A+

∑
i∈S2 αiviv

T
i , with αi ≥ 0.
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Solving Hard Case 2 Explicitly

• Use Lanczos, find λmin(A), v1; assume possible hard case:

λmin(A) < 0 and vT1 a = 0 ;

• Shift: A← A− λmin(A)I � 0;

• Deflate: A← A+ α1vv
T , ‖A‖ > α1 >> 0. Repeat deflation as long as

λmin(A) = 0 and vTa = 0 ;

• If vTa 6= 0, we are in easy case; otherwise, A � 0, calculate x̄ = A−1a using
prec. conj grad.
If ‖x(λ∗)‖ > s, we are in hard case 1; otherwise ‖x(λ∗)‖ ≤ s, then we have
an explicit solution:

‖x∗‖ = ‖x(λ∗) + βv1‖ = s, v1 ∈ N (Aorig − λ∗I).
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Maximizing k(t)

• Bracketing Newton’s Method (Ben-Israel ,Levin ’01).

• Triangle Interpolation.

• Vertical Cut.

• Inverse Linear Interpolation.



LARGE SCALE TRUST REGION SUBPROBLEM 14

Bracketing Newton
Takes one Newton step for solving k(t) = Mj, where Mj is an estimate of the
optimal value from previous iterates.
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Triangle Interpolation
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Vertical Cut
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Inverse Linear Interpolation
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Simulations

• Compare RW with and without shift+deflate on hard case 2 instances.

• For n = 3000, 6000, ..., 30000, generate 10 hard instances:

A = sprandsym(n,0.01);
[v,lambda] = eigs(A,1,’SA’,opts);
xtempopt = randn(n,1);
s = 1.1*norm(xtempopt);
a = A*xtempopt - lambda*xtempopt;
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Simulations



LARGE SCALE TRUST REGION SUBPROBLEM 20

Conclusion & Future work

• After shift and deflation, hard case becomes easy.

• k(t) can be maximized efficiently by simple techniques.

• More numerical tests...

• Fast algorithm for solving Generalized TRS:

q∗ := min q(x) := xTAx− 2aTx
s.t. ` ≤ q1(x) := xTBx− 2bTx ≤ u.

Thanks for coming!
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