
Efficient Solutions for Large Scale Trust Region
Subproblem

Ting Kei Pong
Combinatorics & Optimization, University of Waterloo

Waterloo

13th Midwest Optimization Meeting
Oct 2011

(Ongoing work with Henry Wolkowicz, Heng Ye)

LARGE SCALE TRUST REGION SUBPROBLEM 1

Outline

• Trust region subproblem and its properties.

• Easy case and hard cases.

• Rendl-Wolkowicz algorithm.

• Hard case: shift and deflate.

• Easy case: bracketing Newton’s method...

• Numerical results.

LARGE SCALE TRUST REGION SUBPROBLEM 2

Trust Region Subproblem (TRS)

q∗ := min q(x) := xTAx− 2aTx

s.t. ‖x‖ ≤ s,

where A ∈ Sn, a ∈ Rn, s > 0.

Applications: TR methods for unconstr. min., subproblems for constrained
optimization, regularization of ill-posed problems...

LARGE SCALE TRUST REGION SUBPROBLEM 2

Trust Region Subproblem (TRS)

q∗ := min q(x) := xTAx− 2aTx

s.t. ‖x‖ ≤ s,

where A ∈ Sn, a ∈ Rn, s > 0.

Applications: TR methods for unconstr. min., subproblems for constrained
optimization, regularization of ill-posed problems...

Fact 1 (Gay ’81; More, Sorensen ’83): x∗ is optimal for TRS iff ∃λ∗ s.t.

(A− λ∗I)x∗ = a,
A− λ∗I � 0, λ∗ ≤ 0,

}
dual feasibility

‖x∗‖2 ≤ s2, primal feasibility
λ∗(s2 − ‖x∗‖2) = 0. complementary slackness

LARGE SCALE TRUST REGION SUBPROBLEM 3

MoSo Algorithm Framework for TRS
Suppose A− λ∗I � 0.

• Define x(λ) = (A− λI)−1a.

• Solve ψ(λ) := ‖x(λ)‖2 − s2 = 0.

• Maintain A− λI � 0, λ ≤ 0.

Remarks:

• Solve less nonlinear φ(λ) := 1
s −

1
‖x(λ)‖ = 0 (Reinsch ’67; Hebden ’73).

• Each iteration involves a Cholesky decomposition of A− λkI.

LARGE SCALE TRUST REGION SUBPROBLEM 4

Easy/Hard Cases for TRS
Let A = QΛQT be eigenvalue decomposition; γ = QTa.

ψ(λ) = ‖x(λ)‖2 − s2 =

n∑
j=1

γ2j
(λj(A)− λ)2

− s2.

Easy case Hard case 1 Hard case 2

a /∈ R(A− λmin(A)I) a⊥N (A− λmin(A)I) a⊥N (A− λmin(A)I)
but and

(⇒ λ∗ < λmin(A)) λ∗ < λmin(A) λ∗ = λmin(A)
(i) ‖(A− λ∗I)†a‖ = s or λ∗ = 0
(ii) ‖(A− λ∗I)†a‖ < s, λ∗ < 0

LARGE SCALE TRUST REGION SUBPROBLEM 5

Rendl-Wolkowicz Algorithm
Consider equality constrained problem µ∗ = min

||x||=s
xTAx− 2aTx.

µ∗ = min
||x||=s, y20=1

xTAx− 2y0a
Tx

= max
t

min
||x||=s, y20=1

xTAx− 2y0a
Tx+ ty20 − t

≥ max
t

min
||x||2+y20=s2+1

xTAx− 2y0a
Tx+ ty20 − t ∗ ∗ eig prob ∗ ∗

= max
t,λ

min
x,y0

xTAx− 2y0a
Tx+ ty20 − t+ λ(||x||2 + y20 − s2 − 1)

= max
r,λ

min
x,y0

xTAx− 2y0a
Tx+ ry20 − r + λ(||x||2 − s2)

= max
λ

min
x,y20=1

xTAx− 2y0a
Tx+ λ(||x||2 − s2) = µ∗.

LARGE SCALE TRUST REGION SUBPROBLEM 6

Rendl-Wolkowicz Algorithm

From the eig prob:

µ∗ = max
t

min
||x||2+y20=s2+1

xTAx− 2y0a
Tx+ ty20︸ ︷︷ ︸

(s2+1)λmin(D(t))

− t

= max
t
k(t) := (s2 + 1)λmin(D(t))− t

where

D(t) =

(
t −aT
−a A

)
.

LARGE SCALE TRUST REGION SUBPROBLEM 7

Observe that the candidate for interior solution is A−1a, when A � 0.

Let t∗ be the global maximizer of k(t).

LARGE SCALE TRUST REGION SUBPROBLEM 7

Observe that the candidate for interior solution is A−1a, when A � 0.

Let t∗ be the global maximizer of k(t).

Fact 2 (Rendl, Wolkowicz ’97): If λmin(D(t∗)) is simple, y(t∗) =

(
y0(t

∗)
w(t∗)

)
is the

normalized eigenvector for λmin(D(t∗)), then y0(t∗) 6= 0 and

1

|y0(t∗)|
‖w(t∗)‖ = s.

LARGE SCALE TRUST REGION SUBPROBLEM 7

Observe that the candidate for interior solution is A−1a, when A � 0.

Let t∗ be the global maximizer of k(t).

Fact 2 (Rendl, Wolkowicz ’97): If λmin(D(t∗)) is simple, y(t∗) =

(
y0(t

∗)
w(t∗)

)
is the

normalized eigenvector for λmin(D(t∗)), then y0(t∗) 6= 0 and

1

|y0(t∗)|
‖w(t∗)‖ = s.

Note: λmin(D(t∗)) is simple for easy case and hard case 1.

LARGE SCALE TRUST REGION SUBPROBLEM 8

k(t) in Easy Case

LARGE SCALE TRUST REGION SUBPROBLEM 9

k(t) in Hard Case 1

LARGE SCALE TRUST REGION SUBPROBLEM 10

k(t) in Hard Case 2

LARGE SCALE TRUST REGION SUBPROBLEM 11

Hard Case is Easiest: Shift and Deflate
Fact 3 (Fortin, Wolkowicz ’03): Let A =

∑n
i=1 λi(A)viv

T
i = QΛQT be the

orthogonal spectral decomposition of A; γi = (QTa)i

S1 = {i : γi 6= 0, λi(A) = λmin(A)}
S2 = {i : γi = 0, λi(A) = λmin(A)}

• Let x(λ∗) = (A− λ∗I)†a, then
(x(λ∗), λ∗ − λmin(A)) solves TRS with A− λmin(A)I in place of A⇔
(x∗, λ∗) solves TRS, where x∗ = x(λ∗) + z, z ∈ N (A− λ∗I) and ‖x∗‖ = s.

• If λmin(A) ≥ 0, then
(x∗, λ∗) solves TRS⇔ (x∗, λ∗) solves TRS when A is replaced by
A+

∑
i∈S2 αiviv

T
i , with αi ≥ 0.

LARGE SCALE TRUST REGION SUBPROBLEM 12

Solving Hard Case 2 Explicitly

• Use Lanczos, find λmin(A), v1; assume possible hard case:

λmin(A) < 0 and vT1 a = 0 ;

• Shift: A← A− λmin(A)I � 0;

• Deflate: A← A+ α1vv
T , ‖A‖ > α1 >> 0. Repeat deflation as long as

λmin(A) = 0 and vTa = 0 ;

• If vTa 6= 0, we are in easy case; otherwise, A � 0, calculate x̄ = A−1a using
prec. conj grad.
If ‖x(λ∗)‖ > s, we are in hard case 1; otherwise ‖x(λ∗)‖ ≤ s, then we have
an explicit solution:

‖x∗‖ = ‖x(λ∗) + βv1‖ = s, v1 ∈ N (Aorig − λ∗I).

LARGE SCALE TRUST REGION SUBPROBLEM 13

Maximizing k(t)

• Bracketing Newton’s Method (Ben-Israel ,Levin ’01).

• Triangle Interpolation.

• Vertical Cut.

• Inverse Linear Interpolation.

LARGE SCALE TRUST REGION SUBPROBLEM 14

Bracketing Newton
Takes one Newton step for solving k(t) = Mj, where Mj is an estimate of the
optimal value from previous iterates.

LARGE SCALE TRUST REGION SUBPROBLEM 15

Triangle Interpolation

LARGE SCALE TRUST REGION SUBPROBLEM 16

Vertical Cut

LARGE SCALE TRUST REGION SUBPROBLEM 17

Inverse Linear Interpolation

LARGE SCALE TRUST REGION SUBPROBLEM 18

Simulations

• Compare RW with and without shift+deflate on hard case 2 instances.

• For n = 3000, 6000, ..., 30000, generate 10 hard instances:

A = sprandsym(n,0.01);
[v,lambda] = eigs(A,1,’SA’,opts);
xtempopt = randn(n,1);
s = 1.1*norm(xtempopt);
a = A*xtempopt - lambda*xtempopt;

LARGE SCALE TRUST REGION SUBPROBLEM 19

Simulations

LARGE SCALE TRUST REGION SUBPROBLEM 20

Conclusion & Future work

• After shift and deflation, hard case becomes easy.

• k(t) can be maximized efficiently by simple techniques.

• More numerical tests...

• Fast algorithm for solving Generalized TRS:

q∗ := min q(x) := xTAx− 2aTx
s.t. ` ≤ q1(x) := xTBx− 2bTx ≤ u.

Thanks for coming!
. .
∠
^

