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Motivating examples

• Compressed sensing with heavy-tailed noise:

Minimize
x∈IRn

∥x∥1

Subject to ∥Ax − b∥p ≤ σ,

where A ∈ IRm×n, b ∈ IRm, m ≪ n, p ∈ [1,2) and σ > 0.
• System realization / low-rank Hankel matrix recovery:

Minimize
x∈IRn

∥x − x̄∥
Subject to ∥H(x)∥∗ ≤ s,

where x̄ ∈ IRn is a given proxy, H maps a vector linearly to a
Hankel matrix of suitable size, s > 0.

⋆ Projection-based algorithms? /

⋆ Try reformulation: Let y = Ax − b (resp., y = H(x))...
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Problem setting
Minimize
x∈E1,y∈E2

f (x) + g(y)

Subject to Ax + By = c,
where

• E1, E1, E are finite dimensional Hilbert spaces, c ∈ E , A, B are
linear maps and f and g are proper, closed and convex.

• The solution set is nonempty.

• f = f1 + f2: here, f1 has Hölderian gradient, and γf2 admits easy
proximal mappings for every γ > 0. i.e., ∀u ∈ E1, γf2(·)+0.5∥ ·−u∥2 is easy to minimize.

• g = g1 + g2: here, g1 has Hölderian gradient, and, ∀v ∈ E2, a
minimizer of ⟨v , ·⟩+ g2(·) exists and can be computed efficiently.

• c ∈ A ri(dom f ) + B ri(dom g), and dom f and dom g are bounded.
• In our motivating examples, B = −I and A is the CS matrix or the

Hankel map, f (x) = f2(x) = ∥x∥1+δB(x) or ∥x − x̄∥+δB(x),
g = g2 is the indicator function of the p-norm or nuc. norm ball.

• Apply/adapt ADMM? /
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Existing work
In Argyriou, Signoretto, Suykens ’14, they considered

Minimize
x∈E1,y∈E2

f (x) + g(y)

Subject to By − x = 0,

where
• γf admits easy proximal mappings for every γ > 0;
• g = g1 + g2: here, g1 has Hölderian gradient with exponent
ν ∈ (0,1], dom g is bounded, and, ∀v ∈ E2, a minimizer of
⟨v , ·⟩+ g2(·) exists and can be computed efficiently.

Idea: Alternating (approx.) minimization of Fβ with an immediate
update of β, where Fβ(x , y) := f (x) + g(y) + β

2 ∥By − x∥2. NO INNER LOOPS

Specifically, for β0 > 0 and t = 1, . . .,

x t+1 = arg min
x∈E1

f (x) + β0
√

t
2 ∥By t − x∥2,

ut ∈ Arg min
y∈E2

⟨β0
√

tB∗(By t − x t+1) +∇g1(y t), y⟩+ g2(y),

y t+1 = y t + 2
t+1 (u

t − y t).
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Existing work cont.
In Argyriou, Signoretto, Suykens ’14:

Minimize
x∈E1,y∈E2

f (x) + g(y)

Subject to By − x = 0,
Then it holds that:

• if f is Lipschitz, then |f (By t) + g(y t)− opt val| = O(t−min{ν,1/2});
• (Yurtsever, Fercoq, Locatello, Cevher ’18) if f = δC for some closed

convex set C, ∇g1 is Lipschitz and g2 = δD for some compact
convex set D, and 0 ∈ B riD − ri C, then

max{|g(y t)− opt val|,dist(By t , C)} = O(t−
1
2 ).

Another related work (Silveti-Falls, Molinari, Fadili ’20) is based on
penalty and augmented Lagrangian functions. Their A has to be an
injective negative partial identity map. /

Aim: Develop a single-loop algorithm that allows a general A and
our generally structured f and g, and analyze its iteration com-
plexity / convergence.
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Our algorithm
Idea: Alternating (approx.) minimization of Fβ with an immediate
update of β, where Fβ(x , y) := f (x) + g(y) + β

2 ∥Ax + By − c∥2.

Algorithm proxCGpen
1ℓ (Zhang, Zeng, P. ’24)

Step 0. Choose x0 ∈ dom f , y0 ∈ dom g, β0 > 0, H0 > 0.
Step 1. For t = 0,1, ..., let αt =

2
t+2 . Compute Rt =Ax t + By t − c,

x t+1=arg min
x∈E1

⟨∇f1(x t)+βtA∗Rt , x⟩+ Ht+βtλmax(A∗A)
2 ∥x − x t∥2+ f2(x),

ut ∈Arg min
y∈E2

⟨∇g1(y t) + βtB∗(Ax t+1 + By t − c), y⟩+ g2(y),

y t+1=y t + αt(ut − y t),

Ht+1=max
{

H0,
2Mf
µ+1

}
(t + 1)1−µ, βt+1 = β0(t + 2)1−min{0.5,µ,ν}.

Remark: Mf is the Hölderian modulus of ∇f1, and µ and ν are the
Hölderian exponents of ∇f1 and ∇g1 respectively.
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Complexity result

Recall that we consider

Minimize
x∈E1,y∈E2

f (x) + g(y)

Subject to Ax + By = c,

under the blanket assumptions.

Theorem 1. (Zhang, Zeng, P. ’24)
Let {(x t , y t)} be generated by proxCGpen

1ℓ and let (x∗, y∗) solve the
above problem. Then it holds that

∥Ax t + By t − c∥ = O(t−
1
2 ),

|f (x t) + g(y t)− f (x∗)− g(y∗)| = O(t−min{0.5,µ,ν}).

Note: There are explicit estimates for the constants in the big O.
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KL property & exponent
Definition: (Attouch, Bolte, Redont, Soubeyran ’10)
Let h be proper closed and α ∈ [0,1).

• h is said to satisfy the Kurdyka-Łojasiewicz (KL) property with
exponent α at x̄ ∈ dom ∂h if there exist c, ν, ϵ > 0 so that

c[h(x)− h(x̄)]α ≤ dist(0, ∂h(x))

whenever x ∈ dom ∂h, ∥x − x̄∥ ≤ ϵ and h(x̄) < h(x) < h(x̄) + ν.

• If h satisfies the KL property at any x̄ ∈ dom ∂h with the same α,
then h is said to be a KL function with exponent α.

Examples:
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte, Daniilidis, Lewis, Shiota ’07)

• If h is the maximum of m polynomials of degree at most d , then
the KL exponent is 1 − 1

max{1,(d+1)(3d)n+m−2} . (Li, Mordukovich, Pham
’15)
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Convergence rate

Theorem 2. (Zhang, Zeng, P. ’24)
Let h : E → IR be a real-valued convex function, Θ ⊂ E be a compact
convex set, G be a linear map and b ∈ G riΘ. Let

H(x) = h(x) + δΘ(x) + δ{b}(Gx).

If H is a KL function with exponent α ∈ [0,1), then there exist ϵ > 0,
c0 > 0 and η > 0 such that

dist (x ,Arg min H) ≤ c0

∣∣∣h(x) + η∥Gx − b∥ − inf H
∣∣∣1−α

whenever x ∈ Θ and dist(x ,Arg min H) ≤ ϵ.

8 / 13



Convergence rate cont.

Recall that we consider

Minimize
x∈E1,y∈E2

f (x) + g(y)

Subject to Ax + By = c,

under the blanket assumptions.

Corollary. (Zhang, Zeng, P. ’24)
Suppose that F (x , y) := f (x) + g(y) + δ{c}(Ax + By) is a KL function
with exponent α ∈ [0,1). Suppose we further assume that f = f0 + δΞ
and g = g0 + δ∆ for some real-valued convex functions f0 and g0 and
compact convex sets Ξ and ∆.
If {(x t , y t)} is generated by proxCGpen

1ℓ , then

dist((x t , y t),Arg min F ) = O(t−min{0,5,µ,ν}(1−α))

9 / 13



Example: Explicit KL exponent

Consider the compressed sensing problem with heavy-tailed noise:

Minimize
x∈IRn,y∈IRm

∥x∥1

Subject to ∥y∥p ≤ σ, Ax − y = b,

where A ∈ IRm×n, b ∈ IRm, m ≪ n, p ∈ (1,2) and σ > 0. We discuss
how to derive the KL exponent of the following associated function:

F (x , y) := ∥x∥1 + δ∥·∥p≤σ(y) + δ{b}(Ax − y).

Step 1: (Conic lifting) Note that F (x , y) = infw,s F̂ (x ,w , y , s), where

F̂ (x ,w , y , s) = w + δF (x ,w , y , s),

F := {(x ,w , y , s) : s = σ, Ax − y = b, (y , s) ∈ Km+1
p , (x ,w) ∈ Kn+1

1 },

with Km+1
p being the p-cone in IRm+1, i.e., {(y , s)∈ IRm×IR : ∥y∥p ≤s}.

It is known that the KL exponent of F̂ gives that of F (Yu, Li, P. ’22).
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Step 1: (Conic lifting) Note that F (x , y) = infw,s F̂ (x ,w , y , s), where

F̂ (x ,w , y , s) = w + δF (x ,w , y , s),

F := {(x ,w , y , s) : s = σ, Ax − y = b, (y , s) ∈ Km+1
p , (x ,w) ∈ Kn+1

1 },

with Km+1
p being the p-cone in IRm+1, i.e., {(y , s)∈ IRm×IR : ∥y∥p ≤s}.

It is known that the KL exponent of F̂ gives that of F (Yu, Li, P. ’22).
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Example cont.: Explicit KL exponent

Observation: Let θ = inf F̂ . Then letting z := (x ,w , y , s), we have

Arg min F̂ = {z : w = θ, s = σ, Ax − y = b}︸ ︷︷ ︸
S1

∩ (Kn+1
1 ×Km+1

p )︸ ︷︷ ︸
S2

Step 2: (Conic error bound) It holds that (Lindstrom, Lourenço, P. ’24) for
each r > 0, ∃cr > 0 such that for all z ∈ Br := {u : ∥u∥ ≤ r},

dist(z,S1 ∩ S2) ≤ cr max{dist(z,S1)
1
2 ,dist(z,S2)

1
2 },

which implies ∃κr > 0 such that for all z ∈ Br ∩ F ,

dist(z,Arg min F̂ ) = dist(z,S1 ∩ S2) ≤ cr dist(z,S1)
1
2 ≤ κr |w − θ| 1

2 .

Recall that F̂ (x ,w , y , s) = w + δF (x ,w , y , s). The above display
shows that F̂ has KL exponent 1

2 (Bolte, Nguyen, Peypouquet, Suter ’17).
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Numerical results
Consider random instances of

Minimize
x∈IRn

∥x∥1

Subject to ∥Ax − b∥1.5 ≤ σ.

If {(x t , y t)} is generated by proxCGpen
1ℓ , then

max{|∥x t∥1 − ∥x∗∥1|, ∥Ax t − y t − b∥} = O(t−1/2).
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Conclusion

Conclusion:
• A single-loop algorithm based on penalty method is developed

for linearly constrained convex optimization problems involving
prox-friendly and linear-oracle-friendly components.

• Each iteration involves one prox and one linear-oracle call.
• Iteration complexity and (local) convergence rate are derived.

Reference:
• Hao Zhang, Liaoyuan Zeng and Ting Kei Pong.

A single-loop proximal-conditional-gradient penalty method.
Preprint. Available at https://arxiv.org/abs/2409.14957.
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