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Motivating examples

e Compressed sensing with heavy-tailed noise:
Minimize || x|1
XER"
Subjectto ||Ax — b|lp < o,

where Ac R™", be R", m<« n,pe[1,2)and s > 0.
e System realization / low-rank Hankel matrix recovery:
Minimize |x — X||
XeR"
Subjectto ||H(X)||« < s,

where X € R" is a given proxy, % maps a vector linearly to a
Hankel matrix of suitable size, s > 0.
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XER"
Subjectto ||Ax — b|lp < o,
where Ac R™", be R", m<« n,pe[1,2)and s > 0.
e System realization / low-rank Hankel matrix recovery:
Minimize |x — X||
XeR"
Subjectto  ||H(x)]|« < s,

where X € R" is a given proxy, % maps a vector linearly to a
Hankel matrix of suitable size, s > 0.

* Projection-based algorithms? ®
* Try reformulation: Let y = Ax — b (resp., y = H(x))...
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Problem setting

Minimi f
e 100 +90)
Subjectto Ax + By =c,
where

e &1, &1, € are finite dimensional Hilbert spaces, ¢ € &, A, B are
linear maps and f and g are proper, closed and convex.

e The solution set is nonempty.
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Problem setting

Minimi f
Minimize (x) +9a(y)
Subjectto Ax + By =c,
where

e &1, &1, € are finite dimensional Hilbert spaces, ¢ € &, A, B are
linear maps and f and g are proper, closed and convex.

The solution set is nonempty.

f = fi + K: here, f; has Holderian gradient, and vf, admits easy
prOXIma| mapplngS fOI’ evel’y Y > 0. e, Vu € Ey,vf(-)+0.5]| - u||2 is easy to minimize.

g = g1 + g-: here, g1 has Holderian gradient, and, Vv € &, a
minimizer of (v, -) + g»(+) exists and can be computed efficiently.

¢ € Ari(dom f) 4+ Bri(dom g), and dom f and dom g are bounded.
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In our motivating examples, B = —/ and A is the CS matrix or the
Hankel map, f(x) = f(x) = ||x]|1 or || x — X|| ,
g = go is the indicator function of the p-norm or nuc. norm ball.
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Existing work
In Argyriou, Signoretto, Suykens '14, they considered
Minimize 10+ 9(y)
Subjectto By — x =0,
where
e ~f admits easy proximal mappings for every v > 0;

e g = gi + go: here, g1 has Hblderian gradient with exponent
v € (0,1], dom g is bounded, and, Vv € &, a minimizer of
(v,-) + go(+) exists and can be computed efficiently.
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Existing work
In Argyriou, Signoretto, Suykens '14, they considered

M 100+ 90)

Subjectto By — x =0,
where
e ~f admits easy proximal mappings for every v > 0;
e g = gi + go: here, g1 has Hblderian gradient with exponent
v € (0,1], dom g is bounded, and, Vv € &, a minimizer of
(v,-) + go(+) exists and can be computed efficiently.
Idea: Alternating (approx.) minimization of Fz with an immediate
update of 3, where FB(X, y) = f(X) + g(y) + gHB}/ — XHZ. NO INNER LOOPS
Specifically, for 5o >0and t=1,...,

x™1 =argmin f(x) + ’BOTWHB}’I - |3,
X€EEq

ut € Argmin (BoVtB*(By' — x'1) + Vg1 (y'). y) + g2(¥),

yeé
yt+1 :yt_i_t%(ut_yt).
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Existing work cont.

In Argyriou, Signoretto, Suykens '14:

Waize 10+ 9)

Subjectto By — x =0,
Then it holds that:
e if f is Lipschitz, then |f(By!) 4 g(y!) — opt.val| = O(t~min{»1/2});
e (Yurtsever, Fercoq, Locatello, Cevher '18) if f = dc for some closed
convex set C, Vg is Lipschitz and g» = dp for some compact
convex set D, and 0 € BriD —riC, then

max{|g(y') — opt_val|, dist(By",C)} = O(t"?).
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Existing work cont.

In Argyriou, Signoretto, Suykens '14:

Waize 10+ 9)

Subjectto By — x =0,
Then it holds that:
e if f is Lipschitz, then |f(By!) 4 g(y!) — opt.val| = O(t~min{»1/2});
e (Yurtsever, Fercoq, Locatello, Cevher '18) if f = dc for some closed
convex set C, Vg is Lipschitz and g» = dp for some compact
convex set D, and 0 € BriD —riC, then
max{|g(y") — opt.val|,dist(By',C)} = O(t"2).

Another related work (Silveti-Falls, Molinari, Fadili '20) is based on
penalty and augmented Lagrangian functions. Their A has to be an
injective negative partial identity map. ®

Aim: Develop a single-loop algorithm that allows a general A and
our generally structured f and g, and analyze its iteration com-
plexity / convergence.
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Our algorithm

Idea: Alternating (approx.) minimization of Fg with an immediate
update of 3, where Fs(x,y) := f(x) + g(y) + 2| Ax + By — c||.
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Our algorithm

Idea: Alternating (approx.) minimization of Fg with an immediate
update of 3, where Fs(x,y) := f(x) + g(y) + 2| Ax + By — c||.

Algorithm proxCGiS" (Zhang, Zeng, P. '24)
Step 0. Choose x° € domf, y0 dom g, Bo >0, Hy > 0.
Step 1. Fort = 0,1, ..., let a; = 3. Compute R'=Ax' + By' —c,

Xt :argerglin <Vf1 (Xt)-f—ﬂtA* Rt, X> + Ht+ﬁt)\gax(A*A) ||X _ Xt||2+ fg(X),
Xelq

ute Argmin (Vgi(y") + BiB* (A" + By' — ¢), y) + g2(y),
ye&s

yt+1 :yt + Oét(Ut _ yt)
HH»‘I max{HO, 2Mf (t+ )1 H, 6?+1 — Bo(t+2>1—min{0.5,u,y}.
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Our algorithm

Idea: Alternating (approx.) minimization of Fg with an immediate
update of 3, where Fs(x,y) := f(x) + g(y) + 2| Ax + By — c||.

Algorithm proxCGiS" (Zhang, Zeng, P. '24)
Step 0. Choose x° € domf, y0 dom g, Bo >0, Hy > 0.
Step 1. Fort = 0,1, ..., let a; = 3. Compute R'=Ax' + By' —c,

Xt =argmin (VA () + SA R x) + P25 |24 (),
X€Cq

ute Argmin (Vgi(y") + BiB* (A" + By' — ¢), y) + g2(y),
ye&s

yt+1 :yt + Oét(Ut _ yt)
HH»‘I max{HO, 2Mf (t+ )1 H, 6?+1 — Bo(t+2>1—min{0.5,u,y}.

Remark: My is the Holderian modulus of V£, and ;. and v are the
Holderian exponents of Vi and V gy respectively.
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Complexity result

Recall that we consider
Mi f(x
Minimize  f(x) +9(y)
Subjectto Ax + By = ¢,
under the blanket assumptions.
Theorem 1. (Zhang, Zeng, P. '24)

Let {(x!,y")} be generated by proxCGES" and let (x*, y*) solve the
above problem Then it holds that

|IAX! + By! — c| = O(t?),
|f(xt) + g(yt) _ f(X*) _ g(y*)| _ O(t_ min{0.5,,u,u}).
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Minimize  f(x) +9(y)
Subjectto Ax + By = ¢,
under the blanket assumptions.
Theorem 1. (Zhang, Zeng, P. '24)

Let {(x!,y")} be generated by proxCGES" and let (x*, y*) solve the
above problem Then it holds that

|Ax' + By' — c|| = O(t™#),
|f(xt) + g(yt) _ f(X*) _ g(y*)| _ O(t_ min{0.5,,u,u}).
Note: There are explicit estimates for the constants in the big O.
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KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran *10)
Let h be proper closed and a € [0, 1).

e his said to satisfy the Kurdyka-tojasiewicz (KL) property with
exponent o at X € dom 0h if there exist ¢, v, e > 0 so that

clh(x) — h(X)]* < dist(0, Dh(x))

whenever x € domoh, || x — X|| < e and h(X) < h(x) < h(X) + v.
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Let h be proper closed and a € [0, 1).
e his said to satisfy the Kurdyka-tojasiewicz (KL) property with
exponent o at X € dom 0h if there exist ¢, v, e > 0 so that

clh(x) — h(X)]* < dist(0, Dh(x))

whenever x € domoh, || x — X|| < e and h(X) < h(x) < h(X) + v.

e If h satisfies the KL property at any x € dom dh with the same «,
then h is said to be a KL function with exponent «.

Examples:
e Proper closed semialgebraic functions are KL functions with
exponent « € [0, 1). (Bolte, Daniilidis, Lewis, Shiota '07)
e If his the maximum of m polynomials of degree at most d, then
the) KL exponent is 1 — -raaimgmmmzy - (Li, Mordukovich, Pham
15
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Convergence rate

Theorem 2. (Zhang, Zeng, P. 24)
Let h: £ — R be a real-valued convex function, © C £ be a compact
convex set, G be a linear map and b € Gri©. Let

H(X) = h(X) + 5@(X) =+ (5{b}(GX)

If His a KL function with exponent « € [0, 1), then there exist € > 0,
Co > 0 and n > 0 such that

1—
dist (x, Argmin H) < ¢y |h(x) + n||Gx — b|| — inf H

whenever x € © and dist(x, Argmin H) < e.

8/13



Convergence rate cont.

Recall that we consider

Minimize f
Minimize (x)+9(y)

Subjectto Ax+ By =c,

under the blanket assumptions.

Corollary. (Zhang, Zeng, P.’24)
Suppose that F(x, y) := f(x) + g(y) + d(c} (Ax + By) is a KL function
with exponent « € [0, 1). Suppose we further assume that f = f, + 6=
and g = go + da for some real-valued convex functions f; and gy and
compact convex sets = and A.

pen

If {(x,y")} is generated by proxCG7", then
dist((x', y!), Argmin F) = O(t~ mr{0.5:n.v}(1=a)y
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Example: Explicit KL exponent

Consider the compressed sensing problem with heavy-tailed noise:
Minimize || x||1
XER™,yeR™

Subjectto |y|p <o, Ax—y =0b,

where Ac R™", be R™, m< n,pe(1,2)and o > 0. We discuss
how to derive the KL exponent of the following associated function:

F(x,y) =[xl +5H.Hp§o—(y) + (5{b}(AX -Y).
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Example: Explicit KL exponent

Consider the compressed sensing problem with heavy-tailed noise:

Minimize || x||1
XER™,yeR™

Subjectto |lyllp <o, Ax—y=0b,

where Ac R™", be R™, m< n,pe(1,2)and o > 0. We discuss
how to derive the KL exponent of the following associated function:

F(x,y) =[xl +5H.Hp§o—(y) + (5{b}(AX -Y).

~

Step 1: (Conic lifting) Note that F(x, y) = infw s F(x, w, y, s), where

F(X5 vaas) = W+5I(X7 W,y,S),
Fi={(x,w,y,s):s=0,Ax—y=>b,(y,s) € KJ', (x,w) € K[},

with K5 being the p-cone in R™, i.e., {(y,s) ER" xR : ||y||p < s}
It is known that the KL exponent of F gives that of F (Yu, Li, P. '22).
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Example cont.: Explicit KL exponent

Observation: Let § = inf F. Then letting z := (x, w, y, s), we have

ArgminF = {z: w=0, s=0, Ax —y = b} N (K[*! x KP*T)
—— —

Si S
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Example cont.: Explicit KL exponent

Observation: Let § = inf F. Then letting z := (x, w, y, s), we have

ArgminF = {z: w=0, s=0, Ax —y = b} N (K[*! x KP*T)
—— —

Sy S

Step 2: (Conic error bound) It holds that (Lindstrom, Lourenco, P. '24) for
each r >0, 3¢, > Osuchthatforallze B, :={u: |u| <r},

dist(z, 81 N Sz) < ¢, max{dist(z, S1)2, dist(z, S2)? },
which implies 3x, > 0 such that for all z € B, N F,
dist(z, Argmin F) = dist(z, S N 82) < c,dist(z, Sy )1§ < Kelw — 0|%.

Recall that F(x, w, y,s) = w + 67(x, w, y, s). The above display
shows that F has KL exponent % (Bolte, Nguyen, Peypouquet, Suter '17).
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Numerical results

Consider random instances of
Minimize || x||1
XER"
Subjectto ||Ax — b||15 < 0.
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If {(x!,y*)} is generated by proxCGPS", then
max{]||x[l+ — X [l1], | Ax = y* = b||} = O(t~'/?).
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If {(x!,y*)} is generated by proxCGPS", then
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Conclusion

Conclusion:

e A single-loop algorithm based on penalty method is developed
for linearly constrained convex optimization problems involving
prox-friendly and linear-oracle-friendly components.

e Each iteration involves one prox and one linear-oracle call.

e lteration complexity and (local) convergence rate are derived.
Reference:

e Hao Zhang, Liaoyuan Zeng and Ting Kei Pong.
A single-loop proximal-conditional-gradient penalty method.
Preprint. Available at https://arxiv.org/abs/2409.14957.

Thanks for coming! <
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