A single-loop proximal-conditional-gradient penalty method

Ting Kei Pong Department of Applied Mathematics The Hong Kong Polytechnic University Hong Kong

DOML 2025 May 2025 (Joint work with Hao Zhang and Liaoyuan Zeng)

• Compressed sensing with heavy-tailed noise:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{Minimize}} & \|x\|_1\\ \text{Subject to} & \|Ax - b\|_p \leq \sigma, \end{array}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ll n$, $p \in [1, 2)$ and $\sigma > 0$.

• System realization / low-rank Hankel matrix recovery:

$$egin{array}{lll} {
m Minimize} & \|x-ar{x}\| \ {
m Subject to} & \|\mathcal{H}(x)\|_* \leq s, \end{array}$$

where $\bar{x} \in \mathbb{R}^n$ is a given proxy, \mathcal{H} maps a vector linearly to a Hankel matrix of suitable size, s > 0.

• Compressed sensing with heavy-tailed noise:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{Minimize}} & \|x\|_1\\ \text{Subject to} & \|Ax - b\|_p \leq \sigma, \end{array}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ll n$, $p \in [1, 2)$ and $\sigma > 0$.

• System realization / low-rank Hankel matrix recovery:

$$egin{array}{lll} {
m Minimize} & \|x-ar{x}\| \ {
m Subject to} & \|\mathcal{H}(x)\|_* \leq s. \end{array}$$

where $\bar{x} \in \mathbb{R}^n$ is a given proxy, \mathcal{H} maps a vector linearly to a Hankel matrix of suitable size, s > 0.

* Projection-based algorithms?

• Compressed sensing with heavy-tailed noise:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{Minimize}} & \|x\|_1\\ \text{Subject to} & \|Ax - b\|_p \leq \sigma, \end{array}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ll n$, $p \in [1, 2)$ and $\sigma > 0$.

• System realization / low-rank Hankel matrix recovery:

$$egin{array}{lll} {
m Minimize} & \|x-ar{x}\| \ {
m Subject to} & \|\mathcal{H}(x)\|_* \leq s, \end{array}$$

where $\bar{x} \in \mathbb{R}^n$ is a given proxy, \mathcal{H} maps a vector linearly to a Hankel matrix of suitable size, s > 0.

* Projection-based algorithms? 😳

• Compressed sensing with heavy-tailed noise:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{Minimize}} & \|x\|_1\\ \text{Subject to} & \|Ax - b\|_p \leq \sigma, \end{array}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ll n$, $p \in [1, 2)$ and $\sigma > 0$.

• System realization / low-rank Hankel matrix recovery:

$$egin{array}{lll} {
m Minimize} & \|x-ar{x}\| \ {
m Subject to} & \|\mathcal{H}(x)\|_* \leq s, \end{array}$$

where $\bar{x} \in \mathbb{R}^n$ is a given proxy, \mathcal{H} maps a vector linearly to a Hankel matrix of suitable size, s > 0.

- * Projection-based algorithms? ©
- * Try reformulation: Let y = Ax b (resp., $y = \mathcal{H}(x)$)...

 $\begin{array}{ll} \underset{x \in \mathcal{E}_1, y \in \mathcal{E}_2}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & Ax + By = c, \end{array}$

- *E*₁, *E*₁, *E* are finite dimensional Hilbert spaces, *c* ∈ *E*, *A*, *B* are linear maps and *f* and *g* are proper, closed and convex.
- The solution set is nonempty.

 $\begin{array}{ll} \underset{x \in \mathcal{E}_1, y \in \mathcal{E}_2}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & Ax + By = c, \end{array}$

- *E*₁, *E*₁, *E* are finite dimensional Hilbert spaces, *c* ∈ *E*, *A*, *B* are linear maps and *f* and *g* are proper, closed and convex.
- The solution set is nonempty.
- $f = f_1 + f_2$: here, f_1 has Hölderian gradient, and γf_2 admits easy proximal mappings for every $\gamma > 0$. i.e., $\forall u \in \mathcal{E}_1, \gamma f_2(\cdot) + 0.5 || \cdot -u ||^2$ is easy to minimize.
- g = g₁ + g₂: here, g₁ has Hölderian gradient, and, ∀v ∈ E₂, a minimizer of ⟨v, ·⟩ + g₂(·) exists and can be computed efficiently.
- $c \in Ari(\text{dom } f) + Bri(\text{dom } g)$, and dom f and dom g are bounded.

 $\begin{array}{ll} \underset{x \in \mathcal{E}_1, y \in \mathcal{E}_2}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & Ax + By = c, \end{array}$

- *E*₁, *E*₁, *E* are finite dimensional Hilbert spaces, *c* ∈ *E*, *A*, *B* are linear maps and *f* and *g* are proper, closed and convex.
- The solution set is nonempty.
- $f = f_1 + f_2$: here, f_1 has Hölderian gradient, and γf_2 admits easy proximal mappings for every $\gamma > 0$. i.e., $\forall u \in \mathcal{E}_1, \gamma f_2(\cdot) + 0.5 || \cdot -u ||^2$ is easy to minimize.
- g = g₁ + g₂: here, g₁ has Hölderian gradient, and, ∀v ∈ E₂, a minimizer of ⟨v, ·⟩ + g₂(·) exists and can be computed efficiently.
- $c \in Ari(\text{dom } f) + Bri(\text{dom } g)$, and dom f and dom g are bounded.
- In our motivating examples, B = -I and A is the CS matrix or the Hankel map, $f(x) = f_2(x) = ||x||_1 + \delta_B(x)$ or $||x \bar{x}|| + \delta_B(x)$, $g = g_2$ is the indicator function of the *p*-norm or nuc. norm ball.

 $\begin{array}{ll} \underset{x \in \mathcal{E}_1, y \in \mathcal{E}_2}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & Ax + By = c, \end{array}$

where

- *E*₁, *E*₁, *E* are finite dimensional Hilbert spaces, *c* ∈ *E*, *A*, *B* are linear maps and *f* and *g* are proper, closed and convex.
- The solution set is nonempty.
- $f = f_1 + f_2$: here, f_1 has Hölderian gradient, and γf_2 admits easy proximal mappings for every $\gamma > 0$. i.e., $\forall u \in \varepsilon_1, \gamma f_2(\cdot) + 0.5 \| \cdot u \|^2$ is easy to minimize.
- g = g₁ + g₂: here, g₁ has Hölderian gradient, and, ∀v ∈ E₂, a minimizer of ⟨v, ·⟩ + g₂(·) exists and can be computed efficiently.
- $c \in Ari(\text{dom } f) + Bri(\text{dom } g)$, and dom f and dom g are bounded.
- In our motivating examples, B = -I and A is the CS matrix or the Hankel map, $f(x) = f_2(x) = ||x||_1 + \delta_B(x)$ or $||x \bar{x}|| + \delta_B(x)$, $g = g_2$ is the indicator function of the *p*-norm or nuc. norm ball.
- Apply/adapt ADMM?

2/13

 $\begin{array}{ll} \underset{x \in \mathcal{E}_1, y \in \mathcal{E}_2}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & Ax + By = c, \end{array}$

where

- *E*₁, *E*₁, *E* are finite dimensional Hilbert spaces, *c* ∈ *E*, *A*, *B* are linear maps and *f* and *g* are proper, closed and convex.
- The solution set is nonempty.
- $f = f_1 + f_2$: here, f_1 has Hölderian gradient, and γf_2 admits easy proximal mappings for every $\gamma > 0$. i.e., $\forall u \in \varepsilon_1, \gamma f_2(\cdot) + 0.5 \| \cdot u \|^2$ is easy to minimize.
- g = g₁ + g₂: here, g₁ has Hölderian gradient, and, ∀v ∈ E₂, a minimizer of ⟨v, ·⟩ + g₂(·) exists and can be computed efficiently.
- $c \in Ari(\text{dom } f) + Bri(\text{dom } g)$, and dom f and dom g are bounded.
- In our motivating examples, B = -I and A is the CS matrix or the Hankel map, $f(x) = f_2(x) = ||x||_1 + \delta_B(x)$ or $||x \bar{x}|| + \delta_B(x)$, $g = g_2$ is the indicator function of the *p*-norm or nuc. norm ball.
- Apply/adapt ADMM? (2)

2/13

Existing work

In Argyriou, Signoretto, Suykens '14, they considered

 $\begin{array}{ll} \underset{x \in \mathcal{E}_{1}, y \in \mathcal{E}_{2}}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & By - x = 0, \end{array}$

- γf admits easy proximal mappings for every $\gamma > 0$;
- $g = g_1 + g_2$: here, g_1 has Hölderian gradient with exponent $\nu \in (0, 1]$, dom g is bounded, and, $\forall \nu \in \mathcal{E}_2$, a minimizer of $\langle \nu, \cdot \rangle + g_2(\cdot)$ exists and can be computed efficiently.

Existing work

In Argyriou, Signoretto, Suykens '14, they considered

 $\begin{array}{ll} \underset{x \in \mathcal{E}_{1}, y \in \mathcal{E}_{2}}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & By - x = 0, \end{array}$

where

- γf admits easy proximal mappings for every $\gamma > 0$;
- $g = g_1 + g_2$: here, g_1 has Hölderian gradient with exponent $\nu \in (0, 1]$, dom g is bounded, and, $\forall \nu \in \mathcal{E}_2$, a minimizer of $\langle \nu, \cdot \rangle + g_2(\cdot)$ exists and can be computed efficiently.

Idea: Alternating (approx.) minimization of F_{β} with an immediate update of β , where $F_{\beta}(x, y) := f(x) + g(y) + \frac{\beta}{2} ||By - x||^2$.

Existing work

In Argyriou, Signoretto, Suykens '14, they considered

 $\begin{array}{ll} \underset{x \in \mathcal{E}_{1}, y \in \mathcal{E}_{2}}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & By - x = 0, \end{array}$

where

- *γf* admits easy proximal mappings for every *γ* > 0;
- $g = g_1 + g_2$: here, g_1 has Hölderian gradient with exponent $\nu \in (0, 1]$, dom g is bounded, and, $\forall \nu \in \mathcal{E}_2$, a minimizer of $\langle \nu, \cdot \rangle + g_2(\cdot)$ exists and can be computed efficiently.

Idea: Alternating (approx.) minimization of F_{β} with an immediate update of β , where $F_{\beta}(x, y) := f(x) + g(y) + \frac{\beta}{2} ||By - x||^2$. No INNER LOOPS Specifically, for $\beta_0 > 0$ and t = 1, ...,

$$\begin{aligned} x^{t+1} &= \operatorname*{arg\,min}_{x \in \mathcal{E}_1} f(x) + \frac{\beta_0 \sqrt{t}}{2} \|By^t - x\|^2, \\ u^t &\in \operatorname*{Arg\,min}_{y \in \mathcal{E}_2} \langle \beta_0 \sqrt{t} B^* (By^t - x^{t+1}) + \nabla g_1(y^t), y \rangle + g_2(y), \\ y^{t+1} &= y^t + \frac{2}{t+1} (u^t - y^t). \end{aligned}$$

Existing work cont.

In Argyriou, Signoretto, Suykens '14:

 $\begin{array}{ll} \underset{x \in \mathcal{E}_{1}, y \in \mathcal{E}_{2}}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & By - x = 0, \end{array}$

Then it holds that:

- if *f* is Lipschitz, then $|f(By^t) + g(y^t) \text{opt}_val| = O(t^{-\min\{\nu, 1/2\}});$
- (Yurtsever, Fercoq, Locatello, Cevher '18) if *f* = δ_C for some closed convex set C, ∇*g*₁ is Lipschitz and *g*₂ = δ_D for some compact convex set D, and 0 ∈ B ri D − ri C, then

 $\max\{|g(y^t) - \mathsf{opt}_val|, \mathsf{dist}(By^t, \mathcal{C})\} = O(t^{-\frac{1}{2}}).$

Existing work cont.

In Argyriou, Signoretto, Suykens '14:

 $\begin{array}{ll} \underset{x \in \mathcal{E}_{1}, y \in \mathcal{E}_{2}}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & By - x = 0, \end{array}$

Then it holds that:

- if *f* is Lipschitz, then $|f(By^t) + g(y^t) \text{opt}_val| = O(t^{-\min\{\nu, 1/2\}});$
- (Yurtsever, Fercoq, Locatello, Cevher '18) if f = δ_C for some closed convex set C, ∇g₁ is Lipschitz and g₂ = δ_D for some compact convex set D, and 0 ∈ B ri D − ri C, then

 $\max\{|g(y^t) - \operatorname{opt}_val|, \operatorname{dist}(By^t, \mathcal{C})\} = O(t^{-\frac{1}{2}}).$

Another related work (Silveti-Falls, Molinari, Fadili '20) is based on penalty and augmented Lagrangian functions. Their A has to be an injective negative partial identity map. \odot

Existing work cont.

In Argyriou, Signoretto, Suykens '14:

 $\begin{array}{ll} \underset{x \in \mathcal{E}_{1}, y \in \mathcal{E}_{2}}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & By - x = 0, \end{array}$

Then it holds that:

- if *f* is Lipschitz, then $|f(By^t) + g(y^t) \text{opt}_val| = O(t^{-\min\{\nu, 1/2\}});$
- (Yurtsever, Fercoq, Locatello, Cevher '18) if *f* = δ_C for some closed convex set C, ∇*g*₁ is Lipschitz and *g*₂ = δ_D for some compact convex set D, and 0 ∈ B ri D − ri C, then

 $\max\{|g(y^t) - \operatorname{opt_val}|, \operatorname{dist}(By^t, \mathcal{C})\} = O(t^{-\frac{1}{2}}).$

Another related work (Silveti-Falls, Molinari, Fadili '20) is based on penalty and augmented Lagrangian functions. Their A has to be an injective negative partial identity map. \odot

Aim: Develop a single-loop algorithm that allows a general A and our generally structured f and g, and analyze its iteration complexity / convergence.

Our algorithm

Idea: Alternating (approx.) minimization of F_{β} with an immediate update of β , where $F_{\beta}(x, y) := f(x) + g(y) + \frac{\beta}{2} ||Ax + By - c||^2$.

Our algorithm

Idea: Alternating (approx.) minimization of F_{β} with an immediate update of β , where $F_{\beta}(x, y) := f(x) + g(y) + \frac{\beta}{2} ||Ax + By - c||^2$.

Algorithm proxCG^{pen}_{1ℓ} (Zhang, Zeng, P. '24)

Step 0. Choose $x^0 \in \text{dom } f$, $y^0 \in \text{dom } g$, $\beta_0 > 0$, $H_0 > 0$. **Step 1.** For $t = 0, 1, ..., \text{let } \alpha_t = \frac{2}{t+2}$. Compute $R^t = Ax^t + By^t - c$,

$$\begin{split} x^{t+1} &= \underset{x \in \mathcal{E}_{1}}{\arg\min} \ \langle \nabla f_{1}(x^{t}) + \beta_{t}A^{*}R^{t}, x \rangle + \frac{H_{t} + \beta_{t}\lambda_{\max}(A^{*}A)}{2} \|x - x^{t}\|^{2} + f_{2}(x), \\ u^{t} &\in \underset{y \in \mathcal{E}_{2}}{\operatorname{Argmin}} \ \langle \nabla g_{1}(y^{t}) + \beta_{t}B^{*}(Ax^{t+1} + By^{t} - c), y \rangle + g_{2}(y), \\ y^{t+1} &= y^{t} + \alpha_{t}(u^{t} - y^{t}), \\ H_{t+1} &= \max\left\{H_{0}, \frac{2M_{t}}{\mu + 1}\right\}(t+1)^{1-\mu}, \quad \beta_{t+1} = \beta_{0}(t+2)^{1-\min\{0.5,\mu,\nu\}}. \end{split}$$

Our algorithm

Idea: Alternating (approx.) minimization of F_{β} with an immediate update of β , where $F_{\beta}(x, y) := f(x) + g(y) + \frac{\beta}{2} ||Ax + By - c||^2$.

Algorithm proxCG^{pen}_{1ℓ} (Zhang, Zeng, P. '24)

Step 0. Choose $x^0 \in \text{dom } f$, $y^0 \in \text{dom } g$, $\beta_0 > 0$, $H_0 > 0$. **Step 1.** For $t = 0, 1, ..., \text{let } \alpha_t = \frac{2}{t+2}$. Compute $R^t = Ax^t + By^t - c$,

$$\begin{split} x^{t+1} &= \underset{x \in \mathcal{E}_{1}}{\arg\min} \ \langle \nabla f_{1}(x^{t}) + \beta_{t}A^{*}R^{t}, x \rangle + \frac{H_{t} + \beta_{t}\lambda_{\max}(A^{*}A)}{2} \|x - x^{t}\|^{2} + f_{2}(x), \\ u^{t} &\in \underset{y \in \mathcal{E}_{2}}{\arg\min} \ \langle \nabla g_{1}(y^{t}) + \beta_{t}B^{*}(Ax^{t+1} + By^{t} - c), y \rangle + g_{2}(y), \\ y^{t+1} &= y^{t} + \alpha_{t}(u^{t} - y^{t}), \\ H_{t+1} &= \max\left\{H_{0}, \frac{2M_{t}}{\mu + 1}\right\}(t+1)^{1-\mu}, \quad \beta_{t+1} = \beta_{0}(t+2)^{1-\min\{0.5,\mu,\nu\}}. \end{split}$$

Remark: M_f is the Hölderian modulus of ∇f_1 , and μ and ν are the Hölderian exponents of ∇f_1 and ∇g_1 respectively.

Complexity result

Recall that we consider

$$\begin{array}{ll} \underset{x \in \mathcal{E}_1, y \in \mathcal{E}_2}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & Ax + By = c, \end{array}$$

under the blanket assumptions.

Theorem 1. (Zhang, Zeng, P. '24)

Let $\{(x^t, y^t)\}$ be generated by proxCG^{pen}_{1l} and let (x^*, y^*) solve the above problem. Then it holds that

$$\begin{aligned} \|Ax^t + By^t - c\| &= O(t^{-\frac{1}{2}}), \\ |f(x^t) + g(y^t) - f(x^*) - g(y^*)| &= O(t^{-\min\{0.5, \mu, \nu\}}) \end{aligned}$$

6/13

Complexity result

Recall that we consider

$$\begin{array}{ll} \underset{x \in \mathcal{E}_{1}, y \in \mathcal{E}_{2}}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & Ax + By = c, \end{array}$$

under the blanket assumptions.

Theorem 1. (Zhang, Zeng, P. '24)

Let $\{(x^t, y^t)\}$ be generated by proxCG^{pen}_{1l} and let (x^*, y^*) solve the above problem. Then it holds that

$$\begin{aligned} \|Ax^t + By^t - c\| &= O(t^{-\frac{1}{2}}), \\ |f(x^t) + g(y^t) - f(x^*) - g(y^*)| &= O(t^{-\min\{0.5, \mu, \nu\}}). \end{aligned}$$

Note: There are explicit estimates for the constants in the big O.

KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10) Let *h* be proper closed and $\alpha \in [0, 1)$.

h is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂h if there exist *c*, ν, ε > 0 so that

 $c[h(x) - h(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial h(x))$

whenever $x \in \text{dom } \partial h$, $||x - \bar{x}|| \le \epsilon$ and $h(\bar{x}) < h(x) < h(\bar{x}) + \nu$.

KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10) Let *h* be proper closed and $\alpha \in [0, 1)$.

h is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂h if there exist *c*, ν, ε > 0 so that

 $c[h(x) - h(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial h(x))$

whenever $x \in \text{dom } \partial h$, $||x - \bar{x}|| \le \epsilon$ and $h(\bar{x}) < h(x) < h(\bar{x}) + \nu$.

 If *h* satisfies the KL property at any x̄ ∈ dom ∂h with the same α, then *h* is said to be a KL function with exponent α.

KL property & exponent

Definition: (Attouch, Bolte, Redont, Soubeyran '10) Let *h* be proper closed and $\alpha \in [0, 1)$.

h is said to satisfy the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂h if there exist *c*, ν, ε > 0 so that

 $c[h(x) - h(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial h(x))$

whenever $x \in \text{dom } \partial h$, $||x - \bar{x}|| \le \epsilon$ and $h(\bar{x}) < h(x) < h(\bar{x}) + \nu$.

 If *h* satisfies the KL property at any x̄ ∈ dom ∂h with the same α, then *h* is said to be a KL function with exponent α.

Examples:

- Proper closed semialgebraic functions are KL functions with exponent α ∈ [0, 1). (Bolte, Daniilidis, Lewis, Shiota '07)
- If *h* is the maximum of *m* polynomials of degree at most *d*, then the KL exponent is 1 ¹/_{max{1,(d+1)(3d)^{n+m-2}}}. (Li, Mordukovich, Pham '15)

Convergence rate

Theorem 2. (Zhang, Zeng, P. '24)

Let $h : \mathcal{E} \to \mathbb{R}$ be a real-valued convex function, $\Theta \subset \mathcal{E}$ be a compact convex set, *G* be a linear map and $b \in Gri \Theta$. Let

$$H(x) = h(x) + \delta_{\Theta}(x) + \delta_{\{b\}}(Gx).$$

If *H* is a KL function with exponent $\alpha \in [0, 1)$, then there exist $\epsilon > 0$, $c_0 > 0$ and $\eta > 0$ such that

dist
$$(x, \operatorname{Arg\,min} H) \leq c_0 |h(x) + \eta ||Gx - b|| - \inf H|^{1-\alpha}$$

whenever $x \in \Theta$ and dist $(x, \operatorname{Arg\,min} H) \leq \epsilon$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Convergence rate cont.

Recall that we consider

 $\begin{array}{ll} \underset{x \in \mathcal{E}_{1}, y \in \mathcal{E}_{2}}{\text{Minimize}} & f(x) + g(y) \\ \text{Subject to} & Ax + By = c, \end{array}$

under the blanket assumptions.

Corollary. (Zhang, Zeng, P. '24)

Suppose that $F(x, y) := f(x) + g(y) + \delta_{\{c\}}(Ax + By)$ is a KL function with exponent $\alpha \in [0, 1)$. Suppose we further assume that $f = f_0 + \delta_{\Xi}$ and $g = g_0 + \delta_{\Delta}$ for some real-valued convex functions f_0 and g_0 and compact convex sets Ξ and Δ .

If $\{(x^t, y^t)\}$ is generated by proxCG^{pen}_{1l}, then

dist
$$((x^{t}, y^{t}), \operatorname{Arg\,min} F) = O(t^{-\min\{0, 5, \mu, \nu\}(1-\alpha)})$$

・ コート ふぼう ふほう ふ ロッ

Example: Explicit KL exponent

Consider the compressed sensing problem with heavy-tailed noise:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}}{\text{Minimize}} & \|x\|_{1} \\ \text{Subject to} & \|y\|_{\rho} \leq \sigma, \ Ax - y = b, \end{array}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ll n$, $p \in (1, 2)$ and $\sigma > 0$. We discuss how to derive the KL exponent of the following associated function:

$$F(x,y) := \|x\|_1 + \delta_{\|\cdot\|_{\rho} \leq \sigma}(y) + \delta_{\{b\}}(Ax - y).$$

Example: Explicit KL exponent

Consider the compressed sensing problem with heavy-tailed noise:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}}{\text{Minimize}} & \|x\|_{1} \\ \text{Subject to} & \|y\|_{p} \leq \sigma, \ Ax - y = b, \end{array}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ll n$, $p \in (1, 2)$ and $\sigma > 0$. We discuss how to derive the KL exponent of the following associated function:

$$F(x,y) := \|x\|_1 + \delta_{\|\cdot\|_{\rho} \leq \sigma}(y) + \delta_{\{b\}}(Ax - y).$$

Step 1: (Conic lifting) Note that $F(x, y) = \inf_{w,s} \widehat{F}(x, w, y, s)$, where

$$\widehat{F}(x, w, y, s) = w + \delta_{\mathcal{F}}(x, w, y, s),$$

$$\mathcal{F} := \{(x, w, y, s) : s = \sigma, Ax - y = b, (y, s) \in \mathcal{K}_{p}^{m+1}, (x, w) \in \mathcal{K}_{1}^{n+1}\},$$

with \mathcal{K}_{p}^{m+1} being the *p*-cone in \mathbb{R}^{m+1} , i.e., $\{(y, s) \in \mathbb{R}^{m} \times \mathbb{R} : \|y\|_{p} \leq s\}$. It is known that the KL exponent of \widehat{F} gives that of F (Yu, Li, P. '22).

Example cont.: Explicit KL exponent

Observation: Let $\theta = \inf \widehat{F}$. Then letting z := (x, w, y, s), we have

Arg min
$$\widehat{F} = \underbrace{\{z: w = \theta, s = \sigma, Ax - y = b\}}_{S_1} \cap \underbrace{(\mathcal{K}_1^{n+1} \times \mathcal{K}_p^{m+1})}_{S_2}$$

Example cont.: Explicit KL exponent

Observation: Let $\theta = \inf \widehat{F}$. Then letting z := (x, w, y, s), we have

$$\operatorname{Arg\,min} \widehat{F} = \underbrace{\{z: w = \theta, s = \sigma, Ax - y = b\}}_{S_1} \cap \underbrace{(\mathcal{K}_1^{n+1} \times \mathcal{K}_p^{m+1})}_{S_2}$$

Step 2: (Conic error bound) It holds that (Lindstrom, Lourenço, P. '24) for each r > 0, $\exists c_r > 0$ such that for all $z \in B_r := \{u : ||u|| \le r\}$,

$$\mathsf{dist}(z,\mathcal{S}_1\cap\mathcal{S}_2)\leq c_r\max\{\mathsf{dist}(z,\mathcal{S}_1)^{\frac{1}{2}},\mathsf{dist}(z,\mathcal{S}_2)^{\frac{1}{2}}\},$$

which implies $\exists \kappa_r > 0$ such that for all $z \in \mathcal{B}_r \cap \mathcal{F}$,

 $\operatorname{dist}(z,\operatorname{Arg\,min}\widehat{F}) = \operatorname{dist}(z,\mathcal{S}_1 \cap \mathcal{S}_2) \leq c_r \operatorname{dist}(z,\mathcal{S}_1)^{\frac{1}{2}} \leq \kappa_r |w - \theta|^{\frac{1}{2}}.$

Recall that $\widehat{F}(x, w, y, s) = w + \delta_{\mathcal{F}}(x, w, y, s)$. The above display shows that \widehat{F} has KL exponent $\frac{1}{2}$ (Bolte, Nguyen, Peypouquet, Suter '17).

Numerical results

Consider random instances of

 $\begin{array}{ll} \underset{x \in \mathbb{R}^{n}}{\text{Minimize}} & \|x\|_{1}\\ \text{Subject to} & \|Ax - b\|_{1.5} \leq \sigma. \end{array}$

Numerical results

Consider random instances of

 $\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{Minimize}} & \|x\|_1\\ \text{Subject to} & \|Ax - b\|_{1.5} \leq \sigma. \end{array}$

If $\{(x^t, y^t)\}$ is generated by proxCG^{pen}_{1l}, then

$$\max\{|||x^t||_1 - ||x^*||_1|, ||Ax^t - y^t - b||\} = O(t^{-1/2}).$$

Numerical results

Consider random instances of

 $\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{Minimize}} & \|x\|_1\\ \text{Subject to} & \|Ax - b\|_{1.5} \leq \sigma. \end{array}$

If $\{(x^t, y^t)\}$ is generated by proxCG^{pen}_{1l}, then

 $\max\{|\|x^t\|_1 - \|x^*\|_1|, \|Ax^t - y^t - b\|\} = O(t^{-1/2}).$

Conclusion

Conclusion:

- A single-loop algorithm based on penalty method is developed for linearly constrained convex optimization problems involving prox-friendly and linear-oracle-friendly components.
- Each iteration involves one prox and one linear-oracle call.
- Iteration complexity and (local) convergence rate are derived.

Reference:

• Hao Zhang, Liaoyuan Zeng and Ting Kei Pong. *A single-loop proximal-conditional-gradient penalty method.* Preprint. Available at https://arxiv.org/abs/2409.14957.

Thanks for coming!