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Motivating applications

Structured constrained optimization problems:
• Compressed sensing with Gaussian noise:

min
x
‖x‖1 − ‖x‖ subject to ‖Ax − b‖ ≤ σ,

where A ∈ IRq×n, b ∈ IRq , σ ∈ (0, ‖b‖).
• Compressed sensing with Cauchy noise:

min
x
‖x‖1 − ‖x‖ subject to ‖Ax − b‖LL2,γ ≤ σ,

where A ∈ IRq×n, b ∈ IRq , σ ∈ (0, ‖b‖LL2,γ), and ‖ · ‖LL2,γ is the
Lorentzian norm.

‖y‖LL2,γ =
m∑

i=1

log
(

1 +
y2

i
γ2

)
.
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General model
Consider

min
x∈IRn

F (x) := f (x) + P1(x)− P2(x) + δg(·)≤0(x),

where:
• f has Lipschitz gradient.
• P1 and P2 are convex continuous.
• g(x) = (g1(x), . . . ,gm(x)) with each gi having Lipschitz gradient.
• {x : g(x) ≤ 0} 6= ∅.
• F is level-bounded.

• The MFCQ holds at every point satisfying g(x) ≤ 0.
Algorithmic ideas:
• Augmented Lagrangian.
• Moving balls approximation.
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Moving balls approximation
Moving balls approximation algorithm (Auslender, Shefi, Teboulle ’10)
was designed for

min
x

f (x) subject to g(x) ≤ 0.

Key update: Starting with an x t satisfying g(x t ) ≤ 0, compute

x t+1 = arg min
x

f (x t ) + 〈∇f (x t ), x − x t〉+ Lf
2 ‖x − x t‖2

s.t. gi (x t ) + 〈∇gi (x t ), x − x t〉+
Lgi
2 ‖x − x t‖2 ≤ 0 ∀i .

• The above algorithm is well defined and any accumulation point
of {x t} is stationary. (Auslender, Shefi, Teboulle ’10)

• Convergence of {x t} under convexity (Auslender, Shefi, Teboulle
’10) or semialgebraicity (Bolte, Pauwels ’16) is known.

• Variants with line-search scheme have been proposed (Lu ’12)
(Bolte, Chen, Pauwels ’19).

Subproblem needs iterative solver except for m = 1.

3 / 12



Moving balls approximation
Moving balls approximation algorithm (Auslender, Shefi, Teboulle ’10)
was designed for

min
x

f (x) subject to g(x) ≤ 0.

Key update: Starting with an x t satisfying g(x t ) ≤ 0, compute

x t+1 = arg min
x

f (x t ) + 〈∇f (x t ), x − x t〉+ Lf
2 ‖x − x t‖2

s.t. gi (x t ) + 〈∇gi (x t ), x − x t〉+
Lgi
2 ‖x − x t‖2 ≤ 0 ∀i .

• The above algorithm is well defined and any accumulation point
of {x t} is stationary. (Auslender, Shefi, Teboulle ’10)

• Convergence of {x t} under convexity (Auslender, Shefi, Teboulle
’10) or semialgebraicity (Bolte, Pauwels ’16) is known.

• Variants with line-search scheme have been proposed (Lu ’12)
(Bolte, Chen, Pauwels ’19).

Subproblem needs iterative solver except for m = 1.

3 / 12



Moving balls approximation
Moving balls approximation algorithm (Auslender, Shefi, Teboulle ’10)
was designed for

min
x

f (x) subject to g(x) ≤ 0.

Key update: Starting with an x t satisfying g(x t ) ≤ 0, compute

x t+1 = arg min
x

f (x t ) + 〈∇f (x t ), x − x t〉+ Lf
2 ‖x − x t‖2

s.t. gi (x t ) + 〈∇gi (x t ), x − x t〉+
Lgi
2 ‖x − x t‖2 ≤ 0 ∀i .

• The above algorithm is well defined and any accumulation point
of {x t} is stationary. (Auslender, Shefi, Teboulle ’10)

• Convergence of {x t} under convexity (Auslender, Shefi, Teboulle
’10) or semialgebraicity (Bolte, Pauwels ’16) is known.

• Variants with line-search scheme have been proposed (Lu ’12)
(Bolte, Chen, Pauwels ’19).

Subproblem needs iterative solver except for m = 1.

3 / 12



Sequential convex programming with line search

Algorithm 1: SCPls (Lu ’12)

Pick c > 0, 0 < L < L, τ > 1, x0 with g(x0) ≤ 0. Set t = 0.
Step 1. Choose any ξt ∈ ∂P2(x t ).

Step 2. Pick Lt,0
f ∈ [L,L] and Lt,0

g ∈ [L,L]m. Set (L̃f , L̃g) = (Lt,0
f ,Lt,0

g ).
Step 3. Compute

x̃ = arg min
x

{
〈∇f (x t )− ξt , x − x t〉+ L̃f

2 ‖x − x t‖2 + P1(x)
}

s.t. gi (x t ) + 〈∇gi (x t ), x − x t〉+
(L̃g)i

2 ‖x − x t‖2 ≤ 0 ∀i .

Step 3a) If g(x̃) 6≤ 0, let L̃g ← τ L̃g and go to Step 3. Else, go to Step 3b).

Step 3b) If F (x̃) ≤ F (x t)− c
2‖x̃ − x t‖2, go to Step 4. Else, let L̃f ← τ L̃f

and go to step 3.

Step 4. If a termination criterion is not met, set (Lt
f ,L

t
g) = (L̃f , L̃g) and

x t+1 = x̃ . Update t ← t + 1 and go to Step 1.
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SCPls: Subsequential convergence

Theorem 1. (Lu ’12), (Yu, P., Lu ’20)

(i) SCPls is well defined.
(ii) The Slater condition holds for each subproblem.

(iii) Let λt be a Lagrange multiplier for the subproblem at the end of
the t th iteration. Then {λt} is bounded.

(iv) Let {x t} be the sequence generated by SCPls. Then the
sequence {x t} is bounded, lim

t→∞
‖x t+1 − x t‖ = 0, and any

accumulation point x∗ is a stationary point, in the sense that

0 ∈ ∇f (x∗) + ∂P1(x∗)− ∂P2(x∗) + Ng(·)≤0(x∗).
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Outline

Aim: Analyze the convergence rate SCPls, using suitable
Kurdyka-Łojasiewicz (KL) type assumptions.

Outline:
• Convergence rate analysis in general nonconvex settings.
• Convergence rate analysis in convex settings.
• Explicit KL exponent for some models.
• Applications and future directions.
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KL property & exponent

Definition: (Attouch et al. ’10, Attouch et al. ’13)
Let h be proper closed and α ∈ [0,1).
• h is said to have the Kurdyka-Łojasiewicz (KL) property with

exponent α at x̄ ∈ dom ∂h if there exist c, ν, ε > 0 so that

c[h(x)− h(x̄)]α ≤ dist(0, ∂h(x))

whenever x ∈ dom ∂h, ‖x − x̄‖ ≤ ε and h(x̄) < h(x) < h(x̄) + ν.

• If h has the KL property at every x̄ ∈ dom ∂h with the same α,
then h is said to be a KL function with exponent α.

Examples.
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte et al. ’07)
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Convergence rate: Nonconvex settings
Define

F̄ (x , y ,w) := f (x) + P1(x)− P2(x) + δḠ(·)≤0(x , y ,w),

where

Ḡ(x , y ,w) :=

 g1(y) + 〈∇g1(y), x − y〉+ w1
2 ‖x − y‖2

...
gm(y) + 〈∇gm(y), x − y〉+ wm

2 ‖x − y‖2



Theorem 2. (Yu, P., Lu ’20)
Suppose g ∈ C2, ∇P2 is Lipschitz around the set of stationary points,
and F̄ is KL. Let {x t} be generated by SCPls. Then x t → x∗ for some
x∗. If in addition F̄ is KL with exponent α ∈ [0,1), then

(i) if α = 0, then {x t} converges finitely;
(ii) if α ∈ (0, 1

2 ], then {x t} converges locally linearly;

(iii) if α ∈ ( 1
2 ,1), then ‖x t − x∗‖ = O(t−

1−α
2α−1 ).
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Convergence rate: Convex settings

Recall
F (x) := f (x) + P1(x)− P2(x) + δg(·)≤0(x).

Theorem 3. (Yu, P., Lu ’20)
Suppose {f ,g1, . . . ,gm} are convex and P2 = 0. Let {x t} be the
sequence generated by SCPls. Then x t → x∗ for some x∗. If in
addition F is KL with exponent α ∈ [0,1), then:

(i) if α ∈ [0, 1
2 ], then {x t} converges locally linearly;

(ii) if α ∈ ( 1
2 ,1), then ‖x t − x∗‖ = O(t−

1−α
2α−1 ).

Remark: It actually holds that for some κ > 0
(i) if α ∈ [0, 1

2 ], then {F (x t )− F ∗ + κ dist2(x t ,Arg min F )} converges
locally Q-linearly;

(ii) if α ∈ ( 1
2 ,1), then F (x t )−F ∗+κ dist2(x t ,Arg min F ) = O(t−

1−α
2α−1 ).

9 / 12



Convergence rate: Convex settings

Recall
F (x) := f (x) + P1(x)− P2(x) + δg(·)≤0(x).

Theorem 3. (Yu, P., Lu ’20)
Suppose {f ,g1, . . . ,gm} are convex and P2 = 0. Let {x t} be the
sequence generated by SCPls. Then x t → x∗ for some x∗. If in
addition F is KL with exponent α ∈ [0,1), then:

(i) if α ∈ [0, 1
2 ], then {x t} converges locally linearly;

(ii) if α ∈ ( 1
2 ,1), then ‖x t − x∗‖ = O(t−

1−α
2α−1 ).

Remark: It actually holds that for some κ > 0
(i) if α ∈ [0, 1

2 ], then {F (x t )− F ∗ + κ dist2(x t ,Arg min F )} converges
locally Q-linearly;

(ii) if α ∈ ( 1
2 ,1), then F (x t )−F ∗+κ dist2(x t ,Arg min F ) = O(t−

1−α
2α−1 ).

9 / 12



Explicit KL exponent

Consider
min

x
P(x)

s.t. hi (Aix) ≤ 0 for i = 1, · · · ,m,

where P : IRn → IR is convex, Ai ∈ IRqi×n and hi : IRqi → IR is strictly
convex. Suppose the feasible set is nonempty.

Theorem 5. (Yu, P., Lu ’20)
Let F (x) := P(x) +

∑m
i=1 δhi (Ai ·)≤0(x) and x̄ ∈ Arg min F . Suppose

(i) There exists a Lagrange multiplier λ̄ ∈ IRm
+ and

x 7→ P(x) +
∑m

i=1 λ̄ihi (Aix) is KL with exponent α ∈ (0,1).
(ii) The strict complementarity condition holds at (x̄ , λ̄).

Then F satisfies KL property at x̄ with exponent α.
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Applications

Consider

min
x

‖x‖1 − µ‖x‖
s.t. 1

2‖Ax − b‖2 ≤ δ

Suppose
• µ ∈ [0,1];
• δ ∈ (0, 1

2‖b‖
2);

• A ∈ IRq×n has full row rank;
• A does not have zero

columns when µ = 1.
Then our convergence theorem
can be applied.

Moreover, if µ = 0,
we can deduce local linear convergence.

Consider

min
x

‖x‖1 − µ‖x‖
s.t. ‖Ax − b‖LL2,γ ≤ δ

Suppose
• µ ∈ [0,1];
• δ ∈ (0, ‖b‖LL2,γ);
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Conclusion and future work
Conclusion:
• Convergence rate of SCPls is analyzed in both convex and

nonconvex settings, under two different KL assumptions.
• Explicit KL exponent of some constrained optimization models

are obtained.

Future work:

• Minimizing ‖x‖
1
2
1
2

over ‖Ax − b‖ ≤ σ?

• General nonlinear cone constraints?
References:

• P. Yu, T. K. Pong and Z. Lu. Convergence rate analysis of a
sequential convex programming method with line search for a
class of constrained difference-of-convex optimization problems.
Submitted, January 2020.

Thanks for coming!
. .
∠
^
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Explicit KL exponent II

Consider
min

x
P(x)

s.t. h1(A1x) ≤ 0,

where P : IRn → IR is convex, A1 ∈ IRq1×n and h1 : IRq1 → IR is strictly
convex. Suppose the feasible set is nonempty.

Corollary 1. (Yu, P., Lu ’20)
Let F (x) := P(x) + δh1(A1·)≤0(x) and x̄ ∈ Arg min F . Suppose

(i) inf F > inf P.
(ii) There exists a Lagrange multiplier λ̄1 ∈ IR+ and

x 7→ P(x) + λ̄1h1(A1x) is KL with exponent α ∈ (0,1).
Then F satisfies KL property at x̄ with exponent α.

Remark: Can be applied with P = ‖ · ‖1 and h1 = 1
2‖ · −b‖2 − δ or

Poisson/logistic loss.
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