Analysis and algorithms for some compressed sensing models based on the ratio of ℓ_1 and ℓ_2 norms

Ting Kei Pong Department of Applied Mathematics The Hong Kong Polytechnic University Hong Kong

International Conference on Nonconvex and Distributed Optimization: Theory, Algorithm and Applications May 2021 (Joint work with Peiran Yu and Liaoyuan Zeng)

Motivating applications

• Basis pursuit:

$$\min_{x} \|x\|_1 \text{ subject to } Ax = b,$$

where $A \in \mathbb{R}^{m \times n}$ has full row rank, $b \in \mathbb{R}^m \setminus \{0\}$. (hence, $A^{-1} \{b\} \neq \emptyset$)

Motivating applications

• Basis pursuit:

$$\min_{x} \|x\|_1 \text{ subject to } Ax = b,$$

where $A \in \mathbb{R}^{m \times n}$ has full row rank, $b \in \mathbb{R}^m \setminus \{0\}$. (hence, $A^{-1}\{b\} \neq \emptyset$)

Basis pursuit with Gaussian noise:

 $\min_{\mathbf{x}} \|\mathbf{x}\|_{1} \text{ subject to } \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \leq \sigma,$

where $A \in \mathbb{R}^{m \times n}$ has full row rank, $b \in \mathbb{R}^m$, $\sigma \in (0, ||b||)$.

Motivating applications

• Basis pursuit:

$$\min_{x} \|x\|_1 \text{ subject to } Ax = b,$$

where $A \in \mathbb{R}^{m \times n}$ has full row rank, $b \in \mathbb{R}^m \setminus \{0\}$. (hence, $A^{-1} \{b\} \neq \emptyset$)

• Basis pursuit with Gaussian noise:

$$\min_{x} \|x\|_1 \text{ subject to } \|Ax - b\| \le \sigma,$$

where $A \in \mathbb{R}^{m \times n}$ has full row rank, $b \in \mathbb{R}^m$, $\sigma \in (0, ||b||)$.

Other sparsity inducing objective? Other noise models?

L1 over L2 models

\$\ell_1/\ell_2\$ for compressed sensing dates back to (Yin, Esser, Xin '14), and has recently been extensively studied (Rahimi, Wang, Dong, Lou '19), (Wang, Yan, Lou '20), (Wang, Tao, Nagy, Lou '20)...

L1 over L2 models

- \$\ell_1/\ell_2\$ for compressed sensing dates back to (Yin, Esser, Xin '14), and has recently been extensively studied (Rahimi, Wang, Dong, Lou '19), (Wang, Yan, Lou '20), (Wang, Tao, Nagy, Lou '20)...
- Noiseless model: (Rahimi, Wang, Dong, Lou '19)

$$\min_{x} \frac{\|x\|_{1}}{\|x\|} \text{ subject to } Ax = b,$$

where $A \in \mathbb{R}^{m \times n}$ has full row rank and $b \in \mathbb{R}^m \setminus \{0\}$.

L1 over L2 models

- \$\ell_1/\ell_2\$ for compressed sensing dates back to (Yin, Esser, Xin '14), and has recently been extensively studied (Rahimi, Wang, Dong, Lou '19), (Wang, Yan, Lou '20), (Wang, Tao, Nagy, Lou '20)...
- Noiseless model: (Rahimi, Wang, Dong, Lou '19)

$$\min_{x} \frac{\|x\|_{1}}{\|x\|} \text{ subject to } Ax = b,$$

where $A \in \mathbb{R}^{m \times n}$ has full row rank and $b \in \mathbb{R}^m \setminus \{0\}$.

• Noisy model: (Zeng, Yu, P. '21)

$$\min_{x} \ \frac{\|x\|_{1}}{\|x\|} \ \text{subject to} \ q(x) \leq 0,$$

where $q = P_1 - P_2$ with P_1 Lipschitz differentiable and P_2 convex continuous, $[q \le 0] \ne \emptyset$ and q(0) > 0.

Three concrete noisy models:

• Gaussian noise:

$$q(x) = \|Ax - b\|^2 - \sigma^2,$$

where *A* has full row rank, $b \in \mathbb{R}^m$, $\sigma \in (0, ||b||)$.

Three concrete noisy models:

Gaussian noise:

$$q(x) = \|Ax - b\|^2 - \sigma^2,$$

where *A* has full row rank, $b \in \mathbb{R}^m$, $\sigma \in (0, ||b||)$.

• Cauchy noise (Carrilo et al., 2010):

$$q(x) = \|Ax - b\|_{LL_2,\gamma} - \sigma,$$

where A has full row rank, $b \in \mathbb{R}^m$, $\sigma \in (0, \|b\|_{LL_2,\gamma})$, with

$$\|\mathbf{y}\|_{LL_{2},\gamma} := \sum_{i=1}^{m} \log\left(1 + \frac{y_{i}^{2}}{\gamma^{2}}\right).$$

Note: These q are Lipschitz differentiable.

Three concrete noisy models cont.:

• Electromyographic + Gaussian noise (Carrilo et al., 2010), (Liu, P., Takeda '19):

$$q(x) = \operatorname{dist}(Ax - b, S)^2 - \sigma^2,$$

where *A* has full row rank, $b \in \mathbb{R}^m$, $S = \{z : ||z||_0 \le r\}$, and $\sigma \in (0, \operatorname{dist}(b, S))$.

Three concrete noisy models cont.:

• Electromyographic + Gaussian noise (Carrilo et al., 2010), (Liu, P., Takeda '19):

$$q(x) = \operatorname{dist}(Ax - b, S)^2 - \sigma^2,$$

where *A* has full row rank, $b \in \mathbb{R}^m$, $S = \{z : ||z||_0 \le r\}$, and $\sigma \in (0, \operatorname{dist}(b, S))$.

Note:

$$q(x) = \min_{z \in S} ||Ax - b - z||^2 - \sigma^2$$
$$= \underbrace{||Ax - b||^2 - \sigma^2}_{P_1(x)} - \underbrace{\max_{z \in S} \{2\langle z, Ax - b \rangle - ||z||^2\}}_{P_2(x)}.$$

• $2A^T \operatorname{Proj}_S(Ax - b) \subseteq \partial P_2(x)$.

 The l₁/l₂ models are motivated from the spherical section property (SSP) (Vavasis '09, Zhang '13).

- The l₁/l₂ models are motivated from the spherical section property (SSP) (Vavasis '09, Zhang '13).
- For noiseless model, under *s*-nullspace property, any *s*-sparse solution is a local minimizer. (Rahimi, Wang, Dong, Lou '19)

- The l₁/l₂ models are motivated from the spherical section property (SSP) (Vavasis '09, Zhang '13).
- For noiseless model, under *s*-nullspace property, any *s*-sparse solution is a local minimizer. (Rahimi, Wang, Dong, Lou '19)
- A Dinkelbach-type algorithm was proposed for the noiseless case with subsequential convergence established: (Wang, Yan, Lou '20)

$$\begin{cases} x^{t+1} = \operatorname*{arg\,min}_{Ax=b} \|x\|_1 - \frac{\omega_t}{\|x^t\|} \langle x, x^t \rangle + \frac{1}{2} \|x - x^t\|^2, \\ \omega_{t+1} = \|x^{t+1}\|_1 / \|x^{t+1}\|. \end{cases}$$

- The l₁/l₂ models are motivated from the spherical section property (SSP) (Vavasis '09, Zhang '13).
- For noiseless model, under *s*-nullspace property, any *s*-sparse solution is a local minimizer. (Rahimi, Wang, Dong, Lou '19)
- A Dinkelbach-type algorithm was proposed for the noiseless case with subsequential convergence established: (Wang, Yan, Lou '20)

$$\begin{cases} x^{t+1} = \underset{Ax=b}{\arg\min} \|x\|_{1} - \frac{\omega_{t}}{\|x^{t}\|} \langle x, x^{t} \rangle + \frac{1}{2} \|x - x^{t}\|^{2}, \\ \omega_{t+1} = \|x^{t+1}\|_{1} / \|x^{t+1}\|. \end{cases}$$

Does a (globally optimal) solution exist?

- The l₁/l₂ models are motivated from the spherical section property (SSP) (Vavasis '09, Zhang '13).
- For noiseless model, under *s*-nullspace property, any *s*-sparse solution is a local minimizer. (Rahimi, Wang, Dong, Lou '19)
- A Dinkelbach-type algorithm was proposed for the noiseless case with subsequential convergence established: (Wang, Yan, Lou '20)

$$\begin{cases} x^{t+1} = \underset{Ax=b}{\arg\min} \|x\|_{1} - \frac{\omega_{t}}{\|x^{t}\|} \langle x, x^{t} \rangle + \frac{1}{2} \|x - x^{t}\|^{2}, \\ \omega_{t+1} = \|x^{t+1}\|_{1} / \|x^{t+1}\|. \end{cases}$$

- Does a (globally optimal) solution exist?
- What is the rate of convergence of the above algorithm?

- The l₁/l₂ models are motivated from the spherical section property (SSP) (Vavasis '09, Zhang '13).
- For noiseless model, under *s*-nullspace property, any *s*-sparse solution is a local minimizer. (Rahimi, Wang, Dong, Lou '19)
- A Dinkelbach-type algorithm was proposed for the noiseless case with subsequential convergence established: (Wang, Yan, Lou '20)

$$\begin{cases} x^{t+1} = \underset{Ax=b}{\arg\min} \|x\|_{1} - \frac{\omega_{t}}{\|x^{t}\|} \langle x, x^{t} \rangle + \frac{1}{2} \|x - x^{t}\|^{2}, \\ \omega_{t+1} = \|x^{t+1}\|_{1} / \|x^{t+1}\|. \end{cases}$$

- Does a (globally optimal) solution exist?
- What is the rate of convergence of the above algorithm?
- How about algorithm for the noisy case?

Spherical section property

Definition: (Spherical section property) (Vavasis '09, Zhang '13) Let *m*, *n* be two positive integers such that m < n. Let *V* be an (n - m)-dimensional subspace of \mathbb{R}^n and *s* be a positive integer. We say that *V* has the *s*-spherical section property (*s*-SSP) if

$$\inf_{\boldsymbol{v}\in\boldsymbol{V}\setminus\{0\}}\frac{\|\boldsymbol{v}\|_1}{\|\boldsymbol{v}\|}\geq\sqrt{\frac{m}{s}}.$$

Spherical section property

Definition: (Spherical section property) (Vavasis '09, Zhang '13) Let *m*, *n* be two positive integers such that m < n. Let *V* be an (n - m)-dimensional subspace of \mathbb{R}^n and *s* be a positive integer. We say that *V* has the *s*-spherical section property (*s*-SSP) if

$$\inf_{\boldsymbol{\nu}\in\boldsymbol{\nu}\setminus\{0\}}\frac{\|\boldsymbol{\nu}\|_1}{\|\boldsymbol{\nu}\|}\geq\sqrt{\frac{m}{s}}.$$

Intuition: Any *k*-sparse vector $u \in \mathbb{R}^n$ satisfies $||u||_1 \le \sqrt{k} ||u||$.

Spherical section property

Definition: (Spherical section property) (Vavasis '09, Zhang '13) Let *m*, *n* be two positive integers such that m < n. Let *V* be an (n - m)-dimensional subspace of \mathbb{R}^n and *s* be a positive integer. We say that *V* has the *s*-spherical section property (*s*-SSP) if

$$\inf_{\mathbf{v}\in\mathbf{V}\setminus\{0\}}\frac{\|\mathbf{v}\|_1}{\|\mathbf{v}\|}\geq\sqrt{\frac{m}{s}}.$$

Intuition: Any *k*-sparse vector $u \in \mathbb{R}^n$ satisfies $||u||_1 \le \sqrt{k} ||u||$.

Fact: (Vavasis '09)

If $A \in \mathbb{R}^{m \times n}$ (m < n) has i.i.d. standard Gaussian entries, then its nullspace has the *s*-SSP for $s = c_1(\log(n/m) + 1)$ with probability at least $1 - e^{-c_0(n-m)}$, where $c_0, c_1 > 0$ are independent of *m* and *n*.

Solution existence

Theorem 1. (Zeng, Yu, P. '21)

For the noiseless model, suppose that ker *A* has the *s*-spherical section property for some s > 0 and there exists $\tilde{x} \in \mathbb{R}^n$ such that

$$\|\widetilde{x}\|_0 < m/s$$
 and $A\widetilde{x} = b$.

Then the set of optimal solutions is nonempty.

Solution existence

Theorem 1. (Zeng, Yu, P. '21)

For the noiseless model, suppose that ker *A* has the *s*-spherical section property for some s > 0 and there exists $\tilde{x} \in \mathbb{R}^n$ such that

$$\|\widetilde{x}\|_0 < m/s$$
 and $A\widetilde{x} = b$.

Then the set of optimal solutions is nonempty.

Idea:

• Consider
$$F(x) := ||x||_1 / ||x|| + \delta_{A^{-1}\{b\}}(x)$$
 and
 $\nu_d^* := \inf \{ ||d||_1 : Ad = 0, ||d|| = 1 \}.$

One can show that every minimizing sequence of *F* is bounded if and only if $\nu_d^* > \inf F$.

Solution existence

Theorem 1. (Zeng, Yu, P. '21)

For the noiseless model, suppose that ker *A* has the *s*-spherical section property for some s > 0 and there exists $\tilde{x} \in \mathbb{R}^n$ such that

$$\|\widetilde{x}\|_0 < m/s$$
 and $A\widetilde{x} = b$.

Then the set of optimal solutions is nonempty.

Idea:

• Consider
$$F(x) := ||x||_1 / ||x|| + \delta_{A^{-1}\{b\}}(x)$$
 and
 $\nu_d^* := \inf \{ ||d||_1 : Ad = 0, ||d|| = 1 \}.$

One can show that every minimizing sequence of *F* is bounded if and only if $\nu_d^* > \inf F$.

Notice that

$$\inf F \leq \frac{\|\widetilde{x}\|_1}{\|\widetilde{x}\|} \leq \sqrt{\|\widetilde{x}\|_0} < \sqrt{\frac{m}{s}} \leq \nu_d^*.$$

Note: Similar results can be obtained for the noisy models.

KL property & exponent

Definition: (Attouch et al. '10, Attouch et al. '13) Let *h* be proper closed and $\alpha \in [0, 1)$.

h is said to have the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂h if there exist c, ν, ε > 0 so that

 $c[h(x) - h(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial h(x))$

whenever $x \in \operatorname{dom} \partial h$, $||x - \bar{x}|| \le \epsilon$ and $h(\bar{x}) < h(x) < h(\bar{x}) + \nu$.

KL property & exponent

Definition: (Attouch et al. '10, Attouch et al. '13) Let *h* be proper closed and $\alpha \in [0, 1)$.

h is said to have the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂h if there exist c, ν, ε > 0 so that

 $c[h(x) - h(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial h(x))$

whenever $x \in \operatorname{dom} \partial h$, $||x - \bar{x}|| \le \epsilon$ and $h(\bar{x}) < h(x) < h(\bar{x}) + \nu$.

 If *h* has the KL property at every x̄ ∈ dom ∂h with the same α, then *h* is said to be a KL function with exponent α.

KL property & exponent

Definition: (Attouch et al. '10, Attouch et al. '13) Let *h* be proper closed and $\alpha \in [0, 1)$.

h is said to have the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂h if there exist c, ν, ε > 0 so that

 $c[h(x) - h(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial h(x))$

whenever $x \in \operatorname{dom} \partial h$, $||x - \bar{x}|| \le \epsilon$ and $h(\bar{x}) < h(x) < h(\bar{x}) + \nu$.

 If *h* has the KL property at every x̄ ∈ dom ∂h with the same α, then *h* is said to be a KL function with exponent α.

Examples.

- Proper closed semialgebraic functions are KL functions with exponent α ∈ [0, 1). (Bolte et al. '07)
- Piecewise linear quadratic (PLQ) functions are KL functions with exponent ¹/₂. (Li, P. '18)

KL calculus rules

Consider

$$G(x) := rac{f(x)}{g(x)} \ ext{and} \ H_u(x) := f(x) - rac{f(u)}{g(u)}g(x).$$

Theorem 2. (Zeng, Yu, P. '21)

Let *f* be proper closed with $\inf f \ge 0$, and let *g* be a nonnegative continuous function that is C^1 on an open set containing dom *f* with $\inf_{\text{dom } f} g > 0$. Assume that

f = *h* + δ_D for some locally Lipschitz function *h* and nonempty closed set *D*, and *h* and *D* are regular at every point in *D*.

Let \bar{x} be such that $0 \in \partial G(\bar{x})$. Then $\bar{x} \in \text{dom } \partial H_{\bar{x}}$. If $H_{\bar{x}}$ satisfies the KL property with exponent $\theta \in [0, 1)$ at \bar{x} , then so does G.

KL calculus rules

Consider

$$G(x) := rac{f(x)}{g(x)} \ ext{and} \ H_u(x) := f(x) - rac{f(u)}{g(u)}g(x).$$

Theorem 2. (Zeng, Yu, P. '21)

Let *f* be proper closed with $\inf f \ge 0$, and let *g* be a nonnegative continuous function that is C^1 on an open set containing dom *f* with $\inf_{\text{dom } f} g > 0$. Assume that

• $f = h + \delta_D$ for some locally Lipschitz function *h* and nonempty closed set *D*, and *h* and *D* are regular at every point in *D*.

Let \bar{x} be such that $0 \in \partial G(\bar{x})$. Then $\bar{x} \in \text{dom } \partial H_{\bar{x}}$. If $H_{\bar{x}}$ satisfies the KL property with exponent $\theta \in [0, 1)$ at \bar{x} , then so does G.

Remark:

- Continuous convex functions are regular.
- Any closed convex set is regular.

KL calculus rules cont.

Theorem 3. (Zeng, Yu, P. '21)

Let *p* be a proper closed function, and let $\bar{x} \in \text{dom } p$ be such that $p(\bar{x}) > 0$. Then the following statements hold.

- (i) We have $\partial(p^2)(x) = 2p(x)\partial p(x)$ for all x sufficiently close to \bar{x} .
- (ii) Suppose in addition that x̄ ∈ dom ∂(p²) and p² satisfies the KL property at x̄ with exponent θ ∈ [0, 1).
 Then p satisfies the KL property at x̄ with exponent θ ∈ [0, 1).

KL calculus rules cont.

Theorem 3. (Zeng, Yu, P. '21)

Let *p* be a proper closed function, and let $\bar{x} \in \text{dom } p$ be such that $p(\bar{x}) > 0$. Then the following statements hold.

- (i) We have $\partial(p^2)(x) = 2p(x)\partial p(x)$ for all x sufficiently close to \bar{x} .
- (ii) Suppose in addition that x̄ ∈ dom ∂(p²) and p² satisfies the KL property at x̄ with exponent θ ∈ [0, 1).
 Then p satisfies the KL property at x̄ with exponent θ ∈ [0, 1).

Theorem 4. (Zeng, Yu, P. '21)

The function $x \mapsto ||x||_1/||x|| + \delta_{A^{-1}\{b\}}(x)$ is a KL function with exponent $\frac{1}{2}$.

KL exponent of $x \mapsto \|x\|_1/\|x\| + \delta_{A^{-1}\{b\}}(x)$ at \bar{x}

KL exponent of $x \mapsto \|x\|_1^2 / \|x\|^2 + \delta_{A^{-1}\{b\}}(x)$ at \bar{x}

₩

KL exponent of $x \mapsto ||x||_1/||x|| + \delta_{A^{-1}\{b\}}(x)$ at \bar{x}

KL exponent of
$$x \mapsto \|x\|_1^2 - \frac{\|\bar{x}\|_1^2}{\|\bar{x}\|^2} \|x\|^2 + \delta_{\mathcal{A}^{-1}\{b\}}(x)$$
 at \bar{x}

∜

∜

KL exponent of $x \mapsto \|x\|_1^2 / \|x\|^2 + \delta_{A^{-1}\{b\}}(x)$ at \bar{x}

KL exponent of $x \mapsto \|x\|_1/\|x\| + \delta_{A^{-1}\{b\}}(x)$ at \bar{x}

PLQ functions are KL functions with exponent $\frac{1}{2}$.

∜

∜

∜

KL exponent of
$$x \mapsto \|x\|_{1}^{2} - \frac{\|\bar{x}\|_{1}^{2}}{\|\bar{x}\|^{2}} \|x\|^{2} + \delta_{\mathcal{A}^{-1}\{b\}}(x)$$
 at \bar{x}

KL exponent of $x\mapsto \|x\|_1^2/\|x\|^2+\delta_{\mathcal{A}^{-1}\{b\}}(x)$ at \bar{x}

KL exponent of $x \mapsto \|x\|_1 / \|x\| + \delta_{A^{-1}\{b\}}(x)$ at \bar{x}

PLQ functions are KL functions with exponent $\frac{1}{2}$.

∜

KL exponent of
$$x \mapsto \|x\|_1^2 - \frac{\|\bar{x}\|_1^2}{\|\bar{x}\|^2} \|x\|^2 + \delta_{A^{-1}\{b\}}(x)$$
 at \bar{x} is $\frac{1}{2}$.

KL exponent of $x \mapsto \|x\|_1^2 / \|x\|^2 + \delta_{A^{-1}\{b\}}(x)$ at \bar{x} is $\frac{1}{2}$.

∜

∜

KL exponent of $x \mapsto ||x||_1/||x|| + \delta_{A^{-1}\{b\}}(x)$ at \bar{x} is $\frac{1}{2}$.

Linear convergence

Corollary 1. (Zeng, Yu, P. '21) Suppose that x^0 satisfy $Ax^0 = b$. Set $\omega_0 := ||x^0||_1/||x^0||$ and update

$$\begin{cases} x^{t+1} &= \operatorname*{arg\,min}_{Ax=b} \|x\|_1 - \frac{\omega_t}{\|x^t\|} \langle x, x^t \rangle + \frac{1}{2} \|x - x^t\|^2, \\ \omega_{t+1} &= \|x^{t+1}\|_1 / \|x^{t+1}\|. \end{cases}$$

If $\{x^t\}$ is bounded, then it converges locally linearly to a stationary point of the function $F(x) := \|x\|_1 / \|x\| + \delta_{A^{-1}\{b\}}(x)$.

Linear convergence

Corollary 1. (Zeng, Yu, P. '21) Suppose that x^0 satisfy $Ax^0 = b$. Set $\omega_0 := ||x^0||_1/||x^0||$ and update

$$\begin{cases} x^{t+1} &= \operatorname*{arg\,min}_{Ax=b} \|x\|_1 - \frac{\omega_t}{\|x^t\|} \langle x, x^t \rangle + \frac{1}{2} \|x - x^t\|^2, \\ \omega_{t+1} &= \|x^{t+1}\|_1 / \|x^{t+1}\|. \end{cases}$$

If $\{x^t\}$ is bounded, then it converges locally linearly to a stationary point of the function $F(x) := ||x||_1/||x|| + \delta_{A^{-1}\{b\}}(x)$. Idea:

Since F is semialgebraic, the convergence of {x^t} to some x
 follows from a standard line of analysis. (Attouch, Bolte, Svaiter '13)

Linear convergence

Corollary 1. (Zeng, Yu, P. '21) Suppose that x^0 satisfy $Ax^0 = b$. Set $\omega_0 := ||x^0||_1/||x^0||$ and update

$$\begin{cases} x^{t+1} &= \operatorname*{arg\,min}_{Ax=b} \|x\|_1 - \frac{\omega_t}{\|x^t\|} \langle x, x^t \rangle + \frac{1}{2} \|x - x^t\|^2, \\ \omega_{t+1} &= \|x^{t+1}\|_1 / \|x^{t+1}\|. \end{cases}$$

If $\{x^t\}$ is bounded, then it converges locally linearly to a stationary point of the function $F(x) := ||x||_1/||x|| + \delta_{A^{-1}\{b\}}(x)$. Idea:

- Since F is semialgebraic, the convergence of {x^t} to some x
 follows from a standard line of analysis. (Attouch, Bolte, Svaiter '13)
- The role of KL exponent:

 $\begin{aligned} &F(x^{t+1}) - F(\bar{x}) \leq C_1 [\mathsf{dist}(0, \partial F(x^{t+1}))]^2 \\ &\leq C_2 \|x^{t+1} - x^t\|^2 \leq C_3 [F(x^t) - F(x^{t+1})]. \end{aligned}$

Translation to sequential convergence is standard.

The noisy model:

$$\min_{x} \ \frac{\|x\|_1}{\|x\|} \ \text{ subject to } \ q(x) \leq 0,$$

where

- $q = P_1 P_2$ with $[q \le 0] \ne \emptyset$ and q(0) > 0.
- *P*₁ is Lipschitz differentiable and *P*₂ is convex continuous.

We also assume the generalized MFCQ holds at every feasible x, i.e.,

If q(x) = 0, then $\nabla P_1(x) \notin \partial P_2(x)$.

The noisy model:

$$\min_{x} \ \frac{\|x\|_1}{\|x\|} \ \text{ subject to } \ q(x) \leq 0,$$

where

- $q = P_1 P_2$ with $[q \le 0] \ne \emptyset$ and q(0) > 0.
- *P*₁ is Lipschitz differentiable and *P*₂ is convex continuous.

We also assume the generalized MFCQ holds at every feasible x, i.e.,

If q(x) = 0, then $\nabla P_1(x) \notin \partial P_2(x)$.

Remark: The generalized MFCQ holds for our 3 choices of q.

The noisy model:

$$\min_{x} \ \frac{\|x\|_{1}}{\|x\|} \ \text{ subject to } \ q(x) \leq 0,$$

where

- $q = P_1 P_2$ with $[q \le 0] \ne \emptyset$ and q(0) > 0.
- *P*₁ is Lipschitz differentiable and *P*₂ is convex continuous.

We also assume the generalized MFCQ holds at every feasible x, i.e.,

If q(x) = 0, then $\nabla P_1(x) \notin \partial P_2(x)$.

Remark: The generalized MFCQ holds for our 3 choices of q.

Algorithmic ideas:

Augmented Lagrangian?

The noisy model:

$$\min_{x} \ \frac{\|x\|_{1}}{\|x\|} \ \text{ subject to } \ q(x) \leq 0,$$

where

- $q = P_1 P_2$ with $[q \le 0] \ne \emptyset$ and q(0) > 0.
- *P*₁ is Lipschitz differentiable and *P*₂ is convex continuous.

We also assume the generalized MFCQ holds at every feasible x, i.e.,

If q(x) = 0, then $\nabla P_1(x) \notin \partial P_2(x)$.

Remark: The generalized MFCQ holds for our 3 choices of q.

Algorithmic ideas:

- Augmented Lagrangian?
- Moving balls approximation...

Moving balls approximation

Moving balls approximation algorithm (Auslender, Shefi, Teboulle '10) was designed for

 $\min_{x} f(x) \text{ subject to } g_i(x) \leq 0 \quad \forall i = 1, \dots, m.$

Moving balls approximation

Moving balls approximation algorithm (Auslender, Shefi, Teboulle '10) was designed for

$$\min_{x} f(x) \text{ subject to } g_{i}(x) \leq 0 \quad \forall i = 1, \dots, m.$$

Key update: At an x^{t} satisfying $\max_{1 \leq i \leq m} g_{i}(x^{t}) \leq 0$, compute
 $x^{t+1} = \underset{x}{\operatorname{arg\,min}} \quad f(x^{t}) + \langle \nabla f(x^{t}), x - x^{t} \rangle + \frac{L_{t}}{2} ||x - x^{t}||^{2}$

s.t.
$$g_i(x^t) + \langle \nabla g_i(x^t), x - x^t \rangle + \frac{L_{g_i}}{2} \|x - x^t\|^2 \leq 0 \quad \forall i.$$

Moving balls approximation

Moving balls approximation algorithm (Auslender, Shefi, Teboulle '10) was designed for

 $\min_{x} f(x) \text{ subject to } g_i(x) \leq 0 \quad \forall i = 1, \dots, m.$

Key update: At an x^t satisfying $\max_{1 \le i \le m} g_i(x^t) \le 0$, compute

$$\begin{aligned} x^{t+1} &= \operatorname*{arg\,min}_{x} \quad f(x^{t}) + \langle \nabla f(x^{t}), x - x^{t} \rangle + \frac{L_{t}}{2} \|x - x^{t}\|^{2} \\ \text{s.t.} \quad g_{i}(x^{t}) + \langle \nabla g_{i}(x^{t}), x - x^{t} \rangle + \frac{L_{g_{i}}}{2} \|x - x^{t}\|^{2} \leq 0 \quad \forall i. \end{aligned}$$

- The above algorithm is well defined and any accumulation point of {*x*^{*t*}} is stationary. (Auslender, Shefi, Teboulle '10)
- Convergence of {*x*^{*t*}} under convexity (Auslender, Shefi, Teboulle '10) or semialgebraicity (Bolte, Pauwels '16) is known.
- Variants with line-search scheme have been proposed (Lu '12) (Bolte, Chen, Pauwels '19).

Subproblem needs iterative solver except for m = 1.

$\text{MBA}_{\ell_1/\ell_2}$: The algorithm

Algorithm 1: MBA_{ℓ_1/ℓ_2}

Step 0. Choose x^0 with $q(x^0) \le 0$, $\alpha > 0$ and $0 < l_{\min} < l_{\max}$. Set $\omega_0 = ||x^0||_1 / ||x^0||$ and t = 0. Step 1. Choose $l_t^0 \in [l_{\min}, l_{\max}]$ arbitrarily and set $l_t = l_t^0$. Choose $\zeta^t \in \partial P_2(x^t)$.

(1a) Solve the subproblem

$$\widetilde{x} = \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \|x\|_1 - \frac{\omega_t}{\|x^t\|} \langle x, x^t \rangle + \frac{\alpha}{2} \|x - x^t\|^2$$

s.t.
$$q(x^t) + \langle \nabla P_1(x^t) - \zeta^t, x - x^t \rangle + \frac{l_t}{2} \|x - x^t\|^2 \le 0.$$

(1b) If $q(\tilde{x}) \leq 0$, go to **Step 2**. Else, update $l_t \leftarrow 2l_t$ and go to (1a). **Step 2**. Set $x^{t+1} = \tilde{x}$ and compute $\omega_{t+1} = ||x^{t+1}||_1 / ||x^{t+1}||$. Set $\overline{l}_t := l_t$. Update $t \leftarrow t + 1$ and go to **Step 1**.

MBA_{ℓ_1/ℓ_2} : Subsequential convergence

Theorem 5. (Zeng, Yu, P. '21)

- (i) MBA_{ℓ_1/ℓ_2} is well defined.
- (ii) The Slater condition holds for each subproblem.

(iii) Let $\{x^t\}$ be the sequence generated by MBA_{ℓ_1/ℓ_2} and suppose that $\{x^t\}$ is bounded. Then $\lim_{t\to\infty} ||x^{t+1} - x^t|| = 0$, and any accumulation point x^* is a Clarke critical point, in the sense that

$$\mathbf{0} \in \partial \frac{\|\mathbf{X}^*\|_1}{\|\mathbf{x}^*\|} + \bar{\lambda} \nabla P_1(\mathbf{x}^*) - \bar{\lambda} \partial P_2(\mathbf{x}^*)$$

for some $ar{\lambda} \geq 0$ satisfying $ar{\lambda} q(x^*) = 0$.

MBA_{ℓ_1/ℓ_2} : Subsequential convergence

Theorem 5. (Zeng, Yu, P. '21)

- (i) MBA_{ℓ_1/ℓ_2} is well defined.
- (ii) The Slater condition holds for each subproblem.
- (iii) Let $\{x^t\}$ be the sequence generated by MBA_{ℓ_1/ℓ_2} and suppose that $\{x^t\}$ is bounded. Then $\lim_{t\to\infty} ||x^{t+1} x^t|| = 0$, and any accumulation point x^* is a Clarke critical point, in the sense that

$$\mathbf{0} \in \partial \frac{\|\boldsymbol{x}^*\|_1}{\|\boldsymbol{x}^*\|} + \bar{\lambda} \nabla \boldsymbol{P}_1(\boldsymbol{x}^*) - \bar{\lambda} \partial \boldsymbol{P}_2(\boldsymbol{x}^*)$$

for some $ar{\lambda} \geq 0$ satisfying $ar{\lambda} q(x^*) = 0.$

If q is also regular at x^* , then x^* is stationary in the sense that

$$\mathbf{0} \in \partial \left[\frac{\|\cdot\|_1}{\|\cdot\|} + \delta_{[q \leq 0]} \right] (\mathbf{x}^*).$$

Global convergence

Define

$$\widetilde{\mathcal{F}}(x,y,\zeta,w) := rac{\|x\|_1}{\|x\|} + \delta_{[\widetilde{q} \leq 0]}(x,y,\zeta,w) + \delta_{\|\cdot\| \geq
ho}(x),$$

with

$$\begin{split} \widetilde{q}(x,y,\zeta,w) &:= P_1(y) + \langle \nabla P_1(y), x - y \rangle + P_2^*(\zeta) - \langle \zeta, x \rangle + \frac{w}{2} \|x - y\|^2, \\ \text{where } \rho > 0 \text{ is such that } [q \leq 0] \subseteq \{x : \|x\| > \rho\}. \end{split}$$

Global convergence

Define

$$\widetilde{\mathcal{F}}(x,y,\zeta,w) := rac{\|x\|_1}{\|x\|} + \delta_{[\widetilde{q} \leq 0]}(x,y,\zeta,w) + \delta_{\|\cdot\| \geq
ho}(x),$$

with

$$\widetilde{q}(x, y, \zeta, w) := P_1(y) + \langle \nabla P_1(y), x - y \rangle + P_2^*(\zeta) - \langle \zeta, x \rangle + \frac{w}{2} \|x - y\|^2,$$

where $\rho > 0$ is such that $[q \le 0] \subseteq \{x : ||x|| > \rho\}$.

Theorem 6. (Zeng, Yu, P. '21)

Assume in addition that P_1 is C^2 . Let $\{x^t\}$ be generated by MBA_{ℓ_1/ℓ_2} and assume that $\{x^t\}$ is bounded.

If \tilde{F} is a KL function, then $\{x^t\}$ converges to a Clarke critical point x^* : This x^* is a stationary point if q is in addition regular at x^* .

Numerical simulations

Solve

$$\min_{x} \frac{\|x\|_{1}}{\|x\|} \text{ subject to } \|Ax - b\|_{LL_{2},\gamma} \leq \sigma.$$

- Consider random instances: generate an *m* × *n* matrix *A*, a *k*-sparse vector *x*, a Cauchy noise vector *n* (s.d. 0.01) and set *b* = *Ax* + *n*. Set *γ* = 0.02 and *σ* = 1.2||*n*||_{LL2,γ}.
- · Initialize at an approximate solution of

$$\min_{x} \|x\|_{1} \text{ subject to } \|Ax - b\|_{LL_{2},\gamma} \leq \sigma,$$

obtained via SCP_{Is} initialized at $A^{\dagger}b$.

- Terminate when $||x^{t} x^{t-1}|| \le tol \cdot \max\{1, ||x^{t}||\}$.
- $(m, n, k) = i \cdot (2560, 720, 80).$

Numerical simulations

i	CPU		$\frac{\ x-\tilde{x}\ }{\max\{1,\ \tilde{x}\ \}}$		$\ Ax - b\ _{LL_2,\gamma} - \sigma$	
	SCP _{ls}	MBA_{ℓ_1/ℓ_2}	SCP _{ls}	MBA_{ℓ_1/ℓ_2}	SCP _{ls}	MBA_{ℓ_1/ℓ_2}
2	10.0	0.6 (11.1)	1.3e-01	6.5e-02	-2e-07	-8e-08
4	52.4	2.0 (57.5)	1.3e-01	6.6e-02	-6e-07	-2e-07
6	87.3	4.1 (100.9)	1.3e-01	6.6e-02	-9e-07	-2e-07
8	281.6	7.0 (312.1)	1.3e-01	6.5e-02	-1e-06	-3e-07
10	285.5	11.4 (339.5)	1.3e-01	6.5e-02	-2e-06	-4e-07

Table: $tol = 10^{-6}$ for SCP_{ls} and MBA_{ℓ_1/ℓ_2}

Numerical simulations

i	CPU		$\frac{\ x-\tilde{x}\ }{\max\{1,\ \tilde{x}\ \}}$		$\ Ax - b\ _{LL_2,\gamma} - \sigma$	
	SCP _{ls}	MBA_{ℓ_1/ℓ_2}	SCP _{ls}	MBA_{ℓ_1/ℓ_2}	SCP _{ls}	MBA_{ℓ_1/ℓ_2}
2	10.0	0.6 (11.1)	1.3e-01	6.5e-02	-2e-07	-8e-08
4	52.4	2.0 (57.5)	1.3e-01	6.6e-02	-6e-07	-2e-07
6	87.3	4.1 (100.9)	1.3e-01	6.6e-02	-9e-07	-2e-07
8	281.6	7.0 (312.1)	1.3e-01	6.5e-02	-1e-06	-3e-07
10	285.5	11.4 (339.5)	1.3e-01	6.5e-02	-2e-06	-4e-07

Table: tol = 10^{-6} for SCP_{1s} and MBA_{ℓ_1/ℓ_2}

Table: $tol = 10^{-3}$ for SCP_{1s} and $tol = 10^{-6}$ for MBA_{ℓ_1/ℓ_2}

i	CPU		<i>x</i> max{	$\frac{ \tilde{x} }{ 1, \tilde{x} \}}$	$\ Ax - b\ _{LL_2,\gamma} - \sigma$	
	SCP _{ls}	MBA_{ℓ_1/ℓ_2}	SCP _{1s}	MBA_{ℓ_1/ℓ_2}	SCP _{ls}	MBA_{ℓ_1/ℓ_2}
2	3.0	50.8 (54.3)	1.8e+00	1.6e+00	-3e+01	-6e-05
4	11.8	457.6 (472.5)	4.3e+00	4.2e+00	-1e+02	-5e-04
6	30.5	4.9 (44.9)	2.1e-01	6.6e-02	-9e-01	-2e-07
8	37.7	78.5 (139.2)	9.7e+00	9.6e+00	-6e+01	-9e-03
10	71.9	3164.0 (3277.6)	2.1e+00	1.7e+00	-1e+02	-2e-04

Conclusion and future work

Conclusion:

- We established convergence rate of a Dinkelbach type algorithm for noiseless compressed sensing based on ℓ_1/ℓ_2 minimization via new KL calculus rules (for fractional objectives).
- We proposed and analyzed convergence of $\text{MBA}_{\ell_1/\ell_2}$ for ℓ_1/ℓ_2 minimization subject to measurement noise.

Conclusion and future work

Conclusion:

- We established convergence rate of a Dinkelbach type algorithm for noiseless compressed sensing based on ℓ_1/ℓ_2 minimization via new KL calculus rules (for fractional objectives).
- We proposed and analyzed convergence of $\text{MBA}_{\ell_1/\ell_2}$ for ℓ_1/ℓ_2 minimization subject to measurement noise.

Future work:

• Other fractional objectives?

References:

• L. Zeng, P. Yu and T. K. Pong. *Analysis and algorithms for some compressed sensing models based on L1/L2 minimization.* To appear in SIAM Journal on Optimization.

Thanks for coming!

Numerical simulations II

Solve

$$\min_{x} \frac{\|x\|_{1}}{\|x\|} \text{ subject to } \|Ax - b\|^{2} \leq \sigma^{2}.$$

• Badly scaled instances: generate $A = [a_1, \cdots, a_n] \in \mathbb{R}^{m \times n}$ with

$$a_j = rac{1}{\sqrt{m}} \cos\left(rac{2\pi w j}{F}
ight), \ \ j = 1, \dots, m,$$

where w has i.i.d. entries uniformly chosen in [0, 1].

• Generate $\tilde{x} \in \mathbb{R}^n$ using the following MATLAB command:

I = randperm(n); J = I(1:k); tx = zeros(n,1); tx(J) = sign(randn(k,1)).*10.^(D*rand(k,1));

- Set $b = A\tilde{x} + \hat{n}$, where $\hat{n} \sim N(0, 0.01^2 I)$, and set $\sigma = 1.2 \|\hat{n}\|$.
- Initialize at an approximate solution computed by SPGL1, backtrack to feasibility if necessary.
- Terminate when $||x^t x^{t-1}|| \le 10^{-8} \cdot \max\{1, ||x^t||\}.$

Numerical simulations II

Table: Random tests on badly scaled CS problems with Gaussian noise

k	F	D	CPU		$\frac{\ x-\tilde{x}\ }{\max\{1,\ \tilde{x}\ \}}$		$\ Ax-b\ ^2-\sigma^2$	
			SPGL1	MBA_{ℓ_1/ℓ_2}	SPGL1	MBA_{ℓ_1/ℓ_2}	SPGL1	MBA_{ℓ_1/ℓ_2}
8	5	2	0.07	0.13 (0.20)	3.2e-02	2.3e-03	-4e-05	-1e-13
8	5	3	0.06	0.14 (0.20)	3.2e-03	6.8e-04	-4e-05	-2e-11
8	15	2	0.08	3.92 (4.01)	4.7e-01	1.5e-01	-9e-05	-7e-13
8	15	3	0.11	31.46 (31.58)	3.8e-01	5.3e-02	2e-02	-5e-11
12	5	2	0.06	2.26 (2.32)	1.4e-01	3.6e-02	-3e-04	-8e-13
12	5	3	0.08	4.05 (4.14)	6.0e-02	3.8e-03	1e-04	-7e-11
12	15	2	0.09	8.32 (8.41)	5.2e-01	2.0e-01	-1e-04	-1e-12
12	15	3	0.11	403.80 (403.91)	5.2e-01	1.5e+00	6e-02	-3e-10