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Motivating applications

e Basis pursuit:
min ||x||1 subjectto Ax = b,
X
where A € R™*" has full row rank, b € R™\{0}. tence.a"163 »0)
e Basis pursuit with Gaussian noise:
mXin |Ix||1 subjectto ||Ax — b| < o,

where A € R™" has full row rank, b € R™, o € (0, ||b||).

e Other sparsity inducing objective? Other noise models?
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min —— subjectto Ax = b,
x Il
where A € R™*" has full row rank and b € R™\{0}.
e Noisy model: (Zeng, Yu, P.’21)

X :
min —— subjectto g(x) <0,
W Suplectte ()

where g = Py — P> with P; Lipschitz differentiable and P, convex
continuous, [q < 0] # 0 and g(0) > 0.



L1 over L2 models cont.

Three concrete noisy models:

e (Gaussian noise:
q(x) = || Ax — b||* — 0%,

where A has full row rank, b € R™, o € (0, ||b])).
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L1 over L2 models cont.

Three concrete noisy models:

e (Gaussian noise:
q(x) = || Ax — b||* — 0%,

where A has full row rank, b € R”, o € (0, b||).

e Cauchy noise (Carrilo et al., 2010):
q(x) = |Ax = blleL, . — o,

where A has full row rank, b € R™, o € (0, ||b| .1, ~), With
I¥llLLy =Y log (1 T 7/2> .
i—1

Note: These g are Lipschitz differentiable.



L1 over L2 models cont.

Three concrete noisy models cont.:

e Electromyographic + Gaussian noise (Carrilo et al., 2010), (Liu, P,
Takeda ’19):
g(x) = dist(Ax — b, S)? — 62,

where A has full row rank, be R", S={z: |z||o < r}, and
o € (0,dist(b, S)).



L1 over L2 models cont.

Three concrete noisy models cont.:

e Electromyographic + Gaussian noise (Carrilo et al., 2010), (Liu, P,
Takeda ’19):
q(x) = dist(Ax — b, S)? — o2,
where A has full row rank, be R", S={z: |z||o < r}, and
o € (0,dist(b, S)).
Note:

q(x) = min||Ax — b — z||2 — 02
zeS

= ||Ax — b||? — 0 — max{2(z, Ax — b) — ||z||?} .
~———— — ZES
P1(X)

e 2ATProjg(Ax — b) C 9Ps(x).

PZ(X)
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Previous work

e The ¢4 /¢> models are motivated from the spherical section
property (SSP) (Vavasis ‘09, Zhang '13).

For noiseless model, under s-nullspace property, any s-sparse
solution is a local minimizer. (Rahimi, Wang, Dong, Lou '19)

A Dinkelbach-type algorithm was proposed for the noiseless case
with subsequential convergence established: (Wang, Yan, Lou '20)

Xt =argmin [[x]l1 — g5 (6, x) + 3 l1x = X2,
Ax=b

weer = [IXHT 4 /]IX )

e Does a (globally optimal) solution exist?
e What is the rate of convergence of the above algorithm?
e How about algorithm for the noisy case?
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Spherical section property

Definition: (Spherical section property) (Vavasis ‘09, Zhang '13)

Let m, n be two positive integers such that m < n. Let V be an

(n — m)-dimensional subspace of R” and s be a positive integer. We
say that V has the s-spherical section property (s-SSP) if

vl m

vev\{o} flv] =V s



Spherical section property

Definition: (Spherical section property) (Vavasis ‘09, Zhang '13)

Let m, n be two positive integers such that m < n. Let V be an

(n — m)-dimensional subspace of R” and s be a positive integer. We
say that V has the s-spherical section property (s-SSP) if

vl m

vev\{o} flv] =V s

Intuition: Any k-sparse vector u € R” satisfies ||u1 < Vk| u].



Spherical section property

Definition: (Spherical section property) (Vavasis ‘09, Zhang '13)

Let m, n be two positive integers such that m < n. Let V be an

(n — m)-dimensional subspace of R” and s be a positive integer. We
say that V has the s-spherical section property (s-SSP) if

vl m

vev\{o} flv] =V s

Intuition: Any k-sparse vector u € R” satisfies ||u1 < Vk| u].

Fact: (Vavasis '09)

If Ac R™*" (m < n) has i.i.d. standard Gaussian entries, then its
nullspace has the s-SSP for s = ¢4(log(n/m) + 1) with probability at
least 1 — e=%("=™ where ¢y, ¢; > 0 are independent of m and n.



Solution existence

Theorem 1. (Zeng, Yu, P. '21)
For the noiseless model, suppose that ker A has the s-spherical
section property for some s > 0 and there exists X € R” such that

IX]lo <m/s and Ax=nbh.

Then the set of optimal solutions is nonempty.
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Theorem 1. (Zeng, Yu, P. '21)
For the noiseless model, suppose that ker A has the s-spherical
section property for some s > 0 and there exists X € R” such that

Ixllo<m/s and Ax=b.
Then the set of optimal solutions is nonempty.
Idea:
e Consider F(x) := |Ix|l1/[x|| + 6a-1¢p (x) and
vy :=inf{||d|1: Ad=0,|d|=1}.

One can show that every minimizing sequence of F is bounded if
and only if vy > inf F.



Solution existence

Theorem 1. (Zeng, Yu, P. '21)
For the noiseless model, suppose that ker A has the s-spherical
section property for some s > 0 and there exists X € R” such that

Ixllo<m/s and Ax=b.
Then the set of optimal solutions is nonempty.
Idea:
e Consider F(x) := |Ix|l1/[x|| + 6a-1¢p (x) and
vy :=inf{||d|1: Ad=0,|d|=1}.

One can show that every minimizing sequence of F is bounded if
and only if vy > inf F.

e Notice that
, Ixllh _ /% m
infF < 2= </||X|lo <4/ —= < vj.
X s = ¢

Note: Similar results can be obtained for the noisy models.
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KL property & exponent

Definition: (Attouch et al. '10, Attouch et al. "13)
Let h be proper closed and a € [0, 1).

e his said to have the Kurdyka-tojasiewicz (KL) property with
exponent « at x € dom 0h if there exist ¢, v, ¢ > 0 so that

clh(x) — h(X)]* < dist(0, dh(x))

whenever x € dom 0h, || x — X|| < eand h(x) < h(x) < h(X) + v.
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KL property & exponent

Definition: (Attouch et al. '10, Attouch et al. "13)
Let h be proper closed and a € [0, 1).

e his said to have the Kurdyka-tojasiewicz (KL) property with
exponent « at x € dom 0h if there exist ¢, v, ¢ > 0 so that
c[h(x) — h(x)]* < dist(0, Oh(x))

whenever x € dom 0h, || x — X|| < eand h(x) < h(x) < h(X) + v.

e If h has the KL property at every X € dom 0h with the same «,
then his said to be a KL function with exponent a.

Examples.

e Proper closed semialgebraic functions are KL functions with
exponent « € [0, 1). (Bolte et al. '07)

e Piecewise linear quadratic (PLQ) functions are KL functions with
exponent 3. (Li, P."18)
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KL calculus rules

Consider
_ f) _
G(x) = 9 and H,(x) := f(x) ) a(x).
Theorem 2. (Zeng, Yu, P. '21)
Let f be proper closed with inff > 0, and let g be a nonnegative
continuous function that is C' on an open set containing dom f with
infgom g > 0. Assume that

e f = h—+ op for some locally Lipschitz function h and nonempty
closed set D, and h and D are regular at every point in D.
Let X be such that 0 € 9G(X). Then x € dom dHx. If Hx satisfies the
KL property with exponent 6 € [0, 1) at X, then so does G.



KL calculus rules

Consider
_ f) _
G(x) = 9 and H,(x) := f(x) ) a(x).
Theorem 2. (Zeng, Yu, P. '21)
Let f be proper closed with inff > 0, and let g be a nonnegative
continuous function that is C' on an open set containing dom f with
infgom g > 0. Assume that

e f = h—+ op for some locally Lipschitz function h and nonempty
closed set D, and h and D are regular at every point in D.

Let X be such that 0 € 9G(X). Then x € dom dHx. If Hx satisfies the
KL property with exponent 6 € [0, 1) at X, then so does G.
Remark:

e Continuous convex functions are regular.

e Any closed convex set is regular.



KL calculus rules cont.

Theorem 3. (Zeng, Yu, P. '21)
Let p be a proper closed function, and let X € dom p be such that
p(Xx) > 0. Then the following statements hold.
(i) We have 9(p?)(x) = 2p(x)dp(x) for all x sufficiently close to X.
(ii) Suppose in addition that X € dom 9(p?) and p? satisfies the KL
property at x with exponent 6 € [0,1).
Then p satisfies the KL property at x with exponent 6 € [0, 1).
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KL calculus rules cont.

Theorem 3. (Zeng, Yu, P. '21)
Let p be a proper closed function, and let X € dom p be such that
p(Xx) > 0. Then the following statements hold.
(i) We have 9(p?)(x) = 2p(x)dp(x) for all x sufficiently close to X.
(ii) Suppose in addition that X € dom 9(p?) and p? satisfies the KL
property at x with exponent 6 € [0,1).
Then p satisfies the KL property at x with exponent 6 € [0, 1).

Theorem 4. (Zeng, Yu, P. '21)
The function x — [|x][1/[[X[| + d4-1(p} (X) is @ KL function with

exponent 3.
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Proof idea

C

KL exponent of x — [|x||1/[|x|| + da-1(p}(x) at x
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Proof idea

=T

C KL exponent of x — ||x||% — ;HQHXH +0a-1(py(X) at X

)

I

C KL exponent of x — |[x||2/[[x|? + 64-1(py(X) at X

)

4

C KL exponent of x — [|x||1/[|x|| + da-1(p}(x) at x
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Proof idea

PLQ functions are KL functions with exponent ;.

P

lIx113
)'(H2

KL exponent of x i ||x||3 — =it [ X[[2 + 6a-1(p) (x) at X

=

KL exponent of x - [|x||2/[|x[[? + d4-1(p (X) at X

4

KL exponent of x = [|x||1/|x|| + da-1p (x) at x
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Proof idea

PLQ functions are KL functions with exponent ;.

P

lIx113
)'(H2

KL exponent of x — ||x||% —

HX||2+5A 1{b}( )at)_(ls %

<«

KL exponent of x i [|x||2/[|x[|? + d4-1(py (X) at X is .

4

TN Y Y )

KL exponent of x - [|x||1 /||| + 6a-1(p) (X) at X is 5.

N NI N




Linear convergence

Corollary 1. (Zeng, Yu, P. '21)
Suppose that x° satisfy Ax® = b. Set wp := ||x°||1/||x°| and update

xH = argmin ||x||1 —”°;—{H<X7Xt>+%”x_xt||2’
Ax=b
wert = (X /I

If {x'} is bounded, then it converges locally linearly to a stationary
point of the function F(x) := [|x||1/IIx|| 4+ da-1 by (X).
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Linear convergence

Corollary 1. (Zeng, Yu, P. '21)
Suppose that x° satisfy Ax® = b. Set wp := ||x°||1/||x°| and update
X =argmin x|l — gy (%, X7 + 3 1x = x1|?,
Ax=b
wept = XA/
If {x'} is bounded, then it converges locally linearly to a stationary
point of the function F(x) == |||+ /||X]| + da 5y (X)-
Idea:

e Since F is semialgebraic, the convergence of {x'} to some X
follows from a standard line of analysis. (Attouch, Bolte, Svaiter '13)

e The role of KL exponent:
F(x™) — F(X) < Cy[dist(0, 0F (x™*1))]?
< GolIx™*T = X' < Ga[F(x") — F(x")].

Translation to sequential convergence is standard.

12/20



Algorithm for noisy model

The noisy model:
mXin ””XXH|1 subject to q(x) <0,
where
e g = P; — P, with [g < 0] # 0 and g(0) > 0.
e P is Lipschitz differentiable and P, is convex continuous.
We also assume the generalized MFCQ holds at every feasible x, i.e.,

( If g(x) = 0, then VP;(x) & HPs(x). )
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Algorithm for noisy model

The noisy model:
mXin ”||Xx||||1 subject to q(x) <0,
where
e g = P; — P, with [g < 0] # 0 and g(0) > 0.
e P is Lipschitz differentiable and P, is convex continuous.
We also assume the generalized MFCQ holds at every feasible x, i.e.,

( If g(x) = 0, then VP;(x) & HPs(x). )

Remark: The generalized MFCQ holds for our 3 choices of q.
Algorithmic ideas:

e Augmented Lagrangian?

e Moving balls approximation...
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Moving balls approximation

Moving balls approximation algorithm (Auslender, Shefi, Teboulle *10)
was designed for

mXin f(x) subjectto gi(x) <0 Vi=1,...,m.
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Moving balls approximation

Moving balls approximation algorithm (Auslender, Shefi, Teboulle *10)
was designed for

mXin f(x) subjectto gi(x) <0 Vi=1,...,m.
Key update: At an x! satisfying max;<;<m gi(x") < 0, compute
xH =argmin  f(xt) + (VF(x'), x — xt) + &||x — x!|2
X
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Moving balls approximation

Moving balls approximation algorithm (Auslender, Shefi, Teboulle *10)
was designed for

mXin f(x) subjectto gi(x) <0 Vi=1,...,m.
Key update: At an x! satisfying max;<;<m gi(x") < 0, compute
xH =argmin  f(xt) + (VF(x'), x — xt) + &||x — x!|2
St gix!) + (Vai(x) x — x') + 2~ xt|E <0 vi

e The above algorithm is well defined and any accumulation point
of {x!} is stationary. (Auslender, Shefi, Teboulle *10)

e Convergence of {x!} under convexity (Auslender, Shefi, Teboulle
'10) or semialgebraicity (Bolte, Pauwels '16) is known.

e Variants with line-search scheme have been proposed (Lu '12)
(Bolte, Chen, Pauwels '19).

Subproblem needs iterative solver except for m = 1

14/20



MBA,, /,,: The algorithm

Algorithm 1: MBA,, /,,
Step 0. Choose x° with g(x°%) < 0, a > 0 and 0 < lin < hax- Set
wo = [X°ll+/Ix°] and t = 0
Step 1. Choose /0 € [Inin, Imax] arbitrarily and set /; = I°. Choose
Ct S 8P2(x’).
(1a) Solve the subproblem

~ . «Q
X =argmin ||x|s ——t<x XY+ = |x — x1|2
XER" Xl 2

s.t. g(x") + (VP (x) = ¢t x — xt) + ng - X2 <o.

(1b) If g(x) <0, go to Step 2. Else, update /; + 2/; and go to (1a).

Step 2. Set x'™" = x and compute w1 = [[x"1[[ /[ x| Set
It :== I;. Update t + t + 1 and go to Step 1.




MBA,, ,: Subsequential convergence

Theorem 5. (Zeng, Yu, P. '21)
(i) MBA,, s, is well defined.
(ii) The Slater condition holds for each subproblem.

(iii) Let {x'} be the sequence generated by MBA,, ;,, and suppose
that {x!} is bounded. Then tILngo [x*1 — x!|| = 0, and any
accumulation point x* is a Clarke critical point, in the sense that

x* 1

0€d—
=l

+ AV Py (x*) — NOP2(x*)

for some X > 0 satisfying Ag(x*) = 0.
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MBA,, ,: Subsequential convergence

Theorem 5. (Zeng, Yu, P. '21)
(i) MBA,, s, is well defined.
(ii) The Slater condition holds for each subproblem.
(iii) Let {x'} be the sequence generated by MBA,, ;,, and suppose
that {x'} is bounded. Then tILngo [x*1 — x!|| = 0, and any
accumulation point x* is a Clarke critical point, in the sense that

0e a”’;*””‘ AV (X)) — XOPa(x*)

for some X > 0 satisfying Ag(x*) = 0.
If g is also regular at x*, then x* is stationary in the sense that

-1
068[ ] *5["“”}( )

16/20



Global convergence

Define

FX.y.C.w) = T + 0oy (X ¥, 6 W) + 812 (%),
with
30, W) 1= Pi(y) + (VPL(y).x = y) + PE(O) — (630 + I~ y P,

where p > 0 is such that [q < 0] C {x : ||x]|| > p}.

17/20



Global convergence

Define

F(x,y.C,w) = Ixlly + Og<o) (X, ¥, &, W) + 611> (X)),
with
- w
q(x,y, ¢, w) = Pi(y) + (VPi(y), x = y) + P3(C) = (&, ) + S Ix =y,
where p > 0 is such that [q < 0] C {x : ||x]|| > p}.
Theorem 6. (Zeng, Yu, P.’21)
Assume in addition that P; is C?. Let {x'} be generated by MBA,, /,,
and assume that {x'} is bounded.

If F is a KL function, then {x!} converges to a Clarke critical point x*:
This x* is a stationary point if g is in addition regular at x*.

17/20



Numerical simulations

Solve
X .
min |x”||1 subjectto ||Ax — b||1,~ < 0.

Consider random instances: generate an m x n matrix A, a
k-sparse vector X, a Cauchy noise vector 7 (s.d. 0.01) and set
b= AX +h. Sety =0.02 and o = 1.2||71|| ¢, -

Initialize at an approximate solution of

min ||x||1+ subjectto ||Ax — bl < o,
X

obtained via SCPj initialized at Afb.
Terminate when ||x! — x!=1|| < tol - max{1, || x!||}.
(m, n, k) = i - (2560, 720, 80).
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Numerical simulations

Table: tol = 10~° for SCPy, and MBA, /.,

CPU T AX — b1, —

SCP,  MBA,, /0, SCP,  MBA,,;, SCPy  MBA,

[oo o) BN N \V)

_
o

10.0 0.6(11.1) 1.3e-01 6.5e-02 -2e-07 -8e-08
52.4 2.0 (57.5) 1.3e-01 6.6e-02 -6e-07 -2e-07
87.3 4.1 (100.9) 1.3e-01 6.6e-02 -9e-07 -2e-07
2816 7.0(312.1) 1.3e-01 6.5e-02 -1e-06 -3e-07
2855 11.4(339.5) 1.3e-01 6.5e-02 -2e-06 -4e-07
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Numerical simulations

Table: tol = 10~° for SCPy, and MBA,, /s,

CPU T AX — b1, —

SCP,  MBA,, /0, SCP,  MBA,,;, SCPy  MBA,

[oo o) BN N \V)

_
o

10.0 0.6(11.1) 1.3e-01 6.5e-02 -2e-07 -8e-08
52.4 2.0 (57.5) 1.3e-01 6.6e-02 -6e-07 -2e-07
87.3 4.1 (100.9) 1.3e-01 6.6e-02 -9e-07 -2e-07
2816 7.0(312.1) 1.3e-01 6.5e-02 -1e-06 -3e-07
2855 11.4(339.5) 1.3e-01 6.5e-02 -2e-06 -4e-07

Table: tol = 10723 for SCPy, and tol = 107° for MBA,, /.,

o~

—
o

[x=%]
CPU T |AX = bllityr — o
SCPy, MBA,, /¢, SCP,  MBA,,;, SCPy  MBA,
3.0 50.8 (54.3)  1.86+00 1.6e+00 -3e+01  -6e-05

11.8 457.6 (472.5) 4.3e+00 4.2e+00 -1e+02 -5e-04
30.5 4.9 (44.9) 2.1e-01 6.6e-02 -9e-01 -2e-07
37.7 78.5(139.2) 9.7e+00  9.6e+00  -6e+01 -9e-03
71.9 3164.0 (3277.6) 2.1e+00 1.7e+00  -1e+02 -2e-04




Conclusion and future work

Conclusion:

e We established convergence rate of a Dinkelbach type algorithm
for noiseless compressed sensing based on ¢4/¢> minimization
via new KL calculus rules (for fractional objectives).

o We proposed and analyzed convergence of MBA,, ,,, for ¢4 /(2
minimization subject to measurement noise.
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for noiseless compressed sensing based on ¢4/¢> minimization
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o We proposed and analyzed convergence of MBA,, ,,, for ¢4 /(2
minimization subject to measurement noise.

Future work:
e Other fractional objectives?
References:

e L. Zeng, P. Yu and T. K. Pong. Analysis and algorithms for some
compressed sensing models based on L1/L2 minimization. To
appear in SIAM Journal on Optimization.

Thanks for coming! 2
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Numerical simulations Il

Solve
min 1XI subject to ||Ax — b||2 < o2
x x|l
Badly scaled instances: generate A = [a1,- - , a,] € R™*" with
aj = icos <2WM), j=1,....m
vm F ’

where w has i.i.d. entries uniformly chosen in [0, 1].
Generate X € R" using the following MATLAB command:

I = randperm(n); J = I(l:k); tx = zeros(n,1l);
tx (J) = sign(randn(k,1)).x10." (Dxrand(k,1));

Set b = AX + N, where i1 ~ N(0,0.012/), and set o = 1.2||7]|.

Initialize at an approximate solution computed by SPGL1,
backtrack to feasibility if necessary.

Terminate when ||x! — x!=1|| <1078 - max{1, ||x!||}.



Numerical simulations Il

Table: Random tests on badly scaled CS problems with Gaussian noise

X—X
« F D CPU o e lAx — b]|* — o
SPGLI  MBA, SPGL1  MBA,,,, SPGL1 MBA, .,
8 5 2 007 0.13(020) 32602 2303  -4e-05  -1e-13
8 5 3 006 0.14(020) 32003 68e04  4e05  -2e-11
8 15 2 008 392(401) 47601 15601  9e-05  -7e-13
8 15 3 011  3146(3158) 38¢01  53e-02 2002  -5e-i1
2 5 2 006 226(232)  14e01 36602 3604  8ei3
12 5 3 008 405(4.14)  60e02  38¢03  1e-04  7e-l1
12 15 2 0.09 8.32(841)  52e01  20e01  -le-04  -le-12
12 15 3 011  403.80(40391) 5.2e01  1.5e+00  6e-02  -3e-10
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