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Motivating applications

Sparse optimization problems:
• Logistic regression with `1 regularization:

min
x∈IRn

m∑
i=1

log(1 + exp(Ax)i ) + µ

n−1∑
i=1

|xi |.

• Logistic regression with sparsity constraint:

min
x∈IRn

∑m
i=1 log(1 + exp(Ax)i )

s.t. card{i : xi 6= 0,1 ≤ i ≤ n − 1} ≤ r .

• Can also consider least squares loss.
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First-order method

Consider
f (x) := h(x) + P(x),

where: h is continuously differentiable with Lipschitz gradient whose
continuity modulus is L > 0, P is proper closed.

Many algorithms: proximal gradient, Douglas-Rachford splitting, etc.

Proximal gradient algorithm.
Initialize x0, set γ ∈ (0, 1

L ). For k = 1, . . .,

xk+1 ∈ proxγP

(
xk − γ∇h(xk )

)
,

where

proxγP(y) = Arg min
x∈IRn

{
1
2
‖x − y‖2 + γP(x)

}
.
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KL property & exponent

Definition: (Attouch et al. ’10, Attouch et al. ’13)
Let f be proper closed and α ∈ [0,1).
• f is said to have the Kurdyka-Łojasiewicz (KL) property with

exponent α at x̄ ∈ dom ∂f if there exist c, ν, ε > 0 so that

c[f (x)− f (x̄)]α ≤ dist(0, ∂f (x))

whenever x ∈ dom ∂f , ‖x − x̄‖ ≤ ε and f (x̄) < f (x) < f (x̄) + ν.

• If f has the KL property at any x̄ ∈ dom ∂f with the same α, then
f is said to be a KL function with exponent α.

Examples.
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte et al. ’07)

3 / 14



KL property & exponent

Definition: (Attouch et al. ’10, Attouch et al. ’13)
Let f be proper closed and α ∈ [0,1).
• f is said to have the Kurdyka-Łojasiewicz (KL) property with

exponent α at x̄ ∈ dom ∂f if there exist c, ν, ε > 0 so that

c[f (x)− f (x̄)]α ≤ dist(0, ∂f (x))

whenever x ∈ dom ∂f , ‖x − x̄‖ ≤ ε and f (x̄) < f (x) < f (x̄) + ν.
• If f has the KL property at any x̄ ∈ dom ∂f with the same α, then

f is said to be a KL function with exponent α.

Examples.
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte et al. ’07)

3 / 14



KL property & exponent

Definition: (Attouch et al. ’10, Attouch et al. ’13)
Let f be proper closed and α ∈ [0,1).
• f is said to have the Kurdyka-Łojasiewicz (KL) property with

exponent α at x̄ ∈ dom ∂f if there exist c, ν, ε > 0 so that

c[f (x)− f (x̄)]α ≤ dist(0, ∂f (x))

whenever x ∈ dom ∂f , ‖x − x̄‖ ≤ ε and f (x̄) < f (x) < f (x̄) + ν.
• If f has the KL property at any x̄ ∈ dom ∂f with the same α, then

f is said to be a KL function with exponent α.

Examples.
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte et al. ’07)

3 / 14



Prototypical local convergence results

Fact 1.
For proximal gradient algorithm and some of its variants:
Let {xk} be a bounded sequence generated. If f is a KL function with
exponent α, then:
• if α = 0, then {xk} converges finitely;
• if α ∈ (0, 1

2 ], then {xk} converges locally linearly;

• if α ∈ ( 1
2 ,1), then {xk} converges locally sublinearly.

Holds also for proximal alternating minimization algorithm (Attouch et
al. ’10), Douglas-Rachford splitting method (Li, P. ’15), etc., if f is
replaced by a suitable potential function.
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Existing results

For nonsmooth objectives:
• A convex piecewise linear-quadratic function is a KL function with

exponent 1
2 . (Li ’95, Bolte et al. ’15)

• A convex piecewise polynomial function of degree at most d is a
KL function with exponent 1− 1

(d−1)n+1 . (Li ’13, Bolte et al. ’15)

• If f is the maximum of m polynomials of degree at most d , then
the KL exponent is 1− 1

max{1,(d+1)(3d)n+m−2} . (Li et al. ’15)

• A special quadratic minimization problem with matrix variables
and orthogonality constraint has KL exponent 1

2 . (Liu et al. ’15)
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Our strategy

Aim: Explicitly estimate the KL exponent of commonly used
optimization models.

Strategy:
• Relate KL property to the Luo-Tseng error bound. (Luo, Tseng ’92,

’92, ’93)

• Develop calculus rules on KL exponents: build new KL functions
from old ones with known exponents.
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Luo-Tseng error bound

Denote X := {x : 0 ∈ ∂f (x)}, where f = h + P. Assume in addition
that P is convex.

Definition: (Luo, Tseng ’92, Tseng, Yun ’09)
Suppose that X 6= ∅. We say that the Luo-Tseng error bound holds if
for any ζ ≥ inf f , there exist c, ε > 0 so that

dist(x ,X ) ≤ c‖proxP(x −∇h(x))− x‖

whenever ‖proxP(x −∇h(x))− x‖ < ε and f (x) ≤ ζ.

Assumption 1: (Luo, Tseng ’92, Tseng, Yun ’09)
There exists δ > 0 so that if x , y ∈ X and ‖x − y‖ ≤ δ, then
f (x) = f (y).
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Luo-Tseng error bound

Examples: When X 6= ∅ and f = h + P, Assumption 1 and the
Luo-Tseng error bound hold for

• h(x) = `(Ax) and P is proper polyhedral, where ` is strongly
convex on any compact convex set and is twice continuously
differentiable. (Luo, Tseng ’92, Tseng, Yun ’09)

• h is a quadratic (not necessarily convex) and P is proper
polyhedral. (Luo, Tseng ’92, Tseng, Yun ’09)
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Luo-Tseng error bound

Theorem 1. (Li, P. ’16)
Suppose that X 6= ∅, and Assumption 1 and the Luo-Tseng error
bound hold. Then f is a KL function with exponent 1

2 .

Key inequality in the proof. For any x ∈ dom ∂f ,

‖proxP(x −∇h(x))− x‖ ≤ dist(0, ∂f (x)).

Known when P = δC for some closed convex set C.
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Calculus of KL exponent

Theorem 2. (Li, P. ’16)
Suppose that gi are KL functions with exponents αi , i = 1, . . . ,m.
Suppose in addition that g := min1≤i≤m gi is continuous on dom ∂g
and that dom ∂gi = dom gi for all i . Then g is a KL function with
exponent max{αi : 1 ≤ i ≤ m}.

Key fact used in the proof. For any x ∈ dom ∂g,

∂g(x) ⊆
⋃

i∈I(x)

∂gi (x),

where I(x) := {i : g(x) = gi (x)}. (Mordukovich, Shao ’95)
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Application I

Corollary 1. (Li, P. ’16)
Consider functions of the form

f (x) = `(Ax) + min
1≤i≤m

Pi (x)

where ` is strongly convex on any compact convex set and is twice
continuously differentiable, Pi are proper polyhedral functions. If f is
continuous on dom ∂f , then f is a KL function with exponent 1

2 .

Example:

f (x) = `(Ax) + δ‖·‖0≤r (x)

= `(Ax) + min
I∈In−r

δHI (x),

where Ik := {J ⊆ {1, . . . ,n} : |J| = k}, HI := {x : xi = 0 ∀i ∈ I}.
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Application II
Corollary 2. (Li, P. ’16)
Consider functions of the form

f (x) = min
1≤i≤m

{
xT Mix + bT

i x + ci + Pi (x)
}
,

where Mi are symmetric matrices, Pi are proper polyhedral functions.
If f is continuous on dom ∂f , then f is a KL function with exponent 1

2 .

Example: Least-squares with SCAD regularization: (Fan ’97)

f (x) =
1
2
‖Ax − b‖2 +

n∑
i=1

rλ,θ(xi ),

with λ > 0, θ > 2 and

rλ,θ(t) =


λ|t | if |t | ≤ λ,
−t2+2θλ|t|−λ2

2(θ−1) ifλ < |t | ≤ θλ,
(θ+1)λ2

2 if |t | > θλ.
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Future directions

• What is the KL exponent of logistic regression with SCAD
regularization?

• Analyzing optimization problems with matrix variables, e.g.,
nuclear norm regularization, rank constraints, etc.

• Deducing the KL exponent of the potential function used in
prototypical convergence results, based on the exponent of the
original objective.
Done for inertial proximal gradient algorithm. (Li, P. ’16)
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Conclusion

• The Luo-Tseng error bound together with an assumption on the
separation of stationary values implies that the KL exponent is 1

2 .
• Based on this and some calculus rules for KL exponents, the KL

exponent for a large class of convex/nonconvex optimization
models is obtained, including

? logistic regression with `1 regularization/sparsity constraints;
? least squares problem with SCAD regularization.

Reference:

• G. Li and T. K. Pong.
Calculus of the exponent of Kurdyka-Łojasiewicz inequality and
its applications to linear convergence of first-order methods.
Available at http://arxiv.org/abs/1602.02915.

Thanks for coming!
. .
∠
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