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Motivating applications

Structured optimization problems:
e (Overlapping) Group lasso:

1 m
min —||Ax — b|? 11X,
A ZH | +;V:|| sl

where Ac RP*", b e R, U, Ji={1,...,n},aly; > 0.
e Least squares with rank constraint:

min  1||AX — b|?
XGRan
s.t.  rank(X) <,

where A : R™" — RP is linear, b € R, r is positive integer.



First-order method

Consider
f(x) := h(x) + P(x),

where: his continuously differentiable with Lipschitz gradient whose
continuity modulus is L > 0, P is proper closed.
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First-order method

Consider
f(x) := h(x) + P(x),

where: his continuously differentiable with Lipschitz gradient whose
continuity modulus is L > 0, P is proper closed.

Many algorithms: proximal gradient, Douglas-Rachford splitting, etc.

Proximal gradient algorithm.
Initialize x°, sety € (0, 7). Fork =0,...,
X" € prox p (Xk - nyh(Xk)) ,
where ]
prox,o(y) = Argmin { 51x ~ yI2 + 1P(0 }.
xeR"



KL property & exponent

Definition: (Attouch et al. 10, Attouch et al. 13)
Let f be proper closed and « € [0, 1).

e fis said to have the Kurdyka-tojasiewicz (KL) property with
exponent o at X € dom of if there exist ¢, v, e > 0 so that

clf(x) — F(X)]* < dist(0, Hf(x))

whenever x € dom 0f, || x — X|| < e and f(x) < f(x) < f(X) + v.
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KL property & exponent

Definition: (Attouch et al. 10, Attouch et al. 13)
Let f be proper closed and « € [0, 1).

e fis said to have the Kurdyka-tojasiewicz (KL) property with
exponent o at X € dom of if there exist ¢, v, e > 0 so that

clf(x) — F(X)]* < dist(0, Hf(x))

whenever x € dom 0f, || x — X|| < e and f(x) < f(x) < f(X) + v.

e If f has the KL property at every X € dom Of with the same «a,
then f is said to be a KL function with exponent a.

Examples.

e Proper closed semialgebraic functions are KL functions with
exponent « € [0,1). (Bolte et al. '07)
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Prototypical local convergence results

Fact 1.
For proximal gradient algorithm and some of its variants:
Let {x*} be a bounded sequence generated. If f is a KL function with
exponent «, then:
e if « = 0, then {x*} converges finitely;
o if a € (0, 3], then {x¥} converges locally linearly;

e if a € (3,1), then {x¥} converges locally sublinearly.



Prototypical local convergence results

Fact 1.
For proximal gradient algorithm and some of its variants:
Let {x*} be a bounded sequence generated. If f is a KL function with
exponent «, then:
e if « = 0, then {x*} converges finitely;
o if a € (0, 3], then {x¥} converges locally linearly;

e if a € (3,1), then {x¥} converges locally sublinearly.

Holds also for proximal alternating minimization algorithm (Attouch et
al. '10), Douglas-Rachford splitting method (Li, P. '16), etc., if f is
replaced by a suitable potential function.



Existing results |

For nonsmooth objectives:
e If f is the maximum of m polynomials of degree at most d, then
the KL exponent is 1 — max{1,(d+11)(3d)”+m*2}' (Li et al. '15)
e A special quadratic minimization problem with matrix variables
and orthogonality constraint has KL exponent % (Liu et al. "15)
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Existing results |

For nonsmooth objectives:
e If f is the maximum of m polynomials of degree at most d, then
the KL exponent is 1 — max{1,(d+11)(3d)”+m*2}' (Li et al. '15)
e A special quadratic minimization problem with matrix variables
and orthogonality constraint has KL exponent % (Liu et al. "15)

¢ Relationship with Hélder growth condition: (Bolte et al. *17)
Let f be proper closed convex with Argmin f # (). Then f has KL
exponent « € [0,1) if and only if V X € Argmin f, 3 ¢, e > 0 so that

dist(x, Argmin f) < c(f(x) — f(X))'

whenever || x — X|| < eand f(X) < f(x) < f(X) + e.
e A convex piecewise polynomial function of degree at most d is a
KL function with exponent 1 — m. (Li"13)



Existing results I

For nonsmooth objectives:

e Relationship with Luo-Tseng error bound: (Li, P.’18)
Let f = h+ P, where h has locally Lipschitz gradient and P is
proper closed convex. Suppose X := {x : 0 € 9f(x)} # 0, and

1. V¢ >inff,3c,e > 0sothat
dist(x, X) < cl|proxp(x — Vh(x)) — x||

whenever ||proxp(x — Vh(x)) — x|| < e and f(x) <.
2. 36 >0sothatifx, y € X and ||x — y|| <4, then f(x) = f(y).

Then f is a KL function with exponent %



Existing results Il

For nonsmooth objectives:
Consequently: If f = h+ P and X # 0, then f satisfies the KL
property with exponent % at x € X in each of the following cases:
e his a quadratic (not necessarily convex) and P is proper
polyhedral. (Luo, Tseng '92, Tseng, Yun '09)
e h(x) = ((Ax), where ¢ € C? is strongly convex on any compact
convex set, and
1. P is proper polyhedral; (Luo, Tseng ‘92, Tseng, Yun '09)
2. P(x) =", wil|xyllp, wi >0, {J1,...,Jm} form a partition of
{1,...,n},pe[1,2]U{o0}; (Tseng ‘10, Zhou et al. '15)
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For nonsmooth objectives:
Consequently: If f = h+ P and X # 0, then f satisfies the KL
property with exponent % at x € X in each of the following cases:
e his a quadratic (not necessarily convex) and P is proper
polyhedral. (Luo, Tseng 92, Tseng, Yun '09)
e h(x) = ((Ax), where ¢ € C? is strongly convex on any compact
convex set, and
1. P is proper polyhedral; (Luo, Tseng ‘92, Tseng, Yun '09)
2. P(x) =", wil|xyllp, wi >0, {J1,...,Jm} form a partition of
{1,...,n}, p € [1,2]U{oco}; (Tseng 10, Zhou et al. '15)
3. P s the nuclear norm if in addition 0 € ridf(X); (Zhou, So ’17)
4. P(x) = g(o(x)), g is polyhedral symmetric, under some ri
conditions. (Cui et al. '17)
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Aim: Estimate KL exponent

Aim: Explicitly estimate the KL exponent of optimization models.

Strategy:
e Develop calculus rules on KL exponents:

[ Deduce exponent of functions from ones with known exponents )




Calculus of KL exponent |

Theorem 1. (Li, P.’18)

Let h(x) = ¢(Ax) for some continuous strictly convex function ¢, g be
a continuous convex function, D be a closed convex set, a € (0, 1).
Suppose also

(i) there exists xp € D with g(xo) < 0;

(i) infxep h(x) < infxep{h(x) : g(x) < 0};
(iii) forany A > 0, h+ Ag + dp is KL with exponent «.
Then h+ d4(.y<o0 + dp is KL with exponent a.



Application |

Consider functions of the form
f(x) = £(Ax) + da(x),

where ¢ € C? is strongly convex on any compact convex set, and

m
Q:= {x 2 willxillp < a} :
i=1

with x; e R", > . nj=n,w; >0,0 >0and p € [1,2].
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Application |

Consider functions of the form
f(x) = £(Ax) + da(x),

where ¢ € C? is strongly convex on any compact convex set, and

m
Q.= {x: > willxillp < a} :
i=1
with x; e R", > . nj=n,w; >0,0 >0and p € [1,2].

Corollary 1. (Li, P.’18)
Suppose that inf f(x) > inf £(Ax). Then f is KL with exponent 1.

Proof: When X' # (), Luo-Tseng error bound holds for the regularized
version. (Zhou et al. '15)
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Calculus of KL exponent |l

Theorem 2. (Li, P.’18, Yu, Li, P.’19)

Suppose that g; are KL functions with exponents «;, 1 < i < m, and
that dom 0g; = dom g; for all i. Then g := mini<;<m gi is a KL function
with exponent max{«; : 1 <i < mj}.
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Calculus of KL exponent |l

Theorem 2. (Li, P.’18, Yu, Li, P.’19)

Suppose that g; are KL functions with exponents «;, 1 < i < m, and
that dom 0g; = dom g; for all i. Then g := mini<;<m gi is a KL function
with exponent max{«; : 1 <i < mj}.

Key fact used in the proof: For any x € dom dg,

d9(x) € |J 0gi(x),

iel(x)

where I(x) := {i: g(x) = gi(x)}. (Mordukovich, Shao '95)
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Application I

Corollary 2. (Li, P.’18, Yu, Li, P."19)
Consider functions of the form

_ ] T T ) )
f(x) = 121/g1m{x Mix + bl x + ¢ + P,(x)} ,

where M; are symmetric matrices, P; are proper polyhedral functions.
Then f is a KL function with exponent %
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Application I

Corollary 2. (Li, P.’18, Yu, Li, P."19)
Consider functions of the form

— mi T M- T . )
f(x) = 121/277{)( Mix + b x + ¢ + P,(x)},

where M; are symmetric matrices, P; are proper polyhedral functions.
Then f is a KL function with exponent %

Example: Least-squares with SCAD regularization: (Fan '97)

1 n
f(x) = EHAX — b2+ ; r0(Xi),
with A > 0,60 > 2 and
Alt] if [t < A,

no(t) = ¢ SR e < |1 < 6,

(GAILS if [] > OA.

12/23



Calculus of KL exponent Il

Theorem 3. (Yu, Li, P.’19)

Let F: X x Y — R be proper closed and define f(x) := inf,cy F(x, y)
and Y(x) := Argmin, .y F(x, y) for x € X. Suppose X € domdf,

a € [0,1) and the following conditions hold:

(i) F is level-bounded in y locally uniformly in x.

(i) It holds that 9F (x,y) # 0 forall y € Y(X).
(iii) F satisfies the KL property with exponent a:in {x} x Y(X).
Then f satisfies the KL property at x with exponent a.

Remark: F is level-bounded in y locally uniformly in x if for any x and
8 € R, there exists p > 0 so that

{(u,y): ||U—X|| §p7F(U7y) SB}

is bounded.
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Application Il

Corollary 3. (Yu, Li, P."19) B
Let f = 27;1 fi, each f; : R” — R be proper closed.

Suppose that each f; is LMI-representable, i.e., there exist d; > 0 and
matrices {A}y, A}, A}, ..., Al} C 8% such that

n
epif = {(X,t) ER"xR: Ay + > AX + Apt = 0}.
j=1

Suppose also that 3 x° € IR” and s® € R” such thatfori=1,...,m,
o0+ > AXS + Aps - 0.
j=1

If 0 € ridf(X), then f satisfies the KL property at x with exponent %
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Application Il cont.

Each of the following functions satisfies the KL property with
exponent 15 at an x satisfying 0 € ridf(x):

(i) Group Lasso with overlapping blocks of variables:
1 S
f(x) = 5 lAx — bIP + > willxyll,
i=1
where be RP, Ac RP*", | J?_, Ji={1,...,n},alw; >0,
i=1,...,8.
(i) Group fused Lasso: (Alaiz et al. '13)

1 S S
f(x) = §||AX - bl* + ; wil[ Xy || + ;VIHXJ/ = Xyl
where be RP, Ac RP*" | J7_, Ji={1,...,n}, JinJdy =0 for
i#i,alw,v;>0and|J]=r.
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Application IV

Corollary 4. (Yu, Li, P."19) B
Let f(X) = >0 fi(X) + || X|+, each fy : R™" — R be proper closed.

Suppose that each f; is LMI-representable, i.e., there exist dx > 0
and matrices {A%,, Ak, A%, ... Ak} C S% such that

m n
epify = {(X,t) ER"XR: A’go—&—ZZAfl‘-X,j—&—Agtzo}.
i=1 j=1

Suppose also that 3 X° € R™*" and s® € R"” such that for
k=1,....m,

m n
Ao+ YD ASXS + Ajst - 0,

i=1 j=1

If 0 € riof(X), then f satisfies the KL property at X with exponent 3.
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Digression: C?-cone reducible structures

Definition: (Shapiro '03)

Let ® C X be a nonempty closed set. We say that it is C*>-cone
reducible at w € © if there exist a closed convex pointed cone K C Y,
p > 0, and a mapping © : X — Y such that

(i) © is twice continuously differentiable in B(w, p);

(i) ©(w) =0and DO(w) : X — Y is onto;

(iii) DN B(w,p) ={w: ©(w) € K} N B(w, p).
We say that © is C?-cone reducible if it is C2-cone reducible at every
weD.
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Definition: (Shapiro '03)

Let ® C X be a nonempty closed set. We say that it is C*>-cone
reducible at w € © if there exist a closed convex pointed cone K C Y,
p > 0, and a mapping © : X — Y such that

(i) © is twice continuously differentiable in B(w, p);

(i) ©(w) =0and DO(w) : X — Y is onto;

(iii) DN B(w,p) ={w: ©(w) € K} N B(w, p).
We say that © is C?-cone reducible if it is C2-cone reducible at every
weD.

Examples: (Shapiro '03)
1. Polyhedral sets, second-order cone, positive semidefinite cone.

2.0 ={x: g(x)<0,i=1,...,m}, g; € C? LICQholds at X € ®
= C?-cone reducible at Xx.
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Digression: C?-cone reducible structures

Theorem 4. (Yu, Li, P.’19)

Let ¢: Y — R be strongly convex on any compact convex set and
have locally Lipschitz gradient, A : X — Y be a linear map, and

v € X. Consider the function

h(x) := (Ax) + (v, X) + 0o(X)

with © being a C?-cone reducible closed convex set. Suppose that
0 € 9h(x) and

A7 AX} N1iNg (—A*VE(AX) — v) # 0,

then h satisfies the KL property at X with exponent ;.
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Application V

Let ¢: R™ — R be strongly convex on any compact convex set and
have locally Lipschitz gradient, A : S” — IR™ be a linear map.

Each of the following functions satisfies the KL property with
exponent 5 1 at an X satisfying the ri condition:

(i) PSD cone constraint:

f(X) = L(AX) + (V, X) + dsn (X).
(i) Schatten p-norm regularization:

f(X) = €(AX) + (V, X) + pl| X]lp,

where || X||, is the Schatten p-norm with p € [1,2] U {oo} and
X #0.
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Application VI

Corollary 5. (Yu, Li, P."19)

Let f be proper closed with inff > —oo and ¢ € C? is strongly convex.

If f is KL with exponent a € [}, 1), then so is the envelope function
Fo(x) :=int{f(y) +Bs(y. x)},
where B, is the Bregman distance:

Bs(y,X) = d(y) — o(X) — (Vo(x),y — X).
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Application VI

Corollary 5. (Yu, Li, P."19)

Let f be proper closed with inff > —oo and ¢ € C? is strongly convex.

If f is KL with exponent a € [}, 1), then so is the envelope function
Fo(x) :=int{f(y) +Bs(y. x)},
where B, is the Bregman distance:

Bs(y,X) = d(y) — o(X) — (Vo(x),y — X).

Remark:
e When ¢(-) = 5~ - %, ¥ > 0, F, is the Moreau envelope.

e When f = h+ P, where h € C? has Lipschitz gradient with
modulus L, and ¢(:) = 2,Y|| 12— h(-),v € (0,1), Fy is the
forward-backward envelope. (Stella et al. '17)
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Calculus of KL exponent IV

Theorem 5. (Yu, Li, P.’19)

Let h: X - R and G: X — Y be continuously differentiable. Assume
that G-'{0} # () and define the functions g and g by

9(x) = h(x) +dg-r(01(X), g1 (x,A) = h(x) + (A, G(x)).

If VG(X) : Y — X is injective and gy is a KL function with exponent «,
thensois g.
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Application VII

Corollary 6. (Yu, Li, P."19)
Consider the function

1
f(X) = E||Ax — bl + Grani(y<r(X)

for X € R™" where A: R™" — RP is a linear map, b € IR”. Then f

is KL with exponent 1 — .5, where k = mn+m(m—r)+n(m—r)—1.
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Application VII

Corollary 6. (Yu, Li, P."19)
Consider the function

1
f(X) = E||Ax — bl + Grani(y<r(X)

for X € R™" where A: R™" — RP is a linear map, b € IR”. Then f

is KL with exponent 1 — .5, where k = mn+m(m—r)+n(m—r)—1.

Key proof idea:
. 1 1 -
100 =g { G1AX ~ BIE + U0~ Il + 52(X. U)+5n (X, 0) .

where

) e R™N « ]Rmx(mfr) . UTX _ 0},

D
B ) € R™ 5 R™(M=1) - 05),_, < UTU < 2lp_,},

{(
{

X, U
(X,U
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Conclusion

e KL exponent is an important quantity for determining the
qualitative convergence behavior of first-order methods.
e We presented some rules for deducing KL exponents:
* Lagrangian relaxation.

* Min of finitely many functions.
* Inf-projection.
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Thanks for coming! <
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