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Motivating applications

Structured optimization problems:
• (Overlapping) Group lasso:

min
x∈IRn

1
2
‖Ax − b‖2 +

m∑
i=1

νi‖xJi‖,

where A ∈ IRp×n, b ∈ IRp,
⋃m

i=1 Ji = {1, . . . ,n}, all νi ≥ 0.
• Least squares with rank constraint:

min
X∈IRm×n

1
2‖AX − b‖2

s.t. rank(X ) ≤ r ,

where A : IRm×n → IRp is linear, b ∈ IRp, r is positive integer.
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First-order method

Consider
f (x) := h(x) + P(x),

where: h is continuously differentiable with Lipschitz gradient whose
continuity modulus is L > 0, P is proper closed.

Many algorithms: proximal gradient, Douglas-Rachford splitting, etc.

Proximal gradient algorithm.
Initialize x0, set γ ∈ (0, 1

L ). For k = 0, . . .,

xk+1 ∈ proxγP

(
xk − γ∇h(xk )

)
,

where

proxγP(y) = Arg min
x∈IRn

{
1
2
‖x − y‖2 + γP(x)

}
.
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KL property & exponent

Definition: (Attouch et al. ’10, Attouch et al. ’13)
Let f be proper closed and α ∈ [0,1).
• f is said to have the Kurdyka-Łojasiewicz (KL) property with

exponent α at x̄ ∈ dom ∂f if there exist c, ν, ε > 0 so that

c[f (x)− f (x̄)]α ≤ dist(0, ∂f (x))

whenever x ∈ dom ∂f , ‖x − x̄‖ ≤ ε and f (x̄) < f (x) < f (x̄) + ν.

• If f has the KL property at every x̄ ∈ dom ∂f with the same α,
then f is said to be a KL function with exponent α.

Examples.
• Proper closed semialgebraic functions are KL functions with

exponent α ∈ [0,1). (Bolte et al. ’07)
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Prototypical local convergence results

Fact 1.
For proximal gradient algorithm and some of its variants:
Let {xk} be a bounded sequence generated. If f is a KL function with
exponent α, then:
• if α = 0, then {xk} converges finitely;
• if α ∈ (0, 1

2 ], then {xk} converges locally linearly;

• if α ∈ ( 1
2 ,1), then {xk} converges locally sublinearly.

Holds also for proximal alternating minimization algorithm (Attouch et
al. ’10), Douglas-Rachford splitting method (Li, P. ’16), etc., if f is
replaced by a suitable potential function.
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Existing results I

For nonsmooth objectives:
• If f is the maximum of m polynomials of degree at most d , then

the KL exponent is 1− 1
max{1,(d+1)(3d)n+m−2} . (Li et al. ’15)

• A special quadratic minimization problem with matrix variables
and orthogonality constraint has KL exponent 1

2 . (Liu et al. ’15)

• Relationship with Hölder growth condition: (Bolte et al. ’17)
Let f be proper closed convex with Arg min f 6= ∅. Then f has KL
exponent α ∈ [0,1) if and only if ∀ x̄ ∈ Arg min f , ∃ c, ε > 0 so that

dist(x ,Arg min f ) ≤ c(f (x)− f (x̄))1−α

whenever ‖x − x̄‖ ≤ ε and f (x̄) < f (x) < f (x̄) + ε.
• A convex piecewise polynomial function of degree at most d is a

KL function with exponent 1− 1
(d−1)n+1 . (Li ’13)
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Existing results II

For nonsmooth objectives:
• Relationship with Luo-Tseng error bound: (Li, P. ’18)

Let f = h + P, where h has locally Lipschitz gradient and P is
proper closed convex. Suppose X := {x : 0 ∈ ∂f (x)} 6= ∅, and

1. ∀ ζ ≥ inf f , ∃ c, ε > 0 so that

dist(x ,X ) ≤ c‖proxP(x −∇h(x))− x‖

whenever ‖proxP(x −∇h(x))− x‖ < ε and f (x) ≤ ζ.
2. ∃ δ > 0 so that if x , y ∈ X and ‖x − y‖ ≤ δ, then f (x) = f (y).

Then f is a KL function with exponent 1
2 .
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Existing results III

For nonsmooth objectives:
Consequently: If f = h + P and X 6= ∅, then f satisfies the KL
property with exponent 1

2 at x̄ ∈ X in each of the following cases:
• h is a quadratic (not necessarily convex) and P is proper

polyhedral. (Luo, Tseng ’92, Tseng, Yun ’09)

• h(x) = `(Ax), where ` ∈ C2 is strongly convex on any compact
convex set, and

1. P is proper polyhedral; (Luo, Tseng ’92, Tseng, Yun ’09)
2. P(x) =

∑m
i=1 wi‖xJi ‖p, wi ≥ 0, {J1, . . . , Jm} form a partition of

{1, . . . , n}, p ∈ [1, 2] ∪ {∞}; (Tseng ’10, Zhou et al. ’15)

3. P is the nuclear norm if in addition 0 ∈ ri∂f (x̄); (Zhou, So ’17)
4. P(x) = g(σ(x)), g is polyhedral symmetric, under some ri

conditions. (Cui et al. ’17)
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Aim: Estimate KL exponent

Aim: Explicitly estimate the KL exponent of optimization models.

Strategy:
• Develop calculus rules on KL exponents:

Deduce exponent of functions from ones with known exponents

8 / 23



Calculus of KL exponent I

Theorem 1. (Li, P. ’18)
Let h(x) = `(Ax) for some continuous strictly convex function `, g be
a continuous convex function, D be a closed convex set, α ∈ (0,1).
Suppose also

(i) there exists x0 ∈ D with g(x0) < 0;
(ii) infx∈D h(x) < infx∈D{h(x) : g(x) ≤ 0};

(iii) for any λ > 0, h + λg + δD is KL with exponent α.
Then h + δg(·)≤0 + δD is KL with exponent α.
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Application I

Consider functions of the form

f (x) = `(Ax) + δΩ(x),

where ` ∈ C2 is strongly convex on any compact convex set, and

Ω :=

{
x :

m∑
i=1

wi‖xi‖p ≤ σ

}
,

with xi ∈ IRni ,
∑m

i=1 ni = n, wi > 0, σ > 0 and p ∈ [1,2].

Corollary 1. (Li, P. ’18)
Suppose that inf f (x) > inf `(Ax). Then f is KL with exponent 1

2 .

Proof: When X 6= ∅, Luo-Tseng error bound holds for the regularized
version. (Zhou et al. ’15)
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Calculus of KL exponent II

Theorem 2. (Li, P. ’18, Yu, Li, P. ’19)
Suppose that gi are KL functions with exponents αi , 1 ≤ i ≤ m, and
that dom ∂gi = dom gi for all i . Then g := min1≤i≤m gi is a KL function
with exponent max{αi : 1 ≤ i ≤ m}.

Key fact used in the proof: For any x ∈ dom ∂g,

∂g(x) ⊆
⋃

i∈I(x)

∂gi (x),

where I(x) := {i : g(x) = gi (x)}. (Mordukovich, Shao ’95)

11 / 23



Calculus of KL exponent II

Theorem 2. (Li, P. ’18, Yu, Li, P. ’19)
Suppose that gi are KL functions with exponents αi , 1 ≤ i ≤ m, and
that dom ∂gi = dom gi for all i . Then g := min1≤i≤m gi is a KL function
with exponent max{αi : 1 ≤ i ≤ m}.

Key fact used in the proof: For any x ∈ dom ∂g,

∂g(x) ⊆
⋃

i∈I(x)

∂gi (x),

where I(x) := {i : g(x) = gi (x)}. (Mordukovich, Shao ’95)

11 / 23



Application II
Corollary 2. (Li, P. ’18, Yu, Li, P. ’19)
Consider functions of the form

f (x) = min
1≤i≤m

{
xT Mix + bT

i x + ci + Pi (x)
}
,

where Mi are symmetric matrices, Pi are proper polyhedral functions.
Then f is a KL function with exponent 1

2 .

Example: Least-squares with SCAD regularization: (Fan ’97)

f (x) =
1
2
‖Ax − b‖2 +

n∑
i=1

rλ,θ(xi ),

with λ > 0, θ > 2 and

rλ,θ(t) =


λ|t | if |t | ≤ λ,
−t2+2θλ|t|−λ2

2(θ−1) ifλ < |t | ≤ θλ,
(θ+1)λ2

2 if |t | > θλ.
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Calculus of KL exponent III

Theorem 3. (Yu, Li, P. ’19)
Let F : X× Y→ ĪR be proper closed and define f (x) := infy∈Y F (x , y)
and Y (x) := Arg miny∈Y F (x , y) for x ∈ X. Suppose x̄ ∈ dom∂f ,
α ∈ [0,1) and the following conditions hold:

(i) F is level-bounded in y locally uniformly in x .
(ii) It holds that ∂F (x̄ , ȳ) 6= ∅ for all ȳ ∈ Y (x̄).

(iii) F satisfies the KL property with exponent α in {x̄} × Y (x̄).
Then f satisfies the KL property at x̄ with exponent α.

Remark: F is level-bounded in y locally uniformly in x if for any x and
β ∈ IR, there exists ρ > 0 so that

{(u, y) : ‖u − x‖ ≤ ρ,F (u, y) ≤ β}

is bounded.
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Application III

Corollary 3. (Yu, Li, P. ’19)
Let f =

∑m
i=1 fi , each fi : IRn → R̄ be proper closed.

Suppose that each fi is LMI-representable, i.e., there exist di > 0 and
matrices {Ai

00,A
i
0,A

i
1, . . . ,A

i
n} ⊂ Sdi such that

epifi =

(x , t) ∈ IRn × IR : Ai
00 +

n∑
j=1

Ai
jxj + Ai

0t � 0

 .

Suppose also that ∃ xs ∈ IRn and ss ∈ IRm such that for i = 1, . . . ,m,

Ai
00 +

n∑
j=1

Ai
jx

s
j + Ai

0ss
i � 0.

If 0 ∈ ri∂f (x̄), then f satisfies the KL property at x̄ with exponent 1
2 .
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Application III cont.

Each of the following functions satisfies the KL property with
exponent 1

2 at an x̄ satisfying 0 ∈ ri∂f (x̄):

(i) Group Lasso with overlapping blocks of variables:

f (x) =
1
2
‖Ax − b‖2 +

s∑
i=1

wi‖xJi‖,

where b ∈ IRp, A ∈ IRp×n,
⋃s

i=1 Ji = {1, . . . ,n}, all wi ≥ 0,
i = 1, . . . , s.

(ii) Group fused Lasso: (Alaı́z et al. ’13)

f (x) =
1
2
‖Ax − b‖2 +

s∑
i=1

wi‖xJi‖+
s∑

i=2

νi‖xJi − xJi−1‖,

where b ∈ IRp, A ∈ IRp×sr ,
⋃s

i=1 Ji = {1, . . . ,n}, Ji ∩ Ji′ = ∅ for
i 6= i ′, all wi , νi ≥ 0 and |Ji | = r .
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Application IV

Corollary 4. (Yu, Li, P. ’19)
Let f (X ) =

∑m
k=1 fk (X ) + ‖X‖∗, each fk : IRm×n → R̄ be proper closed.

Suppose that each fk is LMI-representable, i.e., there exist dk > 0
and matrices {Ak

00,A
k
0,A

k
11, . . . ,A

k
mn} ⊂ Sdk such that

epifk =

(X , t) ∈ IRn × IR : Ak
00 +

m∑
i=1

n∑
j=1

Ak
ij Xij + Ak

0t � 0

 .

Suppose also that ∃ X s ∈ IRm×n and ss ∈ IRm such that for
k = 1, . . . ,m,

Ak
00 +

m∑
i=1

n∑
j=1

Ak
ij X

s
ij + Ak

0ss
k � 0.

If 0 ∈ ri∂f (X̄ ), then f satisfies the KL property at X̄ with exponent 1
2 .
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Digression: C2-cone reducible structures

Definition: (Shapiro ’03)
Let D ⊆ X be a nonempty closed set. We say that it is C2-cone
reducible at w̄ ∈ D if there exist a closed convex pointed cone K ⊆ Y,
ρ > 0, and a mapping Θ : X→ Y such that

(i) Θ is twice continuously differentiable in B(w̄ , ρ);
(ii) Θ(w̄) = 0 and DΘ(w̄) : X→ Y is onto;

(iii) D ∩ B(w̄ , ρ) = {w : Θ(w) ∈ K} ∩ B(w̄ , ρ).
We say that D is C2-cone reducible if it is C2-cone reducible at every
w̄ ∈ D.

Examples: (Shapiro ’03)

1. Polyhedral sets, second-order cone, positive semidefinite cone.
2. D = {x : gi (x) ≤ 0, i = 1, . . . ,m}, gi ∈ C2, LICQ holds at x̄ ∈ D
⇒ C2-cone reducible at x̄ .
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Digression: C2-cone reducible structures

Theorem 4. (Yu, Li, P. ’19)
Let ` : Y→ IR be strongly convex on any compact convex set and
have locally Lipschitz gradient, A : X→ Y be a linear map, and
v ∈ X. Consider the function

h(x) := `(Ax) + 〈v , x〉+ σD(x)

with D being a C2-cone reducible closed convex set. Suppose that
0 ∈ ∂h(x̄) and

A−1{Ax̄} ∩ riND(−A∗∇`(Ax̄)− v) 6= ∅,

then h satisfies the KL property at x̄ with exponent 1
2 .
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Application V

Let ` : IRm → IR be strongly convex on any compact convex set and
have locally Lipschitz gradient, A : Sn → IRm be a linear map.

Each of the following functions satisfies the KL property with
exponent 1

2 at an X̄ satisfying the ri condition:

(i) PSD cone constraint:

f (X ) = `(AX ) + 〈V ,X 〉+ δSn
+

(X ).

(ii) Schatten p-norm regularization:

f (X ) = `(AX ) + 〈V ,X 〉+ µ‖X‖p,

where ‖X‖p is the Schatten p-norm with p ∈ [1,2] ∪ {∞} and
X̄ 6= 0.
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Application VI

Corollary 5. (Yu, Li, P. ’19)
Let f be proper closed with inf f > −∞ and φ ∈ C2 is strongly convex.
If f is KL with exponent α ∈ [ 1

2 ,1), then so is the envelope function

Fφ(x) := inf
y
{f (y) + Bφ(y , x)},

where Bφ is the Bregman distance:

Bφ(y , x) := φ(y)− φ(x)− 〈∇φ(x), y − x〉.

Remark:
• When φ(·) = 1

2γ ‖ · ‖
2, γ > 0, Fφ is the Moreau envelope.

• When f = h + P, where h ∈ C2 has Lipschitz gradient with
modulus L, and φ(·) = 1

2γ ‖ · ‖
2 − h(·), γ ∈ (0, 1

L ), Fφ is the
forward-backward envelope. (Stella et al. ’17)
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Let f be proper closed with inf f > −∞ and φ ∈ C2 is strongly convex.
If f is KL with exponent α ∈ [ 1

2 ,1), then so is the envelope function

Fφ(x) := inf
y
{f (y) + Bφ(y , x)},

where Bφ is the Bregman distance:

Bφ(y , x) := φ(y)− φ(x)− 〈∇φ(x), y − x〉.

Remark:
• When φ(·) = 1

2γ ‖ · ‖
2, γ > 0, Fφ is the Moreau envelope.

• When f = h + P, where h ∈ C2 has Lipschitz gradient with
modulus L, and φ(·) = 1

2γ ‖ · ‖
2 − h(·), γ ∈ (0, 1

L ), Fφ is the
forward-backward envelope. (Stella et al. ’17)
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Calculus of KL exponent IV

Theorem 5. (Yu, Li, P. ’19)
Let h : X→ IR and G : X→ Y be continuously differentiable. Assume
that G−1{0} 6= ∅ and define the functions g and g1 by

g(x) := h(x) + δG−1{0}(x), g1(x , λ) := h(x) + 〈λ,G(x)〉.

If ∇G(x̄) : Y→ X is injective and g1 is a KL function with exponent α,
then so is g.
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Application VII
Corollary 6. (Yu, Li, P. ’19)
Consider the function

f (X ) :=
1
2
‖AX − b‖2 + δrank(·)≤r (X )

for X ∈ IRm×n, where A : IRm×n → IRp is a linear map, b ∈ IRp. Then f
is KL with exponent 1− 1

4·9κ , where κ = mn + m(m− r) + n(m− r)−1.

Key proof idea:

f (X ) = inf
U

{
1
2
‖AX − b‖2 +

1
2
‖UT U − Im−r‖2

F + δD(X ,U)+δB(X ,U)

}
,

where
D := {(X ,U) ∈ IRm×n × IRm×(m−r) : UT X = 0},
B := {(X ,U) ∈ IRm×n × IRm×(m−r) : 0.5Im−r � UT U � 2Im−r},
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Conclusion
• KL exponent is an important quantity for determining the

qualitative convergence behavior of first-order methods.
• We presented some rules for deducing KL exponents:

? Lagrangian relaxation.
? Min of finitely many functions.
? Inf-projection.
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