Explicit estimation of KL exponent and linear convergence of 1st-order methods

Ting Kei Pong Department of Applied Mathematics The Hong Kong Polytechnic University Hong Kong

> ICCOPT 2016 August 2016 (Joint work with Guoyin Li)

> > ヘロト ヘ戸ト ヘヨト ヘヨト

Motivating applications

Sparse optimization problems:

• Logistic regression with ℓ_1 regularization:

$$\min_{x\in\mathbb{R}^n}\sum_{i=1}^m\log(1+\exp(Ax)_i)+\mu\sum_{i=1}^{n-1}|x_i|.$$

• Logistic regression with sparsity constraint:

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} \sum_{i=1}^m \log(1 + \exp(Ax)_i)$$

s.t. $\operatorname{card}\{i : x_i \neq 0, 1 \le i \le n-1\} \le r$

• Can also consider least squares loss.

First-order method

Consider

$$f(x):=h(x)+P(x),$$

where: *h* is continuously differentiable with Lipschitz gradient whose continuity modulus is L > 0, *P* is proper closed.

First-order method

Consider

$$f(x):=h(x)+P(x),$$

where: *h* is continuously differentiable with Lipschitz gradient whose continuity modulus is L > 0, *P* is proper closed.

Many algorithms: proximal gradient, Douglas-Rachford splitting, etc.

First-order method

Consider

$$f(x):=h(x)+P(x),$$

where: *h* is continuously differentiable with Lipschitz gradient whose continuity modulus is L > 0, *P* is proper closed.

Many algorithms: proximal gradient, Douglas-Rachford splitting, etc.

Proximal gradient algorithm. Initialize x^0 , set $\gamma \in (0, \frac{1}{L})$. For k = 1, ...,

$$x^{k+1} \in \operatorname{prox}_{\gamma P}\left(x^k - \gamma \nabla h(x^k)\right),$$

where

$$\operatorname{prox}_{\gamma P}(y) = \operatorname{Argmin}_{x \in \mathbb{R}^n} \left\{ \frac{1}{2} \|x - y\|^2 + \gamma P(x) \right\}.$$

KL property & exponent

Definition: (Attouch et al. '10, Attouch et al. '13) Let *f* be proper closed and $\alpha \in [0, 1)$.

f is said to have the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂f if there exist c, ν, ε > 0 so that

 $c[f(x) - f(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial f(x))$

whenever $x \in \operatorname{dom} \partial f$, $||x - \bar{x}|| \le \epsilon$ and $f(\bar{x}) < f(x) < f(\bar{x}) + \nu$.

KL property & exponent

Definition: (Attouch et al. '10, Attouch et al. '13) Let *f* be proper closed and $\alpha \in [0, 1)$.

f is said to have the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂f if there exist c, ν, ε > 0 so that

 $c[f(x) - f(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial f(x))$

whenever $x \in \operatorname{dom} \partial f$, $||x - \bar{x}|| \le \epsilon$ and $f(\bar{x}) < f(x) < f(\bar{x}) + \nu$.

 If *f* has the KL property at any x̄ ∈ dom ∂f with the same α, then *f* is said to be a KL function with exponent α.

KL property & exponent

Definition: (Attouch et al. '10, Attouch et al. '13) Let *f* be proper closed and $\alpha \in [0, 1)$.

f is said to have the Kurdyka-Łojasiewicz (KL) property with exponent α at x̄ ∈ dom ∂f if there exist c, ν, ε > 0 so that

 $c[f(x) - f(\bar{x})]^{\alpha} \leq \operatorname{dist}(0, \partial f(x))$

whenever $x \in \operatorname{dom} \partial f$, $||x - \bar{x}|| \le \epsilon$ and $f(\bar{x}) < f(x) < f(\bar{x}) + \nu$.

 If *f* has the KL property at any x̄ ∈ dom ∂f with the same α, then *f* is said to be a KL function with exponent α.

Examples.

 Proper closed semialgebraic functions are KL functions with exponent α ∈ [0, 1). (Bolte et al. '07)

Prototypical local convergence results

Fact 1.

For proximal gradient algorithm and some of its variants:

Let $\{x^k\}$ be a bounded sequence generated. If *f* is a KL function with exponent α , then:

- if $\alpha = 0$, then $\{x^k\}$ converges finitely;
- if $\alpha \in (0, \frac{1}{2}]$, then $\{x^k\}$ converges locally linearly;
- if $\alpha \in (\frac{1}{2}, 1)$, then $\{x^k\}$ converges locally sublinearly.

Prototypical local convergence results

Fact 1.

For proximal gradient algorithm and some of its variants:

Let $\{x^k\}$ be a bounded sequence generated. If *f* is a KL function with exponent α , then:

- if $\alpha = 0$, then $\{x^k\}$ converges finitely;
- if $\alpha \in (0, \frac{1}{2}]$, then $\{x^k\}$ converges locally linearly;
- if $\alpha \in (\frac{1}{2}, 1)$, then $\{x^k\}$ converges locally sublinearly.

Holds also for proximal alternating minimization algorithm (Attouch et al. '10), Douglas-Rachford splitting method (Li, P. '15), etc., if f is replaced by a suitable potential function.

Existing results

For nonsmooth objectives:

- A convex piecewise linear-quadratic function is a KL function with exponent ¹/₂. (Li '95, Bolte et al. '15)
- A convex piecewise polynomial function of degree at most *d* is a KL function with exponent $1 \frac{1}{(d-1)^n+1}$. (Li '13, Bolte et al. '15)

Existing results

For nonsmooth objectives:

- A convex piecewise linear-quadratic function is a KL function with exponent ¹/₂. (Li '95, Bolte et al. '15)
- A convex piecewise polynomial function of degree at most *d* is a KL function with exponent $1 \frac{1}{(d-1)^n+1}$. (Li '13, Bolte et al. '15)
- If *f* is the maximum of *m* polynomials of degree at most *d*, then the KL exponent is 1 ¹/_{max{1,(d+1)(3d)^{n+m-2}}}. (Li et al. '15)
- A special quadratic minimization problem with matrix variables and orthogonality constraint has KL exponent ¹/₂. (Liu et al. '15)

Our strategy

Aim: Explicitly estimate the KL exponent of commonly used optimization models.

Strategy:

- Relate KL property to the Luo-Tseng error bound. (Luo, Tseng '92, '92, '93)
- Develop calculus rules on KL exponents: build new KL functions from old ones with known exponents.

Denote $\mathcal{X} := \{x : 0 \in \partial f(x)\}$, where f = h + P. Assume in addition that *P* is convex.

Definition: (Luo, Tseng '92, Tseng, Yun '09) Suppose that $\mathcal{X} \neq \emptyset$. We say that the Luo-Tseng error bound holds if for any $\zeta \ge \inf f$, there exist $c, \epsilon > 0$ so that

$$\operatorname{dist}(x,\mathcal{X}) \leq c \|\operatorname{prox}_{P}(x - \nabla h(x)) - x\|$$

whenever $\|\operatorname{prox}_{P}(x - \nabla h(x)) - x\| < \epsilon$ and $f(x) \leq \zeta$.

Denote $\mathcal{X} := \{x : 0 \in \partial f(x)\}$, where f = h + P. Assume in addition that *P* is convex.

Definition: (Luo, Tseng '92, Tseng, Yun '09) Suppose that $\mathcal{X} \neq \emptyset$. We say that the Luo-Tseng error bound holds if for any $\zeta \ge \inf f$, there exist $c, \epsilon > 0$ so that

$$\operatorname{dist}(x,\mathcal{X}) \leq c \|\operatorname{prox}_P(x - \nabla h(x)) - x\|$$

whenever $\|\operatorname{prox}_{P}(x - \nabla h(x)) - x\| < \epsilon$ and $f(x) \leq \zeta$.

Assumption 1: (Luo, Tseng '92, Tseng, Yun '09) There exists $\delta > 0$ so that if $x, y \in \mathcal{X}$ and $||x - y|| \le \delta$, then f(x) = f(y).

Examples: When $\mathcal{X} \neq \emptyset$ and f = h + P, Assumption 1 and the Luo-Tseng error bound hold for

- h(x) = ℓ(Ax) and P is proper polyhedral, where ℓ is strongly convex on any compact convex set and is twice continuously differentiable. (Luo, Tseng '92, Tseng, Yun '09)
- *h* is a quadratic (not necessarily convex) and *P* is proper polyhedral. (Luo, Tseng '92, Tseng, Yun '09)

Examples: When $\mathcal{X} \neq \emptyset$ and f = h + P, Assumption 1 and the Luo-Tseng error bound hold for

- h(x) = ℓ(Ax) and P is proper polyhedral, where ℓ is strongly convex on any compact convex set and is twice continuously differentiable. (Luo, Tseng '92, Tseng, Yun '09)
- *h* is a quadratic (not necessarily convex) and *P* is proper polyhedral. (Luo, Tseng '92, Tseng, Yun '09)

Theorem 1. (Li, P. '16)

Suppose that $\mathcal{X} \neq \emptyset$, and Assumption 1 and the Luo-Tseng error bound hold. Then *f* is a KL function with exponent $\frac{1}{2}$.

Calculus of KL exponent

Theorem 2. (Li, P. '16)

Suppose that g_i are KL functions with exponents α_i , i = 1, ..., m. Suppose in addition that $g := \min_{1 \le i \le m} g_i$ is continuous on dom ∂g and that dom $\partial g_i = \text{dom } g_i$ for all *i*. Then *g* is a KL function with exponent $\max{\alpha_i : 1 \le i \le m}$.

Calculus of KL exponent

Theorem 2. (Li, P. '16)

Suppose that g_i are KL functions with exponents α_i , i = 1, ..., m. Suppose in addition that $g := \min_{1 \le i \le m} g_i$ is continuous on dom ∂g and that dom $\partial g_i = \text{dom } g_i$ for all *i*. Then *g* is a KL function with exponent max{ $\alpha_i : 1 \le i \le m$ }.

Key fact used in the proof. For any $x \in \operatorname{dom} \partial g$,

$$\partial g(x) \subseteq \bigcup_{i \in I(x)} \partial g_i(x),$$

where $I(x) := \{i : g(x) = g_i(x)\}$. (Mordukovich, Shao '95)

Application I

Corollary 1. (Li, P. '16) Consider functions of the form

$$f(x) = \ell(Ax) + \min_{1 \le i \le m} P_i(x)$$

where ℓ is strongly convex on any compact convex set and is twice continuously differentiable, P_i are proper polyhedral functions. If *f* is continuous on dom ∂f , then *f* is a KL function with exponent $\frac{1}{2}$.

Application I

Corollary 1. (Li, P. '16) Consider functions of the form

$$f(x) = \ell(Ax) + \min_{1 \le i \le m} P_i(x)$$

where ℓ is strongly convex on any compact convex set and is twice continuously differentiable, P_i are proper polyhedral functions. If *f* is continuous on dom ∂f , then *f* is a KL function with exponent $\frac{1}{2}$.

Example:

$$f(x) = \ell(Ax) + \delta_{\|\cdot\|_0 \le r}(x)$$

= $\ell(Ax) + \min_{l \in \mathcal{I}_{n-r}} \delta_{H_l}(x),$

where $\mathcal{I}_k := \{J \subseteq \{1, ..., n\} : |J| = k\}, H_l := \{x : x_i = 0 \ \forall i \in l\}.$

Application II

Corollary 2. (Li, P. '16)

Consider functions of the form

$$f(x) = \min_{1 \leq i \leq m} \left\{ x^T M_i x + b_i^T x + c_i + P_i(x) \right\},$$

where M_i are symmetric matrices, P_i are proper polyhedral functions. If *f* is continuous on dom ∂f , then *f* is a KL function with exponent $\frac{1}{2}$.

Application II

Corollary 2. (Li, P. '16)

Consider functions of the form

$$f(x) = \min_{1 \leq i \leq m} \left\{ x^{\mathsf{T}} M_i x + b_i^{\mathsf{T}} x + c_i + P_i(x) \right\},$$

where M_i are symmetric matrices, P_i are proper polyhedral functions. If *f* is continuous on dom ∂f , then *f* is a KL function with exponent $\frac{1}{2}$.

Example: Least-squares with SCAD regularization: (Fan '97)

$$f(x) = \frac{1}{2} \|Ax - b\|^2 + \sum_{i=1}^n r_{\lambda,\theta}(x_i),$$

with $\lambda > 0$, $\theta > 2$ and

$$r_{\lambda, heta}(t) = egin{cases} \lambda |t| & ext{if } |t| \leq \lambda, \ rac{-t^2 + 2 heta \lambda |t| - \lambda^2}{2(heta - 1)} & ext{if } \lambda < |t| \leq heta \lambda, \ rac{(heta + 1)\lambda^2}{2} & ext{if } |t| > heta \lambda. \end{cases}$$

Conclusion

- The Luo-Tseng error bound together with an assumption on the separation of stationary values implies that the KL exponent is ¹/₂.
- Based on this and some calculus rules for KL exponents, the KL exponent for a large class of convex/nonconvex optimization models is obtained, including
 - \star logistic regression with ℓ_1 regularization/sparsity constraints;
 - \star least squares problem with SCAD regularization.

Reference:

• G. Li and T. K. Pong.

Calculus of the exponent of Kurdyka-Łojasiewicz inequality and its applications to linear convergence of first-order methods. Available at http://arxiv.org/abs/1602.02915.

Thanks for coming!

イロン イロン イヨン イヨン 三日