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Motivating applications

Sparse optimization problems:
e Logistic regression with ¢4 regularization:

n—1

min Zlog (14 exp(Ax)i) + 1 Y _ |xil.

xeR"
i=1

e Logistic regression with sparsity constraint:

min ST log(1 + exp(Ax);)

XER
sit. card{i: x;#0,1<i<n—-1}<r.

e Can also consider least squares loss.



First-order method

Consider
f(x) := h(x) + P(x),

where: his continuously differentiable with Lipschitz gradient whose
continuity modulus is L > 0, P is proper closed.
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First-order method

Consider
f(x) := h(x) + P(x),

where: his continuously differentiable with Lipschitz gradient whose
continuity modulus is L > 0, P is proper closed.

Many algorithms: proximal gradient, Douglas-Rachford splitting, etc.

Proximal gradient algorithm.
Initialize x°, sety € (0, 7). Fork =1,...,

Xk e prox,p (Xk — 'yVh(Xk)) ,
where

. 1

prox.p(y) = Argmin { b~y + 1P }.

n 2
XeR



KL property & exponent

Definition: (Attouch et al. 10, Attouch et al. 13)
Let f be proper closed and « € [0, 1).

e fis said to have the Kurdyka-tojasiewicz (KL) property with
exponent o at X € dom of if there exist ¢, v, e > 0 so that

clf(x) — F(X)]* < dist(0, Hf(x))

whenever x € dom 0f, || x — X|| < e and f(x) < f(x) < f(X) + v.
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KL property & exponent

Definition: (Attouch et al. 10, Attouch et al. 13)
Let f be proper closed and « € [0, 1).

e fis said to have the Kurdyka-tojasiewicz (KL) property with
exponent o at X € dom of if there exist ¢, v, e > 0 so that

clf(x) — F(X)]* < dist(0, Hf(x))

whenever x € dom 0f, || x — X|| < e and f(x) < f(x) < f(X) + v.

e If f has the KL property at any x € dom Of with the same «, then
f is said to be a KL function with exponent «.

Examples.

e Proper closed semialgebraic functions are KL functions with
exponent « € [0,1). (Bolte et al. '07)



Prototypical local convergence results

Fact 1.
For proximal gradient algorithm and some of its variants:
Let {x*} be a bounded sequence generated. If f is a KL function with
exponent «, then:
e if « = 0, then {x*} converges finitely;
o if a € (0, 3], then {x¥} converges locally linearly;

e if a € (3,1), then {x¥} converges locally sublinearly.



Prototypical local convergence results

Fact 1.
For proximal gradient algorithm and some of its variants:
Let {x*} be a bounded sequence generated. If f is a KL function with
exponent «, then:
e if « = 0, then {x*} converges finitely;
o if a € (0, 3], then {x¥} converges locally linearly;

e if a € (3,1), then {x¥} converges locally sublinearly.

Holds also for proximal alternating minimization algorithm (Attouch et
al. '10), Douglas-Rachford splitting method (Li, P. '15), etc., if f is
replaced by a suitable potential function.



Existing results

For nonsmooth objectives:
e A convex piecewise linear-quadratic function is a KL function with
exponent 1. (Li ‘95, Bolte et al. '15)

e A convex piecewise polynomial function of degree at most d is a

KL function with exponent 1 — m. (Li 13, Bolte et al. "15)



Existing results

For nonsmooth objectives:

e A convex piecewise linear-quadratic function is a KL function with
exponent % (Li 95, Bolte et al. '15)

e A convex piecewise polynomial function of degree at most d is a
KL function with exponent 1 — W. (Li"13, Bolte et al. '15)

e If fis the maximum of m polynomlals of degree at most d, then
the KL exponentis 1 —

T @rEaey - (Lietal. '15)
e A special quadratic minimization problem with matrix variables
and orthogonality constraint has KL exponent % (Liu et al. "15)



Our strategy

Aim: Explicitly estimate the KL exponent of commonly used
optimization models.

Strategy:

¢ Relate KL property to the Luo-Tseng error bound. (Luo, Tseng '92,
'92,’93)

e Develop calculus rules on KL exponents: build new KL functions
from old ones with known exponents.



Luo-Tseng error bound

Denote X := {x: 0 € 9f(x)}, where f = h+ P. Assume in addition
that P is convex.

Definition: (Luo, Tseng '92, Tseng, Yun '09)
Suppose that X # (. We say that the Luo-Tseng error bound holds if
for any ¢ > inff, there exist ¢, e > 0 so that

dist(x, X') < cl|proxp(x — Vh(x)) — x||

whenever ||proxp(x — Vh(x)) — x|| < e and f(x) <.
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Denote X := {x: 0 € 9f(x)}, where f = h+ P. Assume in addition
that P is convex.

Definition: (Luo, Tseng '92, Tseng, Yun '09)
Suppose that X # (. We say that the Luo-Tseng error bound holds if
for any ¢ > inff, there exist ¢, e > 0 so that

dist(x, X') < cl|proxp(x — Vh(x)) — x||
whenever ||proxp(x — Vh(x)) — x|| < e and f(x) <.

Assumption 1: (Luo, Tseng '92, Tseng, Yun '09)
There exists § > 0 so that if x, y € X and ||x — y|| < 4, then

f(x) = f(y)-



Luo-Tseng error bound

Examples: When X # () and f = h+ P, Assumption 1 and the
Luo-Tseng error bound hold for

e h(x) = ¢(Ax) and P is proper polyhedral, where ¢ is strongly
convex on any compact convex set and is twice continuously
differentiable. (Luo, Tseng '92, Tseng, Yun '09)

e his a quadratic (not necessarily convex) and P is proper
polyhedral. (Luo, Tseng '92, Tseng, Yun '09)



Luo-Tseng error bound

Theorem 1. (Li, P.’16)
Suppose that X # (), and Assumption 1 and the Luo-Tseng error
bound hold. Then f is a KL function with exponent 1.
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Luo-Tseng error bound

Theorem 1. (Li, P.’16)

Suppose that X # (), and Assumption 1 and the Luo-Tseng error
bound hold. Then f is a KL function with exponent 1.

Key inequality in the proof. For any x € dom Of,
llproxp(x — Vh(x)) — x|| < dist(0, 9f(x)).

Known when P = § for some closed convex set C.



Calculus of KL exponent |

Theorem 2. (Li, P. ’16)

Suppose that g; are KL functions with exponents «;, i=1,...,m.
Suppose in addition that g := mini<;<m g; is continuous on dom dg
and that dom dg; = dom g; for all i. Then g is a KL function with
exponent max{a;: 1 <i< mj}.
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Calculus of KL exponent |

Theorem 2. (Li, P. ’16)

Suppose that g; are KL functions with exponents «;, i=1,...,m.
Suppose in addition that g := mini<;<m g; is continuous on dom dg
and that dom dg; = dom g; for all i. Then g is a KL function with
exponent max{a;: 1 <i< mj}.

Key fact used in the proof. For any x € dom dg,

ag(x) < | agi(x),

iel(x)

where I(x) := {i: g(x) = gi(x)}. (Mordukovich, Shao '95)
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Application |

Corollary 1. (Li, P.’16)
Consider functions of the form

f(x) = ¢(Ax min P;(x
(x) = ((Ax) + min_Pi(x)
where ¢ is strongly convex on any compact convex set and is twice

continuously differentiable, P; are proper polyhedral functions. If f is
continuous on dom 97, then f is a KL function with exponent %
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Application |

Corollary 1. (Li, P.’16)
Consider functions of the form

f(x) = ¢(Ax) + 1r<nii<nm Pi(x)

where ¢ is strongly convex on any compact convex set and is twice
continuously differentiable, P; are proper polyhedral functions. If f is
continuous on dom 97, then f is a KL function with exponent %

Example:

F(X) = L(AX) + 8 .o <r(X)

= (Ax) + min op,(x),

where Zy :={JC{1,....,n}: |J|=k}, H:={x: x;=0Viel}.
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Application I
Corollary 2. (Li, P.’16)
Consider functions of the form

— i T\, T . )
f(x) = 121/g1m{x Mix + bl x + ¢ + P,(x)} ,

where M; are symmetric matrices, P; are proper polyhedral functions.
If fis continuous on dom 9f, then f is a KL function with exponent %
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Application I
Corollary 2. (Li, P.’16)
Consider functions of the form

— mi T M- T : }
f(x) = 121/g1m{x Mix + b; x + ¢ + P,(x)},

where M; are symmetric matrices, P; are proper polyhedral functions.
If fis continuous on dom 9f, then f is a KL function with exponent %

Example: Least-squares with SCAD regularization: (Fan '97)

1 n
() = 514X = bl + " ro(x)

i=1
with A > 0,60 > 2 and

At if [t < A,
2 2
no(t) = § =R PN < [t < 0,

(O+1N° if [t > 0.
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Calculus of KL exponent |l

Theorem 3. (Li, P.'16)

Let h(x) = ¢(Ax) for some continuous strictly convex function ¢, g be
a continuous convex function, D be a closed convex set, a € (0, 1).
Suppose also

(i) there exists xp € D with g(xo) < 0;

(i) infxep h(x) < infxep{h(x) : g(x) < 0};
(iii) forany A > 0, h+ Ag + dp is KL with exponent «.
Then h+ d4(.y<o0 + dp is KL with exponent a.
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Application Il

Consider functions of the form
f(x) = £(Ax) + dc(x),

where ¢ is strongly convex on any compact convex set and is twice
continuously differentiable, and

m
C:= {x Y willxillp < a} ,
i=1

with x; € R", >>" . nj=n, w; > 0,0 >0and p € [1,2].
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Application Il

Consider functions of the form
f(x) = £(Ax) + dc(x),

where ¢ is strongly convex on any compact convex set and is twice
continuously differentiable, and

m
C:= {x Y willxillp < a} ,
i=1

with x; € R", >>" . nj=n, w; > 0,0 >0and p € [1,2].

Corollary 3. (Li, P.’16)
Suppose that inf f(x) > inf £(Ax). Then f is KL with exponent 1.

Proof: When X # (), Luo-Tseng error bound holds for the regularized
version. (Zhou et al. '15)
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Open questions

e What is the KL exponent of logistic regression with SCAD
regularization?

e Analyzing optimization problems with matrix variables, e.g.,
nuclear norm regularization, rank constraints, etc.

e Deducing the KL exponent of the potential function used in
prototypical convergence results, based on the exponent of the
original objective.

Done for inertial proximal gradient algorithm:
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Open questions

e What is the KL exponent of logistic regression with SCAD
regularization?

e Analyzing optimization problems with matrix variables, e.g.,
nuclear norm regularization, rank constraints, etc.

e Deducing the KL exponent of the potential function used in
prototypical convergence results, based on the exponent of the
original objective.

Done for inertial proximal gradient algorithm:

* Theorem 4. (Li, P. '16)
If f has the KL property at X € dom 9f with exponent « € [0, 1),
then for any 8 > 0, F(x,y) := f(x) + £|x — y||? has the KL
property at (X, X) with exponent max{c, 3}.
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Open questions

Forward-backward envelope (Patrinos, Bemporad '13, Stella et al. '16):
When P is convex and his C?, take any ~ € (0, 1) and define

. 1
() = int { G 4 (VA0.y =)+ -y = X1 + PO |
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Open questions

Forward-backward envelope (Patrinos, Bemporad '13, Stella et al. '16):
When P is convex and his C?, take any ~ € (0, 1) and define

. 1
() = int { G 4 (VA0.y =)+ -y = X1 + PO |

Basic facts:
e f, is smooth.
o X ={x: VF,(x)=0}
o VF,(x) =77 (I = yV2h(x))(x — prox,p(x — yVh(x))).
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Open questions

Theorem 5. (Liu, P.’16)

Suppose that v € (0, 1), his analytic, P is continuous on dom 9P and
is subanalytic with inf P > —oo. Moreover, the Luo-Tseng error bound
holds for h+ P.

Then F, is a KL function with exponent 1.
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Open questions

Theorem 5. (Liu, P.’16)

Suppose that v € (0, 1), his analytic, P is continuous on dom 9P and
is subanalytic with inf P > —oo. Moreover, the Luo-Tseng error bound
holds for h+ P.

Then F, is a KL function with exponent 1.

Question: Can the error bound condition be replaced by KL property?

17/18



Conclusion

e The Luo-Tseng error bound together with an assumption on the
separation of stationary values implies that the KL exponent is %

e Based on this and some calculus rules for KL exponents, the KL
exponent for a large class of convex/nonconvex optimization
models is obtained, including

* logistic regression with ¢1 regularization/sparsity constraints;
* least squares problem with SCAD regularization.

Reference:

e G.Liand T. K. Pong.
Calculus of the exponent of Kurdyka-tojasiewicz inequality and
its applications to linear convergence of first-order methods.
Available at htip./arxiv.org/abs/1602.02915.

Thanks for coming! <
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