A successive difference-of-convex approximation method for a class of nonconvex nonsmooth optimization problems

> Ting Kei Pong Department of Applied Mathematics The Hong Kong Polytechnic University Hong Kong

International INFORMS 2018 June 2018 (Joint work with Tianxiang Liu and Akiko Takeda)

Motivating applications

Inducing simultaneous structures:

• Nonconvex fused regularized problems:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|^2 + c_1 \|x\|_1 + c_2 \sum_{i=1}^{n-1} |x_{i+1} - x_i|^{\frac{1}{2}}.$$

• Simultaneous low rank and sparse matrix optimization problems:

$$\min_{\substack{X \in \mathbb{R}^{m \times n} \\ \text{Subject to}}} \frac{1}{2} \|X - M\|_F^2$$

Subject to $\operatorname{rank}(X) \le k, \|\operatorname{vec}(X)\|_0 \le s.$

Motivating applications

Inducing simultaneous structures:

• Nonconvex fused regularized problems:

$$\min_{x\in\mathbb{R}^n} \frac{1}{2} \|Ax-b\|^2 + c_1 \|x\|_1 + c_2 \sum_{i=1}^{n-1} |x_{i+1}-x_i|^{\frac{1}{2}}.$$

Simultaneous low rank and sparse matrix optimization problems:

$$\min_{\substack{X \in \mathbb{R}^{m \times n} \\ \text{Subject to}}} \frac{1}{2} \|X - M\|_F^2$$

Subject to $\operatorname{rank}(X) \le k, \|\operatorname{vec}(X)\|_0 \le s.$

Other variants: $\frac{1}{2} \| P_{\Omega}(X - M) \|_{F}^{2}$, where Ω corresponds to known / observed entries.

General model

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_i x),$$

Assumptions:

- $f : \mathbb{R}^n \to \mathbb{R}$ is an *L*-smooth function;
- A_i , $i = 1, \ldots, m$, are linear maps;
- *P_i*, *i* = 0,..., *m*, are nonnegative proper closed functions and are continuous in their domains.
- the sets dom P_i , i = 1, ..., m, are closed, and

dom
$$P_0 \cap \bigcap_{i=1}^m A_i^{-1}$$
dom $P_i \neq \emptyset$.

General model

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix),$$

Assumptions:

- $f : \mathbb{R}^n \to \mathbb{R}$ is an *L*-smooth function;
- A_i , $i = 1, \ldots, m$, are linear maps;
- *P_i*, *i* = 0,..., *m*, are nonnegative proper closed functions and are continuous in their domains.
- the sets dom P_i , i = 1, ..., m, are closed, and

dom
$$P_0 \cap \bigcap_{i=1}^m A_i^{-1}$$
 dom $P_i \neq \emptyset$.

• $f + P_0$ is level-bounded.

General model cont.

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

Assumption cont.: An element of $prox_{\lambda P_i}(x)$ is easy to compute for all $\lambda > 0, x \in \mathbb{R}^n$ and i = 0, ..., m, where

$$\operatorname{prox}_{\lambda P_i}(x) := \operatorname{Arg\,min}_{y \in \mathbb{R}^n} \left\{ \frac{1}{2\lambda} \|y - x\|^2 + P_i(y) \right\}.$$

General model cont.

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

Assumption cont.: An element of $prox_{\lambda P_i}(x)$ is easy to compute for all $\lambda > 0, x \in \mathbb{R}^n$ and i = 0, ..., m, where

$$\operatorname{prox}_{\lambda P_i}(x) := \operatorname{Arg\,min}_{y \in \mathbb{R}^n} \left\{ \frac{1}{2\lambda} \|y - x\|^2 + P_i(y) \right\}.$$

Idea: make use of variants of proximal gradient algorithm?

General model cont.

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

Assumption cont.: An element of $prox_{\lambda P_i}(x)$ is easy to compute for all $\lambda > 0, x \in \mathbb{R}^n$ and i = 0, ..., m, where

$$\operatorname{prox}_{\lambda P_i}(x) := \operatorname{Arg\,min}_{y \in \mathbb{R}^n} \left\{ \frac{1}{2\lambda} \|y - x\|^2 + P_i(y) \right\}.$$

Idea: make use of variants of proximal gradient algorithm?

Not trivial! The proximal mapping of $x \mapsto P_0(x) + \sum_{i=1}^m P_i(A_ix)$ is in general difficult to compute.

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

When P_i 's are possibly nonconvex:

• Alternating direction method of multipliers (Hong et al. '16):

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

- Alternating direction method of multipliers (Hong et al. '16):
 - * Introducing extra variables $y_i = A_i x$ and λ_i .
 - * Each iteration involves the proximal mapping of *P_i* and a multiplier update.

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

- Alternating direction method of multipliers (Hong et al. '16):
 - * Introducing extra variables $y_i = A_i x$ and λ_i .
 - * Each iteration involves the proximal mapping of *P_i* and a multiplier update.
 - $\star\,$ Convergence not guaranteed when m>0 and for general linear maps.

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

- Alternating direction method of multipliers (Hong et al. '16):
 - * Introducing extra variables $y_i = A_i x$ and λ_i .
 - * Each iteration involves the proximal mapping of *P_i* and a multiplier update.
 - $\star\,$ Convergence not guaranteed when m> 0 and for general linear maps.
- Proximal averaging (Yu, Zheng '15):

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

When P_i 's are possibly nonconvex:

٢

- Alternating direction method of multipliers (Hong et al. '16):
 - * Introducing extra variables $y_i = A_i x$ and λ_i .
 - * Each iteration involves the proximal mapping of *P_i* and a multiplier update.
 - $\star\,$ Convergence not guaranteed when m> 0 and for general linear maps.
- Proximal averaging (Yu, Zheng '15):

All P_i have to be Lipschitz continuous, $A_i = I$. Essentially only solving a smooth approximation.

$$\min_{x\in\mathbb{R}^n} f(x) + P_0(x) + \sum_{i=1}^m P_i(A_ix).$$

When P_i 's are possibly nonconvex:

٢

- Alternating direction method of multipliers (Hong et al. '16):
 - * Introducing extra variables $y_i = A_i x$ and λ_i .
 - ★ Each iteration involves the proximal mapping of P_i and a multiplier update.
 - $\star\,$ Convergence not guaranteed when m>0 and for general linear maps.
- Proximal averaging (Yu, Zheng '15):

All P_i have to be Lipschitz continuous, $A_i = I$. Essentially only solving a smooth approximation.

Question: How to develop an approach with convergence guarantee based solely on computing proximal mappings of P_i and ∇f ?

Key ideas I

When P_i 's are all convex:

• For each $\lambda > 0$, the Moreau envelope

$$e_{\lambda}P_i(x) := \inf_{y \in \mathbb{R}^n} \left\{ \frac{1}{2\lambda} \|y - x\|^2 + P_i(y) \right\}$$

is convex and smooth, with $\nabla e_{\lambda} P_i(x) = \frac{1}{\lambda} (x - \operatorname{prox}_{\lambda P_i}(x))$, and

$$\|
abla oldsymbol{e}_{\lambda} oldsymbol{P}_i(x) -
abla oldsymbol{e}_{\lambda} oldsymbol{P}_i(y)\| \leq \lambda^{-1} \|x - y\|$$

for all $x, y \in \mathbb{R}^n$.

Key ideas I

When P_i 's are all convex:

• For each $\lambda > 0$, the Moreau envelope

$$e_{\lambda}P_i(x) := \inf_{y \in \mathbb{R}^n} \left\{ \frac{1}{2\lambda} \|y - x\|^2 + P_i(y) \right\}$$

is convex and smooth, with $\nabla e_{\lambda} P_i(x) = \frac{1}{\lambda} (x - \operatorname{prox}_{\lambda P_i}(x))$, and

$$\|
abla \boldsymbol{e}_{\lambda} \boldsymbol{P}_{i}(\boldsymbol{x}) -
abla \boldsymbol{e}_{\lambda} \boldsymbol{P}_{i}(\boldsymbol{y})\| \leq \lambda^{-1} \|\boldsymbol{x} - \boldsymbol{y}\|$$

for all $x, y \in \mathbb{R}^n$.

- The function $f(x) + \sum_{i=1}^{m} e_{\lambda}P_i(A_ix) + P_0(x)$ can be minimized by variants of the proximal gradient algorithm efficiently.
- Nesterov's smoothing technique (Nesterov '05); the basis of popular software TFOCS (Becker, Candès, Grant '11).

Key ideas I

When P_i 's are all convex:

• For each $\lambda > 0$, the Moreau envelope

$$e_{\lambda}P_i(x) := \inf_{y \in \mathbb{R}^n} \left\{ \frac{1}{2\lambda} \|y - x\|^2 + P_i(y) \right\}$$

is convex and smooth, with $\nabla e_{\lambda} P_i(x) = \frac{1}{\lambda} (x - \operatorname{prox}_{\lambda P_i}(x))$, and

$$\|
abla m{e}_{\lambda}m{P}_{i}(x) -
abla m{e}_{\lambda}m{P}_{i}(y)\| \leq \lambda^{-1}\|x - y\|$$

for all $x, y \in \mathbb{R}^n$.

- The function $f(x) + \sum_{i=1}^{m} e_{\lambda}P_i(A_ix) + P_0(x)$ can be minimized by variants of the proximal gradient algorithm efficiently.
- Nesterov's smoothing technique (Nesterov '05); the basis of popular software TFOCS (Becker, Candès, Grant '11).

Question: Using Moreau envelope for nonconvex P_i?

Key ideas II

When P_i 's are possibly nonconvex:

• For each $\lambda > 0$, the Moreau envelope is in general **not smooth**,

Key ideas II

When P_i 's are possibly nonconvex:

 For each λ > 0, the Moreau envelope is in general not smooth, but it is a difference-of-convex (DC) function:

$$e_{\lambda}P_{i}(x) = \frac{1}{2\lambda} \|x\|^{2} - \underbrace{\sup_{y \in \operatorname{dom} P_{i}} \left\{ \frac{1}{\lambda} \langle x, y \rangle - \frac{1}{2\lambda} \|y\|^{2} - P_{i}(y) \right\}}_{h_{i}(x)}.$$

Key ideas II

When P_i 's are possibly nonconvex:

 For each λ > 0, the Moreau envelope is in general not smooth, but it is a difference-of-convex (DC) function:

$$e_{\lambda}P_{i}(x) = \frac{1}{2\lambda} \|x\|^{2} - \underbrace{\sup_{y \in \operatorname{dom} P_{i}} \left\{ \frac{1}{\lambda} \langle x, y \rangle - \frac{1}{2\lambda} \|y\|^{2} - P_{i}(y) \right\}}_{h_{i}(x)}.$$

Moreover,

$$\frac{1}{\lambda} \operatorname{prox}_{\lambda P_i}(x) \subseteq \partial h_i(x).$$

• The function $f(x) + \sum_{i=1}^{m} e_{\lambda}P_i(A_ix) + P_0(x)$ can be minimized by variants of DC/majorization-based algorithm efficiently.

Algorithm: subproblem

To minimize $F_{\lambda}(x) := f(x) + \sum_{i=1}^{m} e_{\lambda} P_i(A_i x) + P_0(x)$:

Algorithm 1: NPG_{major}

Step 0. Input $x^0 \in \text{dom } P_0$, $L_{\text{max}} \ge L_{\min} > 0$, $\tau > 1$, c > 0 and an integer $M \ge 0$. Set t = 0. **Step 1.** Choose any $L_t^0 \in [L_{\min}, L_{\max}]$ and set $L_t = L_t^0$. **1a)** Pick $u \in \text{prox}_{L_t^{-1}P_0} \left(x^t - \frac{1}{L_t} \left[\nabla f(x^t) + \frac{1}{\lambda} \sum_{i=1}^m A_i^* (A_i x^t - \text{prox}_{\lambda P_i}(A_i x^t))\right]\right)$. **1b)** Go to to **Step 2**) if

$$F_{\lambda}(u) \leq \max_{[t-\mathcal{M}]_+ \leq i \leq t} F_{\lambda}(x^i) - \frac{c}{2} \|u-x^t\|^2.$$

Else, set $L_t \leftarrow \tau L_t$ and go to **Step 1a**). **Step 2.** Set $\overline{L}_t = L_t$, $x^{t+1} = u$, t = t + 1. Go to **Step 1**.

Properties of NPG_{major}

Theorem 1. (Liu, P., Takeda '18)

Let $\{x^t\}$ be the sequence generated by NPG_{major}. Then

1. $F_{\lambda}(x^t) \leq F_{\lambda}(x^0)$ for all $t \geq 0$.

2.
$$\lim_{t\to\infty} \|x^{t+1} - x^t\| = 0.$$

Properties of NPG_{major}

Theorem 1. (Liu, P., Takeda '18)

Let $\{x^t\}$ be the sequence generated by NPG_{major}. Then

- 1. $F_{\lambda}(x^t) \leq F_{\lambda}(x^0)$ for all $t \geq 0$.
- 2. $\lim_{t\to\infty} \|x^{t+1} x^t\| = 0.$
- 3. It holds that

$$\lim_{t\to\infty} \operatorname{dist}\left(0,\nabla f(x^t)+\partial P_0(x^{t+1})+\sum_{i=1}^m \frac{A_i^*(A_ix^t-\operatorname{prox}_{\lambda P_i}(A_ix^t))}{\lambda}\right)=0.$$

Successive DC approximation method

Algorithm 2: SDCAM

Step 0. Pick $\epsilon_{\nu} \downarrow 0$ and $\lambda_{\nu} \downarrow 0$. Set $\nu = 0$. Pick an $x^0 \in \text{dom } P_0$ and

$$\mathbf{x}^{\text{feas}} \in \operatorname{dom} P_0 \cap \bigcap_{i=1}^m A_i^{-1} \operatorname{dom} P_i.$$

Step 1. If $F_{\lambda_{\nu}}(x^{\nu}) < F_{\lambda_{\nu}}(x^{\text{feas}})$, set $x^{\nu,0} = x^{\nu}$. Else, set $x^{\nu,0} = x^{\text{feas}}$. Step 2. Apply NPG_{major} to $F_{\lambda_{\nu}}(x)$ starting at $x^{\nu,0}$. Terminate at $x^{\nu,l_{\nu}}$ when $||x^{\nu,l_{\nu}+1} - x^{\nu,l_{\nu}}|| \le \epsilon_{\nu}$, $F_{\lambda_{\nu}}(x^{\nu,l_{\nu}}) \le F_{\lambda_{\nu}}(x^{\nu,0})$, and

dist
$$\left(0, \nabla f(x^{\nu, l_{\nu}}) + \partial P_0(x^{\nu, l_{\nu}+1}) + \sum_{i=1}^m \frac{1}{\lambda_{\nu}} A_i^* [A_i x^{\nu, l_{\nu}} - \operatorname{prox}_{\lambda_{\nu} P_i}(A_i x^{\nu, l_{\nu}})]\right) \leq \epsilon_{\nu}.$$

Step 3. Update $x^{\nu+1} = x^{\nu,l_{\nu}}$ and $\nu = \nu + 1$. Go to **Step 1**.

Convergence of SDCAM

Theorem 2. (Liu, P., Takeda '18)

Let $\{x^t\}$ be the sequence generated by SDCAM. Then $\{x^t\}$ is bounded. Let x^* be an accumulation point of this sequence. Then:

(i) It holds that $x^* \in \text{dom } P_0 \cap \bigcap_{i=1}^m A_i^{-1} \text{dom } P_i$.

(ii) Suppose the following condition holds:

$$y_0 + \sum_{i=1}^m A_i^* y_i = 0 \& y_0 \in \partial^\infty P_0(x^*), \ y_i \in \partial^\infty P_i(A_i x^*), \ \forall i = 1, \dots, m$$
$$\implies y_i = 0 \ \forall i = 0, \dots, m.$$

Then

$$\mathbf{0}\in
abla f(x^*)+\partial P_0(x^*)+\sum_{i=1}^m A_i^*\partial P_i(A_ix^*).$$

Convergence of SDCAM

Theorem 2. (Liu, P., Takeda '18)

Let $\{x^t\}$ be the sequence generated by SDCAM. Then $\{x^t\}$ is bounded. Let x^* be an accumulation point of this sequence. Then:

(i) It holds that $x^* \in \text{dom } P_0 \cap \bigcap_{i=1}^m A_i^{-1} \text{dom } P_i$.

(ii) Suppose the following condition holds:

$$y_0 + \sum_{i=1}^m A_i^* y_i = 0 \& y_0 \in \partial^\infty P_0(x^*), \ y_i \in \partial^\infty P_i(A_i x^*), \ \forall i = 1, \dots, m$$
$$\implies y_i = 0 \ \forall i = 0, \dots, m.$$

Then

$$0\in
abla f(x^*)+\partial P_0(x^*)+\sum_{i=1}^m A_i^*\partial P_i(A_ix^*).$$

Remark: The condition in (ii) holds if all $A_i = I$ and all except one P_i are locally Lipschitz.

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x - b\|^2 + c_1 \|x\|_1 + c_2 \sum_{i=1}^{n-1} |x_{i+1} - x_i|^{\frac{1}{2}}.$$

- b is noisy measurement of a sparse piecewise constant signal.
- Set $\lambda_{\nu} = 0.1^{\nu+1}$ in SDCAM; terminate when $\lambda_{\nu} < 10^{-9}$.
- NPG_{major} for subproblems is terminated when successive changes are small.

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x - b\|^2 + c_1 \|x\|_1 + c_2 \sum_{i=1}^{n-1} |x_{i+1} - x_i|^{\frac{1}{2}}.$$

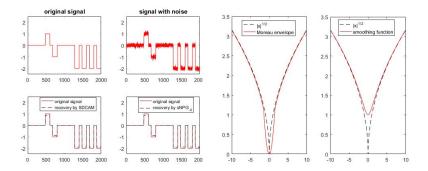
- *b* is noisy measurement of a sparse piecewise constant signal.
- Set $\lambda_{\nu} = 0.1^{\nu+1}$ in SDCAM; terminate when $\lambda_{\nu} < 10^{-9}$.
- NPG_{major} for subproblems is terminated when successive changes are small.
- Compare with NPG for a smooth approximation based on $(s^2 + \lambda_{\nu}^2)^{\frac{1}{4}} \approx |s|^{\frac{1}{2}}$. (sNPG) x^{feas} is not used. Terminate when $\lambda_{\nu} < 10^{-8}$.

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x - b\|^2 + c_1 \|x\|_1 + c_2 \sum_{i=1}^{n-1} |x_{i+1} - x_i|^{\frac{1}{2}}.$$

- *b* is noisy measurement of a sparse piecewise constant signal.
- Set $\lambda_{\nu} = 0.1^{\nu+1}$ in SDCAM; terminate when $\lambda_{\nu} < 10^{-9}$.
- NPG_{major} for subproblems is terminated when successive changes are small.
- Compare with NPG for a smooth approximation based on $(s^2 + \lambda_{\nu}^2)^{\frac{1}{4}} \approx |s|^{\frac{1}{2}}$. (sNPG) x^{feas} is not used. Terminate when $\lambda_{\nu} < 10^{-8}$.
- All codes are run in Matlab R2016a on a 64-bit PC with an Intel(R) Core(TM) i7-6700 CPU (3.41GHz) and 32GB of RAM.

Table: Results for SDCAM and sNPG, $c_1 = c_2 = \sigma \sqrt{n}/40$.

n	iter		CPU		fval	
	SDCAM	sNPG	SDCAM	sNPG	SDCAM	sNPG
2000	27796	23968	5.7	9.1	1.7728e2	1.7729e2
4000	41686	42336	16.9	28.2	4.9592e2	4.9593e2
6000	45573	46124	25.5	39.5	8.4943e2	8.4939e2
8000	49089	39759	34.5	42.9	1.3216e3	1.3215e3
10000	45320	48645	45.2	64.6	1.6587e3	1.6586e3



Simulations: low rank and sparse matrix

$$\min_{\substack{X \in \mathbb{R}^{m \times n} \\ \text{Subject to}}} \frac{1}{2} \|X - M\|_F^2$$

Subject to $\operatorname{rank}(X) \le k, \|\operatorname{vec}(X)\|_0 \le s.$

• $M = M_1 M_2 + \sigma \Delta$, where $M_1 \in \mathbb{R}^{m \times k}$, $M_2 \in \mathbb{R}^{k \times n}$, and m/10 random rows of M_1 are zero.

Simulations: low rank and sparse matrix

$$\min_{\substack{X \in \mathbb{R}^{m \times n} \\ \text{Subject to}}} \frac{1}{2} \|X - M\|_F^2$$

Subject to $\operatorname{rank}(X) \le k, \|\operatorname{vec}(X)\|_0 \le s.$

- $M = M_1 M_2 + \sigma \Delta$, where $M_1 \in \mathbb{R}^{m \times k}$, $M_2 \in \mathbb{R}^{k \times n}$, and m/10 random rows of M_1 are zero.
- Apply SDCAM with $P_0 = \delta_{\operatorname{rank}(\cdot) \leq k}$ (SDCAM_{*r*}), or with $P_0 = \delta_{||\operatorname{vec}(\cdot)||_0 \leq s}$ (SDCAM_{*s*}).
- NPG_{major} for subproblems is terminated when successive changes are small.
- Terminate (SDCAM_r) when distance to being s-sparse is small.
- Terminate (SDCAM_s) when distance to having rank at most *k* is small.

Simulations: low rank and sparse matrix

Table: Comparison of SDCAM_r and SDCAM_s, k = 10, s = 0.1 mn, n = 500.

σ	т	CF	ะบ	vio	
		SDCAM _r	SDCAM _s	SDCAM _r	SDCAM _s
0.005	1000	4.7	378.1	4.7569e-4	1.0515e-4
	2000	4.0	647.0	6.7084e-4	1.5247e-4
	3000	6.0	862.8	8.2038e-4	1.8857e-4
0.010	1000	379.3	529.2	9.4347e-5	2.1032e-4
	2000	653.6	912.6	1.3412e-4	3.0580e-4
	3000	969.5	1080.6	1.6434e-4	3.7701e-4
0.020	1000	413.7	769.2	1.8985e-4	4.2222e-4
	2000	675.5	1251.3	2.6849e-4	6.1136e-4
	3000	1003.5	2043.0	3.2804e-4	7.5510e-4

Conclusion

- We make use of the fact that Moreau envelopes are difference-of-convex (DC) to construct a sequence of "DC" subproblems.
- These subproblems can be solved by variants of DC algorithm.
- Convergence to stationary points of the original problem is established under mild assumptions.

Reference:

 T. Liu, T. K. Pong and A. Takeda. A successive difference-of-convex approximation method for a class of nonconvex nonsmooth optimization problems. Available at https://arxiv.org/abs/1710.05778.

Thanks for coming!