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Motivating applications

Inducing simultaneous structures:
• Nonconvex fused regularized problems:

min
x∈IRn

1
2
‖Ax − b‖2 + c1‖x‖1 + c2

n−1∑
i=1

|xi+1 − xi |
1
2 .

• Simultaneous low rank and sparse matrix optimization problems:

min
X∈IRm×n

1
2
‖X −M‖2

F

Subject to rank(X ) ≤ k , ‖vec(X )‖0 ≤ s.

Other variants: 1
2‖PΩ(X −M)‖2

F , where Ω corresponds to known
/ observed entries.
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General model

min
x∈IRn

f (x) + P0(x) +
m∑

i=1

Pi (Aix),

Assumptions:
• f : IRn → IR is an L-smooth function;
• Ai , i = 1, . . . ,m, are linear maps;
• Pi , i = 0, . . . ,m, are nonnegative proper closed functions and are

continuous in their domains.
• the sets dom Pi , i = 1, . . . ,m, are closed, and

dom P0 ∩
m⋂

i=1

A−1
i dom Pi 6= ∅.

• f + P0 is level-bounded.
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General model cont.

min
x∈IRn

f (x) + P0(x) +
m∑

i=1

Pi (Aix).

Assumption cont.: An element of proxλPi
(x) is easy to compute for all

λ > 0, x ∈ IRn and i = 0, . . . ,m, where

proxλPi
(x) := Arg min

y∈IRn

{
1

2λ
‖y − x‖2 + Pi (y)

}
.

Idea: make use of variants of proximal gradient algorithm?

Not trivial! The proximal mapping of x 7→ P0(x) +
∑m

i=1 Pi (Aix) is in
general difficult to compute.
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Existing approaches

min
x∈IRn

f (x) + P0(x) +
m∑

i=1

Pi (Aix).

When Pi ’s are possibly nonconvex:

• Alternating direction method of multipliers (Hong et al. ’16):
? Introducing extra variables yi = Aix and λi .
? Each iteration involves the proximal mapping of Pi and a multiplier

update.
? Convergence not guaranteed when m > 0 and for general linear

maps.

• Proximal averaging (Yu, Zheng ’15):
All Pi have to be Lipschitz continuous, Ai = I. Essentially only
solving a smooth approximation.

Question: How to develop an approach with convergence guarantee
based solely on computing proximal mappings of Pi and ∇f?
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Key ideas I

When Pi ’s are all convex:
• For each λ > 0, the Moreau envelope

eλPi (x) := inf
y∈IRn

{
1

2λ
‖y − x‖2 + Pi (y)

}
is convex and smooth, with ∇eλPi (x) = 1

λ (x − proxλPi
(x)), and

‖∇eλPi (x)−∇eλPi (y)‖ ≤ λ−1‖x − y‖

for all x , y ∈ IRn.

• The function f (x) +
∑m

i=1 eλPi (Aix) + P0(x) can be minimized by
variants of the proximal gradient algorithm efficiently.

• Nesterov’s smoothing technique (Nesterov ’05); the basis of
popular software TFOCS (Becker, Candès, Grant ’11).

Question: Using Moreau envelope for nonconvex Pi?
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Key ideas II

When Pi ’s are possibly nonconvex:
• For each λ > 0, the Moreau envelope is in general not smooth,

but it is a difference-of-convex (DC) function:

eλPi (x) =
1

2λ
‖x‖2 − sup

y∈dom Pi

{
1
λ
〈x , y〉 − 1

2λ
‖y‖2 − Pi (y)

}
.

Moreover,
1
λ

proxλPi
(x) ⊆ ∂hi (x).

• The function f (x) +
∑m

i=1 eλPi (Aix) + P0(x) can be minimized by
variants of DC/majorization-based algorithm efficiently.
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Algorithm: subproblem

To minimize Fλ(x) := f (x) +
∑m

i=1 eλPi (Aix) + P0(x):

Algorithm 1: NPGmajor

Step 0. Input x0 ∈ dom P0, Lmax ≥ Lmin > 0, τ > 1, c > 0 and an
integer M ≥ 0. Set t = 0.

Step 1. Choose any L0
t ∈ [Lmin,Lmax] and set Lt = L0

t .

1a) Pick u ∈ proxL−1
t P0

(
x t − 1

Lt

[
∇f (x t ) + 1

λ

∑m
i=1 A∗

i (Ai x t − proxλPi
(Ai x t ))

])
.

1b) Go to to Step 2) if

Fλ(u) ≤ max
[t−M]+≤i≤t

Fλ(x i )− c
2
‖u − x t‖2.

Else, set Lt ← τLt and go to Step 1a).
Step 2. Set L̄t = Lt , x t+1 = u, t = t + 1. Go to Step 1.
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Properties of NPGmajor

Theorem 1. (Liu, P., Takeda ’18)
Let {x t} be the sequence generated by NPGmajor. Then

1. Fλ(x t ) ≤ Fλ(x0) for all t ≥ 0.
2. lim

t→∞
‖x t+1 − x t‖ = 0.

3. It holds that

lim
t→∞

dist

(
0,∇f (x t ) + ∂P0(x t+1) +

m∑
i=1

A∗i (Aix t − proxλPi
(Aix t ))

λ

)
= 0.
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Successive DC approximation method

Algorithm 2: SDCAM
Step 0. Pick εν ↓ 0 and λν ↓ 0. Set ν = 0. Pick an x0 ∈ dom P0 and

x feas ∈ dom P0 ∩
m⋂

i=1

A−1
i dom Pi .

Step 1. If Fλν
(xν) < Fλν

(x feas), set xν,0 = xν . Else, set xν,0 = x feas.
Step 2. Apply NPGmajor to Fλν

(x) starting at xν,0. Terminate at xν,lν

when ‖xν,lν+1 − xν,lν‖ ≤ εν , Fλν
(xν,lν ) ≤ Fλν

(xν,0), and

dist
(

0,∇f (xν,lν ) + ∂P0(xν,lν+1) +
∑m

i=1
1
λν

A∗
i [Ai xν,lν − proxλνPi

(Ai xν,lν )]
)
≤ εν .

Step 3. Update xν+1 = xν,lν and ν = ν + 1. Go to Step 1.
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Convergence of SDCAM

Theorem 2. (Liu, P., Takeda ’18)
Let {x t} be the sequence generated by SDCAM. Then {x t} is
bounded. Let x∗ be an accumulation point of this sequence. Then:

(i) It holds that x∗ ∈ dom P0 ∩
⋂m

i=1 A−1
i dom Pi .

(ii) Suppose the following condition holds:

y0 +
m∑

i=1

A∗i yi = 0 & y0 ∈ ∂∞P0(x∗), yi ∈ ∂∞Pi (Aix∗), ∀ i = 1, . . . ,m

=⇒ yi = 0 ∀ i = 0, . . . ,m.

Then
0 ∈ ∇f (x∗) + ∂P0(x∗) +

m∑
i=1

A∗i ∂Pi (Aix∗).

Remark: The condition in (ii) holds if all Ai = I and all except one Pi
are locally Lipschitz.
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Simulations: fused regularization

min
x∈IRn

1
2
‖x − b‖2 + c1‖x‖1 + c2

n−1∑
i=1

|xi+1 − xi |
1
2 .

• b is noisy measurement of a sparse piecewise constant signal.
• Set λν = 0.1ν+1 in SDCAM; terminate when λν < 10−9.
• NPGmajor for subproblems is terminated when successive

changes are small.

• Compare with NPG for a smooth approximation based on
(s2 + λ2

ν)
1
4 ≈ |s| 12 . (sNPG) x feas is not used.

Terminate when λν < 10−8.
• All codes are run in Matlab R2016a on a 64-bit PC with an

Intel(R) Core(TM) i7-6700 CPU (3.41GHz) and 32GB of RAM.
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Simulations: fused regularization

Table: Results for SDCAM and sNPG, c1 = c2 = σ
√

n/40.

n iter CPU fval
SDCAM sNPG SDCAM sNPG SDCAM sNPG

2000 27796 23968 5.7 9.1 1.7728e2 1.7729e2
4000 41686 42336 16.9 28.2 4.9592e2 4.9593e2
6000 45573 46124 25.5 39.5 8.4943e2 8.4939e2
8000 49089 39759 34.5 42.9 1.3216e3 1.3215e3

10000 45320 48645 45.2 64.6 1.6587e3 1.6586e3
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Simulations: fused regularization
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Simulations: low rank and sparse matrix

min
X∈IRm×n

1
2
‖X −M‖2

F

Subject to rank(X ) ≤ k , ‖vec(X )‖0 ≤ s.

• M = M1M2 + σ∆, where M1 ∈ IRm×k , M2 ∈ IRk×n, and m/10
random rows of M1 are zero.

• Apply SDCAM with P0 = δrank(·)≤k (SDCAMr ), or with
P0 = δ‖vec(·)‖0≤s (SDCAMs).

• NPGmajor for subproblems is terminated when successive
changes are small.

• Terminate (SDCAMr ) when distance to being s-sparse is small.
• Terminate (SDCAMs) when distance to having rank at most k is

small.
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Simulations: low rank and sparse matrix

Table: Comparison of SDCAMr and SDCAMs, k = 10, s = 0.1mn, n = 500.

σ m CPU vio
SDCAMr SDCAMs SDCAMr SDCAMs

1000 4.7 378.1 4.7569e-4 1.0515e-4
0.005 2000 4.0 647.0 6.7084e-4 1.5247e-4

3000 6.0 862.8 8.2038e-4 1.8857e-4
1000 379.3 529.2 9.4347e-5 2.1032e-4

0.010 2000 653.6 912.6 1.3412e-4 3.0580e-4
3000 969.5 1080.6 1.6434e-4 3.7701e-4
1000 413.7 769.2 1.8985e-4 4.2222e-4

0.020 2000 675.5 1251.3 2.6849e-4 6.1136e-4
3000 1003.5 2043.0 3.2804e-4 7.5510e-4
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Conclusion

• We make use of the fact that Moreau envelopes are
difference-of-convex (DC) to construct a sequence of “DC”
subproblems.

• These subproblems can be solved by variants of DC algorithm.
• Convergence to stationary points of the original problem is

established under mild assumptions.

Reference:

• T. Liu, T. K. Pong and A. Takeda.
A successive difference-of-convex approximation method for a
class of nonconvex nonsmooth optimization problems.
Available at https://arxiv.org/abs/1710.05778.

Thanks for coming!
. .
∠
^

16 / 16


