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Motivating applications

e Matrix completion: (Candés, Recht '09)

. -— 2 .
min i — Xii <
min Z (xj — X;)? subjectto ®(x) < o,
(i,))eq
where X comes from observation, Q is the index set of observed
entries, ¢ > 0, and typical choices of ¢ : R™*" — IR, are:

* ®(x) = ||x||+, the nuclear norm of x;
* O(x) = [Ix]l. — pllx|lF, 1€ (0,1).
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where X is a correctly classified data point, h is smooth, ¢ > 0,
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e Project onto the constraint sets? < Alternatives?



Frank-Wolfe method

Let X be a finite dimensional Hilbert space. Consider
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u e Argmin (v, x)
xeD
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Let X be a finite dimensional Hilbert space. Consider

min f(x) subjectto x € D,
xeX

where f € C'(X) and D is compact convex such that for any v € X, a

u e Argmin (v, x)
xeD

can be easily obtained.
Examples of D:

e D={xeR": ||x||p <o} for pe[1,00] and some o > 0.
Then u can be computed by considering the dual norm.

e D={xeR™": |x|. <o} forsome s >0.Then u= —ors/],
where ry and s; are the left and right unit singular vectors,
respectively, corresponding to the largest singular value of —v,
obtained via Lanzcos method.

In contrast, projecting onto D requires full SVD of v.



Frank-Wolfe method cont.

Frank-Wolfe method for convex D: (Frank, Wolfe '56)
Step 1. Choose x° € D. Pick any ¢ € (0,1) and set k = 0.
Step 2. Compute uk € Argmin, ., (V£(x¥), ).
Step 3. If (VF(x¥), u* — x¥) = 0, terminate.
Step 4. Choose «y € (0, 1] using backtracking to satisfy
(XX 4 (U — x¥)) < F(XK) + car (VH(XK), uF — x¥).
Step 5. Set x**1 = xk + ax(uf — x¥), k < k + 1. Go to Step 2.
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Frank-Wolfe method for convex D: (Frank, Wolfe '56)
Step 1. Choose x° € D. Pick any ¢ € (0,1) and set k = 0.
Step 2. Compute uk € Argmin, ., (V£(x¥), ).
Step 3. If (VF(x¥), u* — x¥) = 0, terminate.
Step 4. Choose «y € (0, 1] using backtracking to satisfy
(XX 4 (U — x¥)) < F(XK) + car (VH(XK), uF — x¥).

Step 5. Set x**1 = xk + ax(uf — x¥), k < k + 1. Go to Step 2.
Remarks:

e The algorithm either terminates finitely at a stationary point xk, or
every accumulation point of {x*} is stationary.

e When f is convex with Lipschitz gradient (modulus L), one can
choose in Step 4

QK =

or ax = min {1,— (V). u* — x) }

k+2 L¢||uk — x|



Extending FW?

Frank-Wolfe method for convex D (recapped):
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Extending FW?

Frank-Wolfe method for convex D (recapped):

Step 1. Choose x° € D and set k = 0.

Step 2. Compute uk € Argmin, _,(VF(x¥), x).

Step 3. If (VF(x¥), u* — x¥) = 0, terminate.

Step 4. Choose «i € (0, 1] to satisfy Armijo rule via backtracking.
Step 5. Set x**1 = xk + ax(uf — x¥), k + k + 1. Go to Step 2.

What if D is nonconvex?
o Is Uk € Argmin,p(V£(x¥), x) in Step 2 easy to solve? (Oracle issue)
e |s the termination in Step 3 correct? (Termination issue)
e The convex combination in Step 5 can make x¥*' ¢ D! (Feas. issue)



Existing work
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D as subset of sphere: (Luss, Teboulle 13, Balashov, Polyak, Tremba '20)
e Arises naturally from sparse PCA.
e Assumes concavity of f, so that

F(XK 4 (UK — xK)) < F(X¥) + (VF(xR), Uk — xF).

i.e., ax = 1, which means x+! = uk e D.

e Note that Vf being Lipschitz with modulus L; implies concavity of
x = f(x) — Le|| x]|2.
.~. Concavity can be assumed WLOG on spheres, but can be
restrictive for other D.

Our approach:
e Restrict to a different class of nonconvex D.

e Construct new linear oracles.
e Study optimality conditions.
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Consider compact sets of the form
D:={xeX: Pi(x)— Pox) <o},
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Generalized LO

Consider compact sets of the form
D:={xeX: Pi(x)— Pox) <o},
where P; : X - R and P> : X — R are convex, o > 0.

Definition: For Py, P, and o as above, y € D and ¢ € 9Px(y), define

D(y,&) ={xeX: Pi(x) = Po(y) = (&, x =) <o}

For any v € X, a linear-optimization oracle for (v, y, &) (denoted by
LO(v,y,&)) computes a solution of

meig (v, x) subjectto x € D(y,¢&).
X
Remarks:

e Itholds that y € D(y,¢) C D. Thus, LO(v, y,¢) is well-defined.
e For any output u of LO(v,y,&) and any « € (0, 1), we have

ay +(1 —ajue D(y¢)



Generalized LO: Example

Matrix completion: Let X = R™", Py(x) := || x||., P2(x) := ul/x||F
for some o € (0,1) and o > 0 so that D := {x : || x|« — pl|X||r < o}.

Now, forany v € R™", y € Dand £ € Px(y), the LO(v, y,£) solves

min (v, x) subjectto ||x|.— (&, x) <o,
XeRan

where [|€||F < p < 1.
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Generalized LO: Example

Matrix completion: Let X = R™", Py(x) := || x||., P2(x) := ul/x||F
forsome € (0,1)and o > 0 sothat D := {x: ||x]|. — pl|X||r < o}.
Now, forany v € R™", y € Dand £ € Px(y), the LO(v, y,£) solves

min (v, x) subjectto ||x|.— (&, x) <o,
XeRan

where [|€||F < p < 1.

Theorem 1. (Zeng, Zhang, Li, P. '21)

Suppose that v # 0. Let z = [z]  Z]] " with z; € R™ and 2, € R" be
a generalized eigenvectclr of the smallest gene~ralized eigenvalue of
the matrix pencil (v, I — ¢), and satisfy z"(/ — ¢)z = 1, where

~ |0 v ~ |10 ¢
V= {VT 0] and &= {ST O]'
Then u* = 202z;z] is an output of LO(v, y,€).
Remark: Since | — £ - 0, the above z can be computed using eigifp.



CQ & Optimality conditions
Consider

m€i§r£ f(x) subjectto D:={x € X: Py(x)— P2(x) < o},
X

where
e Dis compact, P;, P, : X — R are convex, o > 0; and

(®)

13



CQ & Optimality conditions
Consider

rpeig f(x) subjectto D:={xeX: Pi(x)— P(x) <o}, (M)

where
e Dis compact, P;, P, : X — R are convex, o > 0; and

e the generalized Slater’s condition holds: For any y € D and
& € OP»(y), there exists X € X such that

Pi(X) — Pa(y) — (£, X —y) <o

13



CQ & Optimality conditions
Consider

rpei}rg f(x) subjectto D:={xeX: Pi(x)— P(x) <o}, (M)

where
e Dis compact, P;, P, : X — R are convex, o > 0; and

e the generalized Slater’s condition holds: For any y € D and
& € OP»(y), there exists X € X such that

Pi(X) — Pa(y) — (£, X —y) <o

Note: The generalized Slater’s condition holds for the D in the matrix completion problem.

13



CQ & Optimality conditions
Consider

rpei}rg f(x) subjectto D:={xeX: Pi(x)— P(x) <o}, (M)

where
e Dis compact, Py, P> : X — R are convex, ¢ > 0; and

e the generalized Slater’s condition holds: For any y € D and
& € OP»(y), there exists X € X such that

Pi(X) = Pa(y) = (&, X —y) <o
Note: The generalized Slater’s condition holds for the D in the matrix completion problem.

Theorem 2. (Zeng, Zhang, Li, P. '21)
Assume the generalized Slater’s condition. Then TFAE:

e Xx* is a stationary point of (#), i.e., 3\ > 0 such that
0 € VI(x*) + XOP1(x*) — AOPa(x*).
o 3¢ € OP>(x*) and u* € Argmin, . p - ) (VF(Xx*), X) such that
(VF(x*),u” — x*) = 0.
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FWHCVX '

Step 1.
Step 2.

Step 3.
Step 4.
Step 5.

Nonconvex FW method

Frank-Wolfe method for (&)

Choose x° € D and set k = 0.
Pick any ¢k € 9P,(x*) and compute

uk € Argmin (V£(x¥), x).
xeD(xk k)
If (VF(x¥), uk — x¥) = 0, terminate.
Choose ay € (0, 1] to satisfy Armijo rule via backiracking.
Set xk*1 = xk + ax(uk — x¥), k < k 4+ 1. Go to Step 2.



Nonconvex FW method

FW,..x: Frank-Wolfe method for (&)
Step 1. Choose x° € D and set k = 0.
Step 2. Pick any ¢k € 9P,(x*) and compute

u* e Argmin (VF(x¥), x).
xeD(xk k)

Step 3. If (VF(xK), uk — x¥) = 0, terminate.
Step 4. Choose «k € (0, 1] to satisfy Armijo rule via backtracking.
Step 5. Set x**1 = xk + ax(uf — x¥), k < k + 1. Go to Step 2.

Theorem 3. (Zeng, Zhang, Li, P. '21)
Assume the generalized Slater’s condition. Then:

e Finite termination returns a stationary point x.
e Line-search loop in Step 4 terminates finitely.
e {xX} C D and each accumulation point is stationary.



Convergence proof idea

Define a gap function G: D — R by

G(x)= inf max (Vf(x),x —y).
(%) 5EE),DQ(X)yE[)(Xi)( (x),x —y)

Theorem 4. (Zeng, Zhang, Li, P. '21)
Assume the generalized Slater’s condition. Then G(x) > 0 for all
x € D. Moreover, if {wX} C Dis such that

G(w¥) = 0 and wk — x*
for some x*, then x* € D and is a stationary point of (#).

Convergence of FW,.,: Let {x¥} be generated by FW,.x.
« Direct computation shows that 0 < G(x¥) < —(Vf(x¥), uk — x*).
e Backtracking + Armijo rule give (Vf(x¥), u% — x¥) — 0.
e Convergence follows from these and Theorem 4.
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Numerical experiments
e Matrix completion:

min Y (x;j — X;)? subjectto |x]. —0.5]x||F <o,
XelRan
(i.)ea
where
*  collects the indices of observed entries;
* X comes from observation, o > 0;
= ||x||« and || x||r are resp. nuclear and Frébenius norm.
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min Y (x;j — X;)? subjectto |x]. —0.5]x||F <o,
XelRan
(i.j)eQ
where
*  collects the indices of observed entries;
* X comes from observation, o > 0;
* ||x]|« and || x||r are resp. nuclear and Frébenius norm.

o Efficient implementation: Following (Freund, Grigas, Mazumder ’17)
Maintain (R*, ©¥, T¥) (reduced SVD of x¥), never form x.
Compute x,ﬁ-‘ for (i,j) € Q only to obtain the gradient.

Compute u* using eigifp, which has rank ONE.

KEY: Since

*

b

Xk+1 = (1 — ak)Xk + Ozkuk7

one can obtain (R**', £¥*! T*+1) using SVD rank-one update.

In contrast, GP will need to form x*, and perform full SVD (for projection).
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Numerical experiments cont.

e MovieLens10M: n = 10677 movie ratings from m = 69878 users.

e Randomly choose 70% as training dataset (i.e.,Q2). Training and
testing errors as the algorithm progresses are shown below.

e For simplicity, we used the same Q and the same o (determined
via CV on nuc. norm model) as in (Freund, Grigas, Mazumder '17).

trainErm-FW 045 testEm-FW| |
testEm-IF.

035+ trainErr-IF

0.148

0.146
033 1}
0.144
032}
% - 0.142
o 014
020+ 0138
028k 0136
027 0134
026 0132
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Matlab 2017b on a 64-bit PC with an Intel(R) Core(TM) i5-7200 CPU (2.50GHz) and 8GB of RAM
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Conclusion and future work

Conclusion:

e Extended FW method for special nonconvex sets: Level set of
DC functions satisfying some regularity conditions.

e Introduced generalized LO: Efficient implementation for
applications such as matrix completion.

o Established subsequential convergence.
Reference:

e L. Zeng, Y. Zhang, G. Li and T. K. Pong.
Frank-Wolfe type methods for nonconvex inequality-constrained
problems.
Preprint. Available at https://arxiv.org/abs/2112.14404.

Thanks for coming! <
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