Frank-Wolfe type methods for nonconvex inequality-constrained problems

Ting Kei Pong
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hong Kong

SIAM OP23
Seattle
June 2023
(Joint work with Guoyin Li, Liaoyuan Zeng \& Yongle Zhang)

Motivating applications

- Matrix completion: (Candés, Recht '09)

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to } \Phi(x) \leq \sigma
$$

where \bar{x} comes from observation, Ω is the index set of observed entries, $\sigma>0$, and typical choices of $\Phi: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}_{+}$are:

* $\Phi(x)=\|x\|_{*}$, the nuclear norm of x;
$\star \Phi(x)=\|x\|_{*}-\mu\|x\|_{F}, \mu \in(0,1)$.

Motivating applications

- Matrix completion: (Candés, Recht '09)

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to } \Phi(x) \leq \sigma,
$$

where \bar{x} comes from observation, Ω is the index set of observed entries, $\sigma>0$, and typical choices of $\Phi: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}_{+}$are:

* $\Phi(x)=\|x\|_{*}$, the nuclear norm of x;
* $\Phi(x)=\|x\|_{*}-\mu\|x\|_{F}, \mu \in(0,1)$.
- Adversarial (ℓ_{p}) attack: (Chen, Zhou, Yi, Gu '20)

$$
\min _{x \in \mathbb{R}^{n}} h(\bar{x}+x) \text { subject to }\|x\|_{p}^{p} \leq \sigma,
$$

where \bar{x} is a correctly classified data point, h is smooth, $\sigma>0$, $\|x\|_{p}^{p}=\sum_{i=1}^{n}\left|x_{i}\right|^{p}, p>0$.

Motivating applications

- Matrix completion: (Candés, Recht '09)

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to } \Phi(x) \leq \sigma,
$$

where \bar{x} comes from observation, Ω is the index set of observed entries, $\sigma>0$, and typical choices of $\Phi: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}_{+}$are:

* $\Phi(x)=\|x\|_{*}$, the nuclear norm of x;
* $\Phi(x)=\|x\|_{*}-\mu\|x\|_{F}, \mu \in(0,1)$.
- Adversarial $\left(\ell_{p}\right)$ attack: (Chen, Zhou, Yi, Gu '20)

$$
\min _{x \in \mathbf{R}^{n}} h(\bar{x}+x) \text { subject to }\|x\|_{p}^{p} \leq \sigma,
$$

where \bar{x} is a correctly classified data point, h is smooth, $\sigma>0$, $\|x\|_{p}^{p}=\sum_{i=1}^{n}\left|x_{i}\right|^{p}, p>0$.

- Project onto the constraint sets?

Motivating applications

- Matrix completion: (Candés, Recht '09)

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to } \Phi(x) \leq \sigma,
$$

where \bar{x} comes from observation, Ω is the index set of observed entries, $\sigma>0$, and typical choices of $\Phi: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}_{+}$are:

* $\Phi(x)=\|x\|_{*}$, the nuclear norm of x;
$\star \Phi(x)=\|x\|_{*}-\mu\|x\|_{F}, \mu \in(0,1)$.
- Adversarial $\left(\ell_{p}\right)$ attack: (Chen, Zhou, Yi, Gu '20)

$$
\min _{x \in \mathbf{R}^{n}} h(\bar{x}+x) \text { subject to }\|x\|_{p}^{p} \leq \sigma,
$$

where \bar{x} is a correctly classified data point, h is smooth, $\sigma>0$, $\|x\|_{p}^{p}=\sum_{i=1}^{n}\left|x_{i}\right|^{p}, p>0$.

- Project onto the constraint sets?

Motivating applications

- Matrix completion: (Candés, Recht '09)

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to } \Phi(x) \leq \sigma,
$$

where \bar{x} comes from observation, Ω is the index set of observed entries, $\sigma>0$, and typical choices of $\Phi: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}_{+}$are:

$$
\begin{aligned}
& \star \Phi(x)=\|x\|_{*} \text {, the nuclear norm of } x ; \\
& \star \Phi(x)=\|x\|_{*}-\mu\|x\|_{F}, \mu \in(0,1) .
\end{aligned}
$$

- Adversarial (ℓ_{p}) attack: (Chen, Zhou, Yi, Gu '20)

$$
\min _{x \in \mathbf{R}^{n}} h(\bar{x}+x) \text { subject to }\|x\|_{p}^{p} \leq \sigma,
$$

where \bar{x} is a correctly classified data point, h is smooth, $\sigma>0$, $\|x\|_{p}^{p}=\sum_{i=1}^{n}\left|x_{i}\right|^{p}, p>0$.

- Project onto the constraint sets? ¿ Alternatives?

Frank-Wolfe method

Let \mathbb{X} be a finite dimensional Hilbert space. Consider

$$
\min _{x \in \mathbb{X}} f(x) \text { subject to } x \in D,
$$

where $f \in C^{1}(\mathbb{X})$ and D is compact convex such that for any $v \in \mathbb{X}$, a

$$
u \in \underset{x \in D}{\operatorname{Arg} \min }\langle v, x\rangle
$$

can be easily obtained.

Frank-Wolfe method

Let \mathbb{X} be a finite dimensional Hilbert space. Consider

$$
\min _{x \in \mathbb{X}} f(x) \text { subject to } x \in D,
$$

where $f \in C^{1}(\mathbb{X})$ and D is compact convex such that for any $v \in \mathbb{X}$, a

$$
u \in \underset{x \in D}{\operatorname{Arg} \min }\langle v, x\rangle
$$

can be easily obtained.
Examples of D :

- $D=\left\{x \in \mathbb{R}^{n}:\|x\|_{p} \leq \sigma\right\}$ for $p \in[1, \infty]$ and some $\sigma>0$. Then u can be computed by considering the dual norm.

Frank-Wolfe method

Let \mathbb{X} be a finite dimensional Hilbert space. Consider

$$
\min _{x \in \mathbb{X}} f(x) \text { subject to } x \in D,
$$

where $f \in C^{1}(\mathbb{X})$ and D is compact convex such that for any $v \in \mathbb{X}$, a

$$
u \in \underset{x \in D}{\operatorname{Arg} \min }\langle v, x\rangle
$$

can be easily obtained.
Examples of D :

- $D=\left\{x \in \mathbb{R}^{n}:\|x\|_{p} \leq \sigma\right\}$ for $p \in[1, \infty]$ and some $\sigma>0$. Then u can be computed by considering the dual norm.
- $D=\left\{x \in \mathbb{R}^{m \times n}:\|x\|_{*} \leq \sigma\right\}$ for some $\sigma>0$. Then $u=-\sigma r_{1} s_{1}^{T}$, where r_{1} and s_{1} are the left and right unit singular vectors, respectively, corresponding to the largest singular value of $-v$, obtained via Lanzcos method. In contrast, projecting onto D requires full SVD of v.

Frank-Wolfe method cont.

Frank-Wolfe method for convex D: (Frank, Wolfe '56)
Step 1. Choose $x^{0} \in D$. Pick any $c \in(0,1)$ and set $k=0$.
Step 2. Compute $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$.
Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ using backtracking to satisfy

$$
f\left(x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right)\right) \leq f\left(x^{k}\right)+c \alpha_{k}\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle .
$$

Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.

Frank-Wolfe method cont.

Frank-Wolfe method for convex D: (Frank, Wolfe '56)
Step 1. Choose $x^{0} \in D$. Pick any $c \in(0,1)$ and set $k=0$.
Step 2. Compute $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$.
Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ using backtracking to satisfy

$$
f\left(x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right)\right) \leq f\left(x^{k}\right)+c \alpha_{k}\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle .
$$

Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.

Remarks:

- The algorithm either terminates finitely at a stationary point $x^{\bar{k}}$, or every accumulation point of $\left\{x^{k}\right\}$ is stationary.

Frank-Wolfe method cont.

Frank-Wolfe method for convex D: (Frank, Wolfe '56)
Step 1. Choose $x^{0} \in D$. Pick any $c \in(0,1)$ and set $k=0$.
Step 2. Compute $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$.
Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ using backtracking to satisfy

$$
f\left(x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right)\right) \leq f\left(x^{k}\right)+c \alpha_{k}\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle .
$$

Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.
Remarks:

- The algorithm either terminates finitely at a stationary point $x^{\bar{k}}$, or every accumulation point of $\left\{x^{k}\right\}$ is stationary.
- When f is convex with Lipschitz gradient (modulus L_{f}), one can choose in Step 4

$$
\alpha_{k}=\frac{2}{k+2} \text { or } \alpha_{k}=\min \left\{1,-\frac{\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle}{L_{f}\left\|u^{k}-x^{k}\right\|^{2}}\right\} .
$$

Extending FW?

Frank-Wolfe method for convex D (recapped):
Step 1. Choose $x^{0} \in D$ and set $k=0$.
Step 2. Compute $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$.
Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ to satisfy Armijo rule via backtracking.
Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.

Extending FW?

Frank-Wolfe method for convex D (recapped):
Step 1. Choose $x^{0} \in D$ and set $k=0$.
Step 2. Compute $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$.
Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ to satisfy Armijo rule via backtracking.
Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.
What if D is nonconvex?

Extending FW?

Frank-Wolfe method for convex D (recapped):
Step 1. Choose $x^{0} \in D$ and set $k=0$.
Step 2. Compute $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$.
Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ to satisfy Armijo rule via backtracking.
Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.
What if D is nonconvex?

- Is $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$ in Step 2 easy to solve? (Oracle issue)

Extending FW?

Frank-Wolfe method for convex D (recapped):
Step 1. Choose $x^{0} \in D$ and set $k=0$.
Step 2. Compute $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$.
Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ to satisfy Armijo rule via backtracking.
Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.
What if D is nonconvex?

- Is $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$ in Step 2 easy to solve? (Oracle issue)
- Is the termination in Step 3 correct? (Termination issue)

Extending FW?

Frank-Wolfe method for convex D (recapped):
Step 1. Choose $x^{0} \in D$ and set $k=0$.
Step 2. Compute $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$.
Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ to satisfy Armijo rule via backtracking.
Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.
What if D is nonconvex?

- Is $u^{k} \in \operatorname{Arg} \min _{x \in D}\left\langle\nabla f\left(x^{k}\right), x\right\rangle$ in Step 2 easy to solve? (Oracle issue)
- Is the termination in Step 3 correct? (Termination issue)
- The convex combination in Step 5 can make $x^{k+1} \notin D$! (Feas. issue)

Existing work

D as subset of sphere: (Luss, Teboulle '13, Balashov, Polyak, Tremba '20)

- Arises naturally from sparse PCA.
- Assumes concavity of f, so that

$$
f\left(x^{k}+\left(u^{k}-x^{k}\right)\right) \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle
$$

i.e., $\alpha_{k} \equiv 1$, which means $x^{k+1}=u^{k} \in D$.

Existing work

D as subset of sphere: (Luss, Teboulle '13, Balashov, Polyak, Tremba '20)

- Arises naturally from sparse PCA.
- Assumes concavity of f, so that

$$
f\left(x^{k}+\left(u^{k}-x^{k}\right)\right) \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle .
$$

i.e., $\alpha_{k} \equiv 1$, which means $x^{k+1}=u^{k} \in D$.

- Note that ∇f being Lipschitz with modulus L_{f} implies concavity of $x \mapsto f(x)-L_{f}\|x\|^{2}$.

Existing work

D as subset of sphere: (Luss, Teboulle '13, Balashov, Polyak, Tremba '20)

- Arises naturally from sparse PCA.
- Assumes concavity of f, so that

$$
f\left(x^{k}+\left(u^{k}-x^{k}\right)\right) \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle .
$$

i.e., $\alpha_{k} \equiv 1$, which means $x^{k+1}=u^{k} \in D$.

- Note that ∇f being Lipschitz with modulus L_{f} implies concavity of $x \mapsto f(x)-L_{f}\|x\|^{2}$.
\therefore Concavity can be assumed WLOG on spheres, but can be restrictive for other D.

Existing work

D as subset of sphere: (Luss, Teboulle '13, Balashov, Polyak, Tremba '20)

- Arises naturally from sparse PCA.
- Assumes concavity of f, so that

$$
f\left(x^{k}+\left(u^{k}-x^{k}\right)\right) \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle
$$

i.e., $\alpha_{k} \equiv 1$, which means $x^{k+1}=u^{k} \in D$.

- Note that ∇f being Lipschitz with modulus L_{f} implies concavity of $x \mapsto f(x)-L_{f}\|x\|^{2}$.
\therefore Concavity can be assumed WLOG on spheres, but can be restrictive for other D.

Our approach:

- Restrict to a different class of nonconvex D.
- Construct new linear oracles.
- Study optimality conditions.

Generalized LO

Consider compact sets of the form

$$
D:=\left\{x \in \mathbb{X}: P_{1}(x)-P_{2}(x) \leq \sigma\right\}
$$

where $P_{1}: \mathbb{X} \rightarrow \mathbb{R}$ and $P_{2}: \mathbb{X} \rightarrow \mathbb{R}$ are convex, $\sigma>0$.

Generalized LO

Consider compact sets of the form

$$
D:=\left\{x \in \mathbb{X}: P_{1}(x)-P_{2}(x) \leq \sigma\right\},
$$

where $P_{1}: \mathbb{X} \rightarrow \mathbb{R}$ and $P_{2}: \mathbb{X} \rightarrow \mathbb{R}$ are convex, $\sigma>0$.
Definition: For P_{1}, P_{2} and σ as above, $y \in D$ and $\xi \in \partial P_{2}(y)$, define

$$
D(y, \xi):=\left\{x \in \mathbb{X}: P_{1}(x)-P_{2}(y)-\langle\xi, x-y\rangle \leq \sigma\right\} .
$$

For any $v \in \mathbb{X}$, a linear-optimization oracle for (v, y, ξ) (denoted by $\mathcal{L O}(v, y, \xi))$ computes a solution of

$$
\min _{x \in \mathbb{X}}\langle v, x\rangle \text { subject to } x \in D(y, \xi) \text {. }
$$

Generalized LO

Consider compact sets of the form

$$
D:=\left\{x \in \mathbb{X}: P_{1}(x)-P_{2}(x) \leq \sigma\right\},
$$

where $P_{1}: \mathbb{X} \rightarrow \mathbb{R}$ and $P_{2}: \mathbb{X} \rightarrow \mathbb{R}$ are convex, $\sigma>0$.
Definition: For P_{1}, P_{2} and σ as above, $y \in D$ and $\xi \in \partial P_{2}(y)$, define

$$
D(y, \xi):=\left\{x \in \mathbb{X}: P_{1}(x)-P_{2}(y)-\langle\xi, x-y\rangle \leq \sigma\right\} .
$$

For any $v \in \mathbb{X}$, a linear-optimization oracle for (v, y, ξ) (denoted by $\mathcal{L O}(v, y, \xi))$ computes a solution of

$$
\min _{x \in \mathbb{X}}\langle v, x\rangle \text { subject to } x \in D(y, \xi) \text {. }
$$

Remarks:

- It holds that $y \in D(y, \xi) \subseteq D$. Thus, $\mathcal{L O}(v, y, \xi)$ is well-defined.
- For any output u of $\mathcal{L O}(v, y, \xi)$ and any $\alpha \in(0,1)$, we have

$$
\alpha y+(1-\alpha) u \in D(y, \xi)
$$

Generalized LO: Example

Matrix completion: Let $\mathbb{X}=\mathbb{R}^{m \times n}, P_{1}(x):=\|x\|_{*}, P_{2}(x):=\mu\|x\|_{F}$ for some $\mu \in(0,1)$ and $\sigma>0$ so that $D:=\left\{x:\|x\|_{*}-\mu\|x\|_{F} \leq \sigma\right\}$. Now, for any $v \in \mathbb{R}^{m \times n}, y \in D$ and $\xi \in \partial P_{2}(y)$, the $\mathcal{L O}(v, y, \xi)$ solves

$$
\min _{x \in \mathbb{R}^{m \times n}}\langle v, x\rangle \text { subject to }\|x\|_{*}-\langle\xi, x\rangle \leq \sigma,
$$

where $\|\xi\|_{F} \leq \mu<1$.

Generalized LO: Example

Matrix completion: Let $\mathbb{X}=\mathbb{R}^{m \times n}, P_{1}(x):=\|x\|_{*}, P_{2}(x):=\mu\|x\|_{F}$ for some $\mu \in(0,1)$ and $\sigma>0$ so that $D:=\left\{x:\|x\|_{*}-\mu\|x\|_{F} \leq \sigma\right\}$. Now, for any $v \in \mathbb{R}^{m \times n}, y \in D$ and $\xi \in \partial P_{2}(y)$, the $\mathcal{L O}(v, y, \xi)$ solves

$$
\min _{x \in \mathbb{R}^{m \times n}}\langle v, x\rangle \text { subject to }\|x\|_{*}-\langle\xi, x\rangle \leq \sigma
$$

where $\|\xi\|_{F} \leq \mu<1$.
Theorem 1. (Zeng, Zhang, Li, P. '21)
Suppose that $v \neq 0$. Let $z=\left[\begin{array}{ll}z_{1}^{T} & z_{2}^{T}\end{array}\right]^{T}$ with $z_{1} \in \mathbb{R}^{m}$ and $z_{2} \in \mathbb{R}^{n}$ be a generalized eigenvector of the smallest generalized eigenvalue of the matrix pencil $(\widetilde{v}, I-\widetilde{\xi})$, and satisfy $z^{T}(I-\widetilde{\xi}) z=1$, where

$$
\widetilde{v}=\left[\begin{array}{cc}
0 & v \\
v^{T} & 0
\end{array}\right] \quad \text { and } \quad \widetilde{\xi}=\left[\begin{array}{cc}
0 & \xi \\
\xi^{T} & 0
\end{array}\right] .
$$

Then $u^{*}=2 \sigma z_{1} z_{2}^{T}$ is an output of $\mathcal{L O}(v, y, \xi)$.
Remark: Since $I-\widetilde{\xi} \succ 0$, the above z can be computed using eigifp.

CQ \& Optimality conditions

Consider

$$
\min _{x \in \mathbb{X}} f(x) \text { subject to } D:=\left\{x \in \mathbb{X}: P_{1}(x)-P_{2}(x) \leq \sigma\right\},
$$

where

- D is compact, $P_{1}, P_{2}: \mathbb{X} \rightarrow \mathbb{R}$ are convex, $\sigma>0$; and

CQ \& Optimality conditions

Consider

$$
\min _{x \in \mathbb{X}} f(x) \text { subject to } D:=\left\{x \in \mathbb{X}: P_{1}(x)-P_{2}(x) \leq \sigma\right\},
$$

where

- D is compact, $P_{1}, P_{2}: \mathbb{X} \rightarrow \mathbb{R}$ are convex, $\sigma>0$; and
- the generalized Slater's condition holds: For any $y \in D$ and $\xi \in \partial P_{2}(y)$, there exists $\hat{x} \in \mathbb{X}$ such that

$$
P_{1}(\hat{x})-P_{2}(y)-\langle\xi, \hat{x}-y\rangle<\sigma .
$$

CQ \& Optimality conditions

Consider

$$
\min _{x \in \mathbb{X}} f(x) \text { subject to } D:=\left\{x \in \mathbb{X}: P_{1}(x)-P_{2}(x) \leq \sigma\right\},
$$

where

- D is compact, $P_{1}, P_{2}: \mathbb{X} \rightarrow \mathbb{R}$ are convex, $\sigma>0$; and
- the generalized Slater's condition holds: For any $y \in D$ and $\xi \in \partial P_{2}(y)$, there exists $\hat{x} \in \mathbb{X}$ such that

$$
P_{1}(\hat{x})-P_{2}(y)-\langle\xi, \hat{x}-y\rangle<\sigma .
$$

Note: The generalized Slater's condition holds for the D in the matrix completion problem.

CQ \& Optimality conditions

Consider

$$
\min _{x \in \mathbb{X}} f(x) \text { subject to } D:=\left\{x \in \mathbb{X}: P_{1}(x)-P_{2}(x) \leq \sigma\right\},
$$

where

- D is compact, $P_{1}, P_{2}: \mathbb{X} \rightarrow \mathbb{R}$ are convex, $\sigma>0$; and
- the generalized Slater's condition holds: For any $y \in D$ and $\xi \in \partial P_{2}(y)$, there exists $\hat{x} \in \mathbb{X}$ such that

$$
P_{1}(\hat{x})-P_{2}(y)-\langle\xi, \hat{x}-y\rangle<\sigma .
$$

Note: The generalized Slater's condition holds for the D in the matrix completion problem.
Theorem 2. (Zeng, Zhang, Li, P. '21)
Assume the generalized Slater's condition. Then TFAE:

- x^{*} is a stationary point of $(\boldsymbol{\oplus})$, i.e., $\exists \lambda \geq 0$ such that

$$
0 \in \nabla f\left(x^{*}\right)+\lambda \partial P_{1}\left(x^{*}\right)-\lambda \partial P_{2}\left(x^{*}\right) .
$$

- $\exists \xi^{*} \in \partial P_{2}\left(x^{*}\right)$ and $u^{*} \in \operatorname{Arg} \min _{x \in D\left(x^{*}, \xi^{*}\right)}\left\langle\nabla f\left(x^{*}\right), x\right\rangle$ such that

$$
\left\langle\nabla f\left(x^{*}\right), u^{*}-x^{*}\right\rangle=0 .
$$

Nonconvex FW method

$\mathrm{FW}_{\text {ncxx }}$: Frank-Wolfe method for ($\boldsymbol{\oplus}$)
Step 1. Choose $x^{0} \in D$ and set $k=0$.
Step 2. Pick any $\xi^{k} \in \partial P_{2}\left(x^{k}\right)$ and compute

$$
u^{k} \in \underset{x \in D\left(x^{k}, \xi^{k}\right)}{\operatorname{Arg} \min }\left\langle\nabla f\left(x^{k}\right), x\right\rangle .
$$

Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ to satisfy Armijo rule via backtracking. Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.

Nonconvex FW method

$\mathrm{FW}_{\text {ncyx }}$: Frank-Wolfe method for ($\left.\boldsymbol{(}\right)$
Step 1. Choose $x^{0} \in D$ and set $k=0$.
Step 2. Pick any $\xi^{k} \in \partial P_{2}\left(x^{k}\right)$ and compute

$$
u^{k} \in \underset{x \in D\left(x^{k}, \xi^{k}\right)}{\operatorname{Arg} \min }\left\langle\nabla f\left(x^{k}\right), x\right\rangle .
$$

Step 3. If $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle=0$, terminate.
Step 4. Choose $\alpha_{k} \in(0,1]$ to satisfy Armijo rule via backtracking.
Step 5. Set $x^{k+1}=x^{k}+\alpha_{k}\left(u^{k}-x^{k}\right), k \leftarrow k+1$. Go to Step 2.
Theorem 3. (Zeng, Zhang, Li, P. '21)
Assume the generalized Slater's condition. Then:

- Finite termination returns a stationary point $x^{\bar{k}}$.
- Line-search loop in Step 4 terminates finitely.
- $\left\{x^{k}\right\} \subseteq D$ and each accumulation point is stationary.

Convergence proof idea

Define a gap function $G: D \rightarrow \mathbb{R}$ by

$$
G(x)=\inf _{\xi \in \partial P_{2}(x)} \max _{y \in D(x, \xi)}\langle\nabla f(x), x-y\rangle .
$$

Theorem 4. (Zeng, Zhang, Li, P. '21)
Assume the generalized Slater's condition. Then $G(x) \geq 0$ for all $x \in D$. Moreover, if $\left\{w^{k}\right\} \subseteq D$ is such that

$$
G\left(w^{k}\right) \rightarrow 0 \text { and } w^{k} \rightarrow x^{*}
$$

for some x^{*}, then $x^{*} \in D$ and is a stationary point of ($\left.\boldsymbol{\top}\right)$.
Convergence of $\mathrm{FW}_{\text {ncyx }}$: Let $\left\{x^{k}\right\}$ be generated by $\mathrm{FW}_{\text {ncvx }}$.

- Direct computation shows that $0 \leq G\left(x^{k}\right) \leq-\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle$.
- Backtracking + Armijo rule give $\left\langle\nabla f\left(x^{k}\right), u^{k}-x^{k}\right\rangle \rightarrow 0$.
- Convergence follows from these and Theorem 4.

Numerical experiments

- Matrix completion:

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to }\|x\|_{*}-0.5\|x\|_{F} \leq \sigma,
$$

where

* Ω collects the indices of observed entries;
* \bar{x} comes from observation, $\sigma>0$;
$\star\|x\|_{*}$ and $\|x\|_{F}$ are resp. nuclear and Fröbenius norm.

Numerical experiments

- Matrix completion:

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to }\|x\|_{*}-0.5\|x\|_{F} \leq \sigma
$$

where
$\star \Omega$ collects the indices of observed entries;
$\star \bar{x}$ comes from observation, $\sigma>0$;
$\star\|x\|_{*}$ and $\|x\|_{F}$ are resp. nuclear and Fröbenius norm.

- Efficient implementation: Following (Freund, Grigas, Mazumder '17)

Numerical experiments

- Matrix completion:

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to }\|x\|_{*}-0.5\|x\|_{F} \leq \sigma
$$

where
$\star \Omega$ collects the indices of observed entries;
$\star \bar{x}$ comes from observation, $\sigma>0$;
$\star\|x\|_{*}$ and $\|x\|_{F}$ are resp. nuclear and Fröbenius norm.

- Efficient implementation: Following (Freund, Grigas, Mazumder '17)
\star Maintain $\left(R^{k}, \Sigma^{k}, T^{k}\right)$ (reduced SVD of $\left.x^{k}\right)$, never form x^{k}.

Numerical experiments

- Matrix completion:

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to }\|x\|_{*}-0.5\|x\|_{F} \leq \sigma
$$

where
$\star \Omega$ collects the indices of observed entries;
$\star \bar{x}$ comes from observation, $\sigma>0$;
$\star\|x\|_{*}$ and $\|x\|_{F}$ are resp. nuclear and Fröbenius norm.

- Efficient implementation: Following (Freund, Grigas, Mazumder '17)
* Maintain $\left(R^{k}, \Sigma^{k}, T^{k}\right)$ (reduced SVD of $\left.x^{k}\right)$, never form x^{k}.
\star Compute $x_{i j}^{k}$ for $(i, j) \in \Omega$ only to obtain the gradient.

Numerical experiments

- Matrix completion:

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to }\|x\|_{*}-0.5\|x\|_{F} \leq \sigma
$$

where
$\star \Omega$ collects the indices of observed entries;
$\star \bar{x}$ comes from observation, $\sigma>0$;
$\star\|x\|_{*}$ and $\|x\|_{F}$ are resp. nuclear and Fröbenius norm.

- Efficient implementation: Following (Freund, Grigas, Mazumder '17)
* Maintain $\left(R^{k}, \Sigma^{k}, T^{k}\right)$ (reduced SVD of $\left.x^{k}\right)$, never form x^{k}.
* Compute $x_{i j}^{k}$ for $(i, j) \in \Omega$ only to obtain the gradient.
\star Compute u^{k} using eigifp, which has rank ONE.

Numerical experiments

- Matrix completion:

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to }\|x\|_{*}-0.5\|x\|_{F} \leq \sigma
$$

where
$\star \Omega$ collects the indices of observed entries;
$\star \bar{x}$ comes from observation, $\sigma>0$;
$\star\|x\|_{*}$ and $\|x\|_{F}$ are resp. nuclear and Fröbenius norm.

- Efficient implementation: Following (Freund, Grigas, Mazumder '17)
* Maintain $\left(R^{k}, \Sigma^{k}, T^{k}\right)$ (reduced SVD of $\left.x^{k}\right)$, never form x^{k}.
* Compute $x_{i j}^{k}$ for $(i, j) \in \Omega$ only to obtain the gradient.
\star Compute u^{k} using eigifp, which has rank ONE.
* KEY: Since

$$
x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} u^{k},
$$

one can obtain $\left(R^{k+1}, \Sigma^{k+1}, T^{k+1}\right)$ using SVD rank-one update.

Numerical experiments

- Matrix completion:

$$
\min _{x \in \mathbb{R}^{m \times n}} \sum_{(i, j) \in \Omega}\left(x_{i j}-\bar{x}_{i j}\right)^{2} \text { subject to }\|x\|_{*}-0.5\|x\|_{F} \leq \sigma
$$

where
$\star \Omega$ collects the indices of observed entries;
$\star \bar{x}$ comes from observation, $\sigma>0$;
$\star\|x\|_{*}$ and $\|x\|_{F}$ are resp. nuclear and Fröbenius norm.

- Efficient implementation: Following (Freund, Grigas, Mazumder '17)
* Maintain $\left(R^{k}, \Sigma^{k}, T^{k}\right)$ (reduced SVD of $\left.x^{k}\right)$, never form x^{k}.
* Compute $x_{i j}^{\kappa}$ for $(i, j) \in \Omega$ only to obtain the gradient.
\star Compute u^{k} using eigifp, which has rank ONE.
* KEY: Since

$$
x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} u^{k},
$$

one can obtain $\left(R^{k+1}, \Sigma^{k+1}, T^{k+1}\right)$ using SVD rank-one update.
In contrast, GP will need to form x^{k}, and perform full SVD (for projection).

Numerical experiments cont.

- MovieLens10M: $n=10677$ movie ratings from $m=69878$ users.
- Randomly choose 70\% as training dataset (i.e., Ω). Training and testing errors as the algorithm progresses are shown below.
- For simplicity, we used the same Ω and the same σ (determined via CV on nuc. norm model) as in (Freund, Grigas, Mazumder '17).

Matlab 2017b on a 64-bit PC with an Intel(R) Core(TM) i5-7200 CPU (2.50GHz) and 8GB of RAM

Conclusion and future work

Conclusion:

- Extended FW method for special nonconvex sets: Level set of DC functions satisfying some regularity conditions.
- Introduced generalized LO: Efficient implementation for applications such as matrix completion.
- Established subsequential convergence.

Reference:

- L. Zeng, Y. Zhang, G. Li and T. K. Pong.

Frank-Wolfe type methods for nonconvex inequality-constrained problems.
Preprint. Available at https://arxiv.org/abs/2112.14404.
Thanks for coming! ¿

