Frank-Wolfe type methods for nonconvex inequality-constrained problems

Ting Kei Pong Department of Applied Mathematics The Hong Kong Polytechnic University Hong Kong

SIAM OP23 Seattle June 2023 (Joint work with Guoyin Li, Liaoyuan Zeng & Yongle Zhang)

• Matrix completion: (Candés, Recht '09)

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \Phi(x) \leq \sigma,$$

where \overline{x} comes from observation, Ω is the index set of observed entries, $\sigma > 0$, and typical choices of $\Phi : \mathbb{R}^{m \times n} \to \mathbb{R}_+$ are:

- * $\Phi(x) = ||x||_*$, the nuclear norm of x;
- * $\Phi(x) = ||x||_* \mu ||x||_F, \mu \in (0, 1).$

• Matrix completion: (Candés, Recht '09)

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \Phi(x) \leq \sigma,$$

where \overline{x} comes from observation, Ω is the index set of observed entries, $\sigma > 0$, and typical choices of $\Phi : \mathbb{R}^{m \times n} \to \mathbb{R}_+$ are:

- * $\Phi(x) = ||x||_*$, the nuclear norm of x;
- * $\Phi(x) = \|x\|_* \mu \|x\|_F, \mu \in (0, 1).$
- Adversarial (ℓ_p) attack: (Chen, Zhou, Yi, Gu '20)

 $\min_{x \in \mathbb{R}^n} h(\bar{x} + x) \text{ subject to } \|x\|_p^p \le \sigma,$

where \bar{x} is a correctly classified data point, *h* is smooth, $\sigma > 0$, $||x||_{\rho}^{\rho} = \sum_{i=1}^{n} |x_i|^{\rho}, \rho > 0$.

• Matrix completion: (Candés, Recht '09)

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \Phi(x) \leq \sigma,$$

where \overline{x} comes from observation, Ω is the index set of observed entries, $\sigma > 0$, and typical choices of $\Phi : \mathbb{R}^{m \times n} \to \mathbb{R}_+$ are:

- * $\Phi(x) = ||x||_*$, the nuclear norm of x;
- * $\Phi(x) = \|x\|_* \mu \|x\|_F, \mu \in (0, 1).$
- Adversarial (ℓ_p) attack: (Chen, Zhou, Yi, Gu '20)

 $\min_{x \in \mathbb{R}^n} h(\bar{x} + x) \text{ subject to } \|x\|_{\rho}^{\rho} \leq \sigma,$

where \bar{x} is a correctly classified data point, *h* is smooth, $\sigma > 0$, $||x||_{p}^{p} = \sum_{i=1}^{n} |x_{i}|^{p}$, p > 0.

Project onto the constraint sets?

• Matrix completion: (Candés, Recht '09)

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \Phi(x) \leq \sigma,$$

where \overline{x} comes from observation, Ω is the index set of observed entries, $\sigma > 0$, and typical choices of $\Phi : \mathbb{R}^{m \times n} \to \mathbb{R}_+$ are:

- * $\Phi(x) = ||x||_*$, the nuclear norm of x;
- * $\Phi(x) = ||x||_* \mu ||x||_F, \mu \in (0, 1).$
- Adversarial (ℓ_p) attack: (Chen, Zhou, Yi, Gu '20)

 $\min_{x \in \mathbb{R}^n} h(\bar{x} + x) \text{ subject to } \|x\|_p^p \le \sigma,$

where \bar{x} is a correctly classified data point, *h* is smooth, $\sigma > 0$, $||x||_p^p = \sum_{i=1}^n |x_i|^p$, p > 0.

Project onto the constraint sets?

• Matrix completion: (Candés, Recht '09)

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \Phi(x) \leq \sigma,$$

where \overline{x} comes from observation, Ω is the index set of observed entries, $\sigma > 0$, and typical choices of $\Phi : \mathbb{R}^{m \times n} \to \mathbb{R}_+$ are:

- * $\Phi(x) = ||x||_*$, the nuclear norm of x;
- * $\Phi(x) = \|x\|_* \mu \|x\|_F, \mu \in (0, 1).$
- Adversarial (ℓ_p) attack: (Chen, Zhou, Yi, Gu '20)

 $\min_{x \in \mathbb{R}^n} h(\bar{x} + x) \text{ subject to } \|x\|_p^p \le \sigma,$

where \bar{x} is a correctly classified data point, *h* is smooth, $\sigma > 0$, $||x||_p^p = \sum_{i=1}^n |x_i|^p$, p > 0.

Project onto the constraint sets? Z Alternatives?

Frank-Wolfe method

Let $\ensuremath{\mathbb{X}}$ be a finite dimensional Hilbert space. Consider

 $\min_{x\in\mathbb{X}} f(x) \text{ subject to } x\in D,$

where $f \in C^1(\mathbb{X})$ and *D* is compact convex such that for any $v \in \mathbb{X}$, a

 $u \in \underset{x \in D}{\operatorname{Arg\,min}} \langle v, x \rangle$

can be *easily* obtained.

Frank-Wolfe method

Let $\ensuremath{\mathbb{X}}$ be a finite dimensional Hilbert space. Consider

 $\min_{x\in\mathbb{X}} f(x) \text{ subject to } x\in D,$

where $f \in C^1(\mathbb{X})$ and *D* is compact convex such that for any $v \in \mathbb{X}$, a

 $u \in \underset{x \in D}{\operatorname{Arg\,min}} \langle v, x \rangle$

can be *easily* obtained.

Examples of *D*:

• $D = \{x \in \mathbb{R}^n : \|x\|_p \le \sigma\}$ for $p \in [1, \infty]$ and some $\sigma > 0$. Then *u* can be computed by considering the dual norm.

Frank-Wolfe method

Let $\ensuremath{\mathbb{X}}$ be a finite dimensional Hilbert space. Consider

 $\min_{x\in\mathbb{X}} f(x) \text{ subject to } x\in D,$

where $f \in C^1(\mathbb{X})$ and *D* is compact convex such that for any $v \in \mathbb{X}$, a

 $u \in \underset{x \in D}{\operatorname{Arg\,min}} \langle v, x \rangle$

can be *easily* obtained.

Examples of *D*:

- $D = \{x \in \mathbb{R}^n : \|x\|_p \le \sigma\}$ for $p \in [1, \infty]$ and some $\sigma > 0$. Then *u* can be computed by considering the dual norm.
- $D = \{x \in \mathbb{R}^{m \times n} : \|x\|_* \le \sigma\}$ for some $\sigma > 0$. Then $u = -\sigma r_1 s_1^T$, where r_1 and s_1 are the left and right unit singular vectors, respectively, corresponding to the largest singular value of -v, obtained via Lanzcos method.

In contrast, projecting onto D requires full SVD of v.

Frank-Wolfe method cont.

Frank-Wolfe method for convex D: (Frank, Wolfe '56)

- Step 1. Choose $x^0 \in D$. Pick any $c \in (0, 1)$ and set k = 0.
- Step 2. Compute $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$.
- Step 3. If $\langle \nabla f(x^k), u^k x^k \rangle = 0$, terminate.

Step 4. Choose $\alpha_k \in (0, 1]$ using backtracking to satisfy

$$f(\mathbf{x}^k + \alpha_k(\mathbf{u}^k - \mathbf{x}^k)) \leq f(\mathbf{x}^k) + \mathbf{c}\alpha_k \langle \nabla f(\mathbf{x}^k), \mathbf{u}^k - \mathbf{x}^k \rangle.$$

Step 5. Set $x^{k+1} = x^k + \alpha_k (u^k - x^k)$, $k \leftarrow k + 1$. Go to Step 2.

Frank-Wolfe method cont.

Frank-Wolfe method for convex D: (Frank, Wolfe '56)

- Step 1. Choose $x^0 \in D$. Pick any $c \in (0, 1)$ and set k = 0.
- Step 2. Compute $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$.
- Step 3. If $\langle \nabla f(x^k), u^k x^k \rangle = 0$, terminate.

Step 4. Choose $\alpha_k \in (0, 1]$ using backtracking to satisfy

$$f(x^k + \alpha_k(u^k - x^k)) \leq f(x^k) + c\alpha_k \langle \nabla f(x^k), u^k - x^k \rangle.$$

Step 5. Set $x^{k+1} = x^k + \alpha_k (u^k - x^k)$, $k \leftarrow k + 1$. Go to Step 2. Remarks:

 The algorithm either terminates finitely at a stationary point x^k, or every accumulation point of {x^k} is stationary.

Frank-Wolfe method cont.

Frank-Wolfe method for convex D: (Frank, Wolfe '56)

- Step 1. Choose $x^0 \in D$. Pick any $c \in (0, 1)$ and set k = 0.
- Step 2. Compute $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$.
- Step 3. If $\langle \nabla f(x^k), u^k x^k \rangle = 0$, terminate.

Step 4. Choose $\alpha_k \in (0, 1]$ using backtracking to satisfy

$$f(x^k + \alpha_k(u^k - x^k)) \leq f(x^k) + c\alpha_k \langle \nabla f(x^k), u^k - x^k \rangle.$$

Step 5. Set $x^{k+1} = x^k + \alpha_k (u^k - x^k)$, $k \leftarrow k + 1$. Go to Step 2. Remarks:

- The algorithm either terminates finitely at a stationary point x^k, or every accumulation point of {x^k} is stationary.
- When *f* is convex with Lipschitz gradient (modulus *L_f*), one can choose in Step 4

$$\alpha_k = \frac{2}{k+2} \text{ or } \alpha_k = \min\left\{1, -\frac{\langle \nabla f(x^k), u^k - x^k \rangle}{L_f \|u^k - x^k\|^2}\right\}.$$

Frank-Wolfe method for convex D (recapped):

- Step 1. Choose $x^0 \in D$ and set k = 0.
- Step 2. Compute $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$.
- Step 3. If $\langle \nabla f(x^k), u^k x^k \rangle = 0$, terminate.
- Step 4. Choose $\alpha_k \in (0, 1]$ to satisfy Armijo rule via backtracking.
- Step 5. Set $x^{k+1} = x^k + \alpha_k(u^k x^k)$, $k \leftarrow k + 1$. Go to Step 2.

Frank-Wolfe method for convex D (recapped):

- Step 1. Choose $x^0 \in D$ and set k = 0.
- Step 2. Compute $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$.
- Step 3. If $\langle \nabla f(x^k), u^k x^k \rangle = 0$, terminate.
- Step 4. Choose $\alpha_k \in (0, 1]$ to satisfy Armijo rule via backtracking.
- Step 5. Set $x^{k+1} = x^k + \alpha_k (u^k x^k)$, $k \leftarrow k + 1$. Go to Step 2.

What if D is nonconvex?

Frank-Wolfe method for convex D (recapped):

- Step 1. Choose $x^0 \in D$ and set k = 0.
- Step 2. Compute $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$.
- Step 3. If $\langle \nabla f(x^k), u^k x^k \rangle = 0$, terminate.
- Step 4. Choose $\alpha_k \in (0, 1]$ to satisfy Armijo rule via backtracking.
- Step 5. Set $x^{k+1} = x^k + \alpha_k (u^k x^k)$, $k \leftarrow k + 1$. Go to Step 2.

What if D is nonconvex?

• Is $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$ in Step 2 easy to solve? (Oracle issue)

Frank-Wolfe method for convex D (recapped):

- Step 1. Choose $x^0 \in D$ and set k = 0.
- Step 2. Compute $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$.
- Step 3. If $\langle \nabla f(x^k), u^k x^k \rangle = 0$, terminate.
- Step 4. Choose $\alpha_k \in (0, 1]$ to satisfy Armijo rule via backtracking.
- Step 5. Set $x^{k+1} = x^k + \alpha_k (u^k x^k)$, $k \leftarrow k + 1$. Go to Step 2.

What if D is nonconvex?

- Is $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$ in Step 2 easy to solve? (Oracle issue)
- Is the termination in Step 3 correct? (Termination issue)

Frank-Wolfe method for convex D (recapped):

- Step 1. Choose $x^0 \in D$ and set k = 0.
- Step 2. Compute $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$.
- Step 3. If $\langle \nabla f(x^k), u^k x^k \rangle = 0$, terminate.
- Step 4. Choose $\alpha_k \in (0, 1]$ to satisfy Armijo rule via backtracking.
- Step 5. Set $x^{k+1} = x^k + \alpha_k (u^k x^k)$, $k \leftarrow k + 1$. Go to Step 2.

What if *D* is nonconvex?

- Is $u^k \in \operatorname{Arg\,min}_{x \in D} \langle \nabla f(x^k), x \rangle$ in Step 2 easy to solve? (Oracle issue)
- Is the termination in Step 3 correct? (Termination issue)
- The convex combination in Step 5 can make $x^{k+1} \notin D!$ (Feas. issue)

D as subset of sphere: (Luss, Teboulle '13, Balashov, Polyak, Tremba '20)

- Arises naturally from sparse PCA.
- Assumes concavity of f, so that

$$f(x^k + (u^k - x^k)) \leq f(x^k) + \langle \nabla f(x^k), u^k - x^k \rangle.$$

i.e., $\alpha_k \equiv 1$, which means $x^{k+1} = u^k \in D$.

D as subset of sphere: (Luss, Teboulle '13, Balashov, Polyak, Tremba '20)

- Arises naturally from sparse PCA.
- Assumes concavity of f, so that

$$f(x^k + (u^k - x^k)) \leq f(x^k) + \langle \nabla f(x^k), u^k - x^k \rangle.$$

i.e., $\alpha_k \equiv 1$, which means $x^{k+1} = u^k \in D$.

 Note that ∇f being Lipschitz with modulus L_f implies concavity of x ↦ f(x) - L_f ||x||².

D as subset of sphere: (Luss, Teboulle '13, Balashov, Polyak, Tremba '20)

- Arises naturally from sparse PCA.
- Assumes concavity of f, so that

$$f(x^k + (u^k - x^k)) \leq f(x^k) + \langle \nabla f(x^k), u^k - x^k \rangle.$$

i.e., $\alpha_k \equiv 1$, which means $x^{k+1} = u^k \in D$.

 Note that ∇*f* being Lipschitz with modulus L_f implies concavity of x ↦ f(x) - L_f ||x||².

 \therefore Concavity can be assumed WLOG on spheres, but can be restrictive for other *D*.

D as subset of sphere: (Luss, Teboulle '13, Balashov, Polyak, Tremba '20)

- Arises naturally from sparse PCA.
- Assumes concavity of f, so that

$$f(x^k + (u^k - x^k)) \leq f(x^k) + \langle \nabla f(x^k), u^k - x^k \rangle.$$

i.e., $\alpha_k \equiv 1$, which means $x^{k+1} = u^k \in D$.

 Note that ∇f being Lipschitz with modulus L_f implies concavity of x ↦ f(x) - L_f ||x||².

 \therefore Concavity can be assumed WLOG on spheres, but can be restrictive for other *D*.

Our approach:

- Restrict to a different class of nonconvex D.
- Construct new linear oracles.
- Study optimality conditions.

Generalized LO

Consider compact sets of the form

$$D:=\{x\in\mathbb{X}:\ P_1(x)-P_2(x)\leq\sigma\},$$

where $P_1 : \mathbb{X} \to \mathbb{R}$ and $P_2 : \mathbb{X} \to \mathbb{R}$ are convex, $\sigma > 0$.

Generalized LO

Consider compact sets of the form

$$D:=\{x\in\mathbb{X}:\ P_1(x)-P_2(x)\leq\sigma\},$$

where $P_1 : \mathbb{X} \to \mathbb{R}$ and $P_2 : \mathbb{X} \to \mathbb{R}$ are convex, $\sigma > 0$.

Definition: For P_1 , P_2 and σ as above, $\mathbf{y} \in D$ and $\xi \in \partial P_2(\mathbf{y})$, define

$$D(\mathbf{y},\xi) := \{ \mathbf{x} \in \mathbb{X} : P_1(\mathbf{x}) - P_2(\mathbf{y}) - \langle \xi, \mathbf{x} - \mathbf{y} \rangle \le \sigma \}.$$

For any $v \in \mathbb{X}$, a linear-optimization oracle for (v, y, ξ) (denoted by $\mathcal{LO}(v, y, \xi)$) computes a solution of

$$\min_{x \in \mathbb{X}} \langle v, x \rangle \text{ subject to } x \in D(\mathbf{y}, \xi).$$

Generalized LO

Consider compact sets of the form

$$D:=\{x\in\mathbb{X}:\ P_1(x)-P_2(x)\leq\sigma\},$$

where $P_1 : \mathbb{X} \to \mathbb{R}$ and $P_2 : \mathbb{X} \to \mathbb{R}$ are convex, $\sigma > 0$.

Definition: For P_1 , P_2 and σ as above, $\mathbf{y} \in D$ and $\xi \in \partial P_2(\mathbf{y})$, define

$$D(\mathbf{y},\xi) := \{ \mathbf{x} \in \mathbb{X} : P_1(\mathbf{x}) - P_2(\mathbf{y}) - \langle \xi, \mathbf{x} - \mathbf{y} \rangle \leq \sigma \}.$$

For any $v \in \mathbb{X}$, a linear-optimization oracle for (v, y, ξ) (denoted by $\mathcal{LO}(v, y, \xi)$) computes a solution of

$$\min_{x \in \mathbb{X}} \langle v, x \rangle \text{ subject to } x \in D(y, \xi).$$

Remarks:

- It holds that $y \in D(y,\xi) \subseteq D$. Thus, $\mathcal{LO}(v, y, \xi)$ is well-defined.
- For any output *u* of $\mathcal{LO}(v, y, \xi)$ and any $\alpha \in (0, 1)$, we have

$$\alpha \mathbf{y} + (\mathbf{1} - \alpha)\mathbf{u} \in D(\mathbf{y}, \xi)$$

Generalized LO: Example

Matrix completion: Let $\mathbb{X} = \mathbb{R}^{m \times n}$, $P_1(x) := ||x||_*$, $P_2(x) := \mu ||x||_F$ for some $\mu \in (0, 1)$ and $\sigma > 0$ so that $D := \{x : ||x||_* - \mu ||x||_F \le \sigma\}$. Now, for any $v \in \mathbb{R}^{m \times n}$, $y \in D$ and $\xi \in \partial P_2(y)$, the $\mathcal{LO}(v, y, \xi)$ solves

 $\min_{\boldsymbol{x} \in \mathbb{R}^{m \times n}} \langle \boldsymbol{v}, \boldsymbol{x} \rangle \text{ subject to } \|\boldsymbol{x}\|_* - \langle \xi, \boldsymbol{x} \rangle \leq \sigma,$

where $\|\xi\|_F \leq \mu < 1$.

Generalized LO: Example

Matrix completion: Let $\mathbb{X} = \mathbb{R}^{m \times n}$, $P_1(x) := ||x||_*$, $P_2(x) := \mu ||x||_F$ for some $\mu \in (0, 1)$ and $\sigma > 0$ so that $D := \{x : ||x||_* - \mu ||x||_F \le \sigma\}$. Now, for any $v \in \mathbb{R}^{m \times n}$, $y \in D$ and $\xi \in \partial P_2(y)$, the $\mathcal{LO}(v, y, \xi)$ solves

 $\min_{x \in \mathbb{R}^{m \times n}} \langle v, x \rangle \text{ subject to } \|x\|_* - \langle \xi, x \rangle \leq \sigma,$

where $\|\xi\|_F \leq \mu < 1$.

Theorem 1. (Zeng, Zhang, Li, P. '21)

Suppose that $v \neq 0$. Let $z = \begin{bmatrix} z_1^T & z_2^T \end{bmatrix}^T$ with $z_1 \in \mathbb{R}^m$ and $z_2 \in \mathbb{R}^n$ be a generalized eigenvector of the smallest generalized eigenvalue of the matrix pencil $(\tilde{v}, I - \tilde{\xi})$, and satisfy $z^T(I - \tilde{\xi})z = 1$, where

$$\widetilde{\nu} = \begin{bmatrix} 0 & \nu \\ \nu^T & 0 \end{bmatrix}$$
 and $\widetilde{\xi} = \begin{bmatrix} 0 & \xi \\ \xi^T & 0 \end{bmatrix}$.

Then $u^* = 2\sigma z_1 z_2^T$ is an output of $\mathcal{LO}(v, y, \xi)$. Remark: Since $I - \tilde{\xi} \succ 0$, the above *z* can be computed using eigifp.

Consider

 $\min_{x\in\mathbb{X}} f(x) \text{ subject to } D := \{x\in\mathbb{X}: P_1(x) - P_2(x) \le \sigma\}, \quad (\clubsuit)$

where

• *D* is compact, P_1 , $P_2 : \mathbb{X} \to \mathbb{R}$ are convex, $\sigma > 0$; and

Consider

 $\min_{x\in\mathbb{X}} f(x) \text{ subject to } D := \{x\in\mathbb{X}: P_1(x) - P_2(x) \le \sigma\}, \quad (\clubsuit)$

- *D* is compact, P_1 , $P_2 : \mathbb{X} \to \mathbb{R}$ are convex, $\sigma > 0$; and
- the generalized Slater's condition holds: For any $y \in D$ and $\xi \in \partial P_2(y)$, there exists $\hat{x} \in \mathbb{X}$ such that

$$P_1(\hat{x}) - P_2(y) - \langle \xi, \hat{x} - y \rangle < \sigma.$$

Consider

 $\min_{x\in\mathbb{X}} f(x) \text{ subject to } D := \{x\in\mathbb{X}: P_1(x) - P_2(x) \le \sigma\}, \quad (\clubsuit)$

where

- *D* is compact, P_1 , $P_2 : \mathbb{X} \to \mathbb{R}$ are convex, $\sigma > 0$; and
- the generalized Slater's condition holds: For any $y \in D$ and $\xi \in \partial P_2(y)$, there exists $\hat{x} \in \mathbb{X}$ such that

$$P_1(\hat{x}) - P_2(y) - \langle \xi, \hat{x} - y \rangle < \sigma.$$

Note: The generalized Slater's condition holds for the D in the matrix completion problem.

Consider

 $\min_{x\in\mathbb{X}} f(x) \text{ subject to } D := \{x\in\mathbb{X}: P_1(x) - P_2(x) \le \sigma\}, \quad (\clubsuit)$

where

- *D* is compact, P_1 , $P_2 : \mathbb{X} \to \mathbb{R}$ are convex, $\sigma > 0$; and
- the generalized Slater's condition holds: For any $y \in D$ and $\xi \in \partial P_2(y)$, there exists $\hat{x} \in \mathbb{X}$ such that

$$P_1(\hat{x}) - P_2(y) - \langle \xi, \hat{x} - y \rangle < \sigma.$$

Note: The generalized Slater's condition holds for the *D* in the matrix completion problem. **Theorem 2.** (Zeng, Zhang, Li, P. '21) Assume the generalized Slater's condition. Then TFAE:

• x^* is a stationary point of (\blacklozenge), i.e., $\exists \lambda \ge 0$ such that

$$0 \in \nabla f(x^*) + \lambda \partial P_1(x^*) - \lambda \partial P_2(x^*).$$

• $\exists \xi^* \in \partial P_2(x^*)$ and $u^* \in \operatorname{Arg\,min}_{x \in D(x^*,\xi^*)} \langle \nabla f(x^*), x \rangle$ such that $\langle \nabla f(x^*), u^* - x^* \rangle = 0.$

8/13

Nonconvex FW method

FW_{ncvx}: Frank-Wolfe method for (\blacklozenge) Step 1. Choose $x^0 \in D$ and set k = 0. Step 2. Pick any $\xi^k \in \partial P_2(x^k)$ and compute $u^k \in \underset{x \in D(x^k, \xi^k)}{\operatorname{Arg\,min}} \langle \nabla f(x^k), x \rangle.$

Step 3. If $\langle \nabla f(x^k), u^k - x^k \rangle = 0$, terminate. Step 4. Choose $\alpha_k \in (0, 1]$ to satisfy Armijo rule via backtracking. Step 5. Set $x^{k+1} = x^k + \alpha_k (u^k - x^k), k \leftarrow k + 1$. Go to Step 2.

Nonconvex FW method

FW_{ncvx}: Frank-Wolfe method for (\bigstar) Step 1. Choose $x^0 \in D$ and set k = 0. Step 2. Pick any $\xi^k \in \partial P_2(x^k)$ and compute $u^k \in \underset{x \in D(x^k, \xi^k)}{\operatorname{Arg\,min}} \langle \nabla f(x^k), x \rangle.$

Step 3. If $\langle \nabla f(x^k), u^k - x^k \rangle = 0$, terminate. Step 4. Choose $\alpha_k \in (0, 1]$ to satisfy Armijo rule via backtracking. Step 5. Set $x^{k+1} = x^k + \alpha_k (u^k - x^k), k \leftarrow k + 1$. Go to Step 2.

Theorem 3. (Zeng, Zhang, Li, P. '21) Assume the generalized Slater's condition. Then:

- Finite termination returns a stationary point $x^{\bar{k}}$.
- Line-search loop in Step 4 terminates finitely.
- $\{x^k\} \subseteq D$ and each accumulation point is stationary.

Convergence proof idea

Define a gap function $G: D \to \mathbb{R}$ by

$$G(x) = \inf_{\xi \in \partial P_2(x)} \max_{y \in D(x,\xi)} \langle \nabla f(x), x - y \rangle.$$

Theorem 4. (Zeng, Zhang, Li, P. '21) Assume the generalized Slater's condition. Then $G(x) \ge 0$ for all $x \in D$. Moreover, if $\{w^k\} \subseteq D$ is such that

$$G(w^k)
ightarrow 0$$
 and $w^k
ightarrow x^*$

for some x^* , then $x^* \in D$ and is a stationary point of (\blacklozenge).

Convergence of FW_{ncvx} : Let $\{x^k\}$ be generated by FW_{ncvx} .

- Direct computation shows that $0 \le G(x^k) \le -\langle \nabla f(x^k), u^k x^k \rangle$.
- Backtracking + Armijo rule give $\langle \nabla f(x^k), u^k x^k \rangle \to 0$.
- Convergence follows from these and Theorem 4.

• Matrix completion:

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \|x\|_* - 0.5 \|x\|_F \le \sigma,$$

- $\star~\Omega$ collects the indices of observed entries;
- * \overline{x} comes from observation, $\sigma > 0$;
- ★ $||x||_{\ast}$ and $||x||_{F}$ are resp. nuclear and Fröbenius norm.

• Matrix completion:

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \|x\|_* - 0.5 \|x\|_F \le \sigma,$$

where

- $\star~\Omega$ collects the indices of observed entries;
- * \overline{x} comes from observation, $\sigma > 0$;
- ★ $||x||_*$ and $||x||_F$ are resp. nuclear and Fröbenius norm.

• Efficient implementation: Following (Freund, Grigas, Mazumder '17)

• Matrix completion:

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \|x\|_* - 0.5 \|x\|_F \le \sigma,$$

- $\star \ \Omega$ collects the indices of observed entries;
- * \overline{x} comes from observation, $\sigma > 0$;
- * $||x||_*$ and $||x||_F$ are resp. nuclear and Fröbenius norm.
- Efficient implementation: Following (Freund, Grigas, Mazumder '17)
 - * Maintain (R^k, Σ^k, T^k) (reduced SVD of x^k), never form x^k .

• Matrix completion:

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \|x\|_* - 0.5 \|x\|_F \le \sigma,$$

- $\star \ \Omega$ collects the indices of observed entries;
- * \overline{x} comes from observation, $\sigma > 0$;
- * $||x||_*$ and $||x||_F$ are resp. nuclear and Fröbenius norm.
- Efficient implementation: Following (Freund, Grigas, Mazumder '17)
 - * Maintain (R^k, Σ^k, T^k) (reduced SVD of x^k), never form x^k .
 - ★ Compute x_{ij}^k for $(i, j) \in \Omega$ only to obtain the gradient.

• Matrix completion:

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \|x\|_* - 0.5 \|x\|_{\mathsf{F}} \le \sigma,$$

- $\star~\Omega$ collects the indices of observed entries;
- * \overline{x} comes from observation, $\sigma > 0$;
- * $||x||_*$ and $||x||_F$ are resp. nuclear and Fröbenius norm.
- Efficient implementation: Following (Freund, Grigas, Mazumder '17)
 - * Maintain (R^k, Σ^k, T^k) (reduced SVD of x^k), never form x^k .
 - ★ Compute x_{ij}^k for $(i, j) \in \Omega$ only to obtain the gradient.
 - * Compute u^k using eigifp, which has rank ONE.

• Matrix completion:

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \|x\|_* - 0.5 \|x\|_F \le \sigma,$$

where

- * Ω collects the indices of observed entries;
- * \overline{x} comes from observation, $\sigma > 0$;
- * $||x||_*$ and $||x||_F$ are resp. nuclear and Fröbenius norm.

• Efficient implementation: Following (Freund, Grigas, Mazumder '17)

- * Maintain (R^k, Σ^k, T^k) (reduced SVD of x^k), never form x^k .
- ★ Compute x_{ij}^k for $(i, j) \in \Omega$ only to obtain the gradient.
- * Compute u^k using eigifp, which has rank ONE.
- * **KEY**: Since

$$\mathbf{x}^{k+1} = (\mathbf{1} - \alpha_k)\mathbf{x}^k + \alpha_k \mathbf{u}^k,$$

one can obtain $(R^{k+1}, \Sigma^{k+1}, T^{k+1})$ using SVD rank-one update.

• Matrix completion:

$$\min_{x \in \mathbb{R}^{m \times n}} \sum_{(i,j) \in \Omega} (x_{ij} - \bar{x}_{ij})^2 \text{ subject to } \|x\|_* - 0.5 \|x\|_F \le \sigma,$$

where

- $\star \ \Omega$ collects the indices of observed entries;
- * \overline{x} comes from observation, $\sigma > 0$;
- * $||x||_*$ and $||x||_F$ are resp. nuclear and Fröbenius norm.

• Efficient implementation: Following (Freund, Grigas, Mazumder '17)

- * Maintain $(\mathbf{R}^k, \Sigma^k, T^k)$ (reduced SVD of x^k), never form x^k .
- ★ Compute x_{ij}^k for $(i, j) \in \Omega$ only to obtain the gradient.
- * Compute u^k using eigifp, which has rank ONE.
- * **KEY**: Since

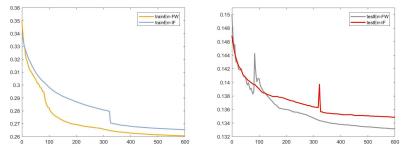
$$\mathbf{x}^{k+1} = (\mathbf{1} - \alpha_k)\mathbf{x}^k + \alpha_k \mathbf{u}^k,$$

one can obtain $(R^{k+1}, \Sigma^{k+1}, T^{k+1})$ using SVD rank-one update.

In contrast, GP will need to form x^k , and perform full SVD (for projection).

Numerical experiments cont.

- MovieLens10M: n = 10677 movie ratings from m = 69878 users.
- Randomly choose 70% as training dataset (i.e.,Ω). Training and testing errors as the algorithm progresses are shown below.
- For simplicity, we used the same Ω and the same σ (determined via CV on nuc. norm model) as in (Freund, Grigas, Mazumder '17).



Matlab 2017b on a 64-bit PC with an Intel(R) Core(TM) i5-7200 CPU (2.50GHz) and 8GB of RAM

Conclusion and future work

Conclusion:

- Extended FW method for special nonconvex sets: Level set of DC functions satisfying some regularity conditions.
- Introduced generalized LO: Efficient implementation for applications such as matrix completion.
- Established subsequential convergence.

Reference:

• L. Zeng, Y. Zhang, G. Li and T. K. Pong. Frank-Wolfe type methods for nonconvex inequality-constrained problems.

Preprint. Available at https://arxiv.org/abs/2112.14404.

Thanks for coming!